1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/kmemcheck.h> 22 #include <linux/cpu.h> 23 #include <linux/cpuset.h> 24 #include <linux/mempolicy.h> 25 #include <linux/ctype.h> 26 #include <linux/debugobjects.h> 27 #include <linux/kallsyms.h> 28 #include <linux/memory.h> 29 #include <linux/math64.h> 30 #include <linux/fault-inject.h> 31 #include <linux/stacktrace.h> 32 #include <linux/prefetch.h> 33 34 #include <trace/events/kmem.h> 35 36 /* 37 * Lock order: 38 * 1. slub_lock (Global Semaphore) 39 * 2. node->list_lock 40 * 3. slab_lock(page) (Only on some arches and for debugging) 41 * 42 * slub_lock 43 * 44 * The role of the slub_lock is to protect the list of all the slabs 45 * and to synchronize major metadata changes to slab cache structures. 46 * 47 * The slab_lock is only used for debugging and on arches that do not 48 * have the ability to do a cmpxchg_double. It only protects the second 49 * double word in the page struct. Meaning 50 * A. page->freelist -> List of object free in a page 51 * B. page->counters -> Counters of objects 52 * C. page->frozen -> frozen state 53 * 54 * If a slab is frozen then it is exempt from list management. It is not 55 * on any list. The processor that froze the slab is the one who can 56 * perform list operations on the page. Other processors may put objects 57 * onto the freelist but the processor that froze the slab is the only 58 * one that can retrieve the objects from the page's freelist. 59 * 60 * The list_lock protects the partial and full list on each node and 61 * the partial slab counter. If taken then no new slabs may be added or 62 * removed from the lists nor make the number of partial slabs be modified. 63 * (Note that the total number of slabs is an atomic value that may be 64 * modified without taking the list lock). 65 * 66 * The list_lock is a centralized lock and thus we avoid taking it as 67 * much as possible. As long as SLUB does not have to handle partial 68 * slabs, operations can continue without any centralized lock. F.e. 69 * allocating a long series of objects that fill up slabs does not require 70 * the list lock. 71 * Interrupts are disabled during allocation and deallocation in order to 72 * make the slab allocator safe to use in the context of an irq. In addition 73 * interrupts are disabled to ensure that the processor does not change 74 * while handling per_cpu slabs, due to kernel preemption. 75 * 76 * SLUB assigns one slab for allocation to each processor. 77 * Allocations only occur from these slabs called cpu slabs. 78 * 79 * Slabs with free elements are kept on a partial list and during regular 80 * operations no list for full slabs is used. If an object in a full slab is 81 * freed then the slab will show up again on the partial lists. 82 * We track full slabs for debugging purposes though because otherwise we 83 * cannot scan all objects. 84 * 85 * Slabs are freed when they become empty. Teardown and setup is 86 * minimal so we rely on the page allocators per cpu caches for 87 * fast frees and allocs. 88 * 89 * Overloading of page flags that are otherwise used for LRU management. 90 * 91 * PageActive The slab is frozen and exempt from list processing. 92 * This means that the slab is dedicated to a purpose 93 * such as satisfying allocations for a specific 94 * processor. Objects may be freed in the slab while 95 * it is frozen but slab_free will then skip the usual 96 * list operations. It is up to the processor holding 97 * the slab to integrate the slab into the slab lists 98 * when the slab is no longer needed. 99 * 100 * One use of this flag is to mark slabs that are 101 * used for allocations. Then such a slab becomes a cpu 102 * slab. The cpu slab may be equipped with an additional 103 * freelist that allows lockless access to 104 * free objects in addition to the regular freelist 105 * that requires the slab lock. 106 * 107 * PageError Slab requires special handling due to debug 108 * options set. This moves slab handling out of 109 * the fast path and disables lockless freelists. 110 */ 111 112 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 113 SLAB_TRACE | SLAB_DEBUG_FREE) 114 115 static inline int kmem_cache_debug(struct kmem_cache *s) 116 { 117 #ifdef CONFIG_SLUB_DEBUG 118 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 119 #else 120 return 0; 121 #endif 122 } 123 124 /* 125 * Issues still to be resolved: 126 * 127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 128 * 129 * - Variable sizing of the per node arrays 130 */ 131 132 /* Enable to test recovery from slab corruption on boot */ 133 #undef SLUB_RESILIENCY_TEST 134 135 /* Enable to log cmpxchg failures */ 136 #undef SLUB_DEBUG_CMPXCHG 137 138 /* 139 * Mininum number of partial slabs. These will be left on the partial 140 * lists even if they are empty. kmem_cache_shrink may reclaim them. 141 */ 142 #define MIN_PARTIAL 5 143 144 /* 145 * Maximum number of desirable partial slabs. 146 * The existence of more partial slabs makes kmem_cache_shrink 147 * sort the partial list by the number of objects in the. 148 */ 149 #define MAX_PARTIAL 10 150 151 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 152 SLAB_POISON | SLAB_STORE_USER) 153 154 /* 155 * Debugging flags that require metadata to be stored in the slab. These get 156 * disabled when slub_debug=O is used and a cache's min order increases with 157 * metadata. 158 */ 159 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 160 161 /* 162 * Set of flags that will prevent slab merging 163 */ 164 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 166 SLAB_FAILSLAB) 167 168 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 169 SLAB_CACHE_DMA | SLAB_NOTRACK) 170 171 #define OO_SHIFT 16 172 #define OO_MASK ((1 << OO_SHIFT) - 1) 173 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 174 175 /* Internal SLUB flags */ 176 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 177 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 178 179 static int kmem_size = sizeof(struct kmem_cache); 180 181 #ifdef CONFIG_SMP 182 static struct notifier_block slab_notifier; 183 #endif 184 185 static enum { 186 DOWN, /* No slab functionality available */ 187 PARTIAL, /* Kmem_cache_node works */ 188 UP, /* Everything works but does not show up in sysfs */ 189 SYSFS /* Sysfs up */ 190 } slab_state = DOWN; 191 192 /* A list of all slab caches on the system */ 193 static DECLARE_RWSEM(slub_lock); 194 static LIST_HEAD(slab_caches); 195 196 /* 197 * Tracking user of a slab. 198 */ 199 #define TRACK_ADDRS_COUNT 16 200 struct track { 201 unsigned long addr; /* Called from address */ 202 #ifdef CONFIG_STACKTRACE 203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 204 #endif 205 int cpu; /* Was running on cpu */ 206 int pid; /* Pid context */ 207 unsigned long when; /* When did the operation occur */ 208 }; 209 210 enum track_item { TRACK_ALLOC, TRACK_FREE }; 211 212 #ifdef CONFIG_SYSFS 213 static int sysfs_slab_add(struct kmem_cache *); 214 static int sysfs_slab_alias(struct kmem_cache *, const char *); 215 static void sysfs_slab_remove(struct kmem_cache *); 216 217 #else 218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 220 { return 0; } 221 static inline void sysfs_slab_remove(struct kmem_cache *s) 222 { 223 kfree(s->name); 224 kfree(s); 225 } 226 227 #endif 228 229 static inline void stat(const struct kmem_cache *s, enum stat_item si) 230 { 231 #ifdef CONFIG_SLUB_STATS 232 __this_cpu_inc(s->cpu_slab->stat[si]); 233 #endif 234 } 235 236 /******************************************************************** 237 * Core slab cache functions 238 *******************************************************************/ 239 240 int slab_is_available(void) 241 { 242 return slab_state >= UP; 243 } 244 245 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 246 { 247 return s->node[node]; 248 } 249 250 /* Verify that a pointer has an address that is valid within a slab page */ 251 static inline int check_valid_pointer(struct kmem_cache *s, 252 struct page *page, const void *object) 253 { 254 void *base; 255 256 if (!object) 257 return 1; 258 259 base = page_address(page); 260 if (object < base || object >= base + page->objects * s->size || 261 (object - base) % s->size) { 262 return 0; 263 } 264 265 return 1; 266 } 267 268 static inline void *get_freepointer(struct kmem_cache *s, void *object) 269 { 270 return *(void **)(object + s->offset); 271 } 272 273 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 274 { 275 prefetch(object + s->offset); 276 } 277 278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 279 { 280 void *p; 281 282 #ifdef CONFIG_DEBUG_PAGEALLOC 283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 284 #else 285 p = get_freepointer(s, object); 286 #endif 287 return p; 288 } 289 290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 291 { 292 *(void **)(object + s->offset) = fp; 293 } 294 295 /* Loop over all objects in a slab */ 296 #define for_each_object(__p, __s, __addr, __objects) \ 297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 298 __p += (__s)->size) 299 300 /* Determine object index from a given position */ 301 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 302 { 303 return (p - addr) / s->size; 304 } 305 306 static inline size_t slab_ksize(const struct kmem_cache *s) 307 { 308 #ifdef CONFIG_SLUB_DEBUG 309 /* 310 * Debugging requires use of the padding between object 311 * and whatever may come after it. 312 */ 313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 314 return s->objsize; 315 316 #endif 317 /* 318 * If we have the need to store the freelist pointer 319 * back there or track user information then we can 320 * only use the space before that information. 