xref: /openbmc/linux/mm/slub.c (revision 0d456bad)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34 #include <linux/memcontrol.h>
35 
36 #include <trace/events/kmem.h>
37 
38 #include "internal.h"
39 
40 /*
41  * Lock order:
42  *   1. slab_mutex (Global Mutex)
43  *   2. node->list_lock
44  *   3. slab_lock(page) (Only on some arches and for debugging)
45  *
46  *   slab_mutex
47  *
48  *   The role of the slab_mutex is to protect the list of all the slabs
49  *   and to synchronize major metadata changes to slab cache structures.
50  *
51  *   The slab_lock is only used for debugging and on arches that do not
52  *   have the ability to do a cmpxchg_double. It only protects the second
53  *   double word in the page struct. Meaning
54  *	A. page->freelist	-> List of object free in a page
55  *	B. page->counters	-> Counters of objects
56  *	C. page->frozen		-> frozen state
57  *
58  *   If a slab is frozen then it is exempt from list management. It is not
59  *   on any list. The processor that froze the slab is the one who can
60  *   perform list operations on the page. Other processors may put objects
61  *   onto the freelist but the processor that froze the slab is the only
62  *   one that can retrieve the objects from the page's freelist.
63  *
64  *   The list_lock protects the partial and full list on each node and
65  *   the partial slab counter. If taken then no new slabs may be added or
66  *   removed from the lists nor make the number of partial slabs be modified.
67  *   (Note that the total number of slabs is an atomic value that may be
68  *   modified without taking the list lock).
69  *
70  *   The list_lock is a centralized lock and thus we avoid taking it as
71  *   much as possible. As long as SLUB does not have to handle partial
72  *   slabs, operations can continue without any centralized lock. F.e.
73  *   allocating a long series of objects that fill up slabs does not require
74  *   the list lock.
75  *   Interrupts are disabled during allocation and deallocation in order to
76  *   make the slab allocator safe to use in the context of an irq. In addition
77  *   interrupts are disabled to ensure that the processor does not change
78  *   while handling per_cpu slabs, due to kernel preemption.
79  *
80  * SLUB assigns one slab for allocation to each processor.
81  * Allocations only occur from these slabs called cpu slabs.
82  *
83  * Slabs with free elements are kept on a partial list and during regular
84  * operations no list for full slabs is used. If an object in a full slab is
85  * freed then the slab will show up again on the partial lists.
86  * We track full slabs for debugging purposes though because otherwise we
87  * cannot scan all objects.
88  *
89  * Slabs are freed when they become empty. Teardown and setup is
90  * minimal so we rely on the page allocators per cpu caches for
91  * fast frees and allocs.
92  *
93  * Overloading of page flags that are otherwise used for LRU management.
94  *
95  * PageActive 		The slab is frozen and exempt from list processing.
96  * 			This means that the slab is dedicated to a purpose
97  * 			such as satisfying allocations for a specific
98  * 			processor. Objects may be freed in the slab while
99  * 			it is frozen but slab_free will then skip the usual
100  * 			list operations. It is up to the processor holding
101  * 			the slab to integrate the slab into the slab lists
102  * 			when the slab is no longer needed.
103  *
104  * 			One use of this flag is to mark slabs that are
105  * 			used for allocations. Then such a slab becomes a cpu
106  * 			slab. The cpu slab may be equipped with an additional
107  * 			freelist that allows lockless access to
108  * 			free objects in addition to the regular freelist
109  * 			that requires the slab lock.
110  *
111  * PageError		Slab requires special handling due to debug
112  * 			options set. This moves	slab handling out of
113  * 			the fast path and disables lockless freelists.
114  */
115 
116 static inline int kmem_cache_debug(struct kmem_cache *s)
117 {
118 #ifdef CONFIG_SLUB_DEBUG
119 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
120 #else
121 	return 0;
122 #endif
123 }
124 
125 /*
126  * Issues still to be resolved:
127  *
128  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129  *
130  * - Variable sizing of the per node arrays
131  */
132 
133 /* Enable to test recovery from slab corruption on boot */
134 #undef SLUB_RESILIENCY_TEST
135 
136 /* Enable to log cmpxchg failures */
137 #undef SLUB_DEBUG_CMPXCHG
138 
139 /*
140  * Mininum number of partial slabs. These will be left on the partial
141  * lists even if they are empty. kmem_cache_shrink may reclaim them.
142  */
143 #define MIN_PARTIAL 5
144 
145 /*
146  * Maximum number of desirable partial slabs.
147  * The existence of more partial slabs makes kmem_cache_shrink
148  * sort the partial list by the number of objects in the.
149  */
150 #define MAX_PARTIAL 10
151 
152 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 				SLAB_POISON | SLAB_STORE_USER)
154 
155 /*
156  * Debugging flags that require metadata to be stored in the slab.  These get
157  * disabled when slub_debug=O is used and a cache's min order increases with
158  * metadata.
159  */
160 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161 
162 /*
163  * Set of flags that will prevent slab merging
164  */
165 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
166 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 		SLAB_FAILSLAB)
168 
169 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
170 		SLAB_CACHE_DMA | SLAB_NOTRACK)
171 
172 #define OO_SHIFT	16
173 #define OO_MASK		((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
175 
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON		0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
179 
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183 
184 /*
185  * Tracking user of a slab.
186  */
187 #define TRACK_ADDRS_COUNT 16
188 struct track {
189 	unsigned long addr;	/* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
192 #endif
193 	int cpu;		/* Was running on cpu */
194 	int pid;		/* Pid context */
195 	unsigned long when;	/* When did the operation occur */
196 };
197 
198 enum track_item { TRACK_ALLOC, TRACK_FREE };
199 
200 #ifdef CONFIG_SYSFS
201 static int sysfs_slab_add(struct kmem_cache *);
202 static int sysfs_slab_alias(struct kmem_cache *, const char *);
203 static void sysfs_slab_remove(struct kmem_cache *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 							{ return 0; }
209 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
210 
211 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
212 #endif
213 
214 static inline void stat(const struct kmem_cache *s, enum stat_item si)
215 {
216 #ifdef CONFIG_SLUB_STATS
217 	__this_cpu_inc(s->cpu_slab->stat[si]);
218 #endif
219 }
220 
221 /********************************************************************
222  * 			Core slab cache functions
223  *******************************************************************/
224 
225 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
226 {
227 	return s->node[node];
228 }
229 
230 /* Verify that a pointer has an address that is valid within a slab page */
231 static inline int check_valid_pointer(struct kmem_cache *s,
232 				struct page *page, const void *object)
233 {
234 	void *base;
235 
236 	if (!object)
237 		return 1;
238 
239 	base = page_address(page);
240 	if (object < base || object >= base + page->objects * s->size ||
241 		(object - base) % s->size) {
242 		return 0;
243 	}
244 
245 	return 1;
246 }
247 
248 static inline void *get_freepointer(struct kmem_cache *s, void *object)
249 {
250 	return *(void **)(object + s->offset);
251 }
252 
253 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
254 {
255 	prefetch(object + s->offset);
256 }
257 
258 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
259 {
260 	void *p;
261 
262 #ifdef CONFIG_DEBUG_PAGEALLOC
263 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
264 #else
265 	p = get_freepointer(s, object);
266 #endif
267 	return p;
268 }
269 
270 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
271 {
272 	*(void **)(object + s->offset) = fp;
273 }
274 
275 /* Loop over all objects in a slab */
276 #define for_each_object(__p, __s, __addr, __objects) \
277 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
278 			__p += (__s)->size)
279 
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 	return (p - addr) / s->size;
284 }
285 
286 static inline size_t slab_ksize(const struct kmem_cache *s)
287 {
288 #ifdef CONFIG_SLUB_DEBUG
289 	/*
290 	 * Debugging requires use of the padding between object
291 	 * and whatever may come after it.
292 	 */
293 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294 		return s->object_size;
295 
296 #endif
297 	/*
298 	 * If we have the need to store the freelist pointer
299 	 * back there or track user information then we can
300 	 * only use the space before that information.
301 	 */
302 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 		return s->inuse;
304 	/*
305 	 * Else we can use all the padding etc for the allocation
306 	 */
307 	return s->size;
308 }
309 
310 static inline int order_objects(int order, unsigned long size, int reserved)
311 {
312 	return ((PAGE_SIZE << order) - reserved) / size;
313 }
314 
315 static inline struct kmem_cache_order_objects oo_make(int order,
316 		unsigned long size, int reserved)
317 {
318 	struct kmem_cache_order_objects x = {
319 		(order << OO_SHIFT) + order_objects(order, size, reserved)
320 	};
321 
322 	return x;
323 }
324 
325 static inline int oo_order(struct kmem_cache_order_objects x)
326 {
327 	return x.x >> OO_SHIFT;
328 }
329 
330 static inline int oo_objects(struct kmem_cache_order_objects x)
331 {
332 	return x.x & OO_MASK;
333 }
334 
335 /*
336  * Per slab locking using the pagelock
337  */
338 static __always_inline void slab_lock(struct page *page)
339 {
340 	bit_spin_lock(PG_locked, &page->flags);
341 }
342 
343 static __always_inline void slab_unlock(struct page *page)
344 {
345 	__bit_spin_unlock(PG_locked, &page->flags);
346 }
347 
348 /* Interrupts must be disabled (for the fallback code to work right) */
349 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
350 		void *freelist_old, unsigned long counters_old,
351 		void *freelist_new, unsigned long counters_new,
352 		const char *n)
353 {
354 	VM_BUG_ON(!irqs_disabled());
355 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
356     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
357 	if (s->flags & __CMPXCHG_DOUBLE) {
358 		if (cmpxchg_double(&page->freelist, &page->counters,
359 			freelist_old, counters_old,
360 			freelist_new, counters_new))
361 		return 1;
362 	} else
363 #endif
364 	{
365 		slab_lock(page);
366 		if (page->freelist == freelist_old && page->counters == counters_old) {
367 			page->freelist = freelist_new;
368 			page->counters = counters_new;
369 			slab_unlock(page);
370 			return 1;
371 		}
372 		slab_unlock(page);
373 	}
374 
375 	cpu_relax();
376 	stat(s, CMPXCHG_DOUBLE_FAIL);
377 
378 #ifdef SLUB_DEBUG_CMPXCHG
379 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
380 #endif
381 
382 	return 0;
383 }
384 
385 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
386 		void *freelist_old, unsigned long counters_old,
387 		void *freelist_new, unsigned long counters_new,
388 		const char *n)
389 {
390 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
391     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
392 	if (s->flags & __CMPXCHG_DOUBLE) {
393 		if (cmpxchg_double(&page->freelist, &page->counters,
394 			freelist_old, counters_old,
395 			freelist_new, counters_new))
396 		return 1;
397 	} else
398 #endif
399 	{
400 		unsigned long flags;
401 
402 		local_irq_save(flags);
403 		slab_lock(page);
404 		if (page->freelist == freelist_old && page->counters == counters_old) {
405 			page->freelist = freelist_new;
406 			page->counters = counters_new;
407 			slab_unlock(page);
408 			local_irq_restore(flags);
409 			return 1;
410 		}
411 		slab_unlock(page);
412 		local_irq_restore(flags);
413 	}
414 
415 	cpu_relax();
416 	stat(s, CMPXCHG_DOUBLE_FAIL);
417 
418 #ifdef SLUB_DEBUG_CMPXCHG
419 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
420 #endif
421 
422 	return 0;
423 }
424 
425 #ifdef CONFIG_SLUB_DEBUG
426 /*
427  * Determine a map of object in use on a page.
428  *
429  * Node listlock must be held to guarantee that the page does
430  * not vanish from under us.
431  */
432 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
433 {
434 	void *p;
435 	void *addr = page_address(page);
436 
437 	for (p = page->freelist; p; p = get_freepointer(s, p))
438 		set_bit(slab_index(p, s, addr), map);
439 }
440 
441 /*
442  * Debug settings:
443  */
444 #ifdef CONFIG_SLUB_DEBUG_ON
445 static int slub_debug = DEBUG_DEFAULT_FLAGS;
446 #else
447 static int slub_debug;
448 #endif
449 
450 static char *slub_debug_slabs;
451 static int disable_higher_order_debug;
452 
453 /*
454  * Object debugging
455  */
456 static void print_section(char *text, u8 *addr, unsigned int length)
457 {
458 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
459 			length, 1);
460 }
461 
462 static struct track *get_track(struct kmem_cache *s, void *object,
463 	enum track_item alloc)
464 {
465 	struct track *p;
466 
467 	if (s->offset)
468 		p = object + s->offset + sizeof(void *);
469 	else
470 		p = object + s->inuse;
471 
472 	return p + alloc;
473 }
474 
475 static void set_track(struct kmem_cache *s, void *object,
476 			enum track_item alloc, unsigned long addr)
477 {
478 	struct track *p = get_track(s, object, alloc);
479 
480 	if (addr) {
481 #ifdef CONFIG_STACKTRACE
482 		struct stack_trace trace;
483 		int i;
484 
485 		trace.nr_entries = 0;
486 		trace.max_entries = TRACK_ADDRS_COUNT;
487 		trace.entries = p->addrs;
488 		trace.skip = 3;
489 		save_stack_trace(&trace);
490 
491 		/* See rant in lockdep.c */
492 		if (trace.nr_entries != 0 &&
493 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
494 			trace.nr_entries--;
495 
496 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
497 			p->addrs[i] = 0;
498 #endif
499 		p->addr = addr;
500 		p->cpu = smp_processor_id();
501 		p->pid = current->pid;
502 		p->when = jiffies;
503 	} else
504 		memset(p, 0, sizeof(struct track));
505 }
506 
507 static void init_tracking(struct kmem_cache *s, void *object)
508 {
509 	if (!(s->flags & SLAB_STORE_USER))
510 		return;
511 
512 	set_track(s, object, TRACK_FREE, 0UL);
513 	set_track(s, object, TRACK_ALLOC, 0UL);
514 }
515 
516 static void print_track(const char *s, struct track *t)
517 {
518 	if (!t->addr)
519 		return;
520 
521 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
522 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
523 #ifdef CONFIG_STACKTRACE
524 	{
525 		int i;
526 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
527 			if (t->addrs[i])
528 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
529 			else
530 				break;
531 	}
532 #endif
533 }
534 
535 static void print_tracking(struct kmem_cache *s, void *object)
536 {
537 	if (!(s->flags & SLAB_STORE_USER))
538 		return;
539 
540 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
541 	print_track("Freed", get_track(s, object, TRACK_FREE));
542 }
543 
544 static void print_page_info(struct page *page)
545 {
546 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
547 		page, page->objects, page->inuse, page->freelist, page->flags);
548 
549 }
550 
551 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
552 {
553 	va_list args;
554 	char buf[100];
555 
556 	va_start(args, fmt);
557 	vsnprintf(buf, sizeof(buf), fmt, args);
558 	va_end(args);
559 	printk(KERN_ERR "========================================"
560 			"=====================================\n");
561 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
562 	printk(KERN_ERR "----------------------------------------"
563 			"-------------------------------------\n\n");
564 
565 	add_taint(TAINT_BAD_PAGE);
566 }
567 
568 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
569 {
570 	va_list args;
571 	char buf[100];
572 
573 	va_start(args, fmt);
574 	vsnprintf(buf, sizeof(buf), fmt, args);
575 	va_end(args);
576 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
577 }
578 
579 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
580 {
581 	unsigned int off;	/* Offset of last byte */
582 	u8 *addr = page_address(page);
583 
584 	print_tracking(s, p);
585 
586 	print_page_info(page);
587 
588 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
589 			p, p - addr, get_freepointer(s, p));
590 
591 	if (p > addr + 16)
592 		print_section("Bytes b4 ", p - 16, 16);
593 
594 	print_section("Object ", p, min_t(unsigned long, s->object_size,
595 				PAGE_SIZE));
596 	if (s->flags & SLAB_RED_ZONE)
597 		print_section("Redzone ", p + s->object_size,
598 			s->inuse - s->object_size);
599 
600 	if (s->offset)
601 		off = s->offset + sizeof(void *);
602 	else
603 		off = s->inuse;
604 
605 	if (s->flags & SLAB_STORE_USER)
606 		off += 2 * sizeof(struct track);
607 
608 	if (off != s->size)
609 		/* Beginning of the filler is the free pointer */
610 		print_section("Padding ", p + off, s->size - off);
611 
612 	dump_stack();
613 }
614 
615 static void object_err(struct kmem_cache *s, struct page *page,
616 			u8 *object, char *reason)
617 {
618 	slab_bug(s, "%s", reason);
619 	print_trailer(s, page, object);
620 }
621 
622 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
623 {
624 	va_list args;
625 	char buf[100];
626 
627 	va_start(args, fmt);
628 	vsnprintf(buf, sizeof(buf), fmt, args);
629 	va_end(args);
630 	slab_bug(s, "%s", buf);
631 	print_page_info(page);
632 	dump_stack();
633 }
634 
635 static void init_object(struct kmem_cache *s, void *object, u8 val)
636 {
637 	u8 *p = object;
638 
639 	if (s->flags & __OBJECT_POISON) {
640 		memset(p, POISON_FREE, s->object_size - 1);
641 		p[s->object_size - 1] = POISON_END;
642 	}
643 
644 	if (s->flags & SLAB_RED_ZONE)
645 		memset(p + s->object_size, val, s->inuse - s->object_size);
646 }
647 
648 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
649 						void *from, void *to)
650 {
651 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
652 	memset(from, data, to - from);
653 }
654 
655 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
656 			u8 *object, char *what,
657 			u8 *start, unsigned int value, unsigned int bytes)
658 {
659 	u8 *fault;
660 	u8 *end;
661 
662 	fault = memchr_inv(start, value, bytes);
663 	if (!fault)
664 		return 1;
665 
666 	end = start + bytes;
667 	while (end > fault && end[-1] == value)
668 		end--;
669 
670 	slab_bug(s, "%s overwritten", what);
671 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
672 					fault, end - 1, fault[0], value);
673 	print_trailer(s, page, object);
674 
675 	restore_bytes(s, what, value, fault, end);
676 	return 0;
677 }
678 
679 /*
680  * Object layout:
681  *
682  * object address
683  * 	Bytes of the object to be managed.
684  * 	If the freepointer may overlay the object then the free
685  * 	pointer is the first word of the object.
686  *
687  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
688  * 	0xa5 (POISON_END)
689  *
690  * object + s->object_size
691  * 	Padding to reach word boundary. This is also used for Redzoning.
692  * 	Padding is extended by another word if Redzoning is enabled and
693  * 	object_size == inuse.
694  *
695  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
696  * 	0xcc (RED_ACTIVE) for objects in use.
697  *
698  * object + s->inuse
699  * 	Meta data starts here.
700  *
701  * 	A. Free pointer (if we cannot overwrite object on free)
702  * 	B. Tracking data for SLAB_STORE_USER
703  * 	C. Padding to reach required alignment boundary or at mininum
704  * 		one word if debugging is on to be able to detect writes
705  * 		before the word boundary.
706  *
707  *	Padding is done using 0x5a (POISON_INUSE)
708  *
709  * object + s->size
710  * 	Nothing is used beyond s->size.
711  *
712  * If slabcaches are merged then the object_size and inuse boundaries are mostly
713  * ignored. And therefore no slab options that rely on these boundaries
714  * may be used with merged slabcaches.