321 */ 322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 323 return s->inuse; 324 /* 325 * Else we can use all the padding etc for the allocation 326 */ 327 return s->size; 328 } 329 330 static inline int order_objects(int order, unsigned long size, int reserved) 331 { 332 return ((PAGE_SIZE << order) - reserved) / size; 333 } 334 335 static inline struct kmem_cache_order_objects oo_make(int order, 336 unsigned long size, int reserved) 337 { 338 struct kmem_cache_order_objects x = { 339 (order << OO_SHIFT) + order_objects(order, size, reserved) 340 }; 341 342 return x; 343 } 344 345 static inline int oo_order(struct kmem_cache_order_objects x) 346 { 347 return x.x >> OO_SHIFT; 348 } 349 350 static inline int oo_objects(struct kmem_cache_order_objects x) 351 { 352 return x.x & OO_MASK; 353 } 354 355 /* 356 * Per slab locking using the pagelock 357 */ 358 static __always_inline void slab_lock(struct page *page) 359 { 360 bit_spin_lock(PG_locked, &page->flags); 361 } 362 363 static __always_inline void slab_unlock(struct page *page) 364 { 365 __bit_spin_unlock(PG_locked, &page->flags); 366 } 367 368 /* Interrupts must be disabled (for the fallback code to work right) */ 369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 370 void *freelist_old, unsigned long counters_old, 371 void *freelist_new, unsigned long counters_new, 372 const char *n) 373 { 374 VM_BUG_ON(!irqs_disabled()); 375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 377 if (s->flags & __CMPXCHG_DOUBLE) { 378 if (cmpxchg_double(&page->freelist, &page->counters, 379 freelist_old, counters_old, 380 freelist_new, counters_new)) 381 return 1; 382 } else 383 #endif 384 { 385 slab_lock(page); 386 if (page->freelist == freelist_old && page->counters == counters_old) { 387 page->freelist = freelist_new; 388 page->counters = counters_new; 389 slab_unlock(page); 390 return 1; 391 } 392 slab_unlock(page); 393 } 394 395 cpu_relax(); 396 stat(s, CMPXCHG_DOUBLE_FAIL); 397 398 #ifdef SLUB_DEBUG_CMPXCHG 399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 400 #endif 401 402 return 0; 403 } 404 405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 406 void *freelist_old, unsigned long counters_old, 407 void *freelist_new, unsigned long counters_new, 408 const char *n) 409 { 410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 412 if (s->flags & __CMPXCHG_DOUBLE) { 413 if (cmpxchg_double(&page->freelist, &page->counters, 414 freelist_old, counters_old, 415 freelist_new, counters_new)) 416 return 1; 417 } else 418 #endif 419 { 420 unsigned long flags; 421 422 local_irq_save(flags); 423 slab_lock(page); 424 if (page->freelist == freelist_old && page->counters == counters_old) { 425 page->freelist = freelist_new; 426 page->counters = counters_new; 427 slab_unlock(page); 428 local_irq_restore(flags); 429 return 1; 430 } 431 slab_unlock(page); 432 local_irq_restore(flags); 433 } 434 435 cpu_relax(); 436 stat(s, CMPXCHG_DOUBLE_FAIL); 437 438 #ifdef SLUB_DEBUG_CMPXCHG 439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 440 #endif 441 442 return 0; 443 } 444 445 #ifdef CONFIG_SLUB_DEBUG 446 /* 447 * Determine a map of object in use on a page. 448 * 449 * Node listlock must be held to guarantee that the page does 450 * not vanish from under us. 451 */ 452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 453 { 454 void *p; 455 void *addr = page_address(page); 456 457 for (p = page->freelist; p; p = get_freepointer(s, p)) 458 set_bit(slab_index(p, s, addr), map); 459 } 460 461 /* 462 * Debug settings: 463 */ 464 #ifdef CONFIG_SLUB_DEBUG_ON 465 static int slub_debug = DEBUG_DEFAULT_FLAGS; 466 #else 467 static int slub_debug; 468 #endif 469 470 static char *slub_debug_slabs; 471 static int disable_higher_order_debug; 472 473 /* 474 * Object debugging 475 */ 476 static void print_section(char *text, u8 *addr, unsigned int length) 477 { 478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 479 length, 1); 480 } 481 482 static struct track *get_track(struct kmem_cache *s, void *object, 483 enum track_item alloc) 484 { 485 struct track *p; 486 487 if (s->offset) 488 p = object + s->offset + sizeof(void *); 489 else 490 p = object + s->inuse; 491 492 return p + alloc; 493 } 494 495 static void set_track(struct kmem_cache *s, void *object, 496 enum track_item alloc, unsigned long addr) 497 { 498 struct track *p = get_track(s, object, alloc); 499 500 if (addr) { 501 #ifdef CONFIG_STACKTRACE 502 struct stack_trace trace; 503 int i; 504 505 trace.nr_entries = 0; 506 trace.max_entries = TRACK_ADDRS_COUNT; 507 trace.entries = p->addrs; 508 trace.skip = 3; 509 save_stack_trace(&trace); 510 511 /* See rant in lockdep.c */ 512 if (trace.nr_entries != 0 && 513 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 514 trace.nr_entries--; 515 516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 517 p->addrs[i] = 0; 518 #endif 519 p->addr = addr; 520 p->cpu = smp_processor_id(); 521 p->pid = current->pid; 522 p->when = jiffies; 523 } else 524 memset(p, 0, sizeof(struct track)); 525 } 526 527 static void init_tracking(struct kmem_cache *s, void *object) 528 { 529 if (!(s->flags & SLAB_STORE_USER)) 530 return; 531 532 set_track(s, object, TRACK_FREE, 0UL); 533 set_track(s, object, TRACK_ALLOC, 0UL); 534 } 535 536 static void print_track(const char *s, struct track *t) 537 { 538 if (!t->addr) 539 return; 540 541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 543 #ifdef CONFIG_STACKTRACE 544 { 545 int i; 546 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 547 if (t->addrs[i]) 548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 549 else 550 break; 551 } 552 #endif 553 } 554 555 static void print_tracking(struct kmem_cache *s, void *object) 556 { 557 if (!(s->flags & SLAB_STORE_USER)) 558 return; 559 560 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 561 print_track("Freed", get_track(s, object, TRACK_FREE)); 562 } 563 564 static void print_page_info(struct page *page) 565 { 566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 567 page, page->objects, page->inuse, page->freelist, page->flags); 568 569 } 570 571 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 572 { 573 va_list args; 574 char buf[100]; 575 576 va_start(args, fmt); 577 vsnprintf(buf, sizeof(buf), fmt, args); 578 va_end(args); 579 printk(KERN_ERR "========================================" 580 "=====================================\n"); 581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); 582 printk(KERN_ERR "----------------------------------------" 583 "-------------------------------------\n\n"); 584 } 585 586 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 587 { 588 va_list args; 589 char buf[100]; 590 591 va_start(args, fmt); 592 vsnprintf(buf, sizeof(buf), fmt, args); 593 va_end(args); 594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 595 } 596 597 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 598 { 599 unsigned int off; /* Offset of last byte */ 600 u8 *addr = page_address(page); 601 602 print_tracking(s, p); 603 604 print_page_info(page); 605 606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 607 p, p - addr, get_freepointer(s, p)); 608 609 if (p > addr + 16) 610 print_section("Bytes b4 ", p - 16, 16); 611 612 print_section("Object ", p, min_t(unsigned long, s->objsize, 613 PAGE_SIZE)); 614 if (s->flags & SLAB_RED_ZONE) 615 print_section("Redzone ", p + s->objsize, 616 s->inuse - s->objsize); 617 618 if (s->offset) 619 off = s->offset + sizeof(void *); 620 else 621 off = s->inuse; 622 623 if (s->flags & SLAB_STORE_USER) 624 off += 2 * sizeof(struct track); 625 626 if (off != s->size) 627 /* Beginning of the filler is the free pointer */ 628 print_section("Padding ", p + off, s->size - off); 629 630 dump_stack(); 631 } 632 633 static void object_err(struct kmem_cache *s, struct page *page, 634 u8 *object, char *reason) 635 { 636 slab_bug(s, "%s", reason); 637 print_trailer(s, page, object); 638 } 639 640 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 641 { 642 va_list args; 643 char buf[100]; 644 645 va_start(args, fmt); 646 vsnprintf(buf, sizeof(buf), fmt, args); 647 va_end(args); 648 slab_bug(s, "%s", buf); 649 print_page_info(page); 650 dump_stack(); 651 } 652 653 static void init_object(struct kmem_cache *s, void *object, u8 val) 654 { 655 u8 *p = object; 656 657 if (s->flags & __OBJECT_POISON) { 658 memset(p, POISON_FREE, s->objsize - 1); 659 p[s->objsize - 1] = POISON_END; 660 } 661 662 if (s->flags & SLAB_RED_ZONE) 663 memset(p + s->objsize, val, s->inuse - s->objsize); 664 } 665 666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 667 void *from, void *to) 668 { 669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 670 memset(from, data, to - from); 671 } 672 673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 674 u8 *object, char *what, 675 u8 *start, unsigned int value, unsigned int bytes) 676 { 677 u8 *fault; 678 u8 *end; 679 680 fault = memchr_inv(start, value, bytes); 681 if (!fault) 682 return 1; 683 684 end = start + bytes; 685 while (end > fault && end[-1] == value) 686 end--; 687 688 slab_bug(s, "%s overwritten", what); 689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 690 fault, end - 1, fault[0], value); 691 print_trailer(s, page, object); 692 693 restore_bytes(s, what, value, fault, end); 694 return 0; 695 } 696 697 /* 698 * Object layout: 699 * 700 * object address 701 * Bytes of the object to be managed. 702 * If the freepointer may overlay the object then the free 703 * pointer is the first word of the object. 704 * 705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 706 * 0xa5 (POISON_END) 707 * 708 * object + s->objsize 709 * Padding to reach word boundary. This is also used for Redzoning. 710 * Padding is extended by another word if Redzoning is enabled and 711 * objsize == inuse. 712 * 713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 714 * 0xcc (RED_ACTIVE) for objects in use. 715 * 716 * object + s->inuse 717 * Meta data starts here. 718 * 719 * A. Free pointer (if we cannot overwrite object on free) 720 * B. Tracking data for SLAB_STORE_USER 721 * C. Padding to reach required alignment boundary or at mininum 722 * one word if debugging is on to be able to detect writes 723 * before the word boundary. 724 * 725 * Padding is done using 0x5a (POISON_INUSE) 726 * 727 * object + s->size 728 * Nothing is used beyond s->size. 729 * 730 * If slabcaches are merged then the objsize and inuse boundaries are mostly 731 * ignored. And therefore no slab options that rely on these boundaries 732 * may be used with merged slabcaches. 733 */ 734 735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 736 { 737 unsigned long off = s->inuse; /* The end of info */ 738 739 if (s->offset) 740 /* Freepointer is placed after the object. */ 741 off += sizeof(void *); 742 743 if (s->flags & SLAB_STORE_USER) 744 /* We also have user information there */ 745 off += 2 * sizeof(struct track); 746 747 if (s->size == off) 748 return 1; 749 750 return check_bytes_and_report(s, page, p, "Object padding", 751 p + off, POISON_INUSE, s->size - off); 752 } 753 754 /* Check the pad bytes at the end of a slab page */ 755 static int slab_pad_check(struct kmem_cache *s, struct page *page) 756 { 757 u8 *start; 758 u8 *fault; 759 u8 *end; 760 int length; 761 int remainder; 762 763 if (!(s->flags & SLAB_POISON)) 764 return 1; 765 766 start = page_address(page); 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 768 end = start + length; 769 remainder = length % s->size; 770 if (!remainder) 771 return 1; 772 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 774 if (!fault) 775 return 1; 776 while (end > fault && end[-1] == POISON_INUSE) 777 end--; 778 779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 780 print_section("Padding ", end - remainder, remainder); 781 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 783 return 0; 784 } 785 786 static int check_object(struct kmem_cache *s, struct page *page, 787 void *object, u8 val) 788 { 789 u8 *p = object; 790 u8 *endobject = object + s->objsize; 791 792 if (s->flags & SLAB_RED_ZONE) { 793 if (!check_bytes_and_report(s, page, object, "Redzone", 794 endobject, val, s->inuse - s->objsize)) 795 return 0; 796 } else { 797 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 798 check_bytes_and_report(s, page, p, "Alignment padding", 799 endobject, POISON_INUSE, s->inuse - s->objsize); 800 } 801 } 802 803 if (s->flags & SLAB_POISON) { 804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 805 (!check_bytes_and_report(s, page, p, "Poison", p, 806 POISON_FREE, s->objsize - 1) || 807 !check_bytes_and_report(s, page, p, "Poison", 808 p + s->objsize - 1, POISON_END, 1))) 809 return 0; 810 /* 811 * check_pad_bytes cleans up on its own. 812 */ 813 check_pad_bytes(s, page, p); 814 } 815 816 if (!s->offset && val == SLUB_RED_ACTIVE) 817 /* 818 * Object and freepointer overlap. Cannot check 819 * freepointer while object is allocated. 820 */ 821 return 1; 822 823 /* Check free pointer validity */ 824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 825 object_err(s, page, p, "Freepointer corrupt"); 826 /* 827 * No choice but to zap it and thus lose the remainder 828 * of the free objects in this slab. May cause 829 * another error because the object count is now wrong. 830 */ 831 set_freepointer(s, p, NULL); 832 return 0; 833 } 834 return 1; 835 } 836 837 static int check_slab(struct kmem_cache *s, struct page *page) 838 { 839 int maxobj; 840 841 VM_BUG_ON(!irqs_disabled()); 842 843 if (!PageSlab(page)) { 844 slab_err(s, page, "Not a valid slab page"); 845 return 0; 846 } 847 848 maxobj = order_objects(compound_order(page), s->size, s->reserved); 849 if (page->objects > maxobj) { 850 slab_err(s, page, "objects %u > max %u", 851 s->name, page->objects, maxobj); 852 return 0; 853 } 854 if (page->inuse > page->objects) { 855 slab_err(s, page, "inuse %u > max %u", 856 s->name, page->inuse, page->objects); 857 return 0; 858 } 859 /* Slab_pad_check fixes things up after itself */ 860 slab_pad_check(s, page); 861 return 1; 862 } 863 864 /* 865 * Determine if a certain object on a page is on the freelist. Must hold the 866 * slab lock to guarantee that the chains are in a consistent state. 867 */ 868 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 869 { 870 int nr = 0; 871 void *fp; 872 void *object = NULL; 873 unsigned long max_objects; 874 875 fp = page->freelist; 876 while (fp && nr <= page->objects) { 877 if (fp == search) 878 return 1; 879 if (!check_valid_pointer(s, page, fp)) { 880 if (object) { 881 object_err(s, page, object, 882 "Freechain corrupt"); 883 set_freepointer(s, object, NULL); 884 break; 885 } else { 886 slab_err(s, page, "Freepointer corrupt"); 887 page->freelist = NULL; 888 page->inuse = page->objects; 889 slab_fix(s, "Freelist cleared"); 890 return 0; 891 } 892 break; 893 } 894 object = fp; 895 fp = get_freepointer(s, object); 896 nr++; 897 } 898 899 max_objects = order_objects(compound_order(page), s->size, s->reserved); 900 if (max_objects > MAX_OBJS_PER_PAGE) 901 max_objects = MAX_OBJS_PER_PAGE; 902 903 if (page->objects != max_objects) { 904 slab_err(s, page, "Wrong number of objects. Found %d but " 905 "should be %d", page->objects, max_objects); 906 page->objects = max_objects; 907 slab_fix(s, "Number of objects adjusted."); 908 } 909 if (page->inuse != page->objects - nr) { 910 slab_err(s, page, "Wrong object count. Counter is %d but " 911 "counted were %d", page->inuse, page->objects - nr); 912 page->inuse = page->objects - nr; 913 slab_fix(s, "Object count adjusted."); 914 } 915 return search == NULL; 916 } 917 918 static void trace(struct kmem_cache *s, struct page *page, void *object, 919 int alloc) 920 { 921 if (s->flags & SLAB_TRACE) { 922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 923 s->name, 924 alloc ? "alloc" : "free", 925 object, page->inuse, 926 page->freelist); 927 928 if (!alloc) 929 print_section("Object ", (void *)object, s->objsize); 930 931 dump_stack(); 932 } 933 } 934 935 /* 936 * Hooks for other subsystems that check memory allocations. In a typical 937 * production configuration these hooks all should produce no code at all. 938 */ 939 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 940 { 941 flags &= gfp_allowed_mask; 942 lockdep_trace_alloc(flags); 943 might_sleep_if(flags & __GFP_WAIT); 944 945 return should_failslab(s->objsize, flags, s->flags); 946 } 947 948 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) 949 { 950 flags &= gfp_allowed_mask; 951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 952 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags); 953 } 954 955 static inline void slab_free_hook(struct kmem_cache *s, void *x) 956 { 957 kmemleak_free_recursive(x, s->flags); 958 959 /* 960 * Trouble is that we may no longer disable interupts in the fast path 961 * So in order to make the debug calls that expect irqs to be 962 * disabled we need to disable interrupts temporarily. 963 */ 964 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 965 { 966 unsigned long flags; 967 968 local_irq_save(flags); 969 kmemcheck_slab_free(s, x, s->objsize); 970 debug_check_no_locks_freed(x, s->objsize); 971 local_irq_restore(flags); 972 } 973 #endif 974 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 975 debug_check_no_obj_freed(x, s->objsize); 976 } 977 978 /* 979 * Tracking of fully allocated slabs for debugging purposes. 980 * 981 * list_lock must be held. 982 */ 983 static void add_full(struct kmem_cache *s, 984 struct kmem_cache_node *n, struct page *page) 985 { 986 if (!(s->flags & SLAB_STORE_USER)) 987 return; 988 989 list_add(&page->lru, &n->full); 990 } 991 992 /* 993 * list_lock must be held. 994 */ 995 static void remove_full(struct kmem_cache *s, struct page *page) 996 { 997 if (!(s->flags & SLAB_STORE_USER)) 998 return; 999 1000 list_del(&page->lru); 1001 } 1002 1003 /* Tracking of the number of slabs for debugging purposes */ 1004 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1005 { 1006 struct kmem_cache_node *n = get_node(s, node); 1007 1008 return atomic_long_read(&n->nr_slabs); 1009 } 1010 1011 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1012 { 1013 return atomic_long_read(&n->nr_slabs); 1014 } 1015 1016 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1017 { 1018 struct kmem_cache_node *n = get_node(s, node); 1019 1020 /* 1021 * May be called early in order to allocate a slab for the 1022 * kmem_cache_node structure. Solve the chicken-egg 1023 * dilemma by deferring the increment of the count during 1024 * bootstrap (see early_kmem_cache_node_alloc). 1025 */ 1026 if (n) { 1027 atomic_long_inc(&n->nr_slabs); 1028 atomic_long_add(objects, &n->total_objects); 1029 } 1030 } 1031 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1032 { 1033 struct kmem_cache_node *n = get_node(s, node); 1034 1035 atomic_long_dec(&n->nr_slabs); 1036 atomic_long_sub(objects, &n->total_objects); 1037 } 1038 1039 /* Object debug checks for alloc/free paths */ 1040 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1041 void *object) 1042 { 1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1044 return; 1045 1046 init_object(s, object, SLUB_RED_INACTIVE); 1047 init_tracking(s, object); 1048 } 1049 1050 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, 1051 void *object, unsigned long addr) 1052 { 1053 if (!check_slab(s, page)) 1054 goto bad; 1055 1056 if (!check_valid_pointer(s, page, object)) { 1057 object_err(s, page, object, "Freelist Pointer check fails"); 1058 goto bad; 1059 } 1060 1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1062 goto bad; 1063 1064 /* Success perform special debug activities for allocs */ 1065 if (s->flags & SLAB_STORE_USER) 1066 set_track(s, object, TRACK_ALLOC, addr); 1067 trace(s, page, object, 1); 1068 init_object(s, object, SLUB_RED_ACTIVE); 1069 return 1; 1070 1071 bad: 1072 if (PageSlab(page)) { 1073 /* 1074 * If this is a slab page then lets do the best we can 1075 * to avoid issues in the future. Marking all objects 1076 * as used avoids touching the remaining objects. 1077 */ 1078 slab_fix(s, "Marking all objects used"); 1079 page->inuse = page->objects; 1080 page->freelist = NULL; 1081 } 1082 return 0; 1083 } 1084 1085 static noinline int free_debug_processing(struct kmem_cache *s, 1086 struct page *page, void *object, unsigned long addr) 1087 { 1088 unsigned long flags; 1089 int rc = 0; 1090 1091 local_irq_save(flags); 1092 slab_lock(page); 1093 1094 if (!check_slab(s, page)) 1095 goto fail; 1096 1097 if (!check_valid_pointer(s, page, object)) { 1098 slab_err(s, page, "Invalid object pointer 0x%p", object); 1099 goto fail; 1100 } 1101 1102 if (on_freelist(s, page, object)) { 1103 object_err(s, page, object, "Object already free"); 1104 goto fail; 1105 } 1106 1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1108 goto out; 1109 1110 if (unlikely(s != page->slab)) { 1111 if (!PageSlab(page)) { 1112 slab_err(s, page, "Attempt to free object(0x%p) " 1113 "outside of slab", object); 1114 } else if (!page->slab) { 1115 printk(KERN_ERR 1116 "SLUB <none>: no slab for object 0x%p.\n", 1117 object); 1118 dump_stack(); 1119 } else 1120 object_err(s, page, object, 1121 "page slab pointer corrupt."); 1122 goto fail; 1123 } 1124 1125 if (s->flags & SLAB_STORE_USER) 1126 set_track(s, object, TRACK_FREE, addr); 1127 trace(s, page, object, 0); 1128 init_object(s, object, SLUB_RED_INACTIVE); 1129 rc = 1; 1130 out: 1131 slab_unlock(page); 1132 local_irq_restore(flags); 1133 return rc; 1134 1135 fail: 1136 slab_fix(s, "Object at 0x%p not freed", object); 1137 goto out; 1138 } 1139 1140 static int __init setup_slub_debug(char *str) 1141 { 1142 slub_debug = DEBUG_DEFAULT_FLAGS; 1143 if (*str++ != '=' || !*str) 1144 /* 1145 * No options specified. Switch on full debugging. 1146 */ 1147 goto out; 1148 1149 if (*str == ',') 1150 /* 1151 * No options but restriction on slabs. This means full 1152 * debugging for slabs matching a pattern. 1153 */ 1154 goto check_slabs; 1155 1156 if (tolower(*str) == 'o') { 1157 /* 1158 * Avoid enabling debugging on caches if its minimum order 1159 * would increase as a result. 1160 */ 1161 disable_higher_order_debug = 1; 1162 goto out; 1163 } 1164 1165 slub_debug = 0; 1166 if (*str == '-') 1167 /* 1168 * Switch off all debugging measures. 1169 */ 1170 goto out; 1171 1172 /* 1173 * Determine which debug features should be switched on 1174 */ 1175 for (; *str && *str != ','; str++) { 1176 switch (tolower(*str)) { 1177 case 'f': 1178 slub_debug |= SLAB_DEBUG_FREE; 1179 break; 1180 case 'z': 1181 slub_debug |= SLAB_RED_ZONE; 1182 break; 1183 case 'p': 1184 slub_debug |= SLAB_POISON; 1185 break; 1186 case 'u': 1187 slub_debug |= SLAB_STORE_USER; 1188 break; 1189 case 't': 1190 slub_debug |= SLAB_TRACE; 1191 break; 1192 case 'a': 1193 slub_debug |= SLAB_FAILSLAB; 1194 break; 1195 default: 1196 printk(KERN_ERR "slub_debug option '%c' " 1197 "unknown. skipped\n", *str); 1198 } 1199 } 1200 1201 check_slabs: 1202 if (*str == ',') 1203 slub_debug_slabs = str + 1; 1204 out: 1205 return 1; 1206 } 1207 1208 __setup("slub_debug", setup_slub_debug); 1209 1210 static unsigned long kmem_cache_flags(unsigned long objsize, 1211 unsigned long flags, const char *name, 1212 void (*ctor)(void *)) 1213 { 1214 /* 1215 * Enable debugging if selected on the kernel commandline. 