715  */
716 
717 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
718 {
719 	unsigned long off = s->inuse;	/* The end of info */
720 
721 	if (s->offset)
722 		/* Freepointer is placed after the object. */
723 		off += sizeof(void *);
724 
725 	if (s->flags & SLAB_STORE_USER)
726 		/* We also have user information there */
727 		off += 2 * sizeof(struct track);
728 
729 	if (s->size == off)
730 		return 1;
731 
732 	return check_bytes_and_report(s, page, p, "Object padding",
733 				p + off, POISON_INUSE, s->size - off);
734 }
735 
736 /* Check the pad bytes at the end of a slab page */
737 static int slab_pad_check(struct kmem_cache *s, struct page *page)
738 {
739 	u8 *start;
740 	u8 *fault;
741 	u8 *end;
742 	int length;
743 	int remainder;
744 
745 	if (!(s->flags & SLAB_POISON))
746 		return 1;
747 
748 	start = page_address(page);
749 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
750 	end = start + length;
751 	remainder = length % s->size;
752 	if (!remainder)
753 		return 1;
754 
755 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
756 	if (!fault)
757 		return 1;
758 	while (end > fault && end[-1] == POISON_INUSE)
759 		end--;
760 
761 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
762 	print_section("Padding ", end - remainder, remainder);
763 
764 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
765 	return 0;
766 }
767 
768 static int check_object(struct kmem_cache *s, struct page *page,
769 					void *object, u8 val)
770 {
771 	u8 *p = object;
772 	u8 *endobject = object + s->object_size;
773 
774 	if (s->flags & SLAB_RED_ZONE) {
775 		if (!check_bytes_and_report(s, page, object, "Redzone",
776 			endobject, val, s->inuse - s->object_size))
777 			return 0;
778 	} else {
779 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
780 			check_bytes_and_report(s, page, p, "Alignment padding",
781 				endobject, POISON_INUSE, s->inuse - s->object_size);
782 		}
783 	}
784 
785 	if (s->flags & SLAB_POISON) {
786 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
787 			(!check_bytes_and_report(s, page, p, "Poison", p,
788 					POISON_FREE, s->object_size - 1) ||
789 			 !check_bytes_and_report(s, page, p, "Poison",
790 				p + s->object_size - 1, POISON_END, 1)))
791 			return 0;
792 		/*
793 		 * check_pad_bytes cleans up on its own.
794 		 */
795 		check_pad_bytes(s, page, p);
796 	}
797 
798 	if (!s->offset && val == SLUB_RED_ACTIVE)
799 		/*
800 		 * Object and freepointer overlap. Cannot check
801 		 * freepointer while object is allocated.
802 		 */
803 		return 1;
804 
805 	/* Check free pointer validity */
806 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
807 		object_err(s, page, p, "Freepointer corrupt");
808 		/*
809 		 * No choice but to zap it and thus lose the remainder
810 		 * of the free objects in this slab. May cause
811 		 * another error because the object count is now wrong.
812 		 */
813 		set_freepointer(s, p, NULL);
814 		return 0;
815 	}
816 	return 1;
817 }
818 
819 static int check_slab(struct kmem_cache *s, struct page *page)
820 {
821 	int maxobj;
822 
823 	VM_BUG_ON(!irqs_disabled());
824 
825 	if (!PageSlab(page)) {
826 		slab_err(s, page, "Not a valid slab page");
827 		return 0;
828 	}
829 
830 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
831 	if (page->objects > maxobj) {
832 		slab_err(s, page, "objects %u > max %u",
833 			s->name, page->objects, maxobj);
834 		return 0;
835 	}
836 	if (page->inuse > page->objects) {
837 		slab_err(s, page, "inuse %u > max %u",
838 			s->name, page->inuse, page->objects);
839 		return 0;
840 	}
841 	/* Slab_pad_check fixes things up after itself */
842 	slab_pad_check(s, page);
843 	return 1;
844 }
845 
846 /*
847  * Determine if a certain object on a page is on the freelist. Must hold the
848  * slab lock to guarantee that the chains are in a consistent state.
849  */
850 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
851 {
852 	int nr = 0;
853 	void *fp;
854 	void *object = NULL;
855 	unsigned long max_objects;
856 
857 	fp = page->freelist;
858 	while (fp && nr <= page->objects) {
859 		if (fp == search)
860 			return 1;
861 		if (!check_valid_pointer(s, page, fp)) {
862 			if (object) {
863 				object_err(s, page, object,
864 					"Freechain corrupt");
865 				set_freepointer(s, object, NULL);
866 				break;
867 			} else {
868 				slab_err(s, page, "Freepointer corrupt");
869 				page->freelist = NULL;
870 				page->inuse = page->objects;
871 				slab_fix(s, "Freelist cleared");
872 				return 0;
873 			}
874 			break;
875 		}
876 		object = fp;
877 		fp = get_freepointer(s, object);
878 		nr++;
879 	}
880 
881 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
882 	if (max_objects > MAX_OBJS_PER_PAGE)
883 		max_objects = MAX_OBJS_PER_PAGE;
884 
885 	if (page->objects != max_objects) {
886 		slab_err(s, page, "Wrong number of objects. Found %d but "
887 			"should be %d", page->objects, max_objects);
888 		page->objects = max_objects;
889 		slab_fix(s, "Number of objects adjusted.");
890 	}
891 	if (page->inuse != page->objects - nr) {
892 		slab_err(s, page, "Wrong object count. Counter is %d but "
893 			"counted were %d", page->inuse, page->objects - nr);
894 		page->inuse = page->objects - nr;
895 		slab_fix(s, "Object count adjusted.");
896 	}
897 	return search == NULL;
898 }
899 
900 static void trace(struct kmem_cache *s, struct page *page, void *object,
901 								int alloc)
902 {
903 	if (s->flags & SLAB_TRACE) {
904 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
905 			s->name,
906 			alloc ? "alloc" : "free",
907 			object, page->inuse,
908 			page->freelist);
909 
910 		if (!alloc)
911 			print_section("Object ", (void *)object, s->object_size);
912 
913 		dump_stack();
914 	}
915 }
916 
917 /*
918  * Hooks for other subsystems that check memory allocations. In a typical
919  * production configuration these hooks all should produce no code at all.
920  */
921 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
922 {
923 	flags &= gfp_allowed_mask;
924 	lockdep_trace_alloc(flags);
925 	might_sleep_if(flags & __GFP_WAIT);
926 
927 	return should_failslab(s->object_size, flags, s->flags);
928 }
929 
930 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
931 {
932 	flags &= gfp_allowed_mask;
933 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
934 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
935 }
936 
937 static inline void slab_free_hook(struct kmem_cache *s, void *x)
938 {
939 	kmemleak_free_recursive(x, s->flags);
940 
941 	/*
942 	 * Trouble is that we may no longer disable interupts in the fast path
943 	 * So in order to make the debug calls that expect irqs to be
944 	 * disabled we need to disable interrupts temporarily.
945 	 */
946 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
947 	{
948 		unsigned long flags;
949 
950 		local_irq_save(flags);
951 		kmemcheck_slab_free(s, x, s->object_size);
952 		debug_check_no_locks_freed(x, s->object_size);
953 		local_irq_restore(flags);
954 	}
955 #endif
956 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
957 		debug_check_no_obj_freed(x, s->object_size);
958 }
959 
960 /*
961  * Tracking of fully allocated slabs for debugging purposes.
962  *
963  * list_lock must be held.
964  */
965 static void add_full(struct kmem_cache *s,
966 	struct kmem_cache_node *n, struct page *page)
967 {
968 	if (!(s->flags & SLAB_STORE_USER))
969 		return;
970 
971 	list_add(&page->lru, &n->full);
972 }
973 
974 /*
975  * list_lock must be held.
976  */
977 static void remove_full(struct kmem_cache *s, struct page *page)
978 {
979 	if (!(s->flags & SLAB_STORE_USER))
980 		return;
981 
982 	list_del(&page->lru);
983 }
984 
985 /* Tracking of the number of slabs for debugging purposes */
986 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987 {
988 	struct kmem_cache_node *n = get_node(s, node);
989 
990 	return atomic_long_read(&n->nr_slabs);
991 }
992 
993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994 {
995 	return atomic_long_read(&n->nr_slabs);
996 }
997 
998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
999 {
1000 	struct kmem_cache_node *n = get_node(s, node);
1001 
1002 	/*
1003 	 * May be called early in order to allocate a slab for the
1004 	 * kmem_cache_node structure. Solve the chicken-egg
1005 	 * dilemma by deferring the increment of the count during
1006 	 * bootstrap (see early_kmem_cache_node_alloc).
1007 	 */
1008 	if (n) {
1009 		atomic_long_inc(&n->nr_slabs);
1010 		atomic_long_add(objects, &n->total_objects);
1011 	}
1012 }
1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1014 {
1015 	struct kmem_cache_node *n = get_node(s, node);
1016 
1017 	atomic_long_dec(&n->nr_slabs);
1018 	atomic_long_sub(objects, &n->total_objects);
1019 }
1020 
1021 /* Object debug checks for alloc/free paths */
1022 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 								void *object)
1024 {
1025 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 		return;
1027 
1028 	init_object(s, object, SLUB_RED_INACTIVE);
1029 	init_tracking(s, object);
1030 }
1031 
1032 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1033 					void *object, unsigned long addr)
1034 {
1035 	if (!check_slab(s, page))
1036 		goto bad;
1037 
1038 	if (!check_valid_pointer(s, page, object)) {
1039 		object_err(s, page, object, "Freelist Pointer check fails");
1040 		goto bad;
1041 	}
1042 
1043 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1044 		goto bad;
1045 
1046 	/* Success perform special debug activities for allocs */
1047 	if (s->flags & SLAB_STORE_USER)
1048 		set_track(s, object, TRACK_ALLOC, addr);
1049 	trace(s, page, object, 1);
1050 	init_object(s, object, SLUB_RED_ACTIVE);
1051 	return 1;
1052 
1053 bad:
1054 	if (PageSlab(page)) {
1055 		/*
1056 		 * If this is a slab page then lets do the best we can
1057 		 * to avoid issues in the future. Marking all objects
1058 		 * as used avoids touching the remaining objects.
1059 		 */
1060 		slab_fix(s, "Marking all objects used");
1061 		page->inuse = page->objects;
1062 		page->freelist = NULL;
1063 	}
1064 	return 0;
1065 }
1066 
1067 static noinline struct kmem_cache_node *free_debug_processing(
1068 	struct kmem_cache *s, struct page *page, void *object,
1069 	unsigned long addr, unsigned long *flags)
1070 {
1071 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1072 
1073 	spin_lock_irqsave(&n->list_lock, *flags);
1074 	slab_lock(page);
1075 
1076 	if (!check_slab(s, page))
1077 		goto fail;
1078 
1079 	if (!check_valid_pointer(s, page, object)) {
1080 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1081 		goto fail;
1082 	}
1083 
1084 	if (on_freelist(s, page, object)) {
1085 		object_err(s, page, object, "Object already free");
1086 		goto fail;
1087 	}
1088 
1089 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1090 		goto out;
1091 
1092 	if (unlikely(s != page->slab_cache)) {
1093 		if (!PageSlab(page)) {
1094 			slab_err(s, page, "Attempt to free object(0x%p) "
1095 				"outside of slab", object);
1096 		} else if (!page->slab_cache) {
1097 			printk(KERN_ERR
1098 				"SLUB <none>: no slab for object 0x%p.\n",
1099 						object);
1100 			dump_stack();
1101 		} else
1102 			object_err(s, page, object,
1103 					"page slab pointer corrupt.");
1104 		goto fail;
1105 	}
1106 
1107 	if (s->flags & SLAB_STORE_USER)
1108 		set_track(s, object, TRACK_FREE, addr);
1109 	trace(s, page, object, 0);
1110 	init_object(s, object, SLUB_RED_INACTIVE);
1111 out:
1112 	slab_unlock(page);
1113 	/*
1114 	 * Keep node_lock to preserve integrity
1115 	 * until the object is actually freed
1116 	 */
1117 	return n;
1118 
1119 fail:
1120 	slab_unlock(page);
1121 	spin_unlock_irqrestore(&n->list_lock, *flags);
1122 	slab_fix(s, "Object at 0x%p not freed", object);
1123 	return NULL;
1124 }
1125 
1126 static int __init setup_slub_debug(char *str)
1127 {
1128 	slub_debug = DEBUG_DEFAULT_FLAGS;
1129 	if (*str++ != '=' || !*str)
1130 		/*
1131 		 * No options specified. Switch on full debugging.
1132 		 */
1133 		goto out;
1134 
1135 	if (*str == ',')
1136 		/*
1137 		 * No options but restriction on slabs. This means full
1138 		 * debugging for slabs matching a pattern.
1139 		 */
1140 		goto check_slabs;
1141 
1142 	if (tolower(*str) == 'o') {
1143 		/*
1144 		 * Avoid enabling debugging on caches if its minimum order
1145 		 * would increase as a result.
1146 		 */
1147 		disable_higher_order_debug = 1;
1148 		goto out;
1149 	}
1150 
1151 	slub_debug = 0;
1152 	if (*str == '-')
1153 		/*
1154 		 * Switch off all debugging measures.
1155 		 */
1156 		goto out;
1157 
1158 	/*
1159 	 * Determine which debug features should be switched on
1160 	 */
1161 	for (; *str && *str != ','; str++) {
1162 		switch (tolower(*str)) {
1163 		case 'f':
1164 			slub_debug |= SLAB_DEBUG_FREE;
1165 			break;
1166 		case 'z':
1167 			slub_debug |= SLAB_RED_ZONE;
1168 			break;
1169 		case 'p':
1170 			slub_debug |= SLAB_POISON;
1171 			break;
1172 		case 'u':
1173 			slub_debug |= SLAB_STORE_USER;
1174 			break;
1175 		case 't':
1176 			slub_debug |= SLAB_TRACE;
1177 			break;
1178 		case 'a':
1179 			slub_debug |= SLAB_FAILSLAB;
1180 			break;
1181 		default:
1182 			printk(KERN_ERR "slub_debug option '%c' "
1183 				"unknown. skipped\n", *str);
1184 		}
1185 	}
1186 
1187 check_slabs:
1188 	if (*str == ',')
1189 		slub_debug_slabs = str + 1;
1190 out:
1191 	return 1;
1192 }
1193 
1194 __setup("slub_debug", setup_slub_debug);
1195 
1196 static unsigned long kmem_cache_flags(unsigned long object_size,
1197 	unsigned long flags, const char *name,
1198 	void (*ctor)(void *))
1199 {
1200 	/*
1201 	 * Enable debugging if selected on the kernel commandline.
1202 	 */
1203 	if (slub_debug && (!slub_debug_slabs ||
1204 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1205 		flags |= slub_debug;
1206 
1207 	return flags;
1208 }
1209 #else
1210 static inline void setup_object_debug(struct kmem_cache *s,
1211 			struct page *page, void *object) {}
1212 
1213 static inline int alloc_debug_processing(struct kmem_cache *s,
1214 	struct page *page, void *object, unsigned long addr) { return 0; }
1215 
1216 static inline struct kmem_cache_node *free_debug_processing(
1217 	struct kmem_cache *s, struct page *page, void *object,
1218 	unsigned long addr, unsigned long *flags) { return NULL; }
1219 
1220 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 			{ return 1; }
1222 static inline int check_object(struct kmem_cache *s, struct page *page,
1223 			void *object, u8 val) { return 1; }
1224 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 					struct page *page) {}
1226 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1227 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1228 	unsigned long flags, const char *name,
1229 	void (*ctor)(void *))
1230 {
1231 	return flags;
1232 }
1233 #define slub_debug 0
1234 
1235 #define disable_higher_order_debug 0
1236 
1237 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 							{ return 0; }
1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 							{ return 0; }
1241 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 							int objects) {}
1243 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 							int objects) {}
1245 
1246 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 							{ return 0; }
1248 
1249 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 		void *object) {}
1251 
1252 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253 
1254 #endif /* CONFIG_SLUB_DEBUG */
1255 
1256 /*
1257  * Slab allocation and freeing
1258  */
1259 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 					struct kmem_cache_order_objects oo)
1261 {
1262 	int order = oo_order(oo);
1263 
1264 	flags |= __GFP_NOTRACK;
1265 
1266 	if (node == NUMA_NO_NODE)
1267 		return alloc_pages(flags, order);
1268 	else
1269 		return alloc_pages_exact_node(node, flags, order);
1270 }
1271 
1272 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273 {
1274 	struct page *page;
1275 	struct kmem_cache_order_objects oo = s->oo;
1276 	gfp_t alloc_gfp;
1277 
1278 	flags &= gfp_allowed_mask;
1279 
1280 	if (flags & __GFP_WAIT)
1281 		local_irq_enable();
1282 
1283 	flags |= s->allocflags;
1284 
1285 	/*
1286 	 * Let the initial higher-order allocation fail under memory pressure
1287 	 * so we fall-back to the minimum order allocation.
1288 	 */
1289 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290 
1291 	page = alloc_slab_page(alloc_gfp, node, oo);
1292 	if (unlikely(!page)) {
1293 		oo = s->min;
1294 		/*
1295 		 * Allocation may have failed due to fragmentation.
1296 		 * Try a lower order alloc if possible
1297 		 */
1298 		page = alloc_slab_page(flags, node, oo);
1299 
1300 		if (page)
1301 			stat(s, ORDER_FALLBACK);
1302 	}
1303 
1304 	if (kmemcheck_enabled && page
1305 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1306 		int pages = 1 << oo_order(oo);
1307 
1308 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309 
1310 		/*
1311 		 * Objects from caches that have a constructor don't get
1312 		 * cleared when they're allocated, so we need to do it here.
1313 		 */
1314 		if (s->ctor)
1315 			kmemcheck_mark_uninitialized_pages(page, pages);
1316 		else
1317 			kmemcheck_mark_unallocated_pages(page, pages);
1318 	}
1319 
1320 	if (flags & __GFP_WAIT)
1321 		local_irq_disable();
1322 	if (!page)
1323 		return NULL;
1324 
1325 	page->objects = oo_objects(oo);
1326 	mod_zone_page_state(page_zone(page),
1327 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1329 		1 << oo_order(oo));
1330 
1331 	return page;
1332 }
1333 
1334 static void setup_object(struct kmem_cache *s, struct page *page,
1335 				void *object)
1336 {
1337 	setup_object_debug(s, page, object);
1338 	if (unlikely(s->ctor))
1339 		s->ctor(object);
1340 }
1341 
1342 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343 {
1344 	struct page *page;
1345 	void *start;
1346 	void *last;
1347 	void *p;
1348 	int order;
1349 
1350 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1351 
1352 	page = allocate_slab(s,
1353 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1354 	if (!page)
1355 		goto out;
1356 
1357 	order = compound_order(page);
1358 	inc_slabs_node(s, page_to_nid(page), page->objects);
1359 	memcg_bind_pages(s, order);
1360 	page->slab_cache = s;
1361 	__SetPageSlab(page);
1362 	if (page->pfmemalloc)
1363 		SetPageSlabPfmemalloc(page);
1364 
1365 	start = page_address(page);
1366 
1367 	if (unlikely(s->flags & SLAB_POISON))
1368 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1369 
1370 	last = start;
1371 	for_each_object(p, s, start, page->objects) {
1372 		setup_object(s, page, last);
1373 		set_freepointer(s, last, p);
1374 		last = p;
1375 	}
1376 	setup_object(s, page, last);
1377 	set_freepointer(s, last, NULL);
1378 
1379 	page->freelist = start;
1380 	page->inuse = page->objects;
1381 	page->frozen = 1;
1382 out:
1383 	return page;
1384 }
1385 
1386 static void __free_slab(struct kmem_cache *s, struct page *page)
1387 {
1388 	int order = compound_order(page);
1389 	int pages = 1 << order;
1390 
1391 	if (kmem_cache_debug(s)) {
1392 		void *p;
1393 
1394 		slab_pad_check(s, page);
1395 		for_each_object(p, s, page_address(page),
1396 						page->objects)
1397 			check_object(s, page, p, SLUB_RED_INACTIVE);
1398 	}
1399 
1400 	kmemcheck_free_shadow(page, compound_order(page));
1401 
1402 	mod_zone_page_state(page_zone(page),
1403 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1404 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1405 		-pages);
1406 
1407 	__ClearPageSlabPfmemalloc(page);
1408 	__ClearPageSlab(page);
1409 
1410 	memcg_release_pages(s, order);
1411 	reset_page_mapcount(page);
1412 	if (current->reclaim_state)
1413 		current->reclaim_state->reclaimed_slab += pages;
1414 	__free_memcg_kmem_pages(page, order);
1415 }
1416 
1417 #define need_reserve_slab_rcu						\
1418 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419 
1420 static void rcu_free_slab(struct rcu_head *h)
1421 {
1422 	struct page *page;
1423 
1424 	if (need_reserve_slab_rcu)
1425 		page = virt_to_head_page(h);
1426 	else
1427 		page = container_of((struct list_head *)h, struct page, lru);
1428 
1429 	__free_slab(page->slab_cache, page);
1430 }
1431 
1432 static void free_slab(struct kmem_cache *s, struct page *page)
1433 {
1434 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1435 		struct rcu_head *head;
1436 
1437 		if (need_reserve_slab_rcu) {
1438 			int order = compound_order(page);
1439 			int offset = (PAGE_SIZE << order) - s->reserved;
1440 
1441 			VM_BUG_ON(s->reserved != sizeof(*head));
1442 			head = page_address(page) + offset;
1443 		} else {
1444 			/*
1445 			 * RCU free overloads the RCU head over the LRU
1446 			 */
1447 			head = (void *)&page->lru;
1448 		}
1449 
1450 		call_rcu(head, rcu_free_slab);
1451 	} else
1452 		__free_slab(s, page);
1453 }
1454 
1455 static void discard_slab(struct kmem_cache *s, struct page *page)
1456 {
1457 	dec_slabs_node(s, page_to_nid(page), page->objects);
1458 	free_slab(s, page);
1459 }
1460 
1461 /*
1462  * Management of partially allocated slabs.
1463  *
1464  * list_lock must be held.
1465  */
1466 static inline void add_partial(struct kmem_cache_node *n,
1467 				struct page *page, int tail)
1468 {
1469 	n->nr_partial++;
1470 	if (tail == DEACTIVATE_TO_TAIL)
1471 		list_add_tail(&page->lru, &n->partial);
1472 	else
1473 		list_add(&page->lru, &n->partial);
1474 }
1475 
1476 /*
1477  * list_lock must be held.
1478  */
1479 static inline void remove_partial(struct kmem_cache_node *n,
1480 					struct page *page)
1481 {
1482 	list_del(&page->lru);
1483 	n->nr_partial--;
1484 }
1485 
1486 /*
1487  * Remove slab from the partial list, freeze it and
1488  * return the pointer to the freelist.
1489  *
1490  * Returns a list of objects or NULL if it fails.
1491  *
1492  * Must hold list_lock since we modify the partial list.
1493  */
1494 static inline void *acquire_slab(struct kmem_cache *s,
1495 		struct kmem_cache_node *n, struct page *page,
1496 		int mode)
1497 {
1498 	void *freelist;
1499 	unsigned long counters;
1500 	struct page new;
1501 
1502 	/*
1503 	 * Zap the freelist and set the frozen bit.
1504 	 * The old freelist is the list of objects for the
1505 	 * per cpu allocation list.
1506 	 */
1507 	freelist = page->freelist;
1508 	counters = page->counters;
1509 	new.counters = counters;
1510 	if (mode) {
1511 		new.inuse = page->objects;
1512 		new.freelist = NULL;
1513 	} else {
1514 		new.freelist = freelist;
1515 	}
1516 
1517 	VM_BUG_ON(new.frozen);
1518 	new.frozen = 1;
1519 
1520 	if (!__cmpxchg_double_slab(s, page,
1521 			freelist, counters,
1522 			new.freelist, new.counters,
1523 			"acquire_slab"))
1524 		return NULL;
1525 
1526 	remove_partial(n, page);
1527 	WARN_ON(!freelist);
1528 	return freelist;
1529 }
1530 
1531 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1532 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1533 
1534 /*
1535  * Try to allocate a partial slab from a specific node.
1536  */
1537 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1538 				struct kmem_cache_cpu *c, gfp_t flags)
1539 {
1540 	struct page *page, *page2;
1541 	void *object = NULL;
1542 
1543 	/*
1544 	 * Racy check. If we mistakenly see no partial slabs then we
1545 	 * just allocate an empty slab. If we mistakenly try to get a
1546 	 * partial slab and there is none available then get_partials()
1547 	 * will return NULL.
1548 	 */
1549 	if (!n || !n->nr_partial)
1550 		return NULL;
1551 
1552 	spin_lock(&n->list_lock);
1553 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1554 		void *t;
1555 		int available;
1556 
1557 		if (!pfmemalloc_match(page, flags))
1558 			continue;
1559 
1560 		t = acquire_slab(s, n, page, object == NULL);
1561 		if (!t)
1562 			break;
1563 
1564 		if (!object) {
1565 			c->page = page;
1566 			stat(s, ALLOC_FROM_PARTIAL);
1567 			object = t;
1568 			available =  page->objects - page->inuse;
1569 		} else {
1570 			available = put_cpu_partial(s, page, 0);
1571 			stat(s, CPU_PARTIAL_NODE);
1572 		}
1573 		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1574 			break;
1575 
1576 	}
1577 	spin_unlock(&n->list_lock);
1578 	return object;
1579 }
1580 
1581 /*
1582  * Get a page from somewhere. Search in increasing NUMA distances.
1583  */
1584 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1585 		struct kmem_cache_cpu *c)
1586 {
1587 #ifdef CONFIG_NUMA
1588 	struct zonelist *zonelist;
1589 	struct zoneref *z;
1590 	struct zone *zone;
1591 	enum zone_type high_zoneidx = gfp_zone(flags);
1592 	void *object;
1593 	unsigned int cpuset_mems_cookie;
1594 
1595 	/*
1596 	 * The defrag ratio allows a configuration of the tradeoffs between
1597 	 * inter node defragmentation and node local allocations. A lower
1598 	 * defrag_ratio increases the tendency to do local allocations
1599 	 * instead of attempting to obtain partial slabs from other nodes.
1600 	 *
1601 	 * If the defrag_ratio is set to 0 then kmalloc() always
1602 	 * returns node local objects. If the ratio is higher then kmalloc()
1603 	 * may return off node objects because partial slabs are obtained
1604 	 * from other nodes and filled up.
1605 	 *
1606 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1607 	 * defrag_ratio = 1000) then every (well almost) allocation will
1608 	 * first attempt to defrag slab caches on other nodes. This means
1609 	 * scanning over all nodes to look for partial slabs which may be
1610 	 * expensive if we do it every time we are trying to find a slab
1611 	 * with available objects.
1612 	 */
1613 	if (!s->remote_node_defrag_ratio ||
1614 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1615 		return NULL;
1616 
1617 	do {
1618 		cpuset_mems_cookie = get_mems_allowed();
1619 		zonelist = node_zonelist(slab_node(), flags);
1620 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1621 			struct kmem_cache_node *n;
1622 
1623 			n = get_node(s, zone_to_nid(zone));
1624 
1625 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1626 					n->nr_partial > s->min_partial) {
1627 				object = get_partial_node(s, n, c, flags);
1628 				if (object) {
1629 					/*
1630 					 * Return the object even if
1631 					 * put_mems_allowed indicated that
1632 					 * the cpuset mems_allowed was
1633 					 * updated in parallel. It's a
1634 					 * harmless race between the alloc
1635 					 * and the cpuset update.
1636 					 */
1637 					put_mems_allowed(cpuset_mems_cookie);
1638 					return object;
1639 				}
1640 			}
1641 		}
1642 	} while (!put_mems_allowed(cpuset_mems_cookie));
1643 #endif
1644 	return NULL;
1645 }
1646 
1647 /*
1648  * Get a partial page, lock it and return it.
1649  */
1650 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1651 		struct kmem_cache_cpu *c)
1652 {
1653 	void *object;
1654 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1655 
1656 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1657 	if (object || node != NUMA_NO_NODE)
1658 		return object;
1659 
1660 	return get_any_partial(s, flags, c);
1661 }
1662 
1663 #ifdef CONFIG_PREEMPT
1664 /*
1665  * Calculate the next globally unique transaction for disambiguiation
1666  * during cmpxchg. The transactions start with the cpu number and are then
1667  * incremented by CONFIG_NR_CPUS.
1668  */
1669 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1670 #else
1671 /*
1672  * No preemption supported therefore also no need to check for
1673  * different cpus.
1674  */
1675 #define TID_STEP 1
1676 #endif
1677 
1678 static inline unsigned long next_tid(unsigned long tid)
1679 {
1680 	return tid + TID_STEP;
1681 }
1682 
1683 static inline unsigned int tid_to_cpu(unsigned long tid)
1684 {
1685 	return tid % TID_STEP;
1686 }
1687 
1688 static inline unsigned long tid_to_event(unsigned long tid)
1689 {
1690 	return tid / TID_STEP;
1691 }
1692 
1693 static inline unsigned int init_tid(int cpu)
1694 {
1695 	return cpu;
1696 }
1697 
1698 static inline void note_cmpxchg_failure(const char *n,
1699 		const struct kmem_cache *s, unsigned long tid)
1700 {
1701 #ifdef SLUB_DEBUG_CMPXCHG
1702 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1703 
1704 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1705 
1706 #ifdef CONFIG_PREEMPT
1707 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1708 		printk("due to cpu change %d -> %d\n",
1709 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1710 	else
1711 #endif
1712 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1713 		printk("due to cpu running other code. Event %ld->%ld\n",
1714 			tid_to_event(tid), tid_to_event(actual_tid));
1715 	else
1716 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1717 			actual_tid, tid, next_tid(tid));
1718 #endif
1719 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1720 }
1721 
1722 static void init_kmem_cache_cpus(struct kmem_cache *s)
1723 {
1724 	int cpu;
1725 
1726 	for_each_possible_cpu(cpu)
1727 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1728 }
1729 
1730 /*
1731  * Remove the cpu slab
1732  */
1733 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1734 {
1735 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1736 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1737 	int lock = 0;
1738 	enum slab_modes l = M_NONE, m = M_NONE;
1739 	void *nextfree;
1740 	int tail = DEACTIVATE_TO_HEAD;
1741 	struct page new;
1742 	struct page old;
1743 
1744 	if (page->freelist) {
1745 		stat(s, DEACTIVATE_REMOTE_FREES);
1746 		tail = DEACTIVATE_TO_TAIL;
1747 	}
1748 
1749 	/*
1750 	 * Stage one: Free all available per cpu objects back
1751 	 * to the page freelist while it is still frozen. Leave the
1752 	 * last one.
1753 	 *
1754 	 * There is no need to take the list->lock because the page
1755 	 * is still frozen.
1756 	 */
1757 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1758 		void *prior;
1759 		unsigned long counters;
1760 
1761 		do {
1762 			prior = page->freelist;
1763 			counters = page->counters;
1764 			set_freepointer(s, freelist, prior);
1765 			new.counters = counters;
1766 			new.inuse--;
1767 			VM_BUG_ON(!new.frozen);
1768 
1769 		} while (!__cmpxchg_double_slab(s, page,
1770 			prior, counters,
1771 			freelist, new.counters,
1772 			"drain percpu freelist"));
1773 
1774 		freelist = nextfree;
1775 	}
1776 
1777 	/*
1778 	 * Stage two: Ensure that the page is unfrozen while the
1779 	 * list presence reflects the actual number of objects
1780 	 * during unfreeze.
1781 	 *
1782 	 * We setup the list membership and then perform a cmpxchg
1783 	 * with the count. If there is a mismatch then the page
1784 	 * is not unfrozen but the page is on the wrong list.
1785 	 *
1786 	 * Then we restart the process which may have to remove
1787 	 * the page from the list that we just put it on again
1788 	 * because the number of objects in the slab may have
1789 	 * changed.
1790 	 */
1791 redo:
1792 
1793 	old.freelist = page->freelist;
1794 	old.counters = page->counters;
1795 	VM_BUG_ON(!old.frozen);
1796 
1797 	/* Determine target state of the slab */
1798 	new.counters = old.counters;
1799 	if (freelist) {
1800 		new.inuse--;
1801 		set_freepointer(s, freelist, old.freelist);
1802 		new.freelist = freelist;
1803 	} else
1804 		new.freelist = old.freelist;
1805 
1806 	new.frozen = 0;
1807 
1808 	if (!new.inuse && n->nr_partial > s->min_partial)
1809 		m = M_FREE;
1810 	else if (new.freelist) {
1811 		m = M_PARTIAL;
1812 		if (!lock) {
1813 			lock = 1;
1814 			/*
1815 			 * Taking the spinlock removes the possiblity
1816 			 * that acquire_slab() will see a slab page that
1817 			 * is frozen
1818 			 */
1819 			spin_lock(&n->list_lock);
1820 		}
1821 	} else {
1822 		m = M_FULL;
1823 		if (kmem_cache_debug(s) && !lock) {
1824 			lock = 1;
1825 			/*
1826 			 * This also ensures that the scanning of full
1827 			 * slabs from diagnostic functions will not see
1828 			 * any frozen slabs.
1829 			 */
1830 			spin_lock(&n->list_lock);
1831 		}
1832 	}
1833 
1834 	if (l != m) {
1835 
1836 		if (l == M_PARTIAL)
1837 
1838 			remove_partial(n, page);
1839 
1840 		else if (l == M_FULL)
1841 
1842 			remove_full(s, page);
1843 
1844 		if (m == M_PARTIAL) {
1845 
1846 			add_partial(n, page, tail);
1847 			stat(s, tail);
1848 
1849 		} else if (m == M_FULL) {
1850 
1851 			stat(s, DEACTIVATE_FULL);
1852 			add_full(s, n, page);
1853 
1854 		}
1855 	}
1856 
1857 	l = m;
1858 	if (!__cmpxchg_double_slab(s, page,
1859 				old.freelist, old.counters,
1860 				new.freelist, new.counters,
1861 				"unfreezing slab"))
1862 		goto redo;
1863 
1864 	if (lock)
1865 		spin_unlock(&n->list_lock);
1866 
1867 	if (m == M_FREE) {
1868 		stat(s, DEACTIVATE_EMPTY);
1869 		discard_slab(s, page);
1870 		stat(s, FREE_SLAB);
1871 	}
1872 }
1873 
1874 /*
1875  * Unfreeze all the cpu partial slabs.
1876  *
1877  * This function must be called with interrupts disabled
1878  * for the cpu using c (or some other guarantee must be there
1879  * to guarantee no concurrent accesses).
1880  */
1881 static void unfreeze_partials(struct kmem_cache *s,
1882 		struct kmem_cache_cpu *c)
1883 {
1884 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1885 	struct page *page, *discard_page = NULL;
1886 
1887 	while ((page = c->partial)) {
1888 		struct page new;
1889 		struct page old;
1890 
1891 		c->partial = page->next;
1892 
1893 		n2 = get_node(s, page_to_nid(page));
1894 		if (n != n2) {
1895 			if (n)
1896 				spin_unlock(&n->list_lock);
1897 
1898 			n = n2;
1899 			spin_lock(&n->list_lock);
1900 		}
1901 
1902 		do {
1903 
1904 			old.freelist = page->freelist;
1905 			old.counters = page->counters;
1906 			VM_BUG_ON(!old.frozen);
1907 
1908 			new.counters = old.counters;
1909 			new.freelist = old.freelist;
1910 
1911 			new.frozen = 0;
1912 
1913 		} while (!__cmpxchg_double_slab(s, page,
1914 				old.freelist, old.counters,
1915 				new.freelist, new.counters,
1916 				"unfreezing slab"));
1917 
1918 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1919 			page->next = discard_page;
1920 			discard_page = page;
1921 		} else {
1922 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1923 			stat(s, FREE_ADD_PARTIAL);
1924 		}
1925 	}
1926 
1927 	if (n)
1928 		spin_unlock(&n->list_lock);
1929 
1930 	while (discard_page) {
1931 		page = discard_page;
1932 		discard_page = discard_page->next;
1933 
1934 		stat(s, DEACTIVATE_EMPTY);
1935 		discard_slab(s, page);
1936 		stat(s, FREE_SLAB);
1937 	}
1938 }
1939 
1940 /*
1941  * Put a page that was just frozen (in __slab_free) into a partial page
1942  * slot if available. This is done without interrupts disabled and without
1943  * preemption disabled. The cmpxchg is racy and may put the partial page
1944  * onto a random cpus partial slot.
1945  *
1946  * If we did not find a slot then simply move all the partials to the
1947  * per node partial list.
1948  */
1949 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1950 {
1951 	struct page *oldpage;
1952 	int pages;
1953 	int pobjects;
1954 
1955 	do {
1956 		pages = 0;
1957 		pobjects = 0;
1958 		oldpage = this_cpu_read(s->cpu_slab->partial);
1959 
1960 		if (oldpage) {
1961 			pobjects = oldpage->pobjects;
1962 			pages = oldpage->pages;
1963 			if (drain && pobjects > s->cpu_partial) {
1964 				unsigned long flags;
1965 				/*
1966 				 * partial array is full. Move the existing
1967 				 * set to the per node partial list.
1968 				 */
1969 				local_irq_save(flags);
1970 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1971 				local_irq_restore(flags);
1972 				oldpage = NULL;
1973 				pobjects = 0;
1974 				pages = 0;
1975 				stat(s, CPU_PARTIAL_DRAIN);
1976 			}
1977 		}
1978 
1979 		pages++;
1980 		pobjects += page->objects - page->inuse;
1981 
1982 		page->pages = pages;
1983 		page->pobjects = pobjects;
1984 		page->next = oldpage;
1985 
1986 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1987 	return pobjects;
1988 }
1989 
1990 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1991 {
1992 	stat(s, CPUSLAB_FLUSH);
1993 	deactivate_slab(s, c->page, c->freelist);
1994 
1995 	c->tid = next_tid(c->tid);
1996 	c->page = NULL;
1997 	c->freelist = NULL;
1998 }
1999 
2000 /*
2001  * Flush cpu slab.
2002  *
2003  * Called from IPI handler with interrupts disabled.
2004  */
2005 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2006 {
2007 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2008 
2009 	if (likely(c)) {
2010 		if (c->page)
2011 			flush_slab(s, c);
2012 
2013 		unfreeze_partials(s, c);
2014 	}
2015 }
2016 
2017 static void flush_cpu_slab(void *d)
2018 {
2019 	struct kmem_cache *s = d;
2020 
2021 	__flush_cpu_slab(s, smp_processor_id());
2022 }
2023 
2024 static bool has_cpu_slab(int cpu, void *info)
2025 {
2026 	struct kmem_cache *s = info;
2027 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2028 
2029 	return c->page || c->partial;
2030 }
2031 
2032 static void flush_all(struct kmem_cache *s)
2033 {
2034 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2035 }
2036 
2037 /*
2038  * Check if the objects in a per cpu structure fit numa
2039  * locality expectations.
2040  */
2041 static inline int node_match(struct page *page, int node)
2042 {
2043 #ifdef CONFIG_NUMA
2044 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2045 		return 0;
2046 #endif
2047 	return 1;
2048 }
2049 
2050 static int count_free(struct page *page)
2051 {
2052 	return page->objects - page->inuse;
2053 }
2054 
2055 static unsigned long count_partial(struct kmem_cache_node *n,
2056 					int (*get_count)(struct page *))
2057 {
2058 	unsigned long flags;
2059 	unsigned long x = 0;
2060 	struct page *page;
2061 
2062 	spin_lock_irqsave(&n->list_lock, flags);
2063 	list_for_each_entry(page, &n->partial, lru)
2064 		x += get_count(page);
2065 	spin_unlock_irqrestore(&n->list_lock, flags);
2066 	return x;
2067 }
2068 
2069 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2070 {
2071 #ifdef CONFIG_SLUB_DEBUG
2072 	return atomic_long_read(&n->total_objects);
2073 #else
2074 	return 0;
2075 #endif
2076 }
2077 
2078 static noinline void
2079 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2080 {
2081 	int node;
2082 
2083 	printk(KERN_WARNING
2084 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2085 		nid, gfpflags);
2086 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2087 		"default order: %d, min order: %d\n", s->name, s->object_size,
2088 		s->size, oo_order(s->oo), oo_order(s->min));
2089 
2090 	if (oo_order(s->min) > get_order(s->object_size))
2091 		printk(KERN_WARNING "  %s debugging increased min order, use "
2092 		       "slub_debug=O to disable.\n", s->name);
2093 
2094 	for_each_online_node(node) {
2095 		struct kmem_cache_node *n = get_node(s, node);
2096 		unsigned long nr_slabs;
2097 		unsigned long nr_objs;
2098 		unsigned long nr_free;
2099 
2100 		if (!n)
2101 			continue;
2102 
2103 		nr_free  = count_partial(n, count_free);
2104 		nr_slabs = node_nr_slabs(n);
2105 		nr_objs  = node_nr_objs(n);
2106 
2107 		printk(KERN_WARNING
2108 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2109 			node, nr_slabs, nr_objs, nr_free);
2110 	}
2111 }
2112 
2113 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2114 			int node, struct kmem_cache_cpu **pc)
2115 {
2116 	void *freelist;
2117 	struct kmem_cache_cpu *c = *pc;
2118 	struct page *page;
2119 
2120 	freelist = get_partial(s, flags, node, c);
2121 
2122 	if (freelist)
2123 		return freelist;
2124 
2125 	page = new_slab(s, flags, node);
2126 	if (page) {
2127 		c = __this_cpu_ptr(s->cpu_slab);
2128 		if (c->page)
2129 			flush_slab(s, c);
2130 
2131 		/*
2132 		 * No other reference to the page yet so we can
2133 		 * muck around with it freely without cmpxchg
2134 		 */
2135 		freelist = page->freelist;
2136 		page->freelist = NULL;
2137 
2138 		stat(s, ALLOC_SLAB);
2139 		c->page = page;
2140 		*pc = c;
2141 	} else
2142 		freelist = NULL;
2143 
2144 	return freelist;
2145 }
2146 
2147 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2148 {
2149 	if (unlikely(PageSlabPfmemalloc(page)))
2150 		return gfp_pfmemalloc_allowed(gfpflags);
2151 
2152 	return true;
2153 }
2154 
2155 /*
2156  * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2157  * or deactivate the page.