1216 */ 1217 if (slub_debug && (!slub_debug_slabs || 1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1219 flags |= slub_debug; 1220 1221 return flags; 1222 } 1223 #else 1224 static inline void setup_object_debug(struct kmem_cache *s, 1225 struct page *page, void *object) {} 1226 1227 static inline int alloc_debug_processing(struct kmem_cache *s, 1228 struct page *page, void *object, unsigned long addr) { return 0; } 1229 1230 static inline int free_debug_processing(struct kmem_cache *s, 1231 struct page *page, void *object, unsigned long addr) { return 0; } 1232 1233 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1234 { return 1; } 1235 static inline int check_object(struct kmem_cache *s, struct page *page, 1236 void *object, u8 val) { return 1; } 1237 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1238 struct page *page) {} 1239 static inline void remove_full(struct kmem_cache *s, struct page *page) {} 1240 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1241 unsigned long flags, const char *name, 1242 void (*ctor)(void *)) 1243 { 1244 return flags; 1245 } 1246 #define slub_debug 0 1247 1248 #define disable_higher_order_debug 0 1249 1250 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1251 { return 0; } 1252 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1253 { return 0; } 1254 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1255 int objects) {} 1256 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1257 int objects) {} 1258 1259 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1260 { return 0; } 1261 1262 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1263 void *object) {} 1264 1265 static inline void slab_free_hook(struct kmem_cache *s, void *x) {} 1266 1267 #endif /* CONFIG_SLUB_DEBUG */ 1268 1269 /* 1270 * Slab allocation and freeing 1271 */ 1272 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1273 struct kmem_cache_order_objects oo) 1274 { 1275 int order = oo_order(oo); 1276 1277 flags |= __GFP_NOTRACK; 1278 1279 if (node == NUMA_NO_NODE) 1280 return alloc_pages(flags, order); 1281 else 1282 return alloc_pages_exact_node(node, flags, order); 1283 } 1284 1285 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1286 { 1287 struct page *page; 1288 struct kmem_cache_order_objects oo = s->oo; 1289 gfp_t alloc_gfp; 1290 1291 flags &= gfp_allowed_mask; 1292 1293 if (flags & __GFP_WAIT) 1294 local_irq_enable(); 1295 1296 flags |= s->allocflags; 1297 1298 /* 1299 * Let the initial higher-order allocation fail under memory pressure 1300 * so we fall-back to the minimum order allocation. 1301 */ 1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1303 1304 page = alloc_slab_page(alloc_gfp, node, oo); 1305 if (unlikely(!page)) { 1306 oo = s->min; 1307 /* 1308 * Allocation may have failed due to fragmentation. 1309 * Try a lower order alloc if possible 1310 */ 1311 page = alloc_slab_page(flags, node, oo); 1312 1313 if (page) 1314 stat(s, ORDER_FALLBACK); 1315 } 1316 1317 if (flags & __GFP_WAIT) 1318 local_irq_disable(); 1319 1320 if (!page) 1321 return NULL; 1322 1323 if (kmemcheck_enabled 1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1325 int pages = 1 << oo_order(oo); 1326 1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1328 1329 /* 1330 * Objects from caches that have a constructor don't get 1331 * cleared when they're allocated, so we need to do it here. 1332 */ 1333 if (s->ctor) 1334 kmemcheck_mark_uninitialized_pages(page, pages); 1335 else 1336 kmemcheck_mark_unallocated_pages(page, pages); 1337 } 1338 1339 page->objects = oo_objects(oo); 1340 mod_zone_page_state(page_zone(page), 1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1343 1 << oo_order(oo)); 1344 1345 return page; 1346 } 1347 1348 static void setup_object(struct kmem_cache *s, struct page *page, 1349 void *object) 1350 { 1351 setup_object_debug(s, page, object); 1352 if (unlikely(s->ctor)) 1353 s->ctor(object); 1354 } 1355 1356 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1357 { 1358 struct page *page; 1359 void *start; 1360 void *last; 1361 void *p; 1362 1363 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1364 1365 page = allocate_slab(s, 1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1367 if (!page) 1368 goto out; 1369 1370 inc_slabs_node(s, page_to_nid(page), page->objects); 1371 page->slab = s; 1372 page->flags |= 1 << PG_slab; 1373 1374 start = page_address(page); 1375 1376 if (unlikely(s->flags & SLAB_POISON)) 1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1378 1379 last = start; 1380 for_each_object(p, s, start, page->objects) { 1381 setup_object(s, page, last); 1382 set_freepointer(s, last, p); 1383 last = p; 1384 } 1385 setup_object(s, page, last); 1386 set_freepointer(s, last, NULL); 1387 1388 page->freelist = start; 1389 page->inuse = page->objects; 1390 page->frozen = 1; 1391 out: 1392 return page; 1393 } 1394 1395 static void __free_slab(struct kmem_cache *s, struct page *page) 1396 { 1397 int order = compound_order(page); 1398 int pages = 1 << order; 1399 1400 if (kmem_cache_debug(s)) { 1401 void *p; 1402 1403 slab_pad_check(s, page); 1404 for_each_object(p, s, page_address(page), 1405 page->objects) 1406 check_object(s, page, p, SLUB_RED_INACTIVE); 1407 } 1408 1409 kmemcheck_free_shadow(page, compound_order(page)); 1410 1411 mod_zone_page_state(page_zone(page), 1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1414 -pages); 1415 1416 __ClearPageSlab(page); 1417 reset_page_mapcount(page); 1418 if (current->reclaim_state) 1419 current->reclaim_state->reclaimed_slab += pages; 1420 __free_pages(page, order); 1421 } 1422 1423 #define need_reserve_slab_rcu \ 1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1425 1426 static void rcu_free_slab(struct rcu_head *h) 1427 { 1428 struct page *page; 1429 1430 if (need_reserve_slab_rcu) 1431 page = virt_to_head_page(h); 1432 else 1433 page = container_of((struct list_head *)h, struct page, lru); 1434 1435 __free_slab(page->slab, page); 1436 } 1437 1438 static void free_slab(struct kmem_cache *s, struct page *page) 1439 { 1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1441 struct rcu_head *head; 1442 1443 if (need_reserve_slab_rcu) { 1444 int order = compound_order(page); 1445 int offset = (PAGE_SIZE << order) - s->reserved; 1446 1447 VM_BUG_ON(s->reserved != sizeof(*head)); 1448 head = page_address(page) + offset; 1449 } else { 1450 /* 1451 * RCU free overloads the RCU head over the LRU 1452 */ 1453 head = (void *)&page->lru; 1454 } 1455 1456 call_rcu(head, rcu_free_slab); 1457 } else 1458 __free_slab(s, page); 1459 } 1460 1461 static void discard_slab(struct kmem_cache *s, struct page *page) 1462 { 1463 dec_slabs_node(s, page_to_nid(page), page->objects); 1464 free_slab(s, page); 1465 } 1466 1467 /* 1468 * Management of partially allocated slabs. 1469 * 1470 * list_lock must be held. 1471 */ 1472 static inline void add_partial(struct kmem_cache_node *n, 1473 struct page *page, int tail) 1474 { 1475 n->nr_partial++; 1476 if (tail == DEACTIVATE_TO_TAIL) 1477 list_add_tail(&page->lru, &n->partial); 1478 else 1479 list_add(&page->lru, &n->partial); 1480 } 1481 1482 /* 1483 * list_lock must be held. 1484 */ 1485 static inline void remove_partial(struct kmem_cache_node *n, 1486 struct page *page) 1487 { 1488 list_del(&page->lru); 1489 n->nr_partial--; 1490 } 1491 1492 /* 1493 * Lock slab, remove from the partial list and put the object into the 1494 * per cpu freelist. 1495 * 1496 * Returns a list of objects or NULL if it fails. 1497 * 1498 * Must hold list_lock. 1499 */ 1500 static inline void *acquire_slab(struct kmem_cache *s, 1501 struct kmem_cache_node *n, struct page *page, 1502 int mode) 1503 { 1504 void *freelist; 1505 unsigned long counters; 1506 struct page new; 1507 1508 /* 1509 * Zap the freelist and set the frozen bit. 1510 * The old freelist is the list of objects for the 1511 * per cpu allocation list. 1512 */ 1513 do { 1514 freelist = page->freelist; 1515 counters = page->counters; 1516 new.counters = counters; 1517 if (mode) 1518 new.inuse = page->objects; 1519 1520 VM_BUG_ON(new.frozen); 1521 new.frozen = 1; 1522 1523 } while (!__cmpxchg_double_slab(s, page, 1524 freelist, counters, 1525 NULL, new.counters, 1526 "lock and freeze")); 1527 1528 remove_partial(n, page); 1529 return freelist; 1530 } 1531 1532 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1533 1534 /* 1535 * Try to allocate a partial slab from a specific node. 1536 */ 1537 static void *get_partial_node(struct kmem_cache *s, 1538 struct kmem_cache_node *n, struct kmem_cache_cpu *c) 1539 { 1540 struct page *page, *page2; 1541 void *object = NULL; 1542 1543 /* 1544 * Racy check. If we mistakenly see no partial slabs then we 1545 * just allocate an empty slab. If we mistakenly try to get a 1546 * partial slab and there is none available then get_partials() 1547 * will return NULL. 1548 */ 1549 if (!n || !n->nr_partial) 1550 return NULL; 1551 1552 spin_lock(&n->list_lock); 1553 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1554 void *t = acquire_slab(s, n, page, object == NULL); 1555 int available; 1556 1557 if (!t) 1558 break; 1559 1560 if (!object) { 1561 c->page = page; 1562 c->node = page_to_nid(page); 1563 stat(s, ALLOC_FROM_PARTIAL); 1564 object = t; 1565 available = page->objects - page->inuse; 1566 } else { 1567 page->freelist = t; 1568 available = put_cpu_partial(s, page, 0); 1569 stat(s, CPU_PARTIAL_NODE); 1570 } 1571 if (kmem_cache_debug(s) || available > s->cpu_partial / 2) 1572 break; 1573 1574 } 1575 spin_unlock(&n->list_lock); 1576 return object; 1577 } 1578 1579 /* 1580 * Get a page from somewhere. Search in increasing NUMA distances. 1581 */ 1582 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags, 1583 struct kmem_cache_cpu *c) 1584 { 1585 #ifdef CONFIG_NUMA 1586 struct zonelist *zonelist; 1587 struct zoneref *z; 1588 struct zone *zone; 1589 enum zone_type high_zoneidx = gfp_zone(flags); 1590 void *object; 1591 unsigned int cpuset_mems_cookie; 1592 1593 /* 1594 * The defrag ratio allows a configuration of the tradeoffs between 1595 * inter node defragmentation and node local allocations. A lower 1596 * defrag_ratio increases the tendency to do local allocations 1597 * instead of attempting to obtain partial slabs from other nodes. 1598 * 1599 * If the defrag_ratio is set to 0 then kmalloc() always 1600 * returns node local objects. If the ratio is higher then kmalloc() 1601 * may return off node objects because partial slabs are obtained 1602 * from other nodes and filled up. 1603 * 1604 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1605 * defrag_ratio = 1000) then every (well almost) allocation will 1606 * first attempt to defrag slab caches on other nodes. This means 1607 * scanning over all nodes to look for partial slabs which may be 1608 * expensive if we do it every time we are trying to find a slab 1609 * with available objects. 1610 */ 1611 if (!s->remote_node_defrag_ratio || 1612 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1613 return NULL; 1614 1615 do { 1616 cpuset_mems_cookie = get_mems_allowed(); 1617 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1618 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1619 struct kmem_cache_node *n; 1620 1621 n = get_node(s, zone_to_nid(zone)); 1622 1623 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1624 n->nr_partial > s->min_partial) { 1625 object = get_partial_node(s, n, c); 1626 if (object) { 1627 /* 1628 * Return the object even if 1629 * put_mems_allowed indicated that 1630 * the cpuset mems_allowed was 1631 * updated in parallel. It's a 1632 * harmless race between the alloc 1633 * and the cpuset update. 1634 */ 1635 put_mems_allowed(cpuset_mems_cookie); 1636 return object; 1637 } 1638 } 1639 } 1640 } while (!put_mems_allowed(cpuset_mems_cookie)); 1641 #endif 1642 return NULL; 1643 } 1644 1645 /* 1646 * Get a partial page, lock it and return it. 1647 */ 1648 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1649 struct kmem_cache_cpu *c) 1650 { 1651 void *object; 1652 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1653 1654 object = get_partial_node(s, get_node(s, searchnode), c); 1655 if (object || node != NUMA_NO_NODE) 1656 return object; 1657 1658 return get_any_partial(s, flags, c); 1659 } 1660 1661 #ifdef CONFIG_PREEMPT 1662 /* 1663 * Calculate the next globally unique transaction for disambiguiation 1664 * during cmpxchg. The transactions start with the cpu number and are then 1665 * incremented by CONFIG_NR_CPUS. 1666 */ 1667 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1668 #else 1669 /* 1670 * No preemption supported therefore also no need to check for 1671 * different cpus. 1672 */ 1673 #define TID_STEP 1 1674 #endif 1675 1676 static inline unsigned long next_tid(unsigned long tid) 1677 { 1678 return tid + TID_STEP; 1679 } 1680 1681 static inline unsigned int tid_to_cpu(unsigned long tid) 1682 { 1683 return tid % TID_STEP; 1684 } 1685 1686 static inline unsigned long tid_to_event(unsigned long tid) 1687 { 1688 return tid / TID_STEP; 1689 } 1690 1691 static inline unsigned int init_tid(int cpu) 1692 { 1693 return cpu; 1694 } 1695 1696 static inline void note_cmpxchg_failure(const char *n, 1697 const struct kmem_cache *s, unsigned long tid) 1698 { 1699 #ifdef SLUB_DEBUG_CMPXCHG 1700 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1701 1702 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1703 1704 #ifdef CONFIG_PREEMPT 1705 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1706 printk("due to cpu change %d -> %d\n", 1707 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1708 else 1709 #endif 1710 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1711 printk("due to cpu running other code. Event %ld->%ld\n", 1712 tid_to_event(tid), tid_to_event(actual_tid)); 1713 else 1714 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1715 actual_tid, tid, next_tid(tid)); 1716 #endif 1717 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1718 } 1719 1720 void init_kmem_cache_cpus(struct kmem_cache *s) 1721 { 1722 int cpu; 1723 1724 for_each_possible_cpu(cpu) 1725 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1726 } 1727 1728 /* 1729 * Remove the cpu slab 1730 */ 1731 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1732 { 1733 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1734 struct page *page = c->page; 1735 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1736 int lock = 0; 1737 enum slab_modes l = M_NONE, m = M_NONE; 1738 void *freelist; 1739 void *nextfree; 1740 int tail = DEACTIVATE_TO_HEAD; 1741 struct page new; 1742 struct page old; 1743 1744 if (page->freelist) { 1745 stat(s, DEACTIVATE_REMOTE_FREES); 1746 tail = DEACTIVATE_TO_TAIL; 1747 } 1748 1749 c->tid = next_tid(c->tid); 1750 c->page = NULL; 1751 freelist = c->freelist; 1752 c->freelist = NULL; 1753 1754 /* 1755 * Stage one: Free all available per cpu objects back 1756 * to the page freelist while it is still frozen. Leave the 1757 * last one. 1758 * 1759 * There is no need to take the list->lock because the page 1760 * is still frozen. 1761 */ 1762 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1763 void *prior; 1764 unsigned long counters; 1765 1766 do { 1767 prior = page->freelist; 1768 counters = page->counters; 1769 set_freepointer(s, freelist, prior); 1770 new.counters = counters; 1771 new.inuse--; 1772 VM_BUG_ON(!new.frozen); 1773 1774 } while (!__cmpxchg_double_slab(s, page, 1775 prior, counters, 1776 freelist, new.counters, 1777 "drain percpu freelist")); 1778 1779 freelist = nextfree; 1780 } 1781 1782 /* 1783 * Stage two: Ensure that the page is unfrozen while the 1784 * list presence reflects the actual number of objects 1785 * during unfreeze. 1786 * 1787 * We setup the list membership and then perform a cmpxchg 1788 * with the count. If there is a mismatch then the page 1789 * is not unfrozen but the page is on the wrong list. 1790 * 1791 * Then we restart the process which may have to remove 1792 * the page from the list that we just put it on again 1793 * because the number of objects in the slab may have 1794 * changed. 1795 */ 1796 redo: 1797 1798 old.freelist = page->freelist; 1799 old.counters = page->counters; 1800 VM_BUG_ON(!old.frozen); 1801 1802 /* Determine target state of the slab */ 1803 new.counters = old.counters; 1804 if (freelist) { 1805 new.inuse--; 1806 set_freepointer(s, freelist, old.freelist); 1807 new.freelist = freelist; 1808 } else 1809 new.freelist = old.freelist; 1810 1811 new.frozen = 0; 1812 1813 if (!new.inuse && n->nr_partial > s->min_partial) 1814 m = M_FREE; 1815 else if (new.freelist) { 1816 m = M_PARTIAL; 1817 if (!lock) { 1818 lock = 1; 1819 /* 1820 * Taking the spinlock removes the possiblity 1821 * that acquire_slab() will see a slab page that 1822 * is frozen 1823 */ 1824 spin_lock(&n->list_lock); 1825 } 1826 } else { 1827 m = M_FULL; 1828 if (kmem_cache_debug(s) && !lock) { 1829 lock = 1; 1830 /* 1831 * This also ensures that the scanning of full 1832 * slabs from diagnostic functions will not see 1833 * any frozen slabs. 1834 */ 1835 spin_lock(&n->list_lock); 1836 } 1837 } 1838 1839 if (l != m) { 1840 1841 if (l == M_PARTIAL) 1842 1843 remove_partial(n, page); 1844 1845 else if (l == M_FULL) 1846 1847 remove_full(s, page); 1848 1849 if (m == M_PARTIAL) { 1850 1851 add_partial(n, page, tail); 1852 stat(s, tail); 1853 1854 } else if (m == M_FULL) { 1855 1856 stat(s, DEACTIVATE_FULL); 1857 add_full(s, n, page); 1858 1859 } 1860 } 1861 1862 l = m; 1863 if (!__cmpxchg_double_slab(s, page, 1864 old.freelist, old.counters, 1865 new.freelist, new.counters, 1866 "unfreezing slab")) 1867 goto redo; 1868 1869 if (lock) 1870 spin_unlock(&n->list_lock); 1871 1872 if (m == M_FREE) { 1873 stat(s, DEACTIVATE_EMPTY); 1874 discard_slab(s, page); 1875 stat(s, FREE_SLAB); 1876 } 1877 } 1878 1879 /* Unfreeze all the cpu partial slabs */ 1880 static void unfreeze_partials(struct kmem_cache *s) 1881 { 1882 struct kmem_cache_node *n = NULL; 1883 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); 1884 struct page *page, *discard_page = NULL; 1885 1886 while ((page = c->partial)) { 1887 enum slab_modes { M_PARTIAL, M_FREE }; 1888 enum slab_modes l, m; 1889 struct page new; 1890 struct page old; 1891 1892 c->partial = page->next; 1893 l = M_FREE; 1894 1895 do { 1896 1897 old.freelist = page->freelist; 1898 old.counters = page->counters; 1899 VM_BUG_ON(!old.frozen); 1900 1901 new.counters = old.counters; 1902 new.freelist = old.freelist; 1903 1904 new.frozen = 0; 1905 1906 if (!new.inuse && (!n || n->nr_partial > s->min_partial)) 1907 m = M_FREE; 1908 else { 1909 struct kmem_cache_node *n2 = get_node(s, 1910 page_to_nid(page)); 1911 1912 m = M_PARTIAL; 1913 if (n != n2) { 1914 if (n) 1915 spin_unlock(&n->list_lock); 1916 1917 n = n2; 1918 spin_lock(&n->list_lock); 1919 } 1920 } 1921 1922 if (l != m) { 1923 if (l == M_PARTIAL) { 1924 remove_partial(n, page); 1925 stat(s, FREE_REMOVE_PARTIAL); 1926 } else { 1927 add_partial(n, page, 1928 DEACTIVATE_TO_TAIL); 1929 stat(s, FREE_ADD_PARTIAL); 1930 } 1931 1932 l = m; 1933 } 1934 1935 } while (!cmpxchg_double_slab(s, page, 1936 old.freelist, old.counters, 1937 new.freelist, new.counters, 1938 "unfreezing slab")); 1939 1940 if (m == M_FREE) { 1941 page->next = discard_page; 1942 discard_page = page; 1943 } 1944 } 1945 1946 if (n) 1947 spin_unlock(&n->list_lock); 1948 1949 while (discard_page) { 1950 page = discard_page; 1951 discard_page = discard_page->next; 1952 1953 stat(s, DEACTIVATE_EMPTY); 1954 discard_slab(s, page); 1955 stat(s, FREE_SLAB); 1956 } 1957 } 1958 1959 /* 1960 * Put a page that was just frozen (in __slab_free) into a partial page 1961 * slot if available. This is done without interrupts disabled and without 1962 * preemption disabled. The cmpxchg is racy and may put the partial page 1963 * onto a random cpus partial slot. 1964 * 1965 * If we did not find a slot then simply move all the partials to the 1966 * per node partial list. 1967 */ 1968 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 1969 { 1970 struct page *oldpage; 1971 int pages; 1972 int pobjects; 1973 1974 do { 1975 pages = 0; 1976 pobjects = 0; 1977 oldpage = this_cpu_read(s->cpu_slab->partial); 1978 1979 if (oldpage) { 1980 pobjects = oldpage->pobjects; 1981 pages = oldpage->pages; 1982 if (drain && pobjects > s->cpu_partial) { 1983 unsigned long flags; 1984 /* 1985 * partial array is full. Move the existing 1986 * set to the per node partial list. 1987 */ 1988 local_irq_save(flags); 1989 unfreeze_partials(s); 1990 local_irq_restore(flags); 1991 pobjects = 0; 1992 pages = 0; 1993 stat(s, CPU_PARTIAL_DRAIN); 1994 } 1995 } 1996 1997 pages++; 1998 pobjects += page->objects - page->inuse; 1999 2000 page->pages = pages; 2001 page->pobjects = pobjects; 2002 page->next = oldpage; 2003 2004 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); 2005 return pobjects; 2006 } 2007 2008 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2009 { 2010 stat(s, CPUSLAB_FLUSH); 2011 deactivate_slab(s, c); 2012 } 2013 2014 /* 2015 * Flush cpu slab. 2016 * 2017 * Called from IPI handler with interrupts disabled. 