2158  *
2159  * The page is still frozen if the return value is not NULL.
2160  *
2161  * If this function returns NULL then the page has been unfrozen.
2162  *
2163  * This function must be called with interrupt disabled.
2164  */
2165 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2166 {
2167 	struct page new;
2168 	unsigned long counters;
2169 	void *freelist;
2170 
2171 	do {
2172 		freelist = page->freelist;
2173 		counters = page->counters;
2174 
2175 		new.counters = counters;
2176 		VM_BUG_ON(!new.frozen);
2177 
2178 		new.inuse = page->objects;
2179 		new.frozen = freelist != NULL;
2180 
2181 	} while (!__cmpxchg_double_slab(s, page,
2182 		freelist, counters,
2183 		NULL, new.counters,
2184 		"get_freelist"));
2185 
2186 	return freelist;
2187 }
2188 
2189 /*
2190  * Slow path. The lockless freelist is empty or we need to perform
2191  * debugging duties.
2192  *
2193  * Processing is still very fast if new objects have been freed to the
2194  * regular freelist. In that case we simply take over the regular freelist
2195  * as the lockless freelist and zap the regular freelist.
2196  *
2197  * If that is not working then we fall back to the partial lists. We take the
2198  * first element of the freelist as the object to allocate now and move the
2199  * rest of the freelist to the lockless freelist.
2200  *
2201  * And if we were unable to get a new slab from the partial slab lists then
2202  * we need to allocate a new slab. This is the slowest path since it involves
2203  * a call to the page allocator and the setup of a new slab.
2204  */
2205 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2206 			  unsigned long addr, struct kmem_cache_cpu *c)
2207 {
2208 	void *freelist;
2209 	struct page *page;
2210 	unsigned long flags;
2211 
2212 	local_irq_save(flags);
2213 #ifdef CONFIG_PREEMPT
2214 	/*
2215 	 * We may have been preempted and rescheduled on a different
2216 	 * cpu before disabling interrupts. Need to reload cpu area
2217 	 * pointer.
2218 	 */
2219 	c = this_cpu_ptr(s->cpu_slab);
2220 #endif
2221 
2222 	page = c->page;
2223 	if (!page)
2224 		goto new_slab;
2225 redo:
2226 
2227 	if (unlikely(!node_match(page, node))) {
2228 		stat(s, ALLOC_NODE_MISMATCH);
2229 		deactivate_slab(s, page, c->freelist);
2230 		c->page = NULL;
2231 		c->freelist = NULL;
2232 		goto new_slab;
2233 	}
2234 
2235 	/*
2236 	 * By rights, we should be searching for a slab page that was
2237 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2238 	 * information when the page leaves the per-cpu allocator
2239 	 */
2240 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2241 		deactivate_slab(s, page, c->freelist);
2242 		c->page = NULL;
2243 		c->freelist = NULL;
2244 		goto new_slab;
2245 	}
2246 
2247 	/* must check again c->freelist in case of cpu migration or IRQ */
2248 	freelist = c->freelist;
2249 	if (freelist)
2250 		goto load_freelist;
2251 
2252 	stat(s, ALLOC_SLOWPATH);
2253 
2254 	freelist = get_freelist(s, page);
2255 
2256 	if (!freelist) {
2257 		c->page = NULL;
2258 		stat(s, DEACTIVATE_BYPASS);
2259 		goto new_slab;
2260 	}
2261 
2262 	stat(s, ALLOC_REFILL);
2263 
2264 load_freelist:
2265 	/*
2266 	 * freelist is pointing to the list of objects to be used.
2267 	 * page is pointing to the page from which the objects are obtained.
2268 	 * That page must be frozen for per cpu allocations to work.
2269 	 */
2270 	VM_BUG_ON(!c->page->frozen);
2271 	c->freelist = get_freepointer(s, freelist);
2272 	c->tid = next_tid(c->tid);
2273 	local_irq_restore(flags);
2274 	return freelist;
2275 
2276 new_slab:
2277 
2278 	if (c->partial) {
2279 		page = c->page = c->partial;
2280 		c->partial = page->next;
2281 		stat(s, CPU_PARTIAL_ALLOC);
2282 		c->freelist = NULL;
2283 		goto redo;
2284 	}
2285 
2286 	freelist = new_slab_objects(s, gfpflags, node, &c);
2287 
2288 	if (unlikely(!freelist)) {
2289 		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2290 			slab_out_of_memory(s, gfpflags, node);
2291 
2292 		local_irq_restore(flags);
2293 		return NULL;
2294 	}
2295 
2296 	page = c->page;
2297 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2298 		goto load_freelist;
2299 
2300 	/* Only entered in the debug case */
2301 	if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2302 		goto new_slab;	/* Slab failed checks. Next slab needed */
2303 
2304 	deactivate_slab(s, page, get_freepointer(s, freelist));
2305 	c->page = NULL;
2306 	c->freelist = NULL;
2307 	local_irq_restore(flags);
2308 	return freelist;
2309 }
2310 
2311 /*
2312  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2313  * have the fastpath folded into their functions. So no function call
2314  * overhead for requests that can be satisfied on the fastpath.
2315  *
2316  * The fastpath works by first checking if the lockless freelist can be used.
2317  * If not then __slab_alloc is called for slow processing.
2318  *
2319  * Otherwise we can simply pick the next object from the lockless free list.
2320  */
2321 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2322 		gfp_t gfpflags, int node, unsigned long addr)
2323 {
2324 	void **object;
2325 	struct kmem_cache_cpu *c;
2326 	struct page *page;
2327 	unsigned long tid;
2328 
2329 	if (slab_pre_alloc_hook(s, gfpflags))
2330 		return NULL;
2331 
2332 	s = memcg_kmem_get_cache(s, gfpflags);
2333 redo:
2334 
2335 	/*
2336 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2337 	 * enabled. We may switch back and forth between cpus while
2338 	 * reading from one cpu area. That does not matter as long
2339 	 * as we end up on the original cpu again when doing the cmpxchg.
2340 	 */
2341 	c = __this_cpu_ptr(s->cpu_slab);
2342 
2343 	/*
2344 	 * The transaction ids are globally unique per cpu and per operation on
2345 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2346 	 * occurs on the right processor and that there was no operation on the
2347 	 * linked list in between.
2348 	 */
2349 	tid = c->tid;
2350 	barrier();
2351 
2352 	object = c->freelist;
2353 	page = c->page;
2354 	if (unlikely(!object || !node_match(page, node)))
2355 		object = __slab_alloc(s, gfpflags, node, addr, c);
2356 
2357 	else {
2358 		void *next_object = get_freepointer_safe(s, object);
2359 
2360 		/*
2361 		 * The cmpxchg will only match if there was no additional
2362 		 * operation and if we are on the right processor.
2363 		 *
2364 		 * The cmpxchg does the following atomically (without lock semantics!)
2365 		 * 1. Relocate first pointer to the current per cpu area.
2366 		 * 2. Verify that tid and freelist have not been changed
2367 		 * 3. If they were not changed replace tid and freelist
2368 		 *
2369 		 * Since this is without lock semantics the protection is only against
2370 		 * code executing on this cpu *not* from access by other cpus.
2371 		 */
2372 		if (unlikely(!this_cpu_cmpxchg_double(
2373 				s->cpu_slab->freelist, s->cpu_slab->tid,
2374 				object, tid,
2375 				next_object, next_tid(tid)))) {
2376 
2377 			note_cmpxchg_failure("slab_alloc", s, tid);
2378 			goto redo;
2379 		}
2380 		prefetch_freepointer(s, next_object);
2381 		stat(s, ALLOC_FASTPATH);
2382 	}
2383 
2384 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2385 		memset(object, 0, s->object_size);
2386 
2387 	slab_post_alloc_hook(s, gfpflags, object);
2388 
2389 	return object;
2390 }
2391 
2392 static __always_inline void *slab_alloc(struct kmem_cache *s,
2393 		gfp_t gfpflags, unsigned long addr)
2394 {
2395 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2396 }
2397 
2398 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2399 {
2400 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2401 
2402 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2403 
2404 	return ret;
2405 }
2406 EXPORT_SYMBOL(kmem_cache_alloc);
2407 
2408 #ifdef CONFIG_TRACING
2409 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2410 {
2411 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2412 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2413 	return ret;
2414 }
2415 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2416 
2417 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2418 {
2419 	void *ret = kmalloc_order(size, flags, order);
2420 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2421 	return ret;
2422 }
2423 EXPORT_SYMBOL(kmalloc_order_trace);
2424 #endif
2425 
2426 #ifdef CONFIG_NUMA
2427 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2428 {
2429 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2430 
2431 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2432 				    s->object_size, s->size, gfpflags, node);
2433 
2434 	return ret;
2435 }
2436 EXPORT_SYMBOL(kmem_cache_alloc_node);
2437 
2438 #ifdef CONFIG_TRACING
2439 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2440 				    gfp_t gfpflags,
2441 				    int node, size_t size)
2442 {
2443 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2444 
2445 	trace_kmalloc_node(_RET_IP_, ret,
2446 			   size, s->size, gfpflags, node);
2447 	return ret;
2448 }
2449 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2450 #endif
2451 #endif
2452 
2453 /*
2454  * Slow patch handling. This may still be called frequently since objects
2455  * have a longer lifetime than the cpu slabs in most processing loads.
2456  *
2457  * So we still attempt to reduce cache line usage. Just take the slab
2458  * lock and free the item. If there is no additional partial page
2459  * handling required then we can return immediately.
2460  */
2461 static void __slab_free(struct kmem_cache *s, struct page *page,
2462 			void *x, unsigned long addr)
2463 {
2464 	void *prior;
2465 	void **object = (void *)x;
2466 	int was_frozen;
2467 	struct page new;
2468 	unsigned long counters;
2469 	struct kmem_cache_node *n = NULL;
2470 	unsigned long uninitialized_var(flags);
2471 
2472 	stat(s, FREE_SLOWPATH);
2473 
2474 	if (kmem_cache_debug(s) &&
2475 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2476 		return;
2477 
2478 	do {
2479 		if (unlikely(n)) {
2480 			spin_unlock_irqrestore(&n->list_lock, flags);
2481 			n = NULL;
2482 		}
2483 		prior = page->freelist;
2484 		counters = page->counters;
2485 		set_freepointer(s, object, prior);
2486 		new.counters = counters;
2487 		was_frozen = new.frozen;
2488 		new.inuse--;
2489 		if ((!new.inuse || !prior) && !was_frozen) {
2490 
2491 			if (!kmem_cache_debug(s) && !prior)
2492 
2493 				/*
2494 				 * Slab was on no list before and will be partially empty
2495 				 * We can defer the list move and instead freeze it.
2496 				 */
2497 				new.frozen = 1;
2498 
2499 			else { /* Needs to be taken off a list */
2500 
2501 	                        n = get_node(s, page_to_nid(page));
2502 				/*
2503 				 * Speculatively acquire the list_lock.
2504 				 * If the cmpxchg does not succeed then we may
2505 				 * drop the list_lock without any processing.
2506 				 *
2507 				 * Otherwise the list_lock will synchronize with
2508 				 * other processors updating the list of slabs.
2509 				 */
2510 				spin_lock_irqsave(&n->list_lock, flags);
2511 
2512 			}
2513 		}
2514 
2515 	} while (!cmpxchg_double_slab(s, page,
2516 		prior, counters,
2517 		object, new.counters,
2518 		"__slab_free"));
2519 
2520 	if (likely(!n)) {
2521 
2522 		/*
2523 		 * If we just froze the page then put it onto the
2524 		 * per cpu partial list.
2525 		 */
2526 		if (new.frozen && !was_frozen) {
2527 			put_cpu_partial(s, page, 1);
2528 			stat(s, CPU_PARTIAL_FREE);
2529 		}
2530 		/*
2531 		 * The list lock was not taken therefore no list
2532 		 * activity can be necessary.
2533 		 */
2534                 if (was_frozen)
2535                         stat(s, FREE_FROZEN);
2536                 return;
2537         }
2538 
2539 	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2540 		goto slab_empty;
2541 
2542 	/*
2543 	 * Objects left in the slab. If it was not on the partial list before
2544 	 * then add it.
2545 	 */
2546 	if (kmem_cache_debug(s) && unlikely(!prior)) {
2547 		remove_full(s, page);
2548 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2549 		stat(s, FREE_ADD_PARTIAL);
2550 	}
2551 	spin_unlock_irqrestore(&n->list_lock, flags);
2552 	return;
2553 
2554 slab_empty:
2555 	if (prior) {
2556 		/*
2557 		 * Slab on the partial list.
2558 		 */
2559 		remove_partial(n, page);
2560 		stat(s, FREE_REMOVE_PARTIAL);
2561 	} else
2562 		/* Slab must be on the full list */
2563 		remove_full(s, page);
2564 
2565 	spin_unlock_irqrestore(&n->list_lock, flags);
2566 	stat(s, FREE_SLAB);
2567 	discard_slab(s, page);
2568 }
2569 
2570 /*
2571  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2572  * can perform fastpath freeing without additional function calls.
2573  *
2574  * The fastpath is only possible if we are freeing to the current cpu slab
2575  * of this processor. This typically the case if we have just allocated
2576  * the item before.
2577  *
2578  * If fastpath is not possible then fall back to __slab_free where we deal
2579  * with all sorts of special processing.
2580  */
2581 static __always_inline void slab_free(struct kmem_cache *s,
2582 			struct page *page, void *x, unsigned long addr)
2583 {
2584 	void **object = (void *)x;
2585 	struct kmem_cache_cpu *c;
2586 	unsigned long tid;
2587 
2588 	slab_free_hook(s, x);
2589 
2590 redo:
2591 	/*
2592 	 * Determine the currently cpus per cpu slab.
2593 	 * The cpu may change afterward. However that does not matter since
2594 	 * data is retrieved via this pointer. If we are on the same cpu
2595 	 * during the cmpxchg then the free will succedd.
2596 	 */
2597 	c = __this_cpu_ptr(s->cpu_slab);
2598 
2599 	tid = c->tid;
2600 	barrier();
2601 
2602 	if (likely(page == c->page)) {
2603 		set_freepointer(s, object, c->freelist);
2604 
2605 		if (unlikely(!this_cpu_cmpxchg_double(
2606 				s->cpu_slab->freelist, s->cpu_slab->tid,
2607 				c->freelist, tid,
2608 				object, next_tid(tid)))) {
2609 
2610 			note_cmpxchg_failure("slab_free", s, tid);
2611 			goto redo;
2612 		}
2613 		stat(s, FREE_FASTPATH);
2614 	} else
2615 		__slab_free(s, page, x, addr);
2616 
2617 }
2618 
2619 void kmem_cache_free(struct kmem_cache *s, void *x)
2620 {
2621 	s = cache_from_obj(s, x);
2622 	if (!s)
2623 		return;
2624 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2625 	trace_kmem_cache_free(_RET_IP_, x);
2626 }
2627 EXPORT_SYMBOL(kmem_cache_free);
2628 
2629 /*
2630  * Object placement in a slab is made very easy because we always start at
2631  * offset 0. If we tune the size of the object to the alignment then we can
2632  * get the required alignment by putting one properly sized object after
2633  * another.
2634  *
2635  * Notice that the allocation order determines the sizes of the per cpu
2636  * caches. Each processor has always one slab available for allocations.
2637  * Increasing the allocation order reduces the number of times that slabs
2638  * must be moved on and off the partial lists and is therefore a factor in
2639  * locking overhead.
2640  */
2641 
2642 /*
2643  * Mininum / Maximum order of slab pages. This influences locking overhead
2644  * and slab fragmentation. A higher order reduces the number of partial slabs
2645  * and increases the number of allocations possible without having to
2646  * take the list_lock.
2647  */
2648 static int slub_min_order;
2649 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2650 static int slub_min_objects;
2651 
2652 /*
2653  * Merge control. If this is set then no merging of slab caches will occur.
2654  * (Could be removed. This was introduced to pacify the merge skeptics.)
2655  */
2656 static int slub_nomerge;
2657 
2658 /*
2659  * Calculate the order of allocation given an slab object size.
2660  *
2661  * The order of allocation has significant impact on performance and other
2662  * system components. Generally order 0 allocations should be preferred since
2663  * order 0 does not cause fragmentation in the page allocator. Larger objects
2664  * be problematic to put into order 0 slabs because there may be too much
2665  * unused space left. We go to a higher order if more than 1/16th of the slab
2666  * would be wasted.
2667  *
2668  * In order to reach satisfactory performance we must ensure that a minimum
2669  * number of objects is in one slab. Otherwise we may generate too much
2670  * activity on the partial lists which requires taking the list_lock. This is
2671  * less a concern for large slabs though which are rarely used.
2672  *
2673  * slub_max_order specifies the order where we begin to stop considering the
2674  * number of objects in a slab as critical. If we reach slub_max_order then
2675  * we try to keep the page order as low as possible. So we accept more waste
2676  * of space in favor of a small page order.
2677  *
2678  * Higher order allocations also allow the placement of more objects in a
2679  * slab and thereby reduce object handling overhead. If the user has
2680  * requested a higher mininum order then we start with that one instead of
2681  * the smallest order which will fit the object.
2682  */
2683 static inline int slab_order(int size, int min_objects,
2684 				int max_order, int fract_leftover, int reserved)
2685 {
2686 	int order;
2687 	int rem;
2688 	int min_order = slub_min_order;
2689 
2690 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2691 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2692 
2693 	for (order = max(min_order,
2694 				fls(min_objects * size - 1) - PAGE_SHIFT);
2695 			order <= max_order; order++) {
2696 
2697 		unsigned long slab_size = PAGE_SIZE << order;
2698 
2699 		if (slab_size < min_objects * size + reserved)
2700 			continue;
2701 
2702 		rem = (slab_size - reserved) % size;
2703 
2704 		if (rem <= slab_size / fract_leftover)
2705 			break;
2706 
2707 	}
2708 
2709 	return order;
2710 }
2711 
2712 static inline int calculate_order(int size, int reserved)
2713 {
2714 	int order;
2715 	int min_objects;
2716 	int fraction;
2717 	int max_objects;
2718 
2719 	/*
2720 	 * Attempt to find best configuration for a slab. This
2721 	 * works by first attempting to generate a layout with
2722 	 * the best configuration and backing off gradually.
2723 	 *
2724 	 * First we reduce the acceptable waste in a slab. Then
2725 	 * we reduce the minimum objects required in a slab.
2726 	 */
2727 	min_objects = slub_min_objects;
2728 	if (!min_objects)
2729 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2730 	max_objects = order_objects(slub_max_order, size, reserved);
2731 	min_objects = min(min_objects, max_objects);
2732 
2733 	while (min_objects > 1) {
2734 		fraction = 16;
2735 		while (fraction >= 4) {
2736 			order = slab_order(size, min_objects,
2737 					slub_max_order, fraction, reserved);
2738 			if (order <= slub_max_order)
2739 				return order;
2740 			fraction /= 2;
2741 		}
2742 		min_objects--;
2743 	}
2744 
2745 	/*
2746 	 * We were unable to place multiple objects in a slab. Now
2747 	 * lets see if we can place a single object there.
2748 	 */
2749 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2750 	if (order <= slub_max_order)
2751 		return order;
2752 
2753 	/*
2754 	 * Doh this slab cannot be placed using slub_max_order.
2755 	 */
2756 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2757 	if (order < MAX_ORDER)
2758 		return order;
2759 	return -ENOSYS;
2760 }
2761 
2762 static void
2763 init_kmem_cache_node(struct kmem_cache_node *n)
2764 {
2765 	n->nr_partial = 0;
2766 	spin_lock_init(&n->list_lock);
2767 	INIT_LIST_HEAD(&n->partial);
2768 #ifdef CONFIG_SLUB_DEBUG
2769 	atomic_long_set(&n->nr_slabs, 0);
2770 	atomic_long_set(&n->total_objects, 0);
2771 	INIT_LIST_HEAD(&n->full);
2772 #endif
2773 }
2774 
2775 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2776 {
2777 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2778 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2779 
2780 	/*
2781 	 * Must align to double word boundary for the double cmpxchg
2782 	 * instructions to work; see __pcpu_double_call_return_bool().
2783 	 */
2784 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2785 				     2 * sizeof(void *));
2786 
2787 	if (!s->cpu_slab)
2788 		return 0;
2789 
2790 	init_kmem_cache_cpus(s);
2791 
2792 	return 1;
2793 }
2794 
2795 static struct kmem_cache *kmem_cache_node;
2796 
2797 /*
2798  * No kmalloc_node yet so do it by hand. We know that this is the first
2799  * slab on the node for this slabcache. There are no concurrent accesses
2800  * possible.
2801  *
2802  * Note that this function only works on the kmalloc_node_cache
2803  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2804  * memory on a fresh node that has no slab structures yet.
2805  */
2806 static void early_kmem_cache_node_alloc(int node)
2807 {
2808 	struct page *page;
2809 	struct kmem_cache_node *n;
2810 
2811 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2812 
2813 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2814 
2815 	BUG_ON(!page);
2816 	if (page_to_nid(page) != node) {
2817 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2818 				"node %d\n", node);
2819 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2820 				"in order to be able to continue\n");
2821 	}
2822 
2823 	n = page->freelist;
2824 	BUG_ON(!n);
2825 	page->freelist = get_freepointer(kmem_cache_node, n);
2826 	page->inuse = 1;
2827 	page->frozen = 0;
2828 	kmem_cache_node->node[node] = n;
2829 #ifdef CONFIG_SLUB_DEBUG
2830 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2831 	init_tracking(kmem_cache_node, n);
2832 #endif
2833 	init_kmem_cache_node(n);
2834 	inc_slabs_node(kmem_cache_node, node, page->objects);
2835 
2836 	add_partial(n, page, DEACTIVATE_TO_HEAD);
2837 }
2838 
2839 static void free_kmem_cache_nodes(struct kmem_cache *s)
2840 {
2841 	int node;
2842 
2843 	for_each_node_state(node, N_NORMAL_MEMORY) {
2844 		struct kmem_cache_node *n = s->node[node];
2845 
2846 		if (n)
2847 			kmem_cache_free(kmem_cache_node, n);
2848 
2849 		s->node[node] = NULL;
2850 	}
2851 }
2852 
2853 static int init_kmem_cache_nodes(struct kmem_cache *s)
2854 {
2855 	int node;
2856 
2857 	for_each_node_state(node, N_NORMAL_MEMORY) {
2858 		struct kmem_cache_node *n;
2859 
2860 		if (slab_state == DOWN) {
2861 			early_kmem_cache_node_alloc(node);
2862 			continue;
2863 		}
2864 		n = kmem_cache_alloc_node(kmem_cache_node,
2865 						GFP_KERNEL, node);
2866 
2867 		if (!n) {
2868 			free_kmem_cache_nodes(s);
2869 			return 0;
2870 		}
2871 
2872 		s->node[node] = n;
2873 		init_kmem_cache_node(n);
2874 	}
2875 	return 1;
2876 }
2877 
2878 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2879 {
2880 	if (min < MIN_PARTIAL)
2881 		min = MIN_PARTIAL;
2882 	else if (min > MAX_PARTIAL)
2883 		min = MAX_PARTIAL;
2884 	s->min_partial = min;
2885 }
2886 
2887 /*
2888  * calculate_sizes() determines the order and the distribution of data within
2889  * a slab object.
2890  */
2891 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2892 {
2893 	unsigned long flags = s->flags;
2894 	unsigned long size = s->object_size;
2895 	int order;
2896 
2897 	/*
2898 	 * Round up object size to the next word boundary. We can only
2899 	 * place the free pointer at word boundaries and this determines
2900 	 * the possible location of the free pointer.
2901 	 */
2902 	size = ALIGN(size, sizeof(void *));
2903 
2904 #ifdef CONFIG_SLUB_DEBUG
2905 	/*
2906 	 * Determine if we can poison the object itself. If the user of
2907 	 * the slab may touch the object after free or before allocation
2908 	 * then we should never poison the object itself.
2909 	 */
2910 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2911 			!s->ctor)
2912 		s->flags |= __OBJECT_POISON;
2913 	else
2914 		s->flags &= ~__OBJECT_POISON;
2915 
2916 
2917 	/*
2918 	 * If we are Redzoning then check if there is some space between the
2919 	 * end of the object and the free pointer. If not then add an
2920 	 * additional word to have some bytes to store Redzone information.
2921 	 */
2922 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2923 		size += sizeof(void *);
2924 #endif
2925 
2926 	/*
2927 	 * With that we have determined the number of bytes in actual use
2928 	 * by the object. This is the potential offset to the free pointer.
2929 	 */
2930 	s->inuse = size;
2931 
2932 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2933 		s->ctor)) {
2934 		/*
2935 		 * Relocate free pointer after the object if it is not
2936 		 * permitted to overwrite the first word of the object on
2937 		 * kmem_cache_free.
2938 		 *
2939 		 * This is the case if we do RCU, have a constructor or
2940 		 * destructor or are poisoning the objects.
2941 		 */
2942 		s->offset = size;
2943 		size += sizeof(void *);
2944 	}
2945 
2946 #ifdef CONFIG_SLUB_DEBUG
2947 	if (flags & SLAB_STORE_USER)
2948 		/*
2949 		 * Need to store information about allocs and frees after
2950 		 * the object.
2951 		 */
2952 		size += 2 * sizeof(struct track);
2953 
2954 	if (flags & SLAB_RED_ZONE)
2955 		/*
2956 		 * Add some empty padding so that we can catch
2957 		 * overwrites from earlier objects rather than let
2958 		 * tracking information or the free pointer be
2959 		 * corrupted if a user writes before the start
2960 		 * of the object.
2961 		 */
2962 		size += sizeof(void *);
2963 #endif
2964 
2965 	/*
2966 	 * SLUB stores one object immediately after another beginning from
2967 	 * offset 0. In order to align the objects we have to simply size
2968 	 * each object to conform to the alignment.
2969 	 */
2970 	size = ALIGN(size, s->align);
2971 	s->size = size;
2972 	if (forced_order >= 0)
2973 		order = forced_order;
2974 	else
2975 		order = calculate_order(size, s->reserved);
2976 
2977 	if (order < 0)
2978 		return 0;
2979 
2980 	s->allocflags = 0;
2981 	if (order)
2982 		s->allocflags |= __GFP_COMP;
2983 
2984 	if (s->flags & SLAB_CACHE_DMA)
2985 		s->allocflags |= SLUB_DMA;
2986 
2987 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2988 		s->allocflags |= __GFP_RECLAIMABLE;
2989 
2990 	/*
2991 	 * Determine the number of objects per slab
2992 	 */
2993 	s->oo = oo_make(order, size, s->reserved);
2994 	s->min = oo_make(get_order(size), size, s->reserved);
2995 	if (oo_objects(s->oo) > oo_objects(s->max))
2996 		s->max = s->oo;
2997 
2998 	return !!oo_objects(s->oo);
2999 }
3000 
3001 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3002 {
3003 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3004 	s->reserved = 0;
3005 
3006 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3007 		s->reserved = sizeof(struct rcu_head);
3008 
3009 	if (!calculate_sizes(s, -1))
3010 		goto error;
3011 	if (disable_higher_order_debug) {
3012 		/*
3013 		 * Disable debugging flags that store metadata if the min slab
3014 		 * order increased.
3015 		 */
3016 		if (get_order(s->size) > get_order(s->object_size)) {
3017 			s->flags &= ~DEBUG_METADATA_FLAGS;
3018 			s->offset = 0;
3019 			if (!calculate_sizes(s, -1))
3020 				goto error;
3021 		}
3022 	}
3023 
3024 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3025     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3026 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3027 		/* Enable fast mode */
3028 		s->flags |= __CMPXCHG_DOUBLE;
3029 #endif
3030 
3031 	/*
3032 	 * The larger the object size is, the more pages we want on the partial
3033 	 * list to avoid pounding the page allocator excessively.
3034 	 */
3035 	set_min_partial(s, ilog2(s->size) / 2);
3036 
3037 	/*
3038 	 * cpu_partial determined the maximum number of objects kept in the
3039 	 * per cpu partial lists of a processor.
3040 	 *
3041 	 * Per cpu partial lists mainly contain slabs that just have one
3042 	 * object freed. If they are used for allocation then they can be
3043 	 * filled up again with minimal effort. The slab will never hit the
3044 	 * per node partial lists and therefore no locking will be required.
3045 	 *
3046 	 * This setting also determines
3047 	 *
3048 	 * A) The number of objects from per cpu partial slabs dumped to the
3049 	 *    per node list when we reach the limit.
3050 	 * B) The number of objects in cpu partial slabs to extract from the
3051 	 *    per node list when we run out of per cpu objects. We only fetch 50%
3052 	 *    to keep some capacity around for frees.
3053 	 */
3054 	if (kmem_cache_debug(s))
3055 		s->cpu_partial = 0;
3056 	else if (s->size >= PAGE_SIZE)
3057 		s->cpu_partial = 2;
3058 	else if (s->size >= 1024)
3059 		s->cpu_partial = 6;
3060 	else if (s->size >= 256)
3061 		s->cpu_partial = 13;
3062 	else
3063 		s->cpu_partial = 30;
3064 
3065 #ifdef CONFIG_NUMA
3066 	s->remote_node_defrag_ratio = 1000;
3067 #endif
3068 	if (!init_kmem_cache_nodes(s))
3069 		goto error;
3070 
3071 	if (alloc_kmem_cache_cpus(s))
3072 		return 0;
3073 
3074 	free_kmem_cache_nodes(s);
3075 error:
3076 	if (flags & SLAB_PANIC)
3077 		panic("Cannot create slab %s size=%lu realsize=%u "
3078 			"order=%u offset=%u flags=%lx\n",
3079 			s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3080 			s->offset, flags);
3081 	return -EINVAL;
3082 }
3083 
3084 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3085 							const char *text)
3086 {
3087 #ifdef CONFIG_SLUB_DEBUG
3088 	void *addr = page_address(page);
3089 	void *p;
3090 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3091 				     sizeof(long), GFP_ATOMIC);
3092 	if (!map)
3093 		return;
3094 	slab_err(s, page, text, s->name);
3095 	slab_lock(page);
3096 
3097 	get_map(s, page, map);
3098 	for_each_object(p, s, addr, page->objects) {
3099 
3100 		if (!test_bit(slab_index(p, s, addr), map)) {
3101 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3102 							p, p - addr);
3103 			print_tracking(s, p);
3104 		}
3105 	}
3106 	slab_unlock(page);
3107 	kfree(map);
3108 #endif
3109 }
3110 
3111 /*
3112  * Attempt to free all partial slabs on a node.
3113  * This is called from kmem_cache_close(). We must be the last thread
3114  * using the cache and therefore we do not need to lock anymore.
3115  */
3116 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3117 {
3118 	struct page *page, *h;
3119 
3120 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3121 		if (!page->inuse) {
3122 			remove_partial(n, page);
3123 			discard_slab(s, page);
3124 		} else {
3125 			list_slab_objects(s, page,
3126 			"Objects remaining in %s on kmem_cache_close()");
3127 		}
3128 	}
3129 }
3130 
3131 /*
3132  * Release all resources used by a slab cache.
3133  */
3134 static inline int kmem_cache_close(struct kmem_cache *s)
3135 {
3136 	int node;
3137 
3138 	flush_all(s);
3139 	/* Attempt to free all objects */
3140 	for_each_node_state(node, N_NORMAL_MEMORY) {
3141 		struct kmem_cache_node *n = get_node(s, node);
3142 
3143 		free_partial(s, n);
3144 		if (n->nr_partial || slabs_node(s, node))
3145 			return 1;
3146 	}
3147 	free_percpu(s->cpu_slab);
3148 	free_kmem_cache_nodes(s);
3149 	return 0;
3150 }
3151 
3152 int __kmem_cache_shutdown(struct kmem_cache *s)
3153 {
3154 	int rc = kmem_cache_close(s);
3155 
3156 	if (!rc) {
3157 		/*
3158 		 * We do the same lock strategy around sysfs_slab_add, see
3159 		 * __kmem_cache_create. Because this is pretty much the last
3160 		 * operation we do and the lock will be released shortly after
3161 		 * that in slab_common.c, we could just move sysfs_slab_remove
3162 		 * to a later point in common code. We should do that when we
3163 		 * have a common sysfs framework for all allocators.
3164 		 */
3165 		mutex_unlock(&slab_mutex);
3166 		sysfs_slab_remove(s);
3167 		mutex_lock(&slab_mutex);
3168 	}
3169 
3170 	return rc;
3171 }
3172 
3173 /********************************************************************
3174  *		Kmalloc subsystem
3175  *******************************************************************/
3176 
3177 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3178 EXPORT_SYMBOL(kmalloc_caches);
3179 
3180 #ifdef CONFIG_ZONE_DMA
3181 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3182 #endif
3183 
3184 static int __init setup_slub_min_order(char *str)
3185 {
3186 	get_option(&str, &slub_min_order);
3187 
3188 	return 1;
3189 }
3190 
3191 __setup("slub_min_order=", setup_slub_min_order);
3192 
3193 static int __init setup_slub_max_order(char *str)
3194 {
3195 	get_option(&str, &slub_max_order);
3196 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3197 
3198 	return 1;
3199 }
3200 
3201 __setup("slub_max_order=", setup_slub_max_order);
3202 
3203 static int __init setup_slub_min_objects(char *str)
3204 {
3205 	get_option(&str, &slub_min_objects);
3206 
3207 	return 1;
3208 }
3209 
3210 __setup("slub_min_objects=", setup_slub_min_objects);
3211 
3212 static int __init setup_slub_nomerge(char *str)
3213 {
3214 	slub_nomerge = 1;
3215 	return 1;
3216 }
3217 
3218 __setup("slub_nomerge", setup_slub_nomerge);
3219 
3220 /*
3221  * Conversion table for small slabs sizes / 8 to the index in the
3222  * kmalloc array. This is necessary for slabs < 192 since we have non power
3223  * of two cache sizes there. The size of larger slabs can be determined using
3224  * fls.
3225  */
3226 static s8 size_index[24] = {
3227 	3,	/* 8 */
3228 	4,	/* 16 */
3229 	5,	/* 24 */
3230 	5,	/* 32 */
3231 	6,	/* 40 */
3232 	6,	/* 48 */
3233 	6,	/* 56 */
3234 	6,	/* 64 */
3235 	1,	/* 72 */
3236 	1,	/* 80 */
3237 	1,	/* 88 */
3238 	1,	/* 96 */
3239 	7,	/* 104 */
3240 	7,	/* 112 */
3241 	7,	/* 120 */
3242 	7,	/* 128 */
3243 	2,	/* 136 */
3244 	2,	/* 144 */
3245 	2,	/* 152 */
3246 	2,	/* 160 */
3247 	2,	/* 168 */
3248 	2,	/* 176 */
3249 	2,	/* 184 */
3250 	2	/* 192 */
3251 };
3252 
3253 static inline int size_index_elem(size_t bytes)
3254 {
3255 	return (bytes - 1) / 8;
3256 }
3257 
3258 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3259 {
3260 	int index;
3261 
3262 	if (size <= 192) {
3263 		if (!size)
3264 			return ZERO_SIZE_PTR;
3265 
3266 		index = size_index[size_index_elem(size)];
3267 	} else
3268 		index = fls(size - 1);
3269 
3270 #ifdef CONFIG_ZONE_DMA
3271 	if (unlikely((flags & SLUB_DMA)))
3272 		return kmalloc_dma_caches[index];
3273 
3274 #endif
3275 	return kmalloc_caches[index];
3276 }
3277 
3278 void *__kmalloc(size_t size, gfp_t flags)
3279 {
3280 	struct kmem_cache *s;
3281 	void *ret;
3282 
3283 	if (unlikely(size > SLUB_MAX_SIZE))
3284 		return kmalloc_large(size, flags);
3285 
3286 	s = get_slab(size, flags);
3287 
3288 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3289 		return s;
3290 
3291 	ret = slab_alloc(s, flags, _RET_IP_);
3292 
3293 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3294 
3295 	return ret;
3296 }
3297 EXPORT_SYMBOL(__kmalloc);
3298 
3299 #ifdef CONFIG_NUMA
3300 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3301 {
3302 	struct page *page;
3303 	void *ptr = NULL;
3304 
3305 	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3306 	page = alloc_pages_node(node, flags, get_order(size));
3307 	if (page)
3308 		ptr = page_address(page);
3309 
3310 	kmemleak_alloc(ptr, size, 1, flags);
3311 	return ptr;
3312 }
3313 
3314 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3315 {
3316 	struct kmem_cache *s;
3317 	void *ret;
3318 
3319 	if (unlikely(size > SLUB_MAX_SIZE)) {
3320 		ret = kmalloc_large_node(size, flags, node);
3321 
3322 		trace_kmalloc_node(_RET_IP_, ret,
3323 				   size, PAGE_SIZE << get_order(size),
3324 				   flags, node);
3325 
3326 		return ret;
3327 	}
3328 
3329 	s = get_slab(size, flags);
3330 
3331 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3332 		return s;
3333 
3334 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3335 
3336 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3337 
3338 	return ret;
3339 }
3340 EXPORT_SYMBOL(__kmalloc_node);
3341 #endif
3342 
3343 size_t ksize(const void *object)
3344 {
3345 	struct page *page;
3346 
3347 	if (unlikely(object == ZERO_SIZE_PTR))
3348 		return 0;
3349 
3350 	page = virt_to_head_page(object);
3351 
3352 	if (unlikely(!PageSlab(page))) {
3353 		WARN_ON(!PageCompound(page));
3354 		return PAGE_SIZE << compound_order(page);
3355 	}
3356 
3357 	return slab_ksize(page->slab_cache);
3358 }
3359 EXPORT_SYMBOL(ksize);
3360 
3361 #ifdef CONFIG_SLUB_DEBUG
3362 bool verify_mem_not_deleted(const void *x)
3363 {
3364 	struct page *page;
3365 	void *object = (void *)x;
3366 	unsigned long flags;
3367 	bool rv;
3368 
3369 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3370 		return false;
3371 
3372 	local_irq_save(flags);
3373 
3374 	page = virt_to_head_page(x);
3375 	if (unlikely(!PageSlab(page))) {
3376 		/* maybe it was from stack? */
3377 		rv = true;
3378 		goto out_unlock;
3379 	}
3380 
3381 	slab_lock(page);
3382 	if (on_freelist(page->slab_cache, page, object)) {
3383 		object_err(page->slab_cache, page, object, "Object is on free-list");
3384 		rv = false;
3385 	} else {
3386 		rv = true;
3387 	}
3388 	slab_unlock(page);
3389 
3390 out_unlock:
3391 	local_irq_restore(flags);
3392 	return rv;
3393 }
3394 EXPORT_SYMBOL(verify_mem_not_deleted);
3395 #endif
3396 
3397 void kfree(const void *x)
3398 {
3399 	struct page *page;
3400 	void *object = (void *)x;
3401 
3402 	trace_kfree(_RET_IP_, x);
3403 
3404 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3405 		return;
3406 
3407 	page = virt_to_head_page(x);
3408 	if (unlikely(!PageSlab(page))) {
3409 		BUG_ON(!PageCompound(page));
3410 		kmemleak_free(x);
3411 		__free_memcg_kmem_pages(page, compound_order(page));
3412 		return;
3413 	}
3414 	slab_free(page->slab_cache, page, object, _RET_IP_);
3415 }
3416 EXPORT_SYMBOL(kfree);
3417 
3418 /*
3419  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3420  * the remaining slabs by the number of items in use. The slabs with the
3421  * most items in use come first. New allocations will then fill those up
3422  * and thus they can be removed from the partial lists.