2018 */ 2019 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2020 { 2021 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2022 2023 if (likely(c)) { 2024 if (c->page) 2025 flush_slab(s, c); 2026 2027 unfreeze_partials(s); 2028 } 2029 } 2030 2031 static void flush_cpu_slab(void *d) 2032 { 2033 struct kmem_cache *s = d; 2034 2035 __flush_cpu_slab(s, smp_processor_id()); 2036 } 2037 2038 static bool has_cpu_slab(int cpu, void *info) 2039 { 2040 struct kmem_cache *s = info; 2041 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2042 2043 return !!(c->page); 2044 } 2045 2046 static void flush_all(struct kmem_cache *s) 2047 { 2048 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2049 } 2050 2051 /* 2052 * Check if the objects in a per cpu structure fit numa 2053 * locality expectations. 2054 */ 2055 static inline int node_match(struct kmem_cache_cpu *c, int node) 2056 { 2057 #ifdef CONFIG_NUMA 2058 if (node != NUMA_NO_NODE && c->node != node) 2059 return 0; 2060 #endif 2061 return 1; 2062 } 2063 2064 static int count_free(struct page *page) 2065 { 2066 return page->objects - page->inuse; 2067 } 2068 2069 static unsigned long count_partial(struct kmem_cache_node *n, 2070 int (*get_count)(struct page *)) 2071 { 2072 unsigned long flags; 2073 unsigned long x = 0; 2074 struct page *page; 2075 2076 spin_lock_irqsave(&n->list_lock, flags); 2077 list_for_each_entry(page, &n->partial, lru) 2078 x += get_count(page); 2079 spin_unlock_irqrestore(&n->list_lock, flags); 2080 return x; 2081 } 2082 2083 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2084 { 2085 #ifdef CONFIG_SLUB_DEBUG 2086 return atomic_long_read(&n->total_objects); 2087 #else 2088 return 0; 2089 #endif 2090 } 2091 2092 static noinline void 2093 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2094 { 2095 int node; 2096 2097 printk(KERN_WARNING 2098 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2099 nid, gfpflags); 2100 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2101 "default order: %d, min order: %d\n", s->name, s->objsize, 2102 s->size, oo_order(s->oo), oo_order(s->min)); 2103 2104 if (oo_order(s->min) > get_order(s->objsize)) 2105 printk(KERN_WARNING " %s debugging increased min order, use " 2106 "slub_debug=O to disable.\n", s->name); 2107 2108 for_each_online_node(node) { 2109 struct kmem_cache_node *n = get_node(s, node); 2110 unsigned long nr_slabs; 2111 unsigned long nr_objs; 2112 unsigned long nr_free; 2113 2114 if (!n) 2115 continue; 2116 2117 nr_free = count_partial(n, count_free); 2118 nr_slabs = node_nr_slabs(n); 2119 nr_objs = node_nr_objs(n); 2120 2121 printk(KERN_WARNING 2122 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2123 node, nr_slabs, nr_objs, nr_free); 2124 } 2125 } 2126 2127 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2128 int node, struct kmem_cache_cpu **pc) 2129 { 2130 void *object; 2131 struct kmem_cache_cpu *c; 2132 struct page *page = new_slab(s, flags, node); 2133 2134 if (page) { 2135 c = __this_cpu_ptr(s->cpu_slab); 2136 if (c->page) 2137 flush_slab(s, c); 2138 2139 /* 2140 * No other reference to the page yet so we can 2141 * muck around with it freely without cmpxchg 2142 */ 2143 object = page->freelist; 2144 page->freelist = NULL; 2145 2146 stat(s, ALLOC_SLAB); 2147 c->node = page_to_nid(page); 2148 c->page = page; 2149 *pc = c; 2150 } else 2151 object = NULL; 2152 2153 return object; 2154 } 2155 2156 /* 2157 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist 2158 * or deactivate the page. 2159 * 2160 * The page is still frozen if the return value is not NULL. 2161 * 2162 * If this function returns NULL then the page has been unfrozen. 2163 */ 2164 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2165 { 2166 struct page new; 2167 unsigned long counters; 2168 void *freelist; 2169 2170 do { 2171 freelist = page->freelist; 2172 counters = page->counters; 2173 new.counters = counters; 2174 VM_BUG_ON(!new.frozen); 2175 2176 new.inuse = page->objects; 2177 new.frozen = freelist != NULL; 2178 2179 } while (!cmpxchg_double_slab(s, page, 2180 freelist, counters, 2181 NULL, new.counters, 2182 "get_freelist")); 2183 2184 return freelist; 2185 } 2186 2187 /* 2188 * Slow path. The lockless freelist is empty or we need to perform 2189 * debugging duties. 2190 * 2191 * Processing is still very fast if new objects have been freed to the 2192 * regular freelist. In that case we simply take over the regular freelist 2193 * as the lockless freelist and zap the regular freelist. 2194 * 2195 * If that is not working then we fall back to the partial lists. We take the 2196 * first element of the freelist as the object to allocate now and move the 2197 * rest of the freelist to the lockless freelist. 2198 * 2199 * And if we were unable to get a new slab from the partial slab lists then 2200 * we need to allocate a new slab. This is the slowest path since it involves 2201 * a call to the page allocator and the setup of a new slab. 2202 */ 2203 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2204 unsigned long addr, struct kmem_cache_cpu *c) 2205 { 2206 void **object; 2207 unsigned long flags; 2208 2209 local_irq_save(flags); 2210 #ifdef CONFIG_PREEMPT 2211 /* 2212 * We may have been preempted and rescheduled on a different 2213 * cpu before disabling interrupts. Need to reload cpu area 2214 * pointer. 2215 */ 2216 c = this_cpu_ptr(s->cpu_slab); 2217 #endif 2218 2219 if (!c->page) 2220 goto new_slab; 2221 redo: 2222 if (unlikely(!node_match(c, node))) { 2223 stat(s, ALLOC_NODE_MISMATCH); 2224 deactivate_slab(s, c); 2225 goto new_slab; 2226 } 2227 2228 /* must check again c->freelist in case of cpu migration or IRQ */ 2229 object = c->freelist; 2230 if (object) 2231 goto load_freelist; 2232 2233 stat(s, ALLOC_SLOWPATH); 2234 2235 object = get_freelist(s, c->page); 2236 2237 if (!object) { 2238 c->page = NULL; 2239 stat(s, DEACTIVATE_BYPASS); 2240 goto new_slab; 2241 } 2242 2243 stat(s, ALLOC_REFILL); 2244 2245 load_freelist: 2246 c->freelist = get_freepointer(s, object); 2247 c->tid = next_tid(c->tid); 2248 local_irq_restore(flags); 2249 return object; 2250 2251 new_slab: 2252 2253 if (c->partial) { 2254 c->page = c->partial; 2255 c->partial = c->page->next; 2256 c->node = page_to_nid(c->page); 2257 stat(s, CPU_PARTIAL_ALLOC); 2258 c->freelist = NULL; 2259 goto redo; 2260 } 2261 2262 /* Then do expensive stuff like retrieving pages from the partial lists */ 2263 object = get_partial(s, gfpflags, node, c); 2264 2265 if (unlikely(!object)) { 2266 2267 object = new_slab_objects(s, gfpflags, node, &c); 2268 2269 if (unlikely(!object)) { 2270 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2271 slab_out_of_memory(s, gfpflags, node); 2272 2273 local_irq_restore(flags); 2274 return NULL; 2275 } 2276 } 2277 2278 if (likely(!kmem_cache_debug(s))) 2279 goto load_freelist; 2280 2281 /* Only entered in the debug case */ 2282 if (!alloc_debug_processing(s, c->page, object, addr)) 2283 goto new_slab; /* Slab failed checks. Next slab needed */ 2284 2285 c->freelist = get_freepointer(s, object); 2286 deactivate_slab(s, c); 2287 c->node = NUMA_NO_NODE; 2288 local_irq_restore(flags); 2289 return object; 2290 } 2291 2292 /* 2293 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2294 * have the fastpath folded into their functions. So no function call 2295 * overhead for requests that can be satisfied on the fastpath. 2296 * 2297 * The fastpath works by first checking if the lockless freelist can be used. 2298 * If not then __slab_alloc is called for slow processing. 2299 * 2300 * Otherwise we can simply pick the next object from the lockless free list. 2301 */ 2302 static __always_inline void *slab_alloc(struct kmem_cache *s, 2303 gfp_t gfpflags, int node, unsigned long addr) 2304 { 2305 void **object; 2306 struct kmem_cache_cpu *c; 2307 unsigned long tid; 2308 2309 if (slab_pre_alloc_hook(s, gfpflags)) 2310 return NULL; 2311 2312 redo: 2313 2314 /* 2315 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2316 * enabled. We may switch back and forth between cpus while 2317 * reading from one cpu area. That does not matter as long 2318 * as we end up on the original cpu again when doing the cmpxchg. 2319 */ 2320 c = __this_cpu_ptr(s->cpu_slab); 2321 2322 /* 2323 * The transaction ids are globally unique per cpu and per operation on 2324 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2325 * occurs on the right processor and that there was no operation on the 2326 * linked list in between. 2327 */ 2328 tid = c->tid; 2329 barrier(); 2330 2331 object = c->freelist; 2332 if (unlikely(!object || !node_match(c, node))) 2333 2334 object = __slab_alloc(s, gfpflags, node, addr, c); 2335 2336 else { 2337 void *next_object = get_freepointer_safe(s, object); 2338 2339 /* 2340 * The cmpxchg will only match if there was no additional 2341 * operation and if we are on the right processor. 2342 * 2343 * The cmpxchg does the following atomically (without lock semantics!) 2344 * 1. Relocate first pointer to the current per cpu area. 2345 * 2. Verify that tid and freelist have not been changed 2346 * 3. If they were not changed replace tid and freelist 2347 * 2348 * Since this is without lock semantics the protection is only against 2349 * code executing on this cpu *not* from access by other cpus. 2350 */ 2351 if (unlikely(!this_cpu_cmpxchg_double( 2352 s->cpu_slab->freelist, s->cpu_slab->tid, 2353 object, tid, 2354 next_object, next_tid(tid)))) { 2355 2356 note_cmpxchg_failure("slab_alloc", s, tid); 2357 goto redo; 2358 } 2359 prefetch_freepointer(s, next_object); 2360 stat(s, ALLOC_FASTPATH); 2361 } 2362 2363 if (unlikely(gfpflags & __GFP_ZERO) && object) 2364 memset(object, 0, s->objsize); 2365 2366 slab_post_alloc_hook(s, gfpflags, object); 2367 2368 return object; 2369 } 2370 2371 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2372 { 2373 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2374 2375 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 2376 2377 return ret; 2378 } 2379 EXPORT_SYMBOL(kmem_cache_alloc); 2380 2381 #ifdef CONFIG_TRACING 2382 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2383 { 2384 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2385 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2386 return ret; 2387 } 2388 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2389 2390 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 2391 { 2392 void *ret = kmalloc_order(size, flags, order); 2393 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 2394 return ret; 2395 } 2396 EXPORT_SYMBOL(kmalloc_order_trace); 2397 #endif 2398 2399 #ifdef CONFIG_NUMA 2400 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2401 { 2402 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2403 2404 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2405 s->objsize, s->size, gfpflags, node); 2406 2407 return ret; 2408 } 2409 EXPORT_SYMBOL(kmem_cache_alloc_node); 2410 2411 #ifdef CONFIG_TRACING 2412 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2413 gfp_t gfpflags, 2414 int node, size_t size) 2415 { 2416 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2417 2418 trace_kmalloc_node(_RET_IP_, ret, 2419 size, s->size, gfpflags, node); 2420 return ret; 2421 } 2422 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2423 #endif 2424 #endif 2425 2426 /* 2427 * Slow patch handling. This may still be called frequently since objects 2428 * have a longer lifetime than the cpu slabs in most processing loads. 