3423  *
3424  * The slabs with the least items are placed last. This results in them
3425  * being allocated from last increasing the chance that the last objects
3426  * are freed in them.
3427  */
3428 int kmem_cache_shrink(struct kmem_cache *s)
3429 {
3430 	int node;
3431 	int i;
3432 	struct kmem_cache_node *n;
3433 	struct page *page;
3434 	struct page *t;
3435 	int objects = oo_objects(s->max);
3436 	struct list_head *slabs_by_inuse =
3437 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3438 	unsigned long flags;
3439 
3440 	if (!slabs_by_inuse)
3441 		return -ENOMEM;
3442 
3443 	flush_all(s);
3444 	for_each_node_state(node, N_NORMAL_MEMORY) {
3445 		n = get_node(s, node);
3446 
3447 		if (!n->nr_partial)
3448 			continue;
3449 
3450 		for (i = 0; i < objects; i++)
3451 			INIT_LIST_HEAD(slabs_by_inuse + i);
3452 
3453 		spin_lock_irqsave(&n->list_lock, flags);
3454 
3455 		/*
3456 		 * Build lists indexed by the items in use in each slab.
3457 		 *
3458 		 * Note that concurrent frees may occur while we hold the
3459 		 * list_lock. page->inuse here is the upper limit.
3460 		 */
3461 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3462 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3463 			if (!page->inuse)
3464 				n->nr_partial--;
3465 		}
3466 
3467 		/*
3468 		 * Rebuild the partial list with the slabs filled up most
3469 		 * first and the least used slabs at the end.
3470 		 */
3471 		for (i = objects - 1; i > 0; i--)
3472 			list_splice(slabs_by_inuse + i, n->partial.prev);
3473 
3474 		spin_unlock_irqrestore(&n->list_lock, flags);
3475 
3476 		/* Release empty slabs */
3477 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3478 			discard_slab(s, page);
3479 	}
3480 
3481 	kfree(slabs_by_inuse);
3482 	return 0;
3483 }
3484 EXPORT_SYMBOL(kmem_cache_shrink);
3485 
3486 #if defined(CONFIG_MEMORY_HOTPLUG)
3487 static int slab_mem_going_offline_callback(void *arg)
3488 {
3489 	struct kmem_cache *s;
3490 
3491 	mutex_lock(&slab_mutex);
3492 	list_for_each_entry(s, &slab_caches, list)
3493 		kmem_cache_shrink(s);
3494 	mutex_unlock(&slab_mutex);
3495 
3496 	return 0;
3497 }
3498 
3499 static void slab_mem_offline_callback(void *arg)
3500 {
3501 	struct kmem_cache_node *n;
3502 	struct kmem_cache *s;
3503 	struct memory_notify *marg = arg;
3504 	int offline_node;
3505 
3506 	offline_node = marg->status_change_nid_normal;
3507 
3508 	/*
3509 	 * If the node still has available memory. we need kmem_cache_node
3510 	 * for it yet.
3511 	 */
3512 	if (offline_node < 0)
3513 		return;
3514 
3515 	mutex_lock(&slab_mutex);
3516 	list_for_each_entry(s, &slab_caches, list) {
3517 		n = get_node(s, offline_node);
3518 		if (n) {
3519 			/*
3520 			 * if n->nr_slabs > 0, slabs still exist on the node
3521 			 * that is going down. We were unable to free them,
3522 			 * and offline_pages() function shouldn't call this
3523 			 * callback. So, we must fail.
3524 			 */
3525 			BUG_ON(slabs_node(s, offline_node));
3526 
3527 			s->node[offline_node] = NULL;
3528 			kmem_cache_free(kmem_cache_node, n);
3529 		}
3530 	}
3531 	mutex_unlock(&slab_mutex);
3532 }
3533 
3534 static int slab_mem_going_online_callback(void *arg)
3535 {
3536 	struct kmem_cache_node *n;
3537 	struct kmem_cache *s;
3538 	struct memory_notify *marg = arg;
3539 	int nid = marg->status_change_nid_normal;
3540 	int ret = 0;
3541 
3542 	/*
3543 	 * If the node's memory is already available, then kmem_cache_node is
3544 	 * already created. Nothing to do.
3545 	 */
3546 	if (nid < 0)
3547 		return 0;
3548 
3549 	/*
3550 	 * We are bringing a node online. No memory is available yet. We must
3551 	 * allocate a kmem_cache_node structure in order to bring the node
3552 	 * online.
3553 	 */
3554 	mutex_lock(&slab_mutex);
3555 	list_for_each_entry(s, &slab_caches, list) {
3556 		/*
3557 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3558 		 *      since memory is not yet available from the node that
3559 		 *      is brought up.
3560 		 */
3561 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3562 		if (!n) {
3563 			ret = -ENOMEM;
3564 			goto out;
3565 		}
3566 		init_kmem_cache_node(n);
3567 		s->node[nid] = n;
3568 	}
3569 out:
3570 	mutex_unlock(&slab_mutex);
3571 	return ret;
3572 }
3573 
3574 static int slab_memory_callback(struct notifier_block *self,
3575 				unsigned long action, void *arg)
3576 {
3577 	int ret = 0;
3578 
3579 	switch (action) {
3580 	case MEM_GOING_ONLINE:
3581 		ret = slab_mem_going_online_callback(arg);
3582 		break;
3583 	case MEM_GOING_OFFLINE:
3584 		ret = slab_mem_going_offline_callback(arg);
3585 		break;
3586 	case MEM_OFFLINE:
3587 	case MEM_CANCEL_ONLINE:
3588 		slab_mem_offline_callback(arg);
3589 		break;
3590 	case MEM_ONLINE:
3591 	case MEM_CANCEL_OFFLINE:
3592 		break;
3593 	}
3594 	if (ret)
3595 		ret = notifier_from_errno(ret);
3596 	else
3597 		ret = NOTIFY_OK;
3598 	return ret;
3599 }
3600 
3601 #endif /* CONFIG_MEMORY_HOTPLUG */
3602 
3603 /********************************************************************
3604  *			Basic setup of slabs
3605  *******************************************************************/
3606 
3607 /*
3608  * Used for early kmem_cache structures that were allocated using
3609  * the page allocator. Allocate them properly then fix up the pointers
3610  * that may be pointing to the wrong kmem_cache structure.
3611  */
3612 
3613 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3614 {
3615 	int node;
3616 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3617 
3618 	memcpy(s, static_cache, kmem_cache->object_size);
3619 
3620 	for_each_node_state(node, N_NORMAL_MEMORY) {
3621 		struct kmem_cache_node *n = get_node(s, node);
3622 		struct page *p;
3623 
3624 		if (n) {
3625 			list_for_each_entry(p, &n->partial, lru)
3626 				p->slab_cache = s;
3627 
3628 #ifdef CONFIG_SLUB_DEBUG
3629 			list_for_each_entry(p, &n->full, lru)
3630 				p->slab_cache = s;
3631 #endif
3632 		}
3633 	}
3634 	list_add(&s->list, &slab_caches);
3635 	return s;
3636 }
3637 
3638 void __init kmem_cache_init(void)
3639 {
3640 	static __initdata struct kmem_cache boot_kmem_cache,
3641 		boot_kmem_cache_node;
3642 	int i;
3643 	int caches = 2;
3644 
3645 	if (debug_guardpage_minorder())
3646 		slub_max_order = 0;
3647 
3648 	kmem_cache_node = &boot_kmem_cache_node;
3649 	kmem_cache = &boot_kmem_cache;
3650 
3651 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3652 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3653 
3654 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3655 
3656 	/* Able to allocate the per node structures */
3657 	slab_state = PARTIAL;
3658 
3659 	create_boot_cache(kmem_cache, "kmem_cache",
3660 			offsetof(struct kmem_cache, node) +
3661 				nr_node_ids * sizeof(struct kmem_cache_node *),
3662 		       SLAB_HWCACHE_ALIGN);
3663 
3664 	kmem_cache = bootstrap(&boot_kmem_cache);
3665 
3666 	/*
3667 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3668 	 * kmem_cache_node is separately allocated so no need to
3669 	 * update any list pointers.
3670 	 */
3671 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3672 
3673 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3674 
3675 	/*
3676 	 * Patch up the size_index table if we have strange large alignment
3677 	 * requirements for the kmalloc array. This is only the case for
3678 	 * MIPS it seems. The standard arches will not generate any code here.
3679 	 *
3680 	 * Largest permitted alignment is 256 bytes due to the way we
3681 	 * handle the index determination for the smaller caches.
3682 	 *
3683 	 * Make sure that nothing crazy happens if someone starts tinkering
3684 	 * around with ARCH_KMALLOC_MINALIGN
3685 	 */
3686 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3687 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3688 
3689 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3690 		int elem = size_index_elem(i);
3691 		if (elem >= ARRAY_SIZE(size_index))
3692 			break;
3693 		size_index[elem] = KMALLOC_SHIFT_LOW;
3694 	}
3695 
3696 	if (KMALLOC_MIN_SIZE == 64) {
3697 		/*
3698 		 * The 96 byte size cache is not used if the alignment
3699 		 * is 64 byte.
3700 		 */
3701 		for (i = 64 + 8; i <= 96; i += 8)
3702 			size_index[size_index_elem(i)] = 7;
3703 	} else if (KMALLOC_MIN_SIZE == 128) {
3704 		/*
3705 		 * The 192 byte sized cache is not used if the alignment
3706 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3707 		 * instead.
3708 		 */
3709 		for (i = 128 + 8; i <= 192; i += 8)
3710 			size_index[size_index_elem(i)] = 8;
3711 	}
3712 
3713 	/* Caches that are not of the two-to-the-power-of size */
3714 	if (KMALLOC_MIN_SIZE <= 32) {
3715 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3716 		caches++;
3717 	}
3718 
3719 	if (KMALLOC_MIN_SIZE <= 64) {
3720 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3721 		caches++;
3722 	}
3723 
3724 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3725 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3726 		caches++;
3727 	}
3728 
3729 	slab_state = UP;
3730 
3731 	/* Provide the correct kmalloc names now that the caches are up */
3732 	if (KMALLOC_MIN_SIZE <= 32) {
3733 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3734 		BUG_ON(!kmalloc_caches[1]->name);
3735 	}
3736 
3737 	if (KMALLOC_MIN_SIZE <= 64) {
3738 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3739 		BUG_ON(!kmalloc_caches[2]->name);
3740 	}
3741 
3742 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3743 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3744 
3745 		BUG_ON(!s);
3746 		kmalloc_caches[i]->name = s;
3747 	}
3748 
3749 #ifdef CONFIG_SMP
3750 	register_cpu_notifier(&slab_notifier);
3751 #endif
3752 
3753 #ifdef CONFIG_ZONE_DMA
3754 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3755 		struct kmem_cache *s = kmalloc_caches[i];
3756 
3757 		if (s && s->size) {
3758 			char *name = kasprintf(GFP_NOWAIT,
3759 				 "dma-kmalloc-%d", s->object_size);
3760 
3761 			BUG_ON(!name);
3762 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3763 				s->object_size, SLAB_CACHE_DMA);
3764 		}
3765 	}
3766 #endif
3767 	printk(KERN_INFO
3768 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3769 		" CPUs=%d, Nodes=%d\n",
3770 		caches, cache_line_size(),
3771 		slub_min_order, slub_max_order, slub_min_objects,
3772 		nr_cpu_ids, nr_node_ids);
3773 }
3774 
3775 void __init kmem_cache_init_late(void)
3776 {
3777 }
3778 
3779 /*
3780  * Find a mergeable slab cache
3781  */
3782 static int slab_unmergeable(struct kmem_cache *s)
3783 {
3784 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3785 		return 1;
3786 
3787 	if (s->ctor)
3788 		return 1;
3789 
3790 	/*
3791 	 * We may have set a slab to be unmergeable during bootstrap.
3792 	 */
3793 	if (s->refcount < 0)
3794 		return 1;
3795 
3796 	return 0;
3797 }
3798 
3799 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3800 		size_t align, unsigned long flags, const char *name,
3801 		void (*ctor)(void *))
3802 {
3803 	struct kmem_cache *s;
3804 
3805 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3806 		return NULL;
3807 
3808 	if (ctor)
3809 		return NULL;
3810 
3811 	size = ALIGN(size, sizeof(void *));
3812 	align = calculate_alignment(flags, align, size);
3813 	size = ALIGN(size, align);
3814 	flags = kmem_cache_flags(size, flags, name, NULL);
3815 
3816 	list_for_each_entry(s, &slab_caches, list) {
3817 		if (slab_unmergeable(s))
3818 			continue;
3819 
3820 		if (size > s->size)
3821 			continue;
3822 
3823 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3824 				continue;
3825 		/*
3826 		 * Check if alignment is compatible.
3827 		 * Courtesy of Adrian Drzewiecki
3828 		 */
3829 		if ((s->size & ~(align - 1)) != s->size)
3830 			continue;
3831 
3832 		if (s->size - size >= sizeof(void *))
3833 			continue;
3834 
3835 		if (!cache_match_memcg(s, memcg))
3836 			continue;
3837 
3838 		return s;
3839 	}
3840 	return NULL;
3841 }
3842 
3843 struct kmem_cache *
3844 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3845 		   size_t align, unsigned long flags, void (*ctor)(void *))
3846 {
3847 	struct kmem_cache *s;
3848 
3849 	s = find_mergeable(memcg, size, align, flags, name, ctor);
3850 	if (s) {
3851 		s->refcount++;
3852 		/*
3853 		 * Adjust the object sizes so that we clear
3854 		 * the complete object on kzalloc.
3855 		 */
3856 		s->object_size = max(s->object_size, (int)size);
3857 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3858 
3859 		if (sysfs_slab_alias(s, name)) {
3860 			s->refcount--;
3861 			s = NULL;
3862 		}
3863 	}
3864 
3865 	return s;
3866 }
3867 
3868 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3869 {
3870 	int err;
3871 
3872 	err = kmem_cache_open(s, flags);
3873 	if (err)
3874 		return err;
3875 
3876 	/* Mutex is not taken during early boot */
3877 	if (slab_state <= UP)
3878 		return 0;
3879 
3880 	memcg_propagate_slab_attrs(s);
3881 	mutex_unlock(&slab_mutex);
3882 	err = sysfs_slab_add(s);
3883 	mutex_lock(&slab_mutex);
3884 
3885 	if (err)
3886 		kmem_cache_close(s);
3887 
3888 	return err;
3889 }
3890 
3891 #ifdef CONFIG_SMP
3892 /*
3893  * Use the cpu notifier to insure that the cpu slabs are flushed when
3894  * necessary.
3895  */
3896 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3897 		unsigned long action, void *hcpu)
3898 {
3899 	long cpu = (long)hcpu;
3900 	struct kmem_cache *s;
3901 	unsigned long flags;
3902 
3903 	switch (action) {
3904 	case CPU_UP_CANCELED:
3905 	case CPU_UP_CANCELED_FROZEN:
3906 	case CPU_DEAD:
3907 	case CPU_DEAD_FROZEN:
3908 		mutex_lock(&slab_mutex);
3909 		list_for_each_entry(s, &slab_caches, list) {
3910 			local_irq_save(flags);
3911 			__flush_cpu_slab(s, cpu);
3912 			local_irq_restore(flags);
3913 		}
3914 		mutex_unlock(&slab_mutex);
3915 		break;
3916 	default:
3917 		break;
3918 	}
3919 	return NOTIFY_OK;
3920 }
3921 
3922 static struct notifier_block __cpuinitdata slab_notifier = {
3923 	.notifier_call = slab_cpuup_callback
3924 };
3925 
3926 #endif
3927 
3928 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3929 {
3930 	struct kmem_cache *s;
3931 	void *ret;
3932 
3933 	if (unlikely(size > SLUB_MAX_SIZE))
3934 		return kmalloc_large(size, gfpflags);
3935 
3936 	s = get_slab(size, gfpflags);
3937 
3938 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3939 		return s;
3940 
3941 	ret = slab_alloc(s, gfpflags, caller);
3942 
3943 	/* Honor the call site pointer we received. */
3944 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3945 
3946 	return ret;
3947 }
3948 
3949 #ifdef CONFIG_NUMA
3950 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3951 					int node, unsigned long caller)
3952 {
3953 	struct kmem_cache *s;
3954 	void *ret;
3955 
3956 	if (unlikely(size > SLUB_MAX_SIZE)) {
3957 		ret = kmalloc_large_node(size, gfpflags, node);
3958 
3959 		trace_kmalloc_node(caller, ret,
3960 				   size, PAGE_SIZE << get_order(size),
3961 				   gfpflags, node);
3962 
3963 		return ret;
3964 	}
3965 
3966 	s = get_slab(size, gfpflags);
3967 
3968 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3969 		return s;
3970 
3971 	ret = slab_alloc_node(s, gfpflags, node, caller);
3972 
3973 	/* Honor the call site pointer we received. */
3974 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3975 
3976 	return ret;
3977 }
3978 #endif
3979 
3980 #ifdef CONFIG_SYSFS
3981 static int count_inuse(struct page *page)
3982 {
3983 	return page->inuse;
3984 }
3985 
3986 static int count_total(struct page *page)
3987 {
3988 	return page->objects;
3989 }
3990 #endif
3991 
3992 #ifdef CONFIG_SLUB_DEBUG
3993 static int validate_slab(struct kmem_cache *s, struct page *page,
3994 						unsigned long *map)
3995 {
3996 	void *p;
3997 	void *addr = page_address(page);
3998 
3999 	if (!check_slab(s, page) ||
4000 			!on_freelist(s, page, NULL))
4001 		return 0;
4002 
4003 	/* Now we know that a valid freelist exists */
4004 	bitmap_zero(map, page->objects);
4005 
4006 	get_map(s, page, map);
4007 	for_each_object(p, s, addr, page->objects) {
4008 		if (test_bit(slab_index(p, s, addr), map))
4009 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4010 				return 0;
4011 	}
4012 
4013 	for_each_object(p, s, addr, page->objects)
4014 		if (!test_bit(slab_index(p, s, addr), map))
4015 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4016 				return 0;
4017 	return 1;
4018 }
4019 
4020 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4021 						unsigned long *map)
4022 {
4023 	slab_lock(page);
4024 	validate_slab(s, page, map);
4025 	slab_unlock(page);
4026 }
4027 
4028 static int validate_slab_node(struct kmem_cache *s,
4029 		struct kmem_cache_node *n, unsigned long *map)
4030 {
4031 	unsigned long count = 0;
4032 	struct page *page;
4033 	unsigned long flags;
4034 
4035 	spin_lock_irqsave(&n->list_lock, flags);
4036 
4037 	list_for_each_entry(page, &n->partial, lru) {
4038 		validate_slab_slab(s, page, map);
4039 		count++;
4040 	}
4041 	if (count != n->nr_partial)
4042 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4043 			"counter=%ld\n", s->name, count, n->nr_partial);
4044 
4045 	if (!(s->flags & SLAB_STORE_USER))
4046 		goto out;
4047 
4048 	list_for_each_entry(page, &n->full, lru) {
4049 		validate_slab_slab(s, page, map);
4050 		count++;
4051 	}
4052 	if (count != atomic_long_read(&n->nr_slabs))
4053 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4054 			"counter=%ld\n", s->name, count,
4055 			atomic_long_read(&n->nr_slabs));
4056 
4057 out:
4058 	spin_unlock_irqrestore(&n->list_lock, flags);
4059 	return count;
4060 }
4061 
4062 static long validate_slab_cache(struct kmem_cache *s)
4063 {
4064 	int node;
4065 	unsigned long count = 0;
4066 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4067 				sizeof(unsigned long), GFP_KERNEL);
4068 
4069 	if (!map)
4070 		return -ENOMEM;
4071 
4072 	flush_all(s);
4073 	for_each_node_state(node, N_NORMAL_MEMORY) {
4074 		struct kmem_cache_node *n = get_node(s, node);
4075 
4076 		count += validate_slab_node(s, n, map);
4077 	}
4078 	kfree(map);
4079 	return count;
4080 }
4081 /*
4082  * Generate lists of code addresses where slabcache objects are allocated
4083  * and freed.
4084  */
4085 
4086 struct location {
4087 	unsigned long count;
4088 	unsigned long addr;
4089 	long long sum_time;
4090 	long min_time;
4091 	long max_time;
4092 	long min_pid;
4093 	long max_pid;
4094 	DECLARE_BITMAP(cpus, NR_CPUS);
4095 	nodemask_t nodes;
4096 };
4097 
4098 struct loc_track {
4099 	unsigned long max;
4100 	unsigned long count;
4101 	struct location *loc;
4102 };
4103 
4104 static void free_loc_track(struct loc_track *t)
4105 {
4106 	if (t->max)
4107 		free_pages((unsigned long)t->loc,
4108 			get_order(sizeof(struct location) * t->max));
4109 }
4110 
4111 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4112 {
4113 	struct location *l;
4114 	int order;
4115 
4116 	order = get_order(sizeof(struct location) * max);
4117 
4118 	l = (void *)__get_free_pages(flags, order);
4119 	if (!l)
4120 		return 0;
4121 
4122 	if (t->count) {
4123 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4124 		free_loc_track(t);
4125 	}
4126 	t->max = max;
4127 	t->loc = l;
4128 	return 1;
4129 }
4130 
4131 static int add_location(struct loc_track *t, struct kmem_cache *s,
4132 				const struct track *track)
4133 {
4134 	long start, end, pos;
4135 	struct location *l;
4136 	unsigned long caddr;
4137 	unsigned long age = jiffies - track->when;
4138 
4139 	start = -1;
4140 	end = t->count;
4141 
4142 	for ( ; ; ) {
4143 		pos = start + (end - start + 1) / 2;
4144 
4145 		/*
4146 		 * There is nothing at "end". If we end up there
4147 		 * we need to add something to before end.
4148 		 */
4149 		if (pos == end)
4150 			break;
4151 
4152 		caddr = t->loc[pos].addr;
4153 		if (track->addr == caddr) {
4154 
4155 			l = &t->loc[pos];
4156 			l->count++;
4157 			if (track->when) {
4158 				l->sum_time += age;
4159 				if (age < l->min_time)
4160 					l->min_time = age;
4161 				if (age > l->max_time)
4162 					l->max_time = age;
4163 
4164 				if (track->pid < l->min_pid)
4165 					l->min_pid = track->pid;
4166 				if (track->pid > l->max_pid)
4167 					l->max_pid = track->pid;
4168 
4169 				cpumask_set_cpu(track->cpu,
4170 						to_cpumask(l->cpus));
4171 			}
4172 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4173 			return 1;
4174 		}
4175 
4176 		if (track->addr < caddr)
4177 			end = pos;
4178 		else
4179 			start = pos;
4180 	}
4181 
4182 	/*
4183 	 * Not found. Insert new tracking element.
4184 	 */
4185 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4186 		return 0;
4187 
4188 	l = t->loc + pos;
4189 	if (pos < t->count)
4190 		memmove(l + 1, l,
4191 			(t->count - pos) * sizeof(struct location));
4192 	t->count++;
4193 	l->count = 1;
4194 	l->addr = track->addr;
4195 	l->sum_time = age;
4196 	l->min_time = age;
4197 	l->max_time = age;
4198 	l->min_pid = track->pid;
4199 	l->max_pid = track->pid;
4200 	cpumask_clear(to_cpumask(l->cpus));
4201 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4202 	nodes_clear(l->nodes);
4203 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4204 	return 1;
4205 }
4206 
4207 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4208 		struct page *page, enum track_item alloc,
4209 		unsigned long *map)
4210 {
4211 	void *addr = page_address(page);
4212 	void *p;
4213 
4214 	bitmap_zero(map, page->objects);
4215 	get_map(s, page, map);
4216 
4217 	for_each_object(p, s, addr, page->objects)
4218 		if (!test_bit(slab_index(p, s, addr), map))
4219 			add_location(t, s, get_track(s, p, alloc));
4220 }
4221 
4222 static int list_locations(struct kmem_cache *s, char *buf,
4223 					enum track_item alloc)
4224 {
4225 	int len = 0;
4226 	unsigned long i;
4227 	struct loc_track t = { 0, 0, NULL };
4228 	int node;
4229 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4230 				     sizeof(unsigned long), GFP_KERNEL);
4231 
4232 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4233 				     GFP_TEMPORARY)) {
4234 		kfree(map);
4235 		return sprintf(buf, "Out of memory\n");
4236 	}
4237 	/* Push back cpu slabs */
4238 	flush_all(s);
4239 
4240 	for_each_node_state(node, N_NORMAL_MEMORY) {
4241 		struct kmem_cache_node *n = get_node(s, node);
4242 		unsigned long flags;
4243 		struct page *page;
4244 
4245 		if (!atomic_long_read(&n->nr_slabs))
4246 			continue;
4247 
4248 		spin_lock_irqsave(&n->list_lock, flags);
4249 		list_for_each_entry(page, &n->partial, lru)
4250 			process_slab(&t, s, page, alloc, map);
4251 		list_for_each_entry(page, &n->full, lru)
4252 			process_slab(&t, s, page, alloc, map);
4253 		spin_unlock_irqrestore(&n->list_lock, flags);
4254 	}
4255 
4256 	for (i = 0; i < t.count; i++) {
4257 		struct location *l = &t.loc[i];
4258 
4259 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4260 			break;
4261 		len += sprintf(buf + len, "%7ld ", l->count);
4262 
4263 		if (l->addr)
4264 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4265 		else
4266 			len += sprintf(buf + len, "<not-available>");
4267 
4268 		if (l->sum_time != l->min_time) {
4269 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4270 				l->min_time,
4271 				(long)div_u64(l->sum_time, l->count),
4272 				l->max_time);
4273 		} else
4274 			len += sprintf(buf + len, " age=%ld",
4275 				l->min_time);
4276 
4277 		if (l->min_pid != l->max_pid)
4278 			len += sprintf(buf + len, " pid=%ld-%ld",
4279 				l->min_pid, l->max_pid);
4280 		else
4281 			len += sprintf(buf + len, " pid=%ld",
4282 				l->min_pid);
4283 
4284 		if (num_online_cpus() > 1 &&
4285 				!cpumask_empty(to_cpumask(l->cpus)) &&
4286 				len < PAGE_SIZE - 60) {
4287 			len += sprintf(buf + len, " cpus=");
4288 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4289 						 to_cpumask(l->cpus));
4290 		}
4291 
4292 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4293 				len < PAGE_SIZE - 60) {
4294 			len += sprintf(buf + len, " nodes=");
4295 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4296 					l->nodes);
4297 		}
4298 
4299 		len += sprintf(buf + len, "\n");
4300 	}
4301 
4302 	free_loc_track(&t);
4303 	kfree(map);
4304 	if (!t.count)
4305 		len += sprintf(buf, "No data\n");
4306 	return len;
4307 }
4308 #endif
4309 
4310 #ifdef SLUB_RESILIENCY_TEST
4311 static void resiliency_test(void)
4312 {
4313 	u8 *p;
4314 
4315 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4316 
4317 	printk(KERN_ERR "SLUB resiliency testing\n");
4318 	printk(KERN_ERR "-----------------------\n");
4319 	printk(KERN_ERR "A. Corruption after allocation\n");
4320 
4321 	p = kzalloc(16, GFP_KERNEL);
4322 	p[16] = 0x12;
4323 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4324 			" 0x12->0x%p\n\n", p + 16);
4325 
4326 	validate_slab_cache(kmalloc_caches[4]);
4327 
4328 	/* Hmmm... The next two are dangerous */
4329 	p = kzalloc(32, GFP_KERNEL);
4330 	p[32 + sizeof(void *)] = 0x34;
4331 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4332 			" 0x34 -> -0x%p\n", p);
4333 	printk(KERN_ERR
4334 		"If allocated object is overwritten then not detectable\n\n");
4335 
4336 	validate_slab_cache(kmalloc_caches[5]);
4337 	p = kzalloc(64, GFP_KERNEL);
4338 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4339 	*p = 0x56;
4340 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4341 									p);
4342 	printk(KERN_ERR
4343 		"If allocated object is overwritten then not detectable\n\n");
4344 	validate_slab_cache(kmalloc_caches[6]);
4345 
4346 	printk(KERN_ERR "\nB. Corruption after free\n");
4347 	p = kzalloc(128, GFP_KERNEL);
4348 	kfree(p);
4349 	*p = 0x78;
4350 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4351 	validate_slab_cache(kmalloc_caches[7]);
4352 
4353 	p = kzalloc(256, GFP_KERNEL);
4354 	kfree(p);
4355 	p[50] = 0x9a;
4356 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4357 			p);
4358 	validate_slab_cache(kmalloc_caches[8]);
4359 
4360 	p = kzalloc(512, GFP_KERNEL);
4361 	kfree(p);
4362 	p[512] = 0xab;
4363 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4364 	validate_slab_cache(kmalloc_caches[9]);
4365 }
4366 #else
4367 #ifdef CONFIG_SYSFS
4368 static void resiliency_test(void) {};
4369 #endif
4370 #endif
4371 
4372 #ifdef CONFIG_SYSFS
4373 enum slab_stat_type {
4374 	SL_ALL,			/* All slabs */
4375 	SL_PARTIAL,		/* Only partially allocated slabs */
4376 	SL_CPU,			/* Only slabs used for cpu caches */
4377 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4378 	SL_TOTAL		/* Determine object capacity not slabs */
4379 };
4380 
4381 #define SO_ALL		(1 << SL_ALL)
4382 #define SO_PARTIAL	(1 << SL_PARTIAL)
4383 #define SO_CPU		(1 << SL_CPU)
4384 #define SO_OBJECTS	(1 << SL_OBJECTS)
4385 #define SO_TOTAL	(1 << SL_TOTAL)
4386 
4387 static ssize_t show_slab_objects(struct kmem_cache *s,
4388 			    char *buf, unsigned long flags)
4389 {
4390 	unsigned long total = 0;
4391 	int node;
4392 	int x;
4393 	unsigned long *nodes;
4394 	unsigned long *per_cpu;
4395 
4396 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4397 	if (!nodes)
4398 		return -ENOMEM;
4399 	per_cpu = nodes + nr_node_ids;
4400 
4401 	if (flags & SO_CPU) {
4402 		int cpu;
4403 
4404 		for_each_possible_cpu(cpu) {
4405 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4406 			int node;
4407 			struct page *page;
4408 
4409 			page = ACCESS_ONCE(c->page);
4410 			if (!page)
4411 				continue;
4412 
4413 			node = page_to_nid(page);
4414 			if (flags & SO_TOTAL)
4415 				x = page->objects;
4416 			else if (flags & SO_OBJECTS)
4417 				x = page->inuse;
4418 			else
4419 				x = 1;
4420 
4421 			total += x;
4422 			nodes[node] += x;
4423 
4424 			page = ACCESS_ONCE(c->partial);
4425 			if (page) {
4426 				x = page->pobjects;
4427 				total += x;
4428 				nodes[node] += x;
4429 			}
4430 
4431 			per_cpu[node]++;
4432 		}
4433 	}
4434 
4435 	lock_memory_hotplug();
4436 #ifdef CONFIG_SLUB_DEBUG
4437 	if (flags & SO_ALL) {
4438 		for_each_node_state(node, N_NORMAL_MEMORY) {
4439 			struct kmem_cache_node *n = get_node(s, node);
4440 
4441 		if (flags & SO_TOTAL)
4442 			x = atomic_long_read(&n->total_objects);
4443 		else if (flags & SO_OBJECTS)
4444 			x = atomic_long_read(&n->total_objects) -
4445 				count_partial(n, count_free);
4446 
4447 			else
4448 				x = atomic_long_read(&n->nr_slabs);
4449 			total += x;
4450 			nodes[node] += x;
4451 		}
4452 
4453 	} else
4454 #endif
4455 	if (flags & SO_PARTIAL) {
4456 		for_each_node_state(node, N_NORMAL_MEMORY) {
4457 			struct kmem_cache_node *n = get_node(s, node);
4458 
4459 			if (flags & SO_TOTAL)
4460 				x = count_partial(n, count_total);
4461 			else if (flags & SO_OBJECTS)
4462 				x = count_partial(n, count_inuse);
4463 			else
4464 				x = n->nr_partial;
4465 			total += x;
4466 			nodes[node] += x;
4467 		}
4468 	}
4469 	x = sprintf(buf, "%lu", total);
4470 #ifdef CONFIG_NUMA
4471 	for_each_node_state(node, N_NORMAL_MEMORY)
4472 		if (nodes[node])
4473 			x += sprintf(buf + x, " N%d=%lu",
4474 					node, nodes[node]);
4475 #endif
4476 	unlock_memory_hotplug();
4477 	kfree(nodes);
4478 	return x + sprintf(buf + x, "\n");
4479 }
4480 
4481 #ifdef CONFIG_SLUB_DEBUG
4482 static int any_slab_objects(struct kmem_cache *s)
4483 {
4484 	int node;
4485 
4486 	for_each_online_node(node) {
4487 		struct kmem_cache_node *n = get_node(s, node);
4488 
4489 		if (!n)
4490 			continue;
4491 
4492 		if (atomic_long_read(&n->total_objects))
4493 			return 1;
4494 	}
4495 	return 0;
4496 }
4497 #endif
4498 
4499 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4500 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4501 
4502 struct slab_attribute {
4503 	struct attribute attr;
4504 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4505 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4506 };
4507 
4508 #define SLAB_ATTR_RO(_name) \
4509 	static struct slab_attribute _name##_attr = \
4510 	__ATTR(_name, 0400, _name##_show, NULL)
4511 
4512 #define SLAB_ATTR(_name) \
4513 	static struct slab_attribute _name##_attr =  \
4514 	__ATTR(_name, 0600, _name##_show, _name##_store)
4515 
4516 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4517 {
4518 	return sprintf(buf, "%d\n", s->size);
4519 }
4520 SLAB_ATTR_RO(slab_size);
4521 
4522 static ssize_t align_show(struct kmem_cache *s, char *buf)
4523 {
4524 	return sprintf(buf, "%d\n", s->align);
4525 }
4526 SLAB_ATTR_RO(align);
4527 
4528 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4529 {
4530 	return sprintf(buf, "%d\n", s->object_size);
4531 }
4532 SLAB_ATTR_RO(object_size);
4533 
4534 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4535 {
4536 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4537 }
4538 SLAB_ATTR_RO(objs_per_slab);
4539 
4540 static ssize_t order_store(struct kmem_cache *s,
4541 				const char *buf, size_t length)
4542 {
4543 	unsigned long order;
4544 	int err;
4545 
4546 	err = strict_strtoul(buf, 10, &order);
4547 	if (err)
4548 		return err;
4549 
4550 	if (order > slub_max_order || order < slub_min_order)
4551 		return -EINVAL;
4552 
4553 	calculate_sizes(s, order);
4554 	return length;
4555 }
4556 
4557 static ssize_t order_show(struct kmem_cache *s, char *buf)
4558 {
4559 	return sprintf(buf, "%d\n", oo_order(s->oo));
4560 }
4561 SLAB_ATTR(order);
4562 
4563 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4564 {
4565 	return sprintf(buf, "%lu\n", s->min_partial);
4566 }
4567 
4568 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4569 				 size_t length)
4570 {
4571 	unsigned long min;
4572 	int err;
4573 
4574 	err = strict_strtoul(buf, 10, &min);
4575 	if (err)
4576 		return err;
4577 
4578 	set_min_partial(s, min);
4579 	return length;
4580 }
4581 SLAB_ATTR(min_partial);
4582 
4583 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4584 {
4585 	return sprintf(buf, "%u\n", s->cpu_partial);
4586 }
4587 
4588 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4589 				 size_t length)
4590 {
4591 	unsigned long objects;
4592 	int err;
4593 
4594 	err = strict_strtoul(buf, 10, &objects);
4595 	if (err)
4596 		return err;
4597 	if (objects && kmem_cache_debug(s))
4598 		return -EINVAL;
4599 
4600 	s->cpu_partial = objects;
4601 	flush_all(s);
4602 	return length;
4603 }
4604 SLAB_ATTR(cpu_partial);
4605 
4606 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4607 {
4608 	if (!s->ctor)
4609 		return 0;
4610 	return sprintf(buf, "%pS\n", s->ctor);
4611 }
4612 SLAB_ATTR_RO(ctor);
4613 
4614 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4615 {
4616 	return sprintf(buf, "%d\n", s->refcount - 1);
4617 }
4618 SLAB_ATTR_RO(aliases);
4619 
4620 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4621 {
4622 	return show_slab_objects(s, buf, SO_PARTIAL);
4623 }
4624 SLAB_ATTR_RO(partial);
4625 
4626 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4627 {
4628 	return show_slab_objects(s, buf, SO_CPU);
4629 }
4630 SLAB_ATTR_RO(cpu_slabs);
4631 
4632 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4633 {
4634 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4635 }
4636 SLAB_ATTR_RO(objects);
4637 
4638 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4639 {
4640 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4641 }
4642 SLAB_ATTR_RO(objects_partial);
4643 
4644 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4645 {
4646 	int objects = 0;
4647 	int pages = 0;
4648 	int cpu;
4649 	int len;
4650 
4651 	for_each_online_cpu(cpu) {
4652 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4653 
4654 		if (page) {
4655 			pages += page->pages;
4656 			objects += page->pobjects;
4657 		}
4658 	}
4659 
4660 	len = sprintf(buf, "%d(%d)", objects, pages);
4661 
4662 #ifdef CONFIG_SMP
4663 	for_each_online_cpu(cpu) {
4664 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4665 
4666 		if (page && len < PAGE_SIZE - 20)
4667 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4668 				page->pobjects, page->pages);
4669 	}
4670 #endif
4671 	return len + sprintf(buf + len, "\n");
4672 }
4673 SLAB_ATTR_RO(slabs_cpu_partial);
4674 
4675 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4676 {
4677 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4678 }
4679 
4680 static ssize_t reclaim_account_store(struct kmem_cache *s,
4681 				const char *buf, size_t length)
4682 {
4683 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4684 	if (buf[0] == '1')
4685 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4686 	return length;
4687 }
4688 SLAB_ATTR(reclaim_account);
4689 
4690 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4691 {
4692 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4693 }
4694 SLAB_ATTR_RO(hwcache_align);
4695 
4696 #ifdef CONFIG_ZONE_DMA
4697 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4698 {
4699 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4700 }
4701 SLAB_ATTR_RO(cache_dma);
4702 #endif
4703 
4704 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4705 {
4706 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4707 }
4708 SLAB_ATTR_RO(destroy_by_rcu);
4709 
4710 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4711 {
4712 	return sprintf(buf, "%d\n", s->reserved);
4713 }
4714 SLAB_ATTR_RO(reserved);
4715 
4716 #ifdef CONFIG_SLUB_DEBUG
4717 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4718 {
4719 	return show_slab_objects(s, buf, SO_ALL);
4720 }
4721 SLAB_ATTR_RO(slabs);
4722 
4723 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4724 {
4725 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4726 }
4727 SLAB_ATTR_RO(total_objects);
4728 
4729 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4730 {
4731 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4732 }
4733 
4734 static ssize_t sanity_checks_store(struct kmem_cache *s,
4735 				const char *buf, size_t length)
4736 {
4737 	s->flags &= ~SLAB_DEBUG_FREE;
4738 	if (buf[0] == '1') {
4739 		s->flags &= ~__CMPXCHG_DOUBLE;
4740 		s->flags |= SLAB_DEBUG_FREE;
4741 	}
4742 	return length;
4743 }
4744 SLAB_ATTR(sanity_checks);
4745 
4746 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4747 {
4748 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4749 }
4750 
4751 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4752 							size_t length)
4753 {
4754 	s->flags &= ~SLAB_TRACE;
4755 	if (buf[0] == '1') {
4756 		s->flags &= ~__CMPXCHG_DOUBLE;
4757 		s->flags |= SLAB_TRACE;
4758 	}
4759 	return length;
4760 }
4761 SLAB_ATTR(trace);
4762 
4763 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4764 {
4765 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4766 }
4767 
4768 static ssize_t red_zone_store(struct kmem_cache *s,
4769 				const char *buf, size_t length)
4770 {
4771 	if (any_slab_objects(s))
4772 		return -EBUSY;
4773 
4774 	s->flags &= ~SLAB_RED_ZONE;