2429 * 2430 * So we still attempt to reduce cache line usage. Just take the slab 2431 * lock and free the item. If there is no additional partial page 2432 * handling required then we can return immediately. 2433 */ 2434 static void __slab_free(struct kmem_cache *s, struct page *page, 2435 void *x, unsigned long addr) 2436 { 2437 void *prior; 2438 void **object = (void *)x; 2439 int was_frozen; 2440 int inuse; 2441 struct page new; 2442 unsigned long counters; 2443 struct kmem_cache_node *n = NULL; 2444 unsigned long uninitialized_var(flags); 2445 2446 stat(s, FREE_SLOWPATH); 2447 2448 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr)) 2449 return; 2450 2451 do { 2452 prior = page->freelist; 2453 counters = page->counters; 2454 set_freepointer(s, object, prior); 2455 new.counters = counters; 2456 was_frozen = new.frozen; 2457 new.inuse--; 2458 if ((!new.inuse || !prior) && !was_frozen && !n) { 2459 2460 if (!kmem_cache_debug(s) && !prior) 2461 2462 /* 2463 * Slab was on no list before and will be partially empty 2464 * We can defer the list move and instead freeze it. 2465 */ 2466 new.frozen = 1; 2467 2468 else { /* Needs to be taken off a list */ 2469 2470 n = get_node(s, page_to_nid(page)); 2471 /* 2472 * Speculatively acquire the list_lock. 2473 * If the cmpxchg does not succeed then we may 2474 * drop the list_lock without any processing. 2475 * 2476 * Otherwise the list_lock will synchronize with 2477 * other processors updating the list of slabs. 2478 */ 2479 spin_lock_irqsave(&n->list_lock, flags); 2480 2481 } 2482 } 2483 inuse = new.inuse; 2484 2485 } while (!cmpxchg_double_slab(s, page, 2486 prior, counters, 2487 object, new.counters, 2488 "__slab_free")); 2489 2490 if (likely(!n)) { 2491 2492 /* 2493 * If we just froze the page then put it onto the 2494 * per cpu partial list. 2495 */ 2496 if (new.frozen && !was_frozen) { 2497 put_cpu_partial(s, page, 1); 2498 stat(s, CPU_PARTIAL_FREE); 2499 } 2500 /* 2501 * The list lock was not taken therefore no list 2502 * activity can be necessary. 2503 */ 2504 if (was_frozen) 2505 stat(s, FREE_FROZEN); 2506 return; 2507 } 2508 2509 /* 2510 * was_frozen may have been set after we acquired the list_lock in 2511 * an earlier loop. So we need to check it here again. 2512 */ 2513 if (was_frozen) 2514 stat(s, FREE_FROZEN); 2515 else { 2516 if (unlikely(!inuse && n->nr_partial > s->min_partial)) 2517 goto slab_empty; 2518 2519 /* 2520 * Objects left in the slab. If it was not on the partial list before 2521 * then add it. 2522 */ 2523 if (unlikely(!prior)) { 2524 remove_full(s, page); 2525 add_partial(n, page, DEACTIVATE_TO_TAIL); 2526 stat(s, FREE_ADD_PARTIAL); 2527 } 2528 } 2529 spin_unlock_irqrestore(&n->list_lock, flags); 2530 return; 2531 2532 slab_empty: 2533 if (prior) { 2534 /* 2535 * Slab on the partial list. 2536 */ 2537 remove_partial(n, page); 2538 stat(s, FREE_REMOVE_PARTIAL); 2539 } else 2540 /* Slab must be on the full list */ 2541 remove_full(s, page); 2542 2543 spin_unlock_irqrestore(&n->list_lock, flags); 2544 stat(s, FREE_SLAB); 2545 discard_slab(s, page); 2546 } 2547 2548 /* 2549 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2550 * can perform fastpath freeing without additional function calls. 2551 * 2552 * The fastpath is only possible if we are freeing to the current cpu slab 2553 * of this processor. This typically the case if we have just allocated 2554 * the item before. 2555 * 2556 * If fastpath is not possible then fall back to __slab_free where we deal 2557 * with all sorts of special processing. 2558 */ 2559 static __always_inline void slab_free(struct kmem_cache *s, 2560 struct page *page, void *x, unsigned long addr) 2561 { 2562 void **object = (void *)x; 2563 struct kmem_cache_cpu *c; 2564 unsigned long tid; 2565 2566 slab_free_hook(s, x); 2567 2568 redo: 2569 /* 2570 * Determine the currently cpus per cpu slab. 2571 * The cpu may change afterward. However that does not matter since 2572 * data is retrieved via this pointer. If we are on the same cpu 2573 * during the cmpxchg then the free will succedd. 2574 */ 2575 c = __this_cpu_ptr(s->cpu_slab); 2576 2577 tid = c->tid; 2578 barrier(); 2579 2580 if (likely(page == c->page)) { 2581 set_freepointer(s, object, c->freelist); 2582 2583 if (unlikely(!this_cpu_cmpxchg_double( 2584 s->cpu_slab->freelist, s->cpu_slab->tid, 2585 c->freelist, tid, 2586 object, next_tid(tid)))) { 2587 2588 note_cmpxchg_failure("slab_free", s, tid); 2589 goto redo; 2590 } 2591 stat(s, FREE_FASTPATH); 2592 } else 2593 __slab_free(s, page, x, addr); 2594 2595 } 2596 2597 void kmem_cache_free(struct kmem_cache *s, void *x) 2598 { 2599 struct page *page; 2600 2601 page = virt_to_head_page(x); 2602 2603 slab_free(s, page, x, _RET_IP_); 2604 2605 trace_kmem_cache_free(_RET_IP_, x); 2606 } 2607 EXPORT_SYMBOL(kmem_cache_free); 2608 2609 /* 2610 * Object placement in a slab is made very easy because we always start at 2611 * offset 0. If we tune the size of the object to the alignment then we can 2612 * get the required alignment by putting one properly sized object after 2613 * another. 2614 * 2615 * Notice that the allocation order determines the sizes of the per cpu 2616 * caches. Each processor has always one slab available for allocations. 2617 * Increasing the allocation order reduces the number of times that slabs 2618 * must be moved on and off the partial lists and is therefore a factor in 2619 * locking overhead. 2620 */ 2621 2622 /* 2623 * Mininum / Maximum order of slab pages. This influences locking overhead 2624 * and slab fragmentation. A higher order reduces the number of partial slabs 2625 * and increases the number of allocations possible without having to 2626 * take the list_lock. 2627 */ 2628 static int slub_min_order; 2629 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2630 static int slub_min_objects; 2631 2632 /* 2633 * Merge control. If this is set then no merging of slab caches will occur. 2634 * (Could be removed. This was introduced to pacify the merge skeptics.) 2635 */ 2636 static int slub_nomerge; 2637 2638 /* 2639 * Calculate the order of allocation given an slab object size. 2640 * 2641 * The order of allocation has significant impact on performance and other 2642 * system components. Generally order 0 allocations should be preferred since 2643 * order 0 does not cause fragmentation in the page allocator. Larger objects 2644 * be problematic to put into order 0 slabs because there may be too much 2645 * unused space left. We go to a higher order if more than 1/16th of the slab 2646 * would be wasted. 2647 * 2648 * In order to reach satisfactory performance we must ensure that a minimum 2649 * number of objects is in one slab. Otherwise we may generate too much 2650 * activity on the partial lists which requires taking the list_lock. This is 2651 * less a concern for large slabs though which are rarely used. 2652 * 2653 * slub_max_order specifies the order where we begin to stop considering the 2654 * number of objects in a slab as critical. If we reach slub_max_order then 2655 * we try to keep the page order as low as possible. So we accept more waste 2656 * of space in favor of a small page order. 2657 * 2658 * Higher order allocations also allow the placement of more objects in a 2659 * slab and thereby reduce object handling overhead. If the user has 2660 * requested a higher mininum order then we start with that one instead of 2661 * the smallest order which will fit the object. 2662 */ 2663 static inline int slab_order(int size, int min_objects, 2664 int max_order, int fract_leftover, int reserved) 2665 { 2666 int order; 2667 int rem; 2668 int min_order = slub_min_order; 2669 2670 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2671 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2672 2673 for (order = max(min_order, 2674 fls(min_objects * size - 1) - PAGE_SHIFT); 2675 order <= max_order; order++) { 2676 2677 unsigned long slab_size = PAGE_SIZE << order; 2678 2679 if (slab_size < min_objects * size + reserved) 2680 continue; 2681 2682 rem = (slab_size - reserved) % size; 2683 2684 if (rem <= slab_size / fract_leftover) 2685 break; 2686 2687 } 2688 2689 return order; 2690 } 2691 2692 static inline int calculate_order(int size, int reserved) 2693 { 2694 int order; 2695 int min_objects; 2696 int fraction; 2697 int max_objects; 2698 2699 /* 2700 * Attempt to find best configuration for a slab. This 2701 * works by first attempting to generate a layout with 2702 * the best configuration and backing off gradually. 2703 * 2704 * First we reduce the acceptable waste in a slab. Then 2705 * we reduce the minimum objects required in a slab. 2706 */ 2707 min_objects = slub_min_objects; 2708 if (!min_objects) 2709 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2710 max_objects = order_objects(slub_max_order, size, reserved); 2711 min_objects = min(min_objects, max_objects); 2712 2713 while (min_objects > 1) { 2714 fraction = 16; 2715 while (fraction >= 4) { 2716 order = slab_order(size, min_objects, 2717 slub_max_order, fraction, reserved); 2718 if (order <= slub_max_order) 2719 return order; 2720 fraction /= 2; 2721 } 2722 min_objects--; 2723 } 2724 2725 /* 2726 * We were unable to place multiple objects in a slab. Now 2727 * lets see if we can place a single object there. 2728 */ 2729 order = slab_order(size, 1, slub_max_order, 1, reserved); 2730 if (order <= slub_max_order) 2731 return order; 2732 2733 /* 2734 * Doh this slab cannot be placed using slub_max_order. 2735 */ 2736 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2737 if (order < MAX_ORDER) 2738 return order; 2739 return -ENOSYS; 2740 } 2741 2742 /* 2743 * Figure out what the alignment of the objects will be. 2744 */ 2745 static unsigned long calculate_alignment(unsigned long flags, 2746 unsigned long align, unsigned long size) 2747 { 2748 /* 2749 * If the user wants hardware cache aligned objects then follow that 2750 * suggestion if the object is sufficiently large. 