4775 	if (buf[0] == '1') {
4776 		s->flags &= ~__CMPXCHG_DOUBLE;
4777 		s->flags |= SLAB_RED_ZONE;
4778 	}
4779 	calculate_sizes(s, -1);
4780 	return length;
4781 }
4782 SLAB_ATTR(red_zone);
4783 
4784 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4785 {
4786 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4787 }
4788 
4789 static ssize_t poison_store(struct kmem_cache *s,
4790 				const char *buf, size_t length)
4791 {
4792 	if (any_slab_objects(s))
4793 		return -EBUSY;
4794 
4795 	s->flags &= ~SLAB_POISON;
4796 	if (buf[0] == '1') {
4797 		s->flags &= ~__CMPXCHG_DOUBLE;
4798 		s->flags |= SLAB_POISON;
4799 	}
4800 	calculate_sizes(s, -1);
4801 	return length;
4802 }
4803 SLAB_ATTR(poison);
4804 
4805 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4806 {
4807 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4808 }
4809 
4810 static ssize_t store_user_store(struct kmem_cache *s,
4811 				const char *buf, size_t length)
4812 {
4813 	if (any_slab_objects(s))
4814 		return -EBUSY;
4815 
4816 	s->flags &= ~SLAB_STORE_USER;
4817 	if (buf[0] == '1') {
4818 		s->flags &= ~__CMPXCHG_DOUBLE;
4819 		s->flags |= SLAB_STORE_USER;
4820 	}
4821 	calculate_sizes(s, -1);
4822 	return length;
4823 }
4824 SLAB_ATTR(store_user);
4825 
4826 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4827 {
4828 	return 0;
4829 }
4830 
4831 static ssize_t validate_store(struct kmem_cache *s,
4832 			const char *buf, size_t length)
4833 {
4834 	int ret = -EINVAL;
4835 
4836 	if (buf[0] == '1') {
4837 		ret = validate_slab_cache(s);
4838 		if (ret >= 0)
4839 			ret = length;
4840 	}
4841 	return ret;
4842 }
4843 SLAB_ATTR(validate);
4844 
4845 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4846 {
4847 	if (!(s->flags & SLAB_STORE_USER))
4848 		return -ENOSYS;
4849 	return list_locations(s, buf, TRACK_ALLOC);
4850 }
4851 SLAB_ATTR_RO(alloc_calls);
4852 
4853 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4854 {
4855 	if (!(s->flags & SLAB_STORE_USER))
4856 		return -ENOSYS;
4857 	return list_locations(s, buf, TRACK_FREE);
4858 }
4859 SLAB_ATTR_RO(free_calls);
4860 #endif /* CONFIG_SLUB_DEBUG */
4861 
4862 #ifdef CONFIG_FAILSLAB
4863 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4864 {
4865 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4866 }
4867 
4868 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4869 							size_t length)
4870 {
4871 	s->flags &= ~SLAB_FAILSLAB;
4872 	if (buf[0] == '1')
4873 		s->flags |= SLAB_FAILSLAB;
4874 	return length;
4875 }
4876 SLAB_ATTR(failslab);
4877 #endif
4878 
4879 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4880 {
4881 	return 0;
4882 }
4883 
4884 static ssize_t shrink_store(struct kmem_cache *s,
4885 			const char *buf, size_t length)
4886 {
4887 	if (buf[0] == '1') {
4888 		int rc = kmem_cache_shrink(s);
4889 
4890 		if (rc)
4891 			return rc;
4892 	} else
4893 		return -EINVAL;
4894 	return length;
4895 }
4896 SLAB_ATTR(shrink);
4897 
4898 #ifdef CONFIG_NUMA
4899 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4900 {
4901 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4902 }
4903 
4904 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4905 				const char *buf, size_t length)
4906 {
4907 	unsigned long ratio;
4908 	int err;
4909 
4910 	err = strict_strtoul(buf, 10, &ratio);
4911 	if (err)
4912 		return err;
4913 
4914 	if (ratio <= 100)
4915 		s->remote_node_defrag_ratio = ratio * 10;
4916 
4917 	return length;
4918 }
4919 SLAB_ATTR(remote_node_defrag_ratio);
4920 #endif
4921 
4922 #ifdef CONFIG_SLUB_STATS
4923 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4924 {
4925 	unsigned long sum  = 0;
4926 	int cpu;
4927 	int len;
4928 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4929 
4930 	if (!data)
4931 		return -ENOMEM;
4932 
4933 	for_each_online_cpu(cpu) {
4934 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4935 
4936 		data[cpu] = x;
4937 		sum += x;
4938 	}
4939 
4940 	len = sprintf(buf, "%lu", sum);
4941 
4942 #ifdef CONFIG_SMP
4943 	for_each_online_cpu(cpu) {
4944 		if (data[cpu] && len < PAGE_SIZE - 20)
4945 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4946 	}
4947 #endif
4948 	kfree(data);
4949 	return len + sprintf(buf + len, "\n");
4950 }
4951 
4952 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4953 {
4954 	int cpu;
4955 
4956 	for_each_online_cpu(cpu)
4957 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4958 }
4959 
4960 #define STAT_ATTR(si, text) 					\
4961 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4962 {								\
4963 	return show_stat(s, buf, si);				\
4964 }								\
4965 static ssize_t text##_store(struct kmem_cache *s,		\
4966 				const char *buf, size_t length)	\
4967 {								\
4968 	if (buf[0] != '0')					\
4969 		return -EINVAL;					\
4970 	clear_stat(s, si);					\
4971 	return length;						\
4972 }								\
4973 SLAB_ATTR(text);						\
4974 
4975 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4976 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4977 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4978 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4979 STAT_ATTR(FREE_FROZEN, free_frozen);
4980 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4981 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4982 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4983 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4984 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4985 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4986 STAT_ATTR(FREE_SLAB, free_slab);
4987 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4988 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4989 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4990 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4991 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4992 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4993 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4994 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4995 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4996 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4997 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4998 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4999 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5000 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5001 #endif
5002 
5003 static struct attribute *slab_attrs[] = {
5004 	&slab_size_attr.attr,
5005 	&object_size_attr.attr,
5006 	&objs_per_slab_attr.attr,
5007 	&order_attr.attr,
5008 	&min_partial_attr.attr,
5009 	&cpu_partial_attr.attr,
5010 	&objects_attr.attr,
5011 	&objects_partial_attr.attr,
5012 	&partial_attr.attr,
5013 	&cpu_slabs_attr.attr,
5014 	&ctor_attr.attr,
5015 	&aliases_attr.attr,
5016 	&align_attr.attr,
5017 	&hwcache_align_attr.attr,
5018 	&reclaim_account_attr.attr,
5019 	&destroy_by_rcu_attr.attr,
5020 	&shrink_attr.attr,
5021 	&reserved_attr.attr,
5022 	&slabs_cpu_partial_attr.attr,
5023 #ifdef CONFIG_SLUB_DEBUG
5024 	&total_objects_attr.attr,
5025 	&slabs_attr.attr,
5026 	&sanity_checks_attr.attr,
5027 	&trace_attr.attr,
5028 	&red_zone_attr.attr,
5029 	&poison_attr.attr,
5030 	&store_user_attr.attr,
5031 	&validate_attr.attr,
5032 	&alloc_calls_attr.attr,
5033 	&free_calls_attr.attr,
5034 #endif
5035 #ifdef CONFIG_ZONE_DMA
5036 	&cache_dma_attr.attr,
5037 #endif
5038 #ifdef CONFIG_NUMA
5039 	&remote_node_defrag_ratio_attr.attr,
5040 #endif
5041 #ifdef CONFIG_SLUB_STATS
5042 	&alloc_fastpath_attr.attr,
5043 	&alloc_slowpath_attr.attr,
5044 	&free_fastpath_attr.attr,
5045 	&free_slowpath_attr.attr,
5046 	&free_frozen_attr.attr,
5047 	&free_add_partial_attr.attr,
5048 	&free_remove_partial_attr.attr,
5049 	&alloc_from_partial_attr.attr,
5050 	&alloc_slab_attr.attr,
5051 	&alloc_refill_attr.attr,
5052 	&alloc_node_mismatch_attr.attr,
5053 	&free_slab_attr.attr,
5054 	&cpuslab_flush_attr.attr,
5055 	&deactivate_full_attr.attr,
5056 	&deactivate_empty_attr.attr,
5057 	&deactivate_to_head_attr.attr,
5058 	&deactivate_to_tail_attr.attr,
5059 	&deactivate_remote_frees_attr.attr,
5060 	&deactivate_bypass_attr.attr,
5061 	&order_fallback_attr.attr,
5062 	&cmpxchg_double_fail_attr.attr,
5063 	&cmpxchg_double_cpu_fail_attr.attr,
5064 	&cpu_partial_alloc_attr.attr,
5065 	&cpu_partial_free_attr.attr,
5066 	&cpu_partial_node_attr.attr,
5067 	&cpu_partial_drain_attr.attr,
5068 #endif
5069 #ifdef CONFIG_FAILSLAB
5070 	&failslab_attr.attr,
5071 #endif
5072 
5073 	NULL
5074 };
5075 
5076 static struct attribute_group slab_attr_group = {
5077 	.attrs = slab_attrs,
5078 };
5079 
5080 static ssize_t slab_attr_show(struct kobject *kobj,
5081 				struct attribute *attr,
5082 				char *buf)
5083 {
5084 	struct slab_attribute *attribute;
5085 	struct kmem_cache *s;
5086 	int err;
5087 
5088 	attribute = to_slab_attr(attr);
5089 	s = to_slab(kobj);
5090 
5091 	if (!attribute->show)
5092 		return -EIO;
5093 
5094 	err = attribute->show(s, buf);
5095 
5096 	return err;
5097 }
5098 
5099 static ssize_t slab_attr_store(struct kobject *kobj,
5100 				struct attribute *attr,
5101 				const char *buf, size_t len)
5102 {
5103 	struct slab_attribute *attribute;
5104 	struct kmem_cache *s;
5105 	int err;
5106 
5107 	attribute = to_slab_attr(attr);
5108 	s = to_slab(kobj);
5109 
5110 	if (!attribute->store)
5111 		return -EIO;
5112 
5113 	err = attribute->store(s, buf, len);
5114 #ifdef CONFIG_MEMCG_KMEM
5115 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5116 		int i;
5117 
5118 		mutex_lock(&slab_mutex);
5119 		if (s->max_attr_size < len)
5120 			s->max_attr_size = len;
5121 
5122 		/*
5123 		 * This is a best effort propagation, so this function's return
5124 		 * value will be determined by the parent cache only. This is
5125 		 * basically because not all attributes will have a well
5126 		 * defined semantics for rollbacks - most of the actions will
5127 		 * have permanent effects.
5128 		 *
5129 		 * Returning the error value of any of the children that fail
5130 		 * is not 100 % defined, in the sense that users seeing the
5131 		 * error code won't be able to know anything about the state of
5132 		 * the cache.
5133 		 *
5134 		 * Only returning the error code for the parent cache at least
5135 		 * has well defined semantics. The cache being written to
5136 		 * directly either failed or succeeded, in which case we loop
5137 		 * through the descendants with best-effort propagation.
5138 		 */
5139 		for_each_memcg_cache_index(i) {
5140 			struct kmem_cache *c = cache_from_memcg(s, i);
5141 			if (c)
5142 				attribute->store(c, buf, len);
5143 		}
5144 		mutex_unlock(&slab_mutex);
5145 	}
5146 #endif
5147 	return err;
5148 }
5149 
5150 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5151 {
5152 #ifdef CONFIG_MEMCG_KMEM
5153 	int i;
5154 	char *buffer = NULL;
5155 
5156 	if (!is_root_cache(s))
5157 		return;
5158 
5159 	/*
5160 	 * This mean this cache had no attribute written. Therefore, no point
5161 	 * in copying default values around
5162 	 */
5163 	if (!s->max_attr_size)
5164 		return;
5165 
5166 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5167 		char mbuf[64];
5168 		char *buf;
5169 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5170 
5171 		if (!attr || !attr->store || !attr->show)
5172 			continue;
5173 
5174 		/*
5175 		 * It is really bad that we have to allocate here, so we will
5176 		 * do it only as a fallback. If we actually allocate, though,
5177 		 * we can just use the allocated buffer until the end.
5178 		 *
5179 		 * Most of the slub attributes will tend to be very small in
5180 		 * size, but sysfs allows buffers up to a page, so they can
5181 		 * theoretically happen.
5182 		 */
5183 		if (buffer)
5184 			buf = buffer;
5185 		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5186 			buf = mbuf;
5187 		else {
5188 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5189 			if (WARN_ON(!buffer))
5190 				continue;
5191 			buf = buffer;
5192 		}
5193 
5194 		attr->show(s->memcg_params->root_cache, buf);
5195 		attr->store(s, buf, strlen(buf));
5196 	}
5197 
5198 	if (buffer)
5199 		free_page((unsigned long)buffer);
5200 #endif
5201 }
5202 
5203 static const struct sysfs_ops slab_sysfs_ops = {
5204 	.show = slab_attr_show,
5205 	.store = slab_attr_store,
5206 };
5207 
5208 static struct kobj_type slab_ktype = {
5209 	.sysfs_ops = &slab_sysfs_ops,
5210 };
5211 
5212 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5213 {
5214 	struct kobj_type *ktype = get_ktype(kobj);
5215 
5216 	if (ktype == &slab_ktype)
5217 		return 1;
5218 	return 0;
5219 }
5220 
5221 static const struct kset_uevent_ops slab_uevent_ops = {
5222 	.filter = uevent_filter,
5223 };
5224 
5225 static struct kset *slab_kset;
5226 
5227 #define ID_STR_LENGTH 64
5228 
5229 /* Create a unique string id for a slab cache:
5230  *
5231  * Format	:[flags-]size
5232  */
5233 static char *create_unique_id(struct kmem_cache *s)
5234 {
5235 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5236 	char *p = name;
5237 
5238 	BUG_ON(!name);
5239 
5240 	*p++ = ':';
5241 	/*
5242 	 * First flags affecting slabcache operations. We will only
5243 	 * get here for aliasable slabs so we do not need to support
5244 	 * too many flags. The flags here must cover all flags that
5245 	 * are matched during merging to guarantee that the id is
5246 	 * unique.
5247 	 */
5248 	if (s->flags & SLAB_CACHE_DMA)
5249 		*p++ = 'd';
5250 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5251 		*p++ = 'a';
5252 	if (s->flags & SLAB_DEBUG_FREE)
5253 		*p++ = 'F';
5254 	if (!(s->flags & SLAB_NOTRACK))
5255 		*p++ = 't';
5256 	if (p != name + 1)
5257 		*p++ = '-';
5258 	p += sprintf(p, "%07d", s->size);
5259 
5260 #ifdef CONFIG_MEMCG_KMEM
5261 	if (!is_root_cache(s))
5262 		p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5263 #endif
5264 
5265 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5266 	return name;
5267 }
5268 
5269 static int sysfs_slab_add(struct kmem_cache *s)
5270 {
5271 	int err;
5272 	const char *name;
5273 	int unmergeable = slab_unmergeable(s);
5274 
5275 	if (unmergeable) {
5276 		/*
5277 		 * Slabcache can never be merged so we can use the name proper.
5278 		 * This is typically the case for debug situations. In that
5279 		 * case we can catch duplicate names easily.
5280 		 */
5281 		sysfs_remove_link(&slab_kset->kobj, s->name);
5282 		name = s->name;
5283 	} else {
5284 		/*
5285 		 * Create a unique name for the slab as a target
5286 		 * for the symlinks.
5287 		 */
5288 		name = create_unique_id(s);
5289 	}
5290 
5291 	s->kobj.kset = slab_kset;
5292 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5293 	if (err) {
5294 		kobject_put(&s->kobj);
5295 		return err;
5296 	}
5297 
5298 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5299 	if (err) {
5300 		kobject_del(&s->kobj);
5301 		kobject_put(&s->kobj);
5302 		return err;
5303 	}
5304 	kobject_uevent(&s->kobj, KOBJ_ADD);
5305 	if (!unmergeable) {
5306 		/* Setup first alias */
5307 		sysfs_slab_alias(s, s->name);
5308 		kfree(name);
5309 	}
5310 	return 0;
5311 }
5312 
5313 static void sysfs_slab_remove(struct kmem_cache *s)
5314 {
5315 	if (slab_state < FULL)
5316 		/*
5317 		 * Sysfs has not been setup yet so no need to remove the
5318 		 * cache from sysfs.
5319 		 */
5320 		return;
5321 
5322 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5323 	kobject_del(&s->kobj);
5324 	kobject_put(&s->kobj);
5325 }
5326 
5327 /*
5328  * Need to buffer aliases during bootup until sysfs becomes
5329  * available lest we lose that information.
5330  */
5331 struct saved_alias {
5332 	struct kmem_cache *s;
5333 	const char *name;
5334 	struct saved_alias *next;
5335 };
5336 
5337 static struct saved_alias *alias_list;
5338 
5339 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5340 {
5341 	struct saved_alias *al;
5342 
5343 	if (slab_state == FULL) {
5344 		/*
5345 		 * If we have a leftover link then remove it.
5346 		 */
5347 		sysfs_remove_link(&slab_kset->kobj, name);
5348 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5349 	}
5350 
5351 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5352 	if (!al)
5353 		return -ENOMEM;
5354 
5355 	al->s = s;
5356 	al->name = name;
5357 	al->next = alias_list;
5358 	alias_list = al;
5359 	return 0;
5360 }
5361 
5362 static int __init slab_sysfs_init(void)
5363 {
5364 	struct kmem_cache *s;
5365 	int err;
5366 
5367 	mutex_lock(&slab_mutex);
5368 
5369 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5370 	if (!slab_kset) {
5371 		mutex_unlock(&slab_mutex);
5372 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5373 		return -ENOSYS;
5374 	}
5375 
5376 	slab_state = FULL;
5377 
5378 	list_for_each_entry(s, &slab_caches, list) {
5379 		err = sysfs_slab_add(s);
5380 		if (err)
5381 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5382 						" to sysfs\n", s->name);
5383 	}
5384 
5385 	while (alias_list) {
5386 		struct saved_alias *al = alias_list;
5387 
5388 		alias_list = alias_list->next;
5389 		err = sysfs_slab_alias(al->s, al->name);
5390 		if (err)
5391 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5392 					" %s to sysfs\n", al->name);
5393 		kfree(al);
5394 	}
5395 
5396 	mutex_unlock(&slab_mutex);
5397 	resiliency_test();
5398 	return 0;
5399 }
5400 
5401 __initcall(slab_sysfs_init);
5402 #endif /* CONFIG_SYSFS */
5403 
5404 /*
5405  * The /proc/slabinfo ABI
5406  */
5407 #ifdef CONFIG_SLABINFO
5408 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5409 {
5410 	unsigned long nr_partials = 0;
5411 	unsigned long nr_slabs = 0;
5412 	unsigned long nr_objs = 0;
5413 	unsigned long nr_free = 0;
5414 	int node;
5415 
5416 	for_each_online_node(node) {
5417 		struct kmem_cache_node *n = get_node(s, node);
5418 
5419 		if (!n)
5420 			continue;
5421 
5422 		nr_partials += n->nr_partial;
5423 		nr_slabs += atomic_long_read(&n->nr_slabs);
5424 		nr_objs += atomic_long_read(&n->total_objects);
5425 		nr_free += count_partial(n, count_free);
5426 	}
5427 
5428 	sinfo->active_objs = nr_objs - nr_free;
5429 	sinfo->num_objs = nr_objs;
5430 	sinfo->active_slabs = nr_slabs;
5431 	sinfo->num_slabs = nr_slabs;
5432 	sinfo->objects_per_slab = oo_objects(s->oo);
5433 	sinfo->cache_order = oo_order(s->oo);
5434 }
5435 
5436 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5437 {
5438 }
5439 
5440 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5441 		       size_t count, loff_t *ppos)
5442 {
5443 	return -EIO;
5444 }
5445 #endif /* CONFIG_SLABINFO */
5446