2751 * 2752 * The hardware cache alignment cannot override the specified 2753 * alignment though. If that is greater then use it. 2754 */ 2755 if (flags & SLAB_HWCACHE_ALIGN) { 2756 unsigned long ralign = cache_line_size(); 2757 while (size <= ralign / 2) 2758 ralign /= 2; 2759 align = max(align, ralign); 2760 } 2761 2762 if (align < ARCH_SLAB_MINALIGN) 2763 align = ARCH_SLAB_MINALIGN; 2764 2765 return ALIGN(align, sizeof(void *)); 2766 } 2767 2768 static void 2769 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 2770 { 2771 n->nr_partial = 0; 2772 spin_lock_init(&n->list_lock); 2773 INIT_LIST_HEAD(&n->partial); 2774 #ifdef CONFIG_SLUB_DEBUG 2775 atomic_long_set(&n->nr_slabs, 0); 2776 atomic_long_set(&n->total_objects, 0); 2777 INIT_LIST_HEAD(&n->full); 2778 #endif 2779 } 2780 2781 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2782 { 2783 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2784 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); 2785 2786 /* 2787 * Must align to double word boundary for the double cmpxchg 2788 * instructions to work; see __pcpu_double_call_return_bool(). 2789 */ 2790 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2791 2 * sizeof(void *)); 2792 2793 if (!s->cpu_slab) 2794 return 0; 2795 2796 init_kmem_cache_cpus(s); 2797 2798 return 1; 2799 } 2800 2801 static struct kmem_cache *kmem_cache_node; 2802 2803 /* 2804 * No kmalloc_node yet so do it by hand. We know that this is the first 2805 * slab on the node for this slabcache. There are no concurrent accesses 2806 * possible. 2807 * 2808 * Note that this function only works on the kmalloc_node_cache 2809 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2810 * memory on a fresh node that has no slab structures yet. 2811 */ 2812 static void early_kmem_cache_node_alloc(int node) 2813 { 2814 struct page *page; 2815 struct kmem_cache_node *n; 2816 2817 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2818 2819 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2820 2821 BUG_ON(!page); 2822 if (page_to_nid(page) != node) { 2823 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2824 "node %d\n", node); 2825 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2826 "in order to be able to continue\n"); 2827 } 2828 2829 n = page->freelist; 2830 BUG_ON(!n); 2831 page->freelist = get_freepointer(kmem_cache_node, n); 2832 page->inuse = 1; 2833 page->frozen = 0; 2834 kmem_cache_node->node[node] = n; 2835 #ifdef CONFIG_SLUB_DEBUG 2836 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2837 init_tracking(kmem_cache_node, n); 2838 #endif 2839 init_kmem_cache_node(n, kmem_cache_node); 2840 inc_slabs_node(kmem_cache_node, node, page->objects); 2841 2842 add_partial(n, page, DEACTIVATE_TO_HEAD); 2843 } 2844 2845 static void free_kmem_cache_nodes(struct kmem_cache *s) 2846 { 2847 int node; 2848 2849 for_each_node_state(node, N_NORMAL_MEMORY) { 2850 struct kmem_cache_node *n = s->node[node]; 2851 2852 if (n) 2853 kmem_cache_free(kmem_cache_node, n); 2854 2855 s->node[node] = NULL; 2856 } 2857 } 2858 2859 static int init_kmem_cache_nodes(struct kmem_cache *s) 2860 { 2861 int node; 2862 2863 for_each_node_state(node, N_NORMAL_MEMORY) { 2864 struct kmem_cache_node *n; 2865 2866 if (slab_state == DOWN) { 2867 early_kmem_cache_node_alloc(node); 2868 continue; 2869 } 2870 n = kmem_cache_alloc_node(kmem_cache_node, 2871 GFP_KERNEL, node); 2872 2873 if (!n) { 2874 free_kmem_cache_nodes(s); 2875 return 0; 2876 } 2877 2878 s->node[node] = n; 2879 init_kmem_cache_node(n, s); 2880 } 2881 return 1; 2882 } 2883 2884 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2885 { 2886 if (min < MIN_PARTIAL) 2887 min = MIN_PARTIAL; 2888 else if (min > MAX_PARTIAL) 2889 min = MAX_PARTIAL; 2890 s->min_partial = min; 2891 } 2892 2893 /* 2894 * calculate_sizes() determines the order and the distribution of data within 2895 * a slab object. 2896 */ 2897 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2898 { 2899 unsigned long flags = s->flags; 2900 unsigned long size = s->objsize; 2901 unsigned long align = s->align; 2902 int order; 2903 2904 /* 2905 * Round up object size to the next word boundary. We can only 2906 * place the free pointer at word boundaries and this determines 2907 * the possible location of the free pointer. 2908 */ 2909 size = ALIGN(size, sizeof(void *)); 2910 2911 #ifdef CONFIG_SLUB_DEBUG 2912 /* 2913 * Determine if we can poison the object itself. If the user of 2914 * the slab may touch the object after free or before allocation 2915 * then we should never poison the object itself. 2916 */ 2917 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2918 !s->ctor) 2919 s->flags |= __OBJECT_POISON; 2920 else 2921 s->flags &= ~__OBJECT_POISON; 2922 2923 2924 /* 2925 * If we are Redzoning then check if there is some space between the 2926 * end of the object and the free pointer. If not then add an 2927 * additional word to have some bytes to store Redzone information. 2928 */ 2929 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2930 size += sizeof(void *); 2931 #endif 2932 2933 /* 2934 * With that we have determined the number of bytes in actual use 2935 * by the object. This is the potential offset to the free pointer. 2936 */ 2937 s->inuse = size; 2938 2939 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2940 s->ctor)) { 2941 /* 2942 * Relocate free pointer after the object if it is not 2943 * permitted to overwrite the first word of the object on 2944 * kmem_cache_free. 2945 * 2946 * This is the case if we do RCU, have a constructor or 2947 * destructor or are poisoning the objects. 2948 */ 2949 s->offset = size; 2950 size += sizeof(void *); 2951 } 2952 2953 #ifdef CONFIG_SLUB_DEBUG 2954 if (flags & SLAB_STORE_USER) 2955 /* 2956 * Need to store information about allocs and frees after 2957 * the object. 2958 */ 2959 size += 2 * sizeof(struct track); 2960 2961 if (flags & SLAB_RED_ZONE) 2962 /* 2963 * Add some empty padding so that we can catch 2964 * overwrites from earlier objects rather than let 2965 * tracking information or the free pointer be 2966 * corrupted if a user writes before the start 2967 * of the object. 2968 */ 2969 size += sizeof(void *); 2970 #endif 2971 2972 /* 2973 * Determine the alignment based on various parameters that the 2974 * user specified and the dynamic determination of cache line size 2975 * on bootup. 2976 */ 2977 align = calculate_alignment(flags, align, s->objsize); 2978 s->align = align; 2979 2980 /* 2981 * SLUB stores one object immediately after another beginning from 2982 * offset 0. In order to align the objects we have to simply size 2983 * each object to conform to the alignment. 2984 */ 2985 size = ALIGN(size, align); 2986 s->size = size; 2987 if (forced_order >= 0) 2988 order = forced_order; 2989 else 2990 order = calculate_order(size, s->reserved); 2991 2992 if (order < 0) 2993 return 0; 2994 2995 s->allocflags = 0; 2996 if (order) 2997 s->allocflags |= __GFP_COMP; 2998 2999 if (s->flags & SLAB_CACHE_DMA) 3000 s->allocflags |= SLUB_DMA; 3001 3002 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3003 s->allocflags |= __GFP_RECLAIMABLE; 3004 3005 /* 3006 * Determine the number of objects per slab 3007 */ 3008 s->oo = oo_make(order, size, s->reserved); 3009 s->min = oo_make(get_order(size), size, s->reserved); 3010 if (oo_objects(s->oo) > oo_objects(s->max)) 3011 s->max = s->oo; 3012 3013 return !!oo_objects(s->oo); 3014 3015 } 3016 3017 static int kmem_cache_open(struct kmem_cache *s, 3018 const char *name, size_t size, 3019 size_t align, unsigned long flags, 3020 void (*ctor)(void *)) 3021 { 3022 memset(s, 0, kmem_size); 3023 s->name = name; 3024 s->ctor = ctor; 3025 s->objsize = size; 3026 s->align = align; 3027 s->flags = kmem_cache_flags(size, flags, name, ctor); 3028 s->reserved = 0; 3029 3030 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3031 s->reserved = sizeof(struct rcu_head); 3032 3033 if (!calculate_sizes(s, -1)) 3034 goto error; 3035 if (disable_higher_order_debug) { 3036 /* 3037 * Disable debugging flags that store metadata if the min slab 3038 * order increased. 3039 */ 3040 if (get_order(s->size) > get_order(s->objsize)) { 3041 s->flags &= ~DEBUG_METADATA_FLAGS; 3042 s->offset = 0; 3043 if (!calculate_sizes(s, -1)) 3044 goto error; 3045 } 3046 } 3047 3048 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3049 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3050 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3051 /* Enable fast mode */ 3052 s->flags |= __CMPXCHG_DOUBLE; 3053 #endif 3054 3055 /* 3056 * The larger the object size is, the more pages we want on the partial 3057 * list to avoid pounding the page allocator excessively. 3058 */ 3059 set_min_partial(s, ilog2(s->size) / 2); 3060 3061 /* 3062 * cpu_partial determined the maximum number of objects kept in the 3063 * per cpu partial lists of a processor. 3064 * 3065 * Per cpu partial lists mainly contain slabs that just have one 3066 * object freed. If they are used for allocation then they can be 3067 * filled up again with minimal effort. The slab will never hit the 3068 * per node partial lists and therefore no locking will be required. 3069 * 3070 * This setting also determines 3071 * 3072 * A) The number of objects from per cpu partial slabs dumped to the 3073 * per node list when we reach the limit. 3074 * B) The number of objects in cpu partial slabs to extract from the 3075 * per node list when we run out of per cpu objects. We only fetch 50% 3076 * to keep some capacity around for frees. 3077 */ 3078 if (kmem_cache_debug(s)) 3079 s->cpu_partial = 0; 3080 else if (s->size >= PAGE_SIZE) 3081 s->cpu_partial = 2; 3082 else if (s->size >= 1024) 3083 s->cpu_partial = 6; 3084 else if (s->size >= 256) 3085 s->cpu_partial = 13; 3086 else 3087 s->cpu_partial = 30; 3088 3089 s->refcount = 1; 3090 #ifdef CONFIG_NUMA 3091 s->remote_node_defrag_ratio = 1000; 3092 #endif 3093 if (!init_kmem_cache_nodes(s)) 3094 goto error; 3095 3096 if (alloc_kmem_cache_cpus(s)) 3097 return 1; 3098 3099 free_kmem_cache_nodes(s); 3100 error: 3101 if (flags & SLAB_PANIC) 3102 panic("Cannot create slab %s size=%lu realsize=%u " 3103 "order=%u offset=%u flags=%lx\n", 3104 s->name, (unsigned long)size, s->size, oo_order(s->oo), 3105 s->offset, flags); 3106 return 0; 3107 } 3108 3109 /* 3110 * Determine the size of a slab object 3111 */ 3112 unsigned int kmem_cache_size(struct kmem_cache *s) 3113 { 3114 return s->objsize; 3115 } 3116 EXPORT_SYMBOL(kmem_cache_size); 3117 3118 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3119 const char *text) 3120 { 3121 #ifdef CONFIG_SLUB_DEBUG 3122 void *addr = page_address(page); 3123 void *p; 3124 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3125 sizeof(long), GFP_ATOMIC); 3126 if (!map) 3127 return; 3128 slab_err(s, page, "%s", text); 3129 slab_lock(page); 3130 3131 get_map(s, page, map); 3132 for_each_object(p, s, addr, page->objects) { 3133 3134 if (!test_bit(slab_index(p, s, addr), map)) { 3135 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3136 p, p - addr); 3137 print_tracking(s, p); 3138 } 3139 } 3140 slab_unlock(page); 3141 kfree(map); 3142 #endif 3143 } 3144 3145 /* 3146 * Attempt to free all partial slabs on a node. 3147 * This is called from kmem_cache_close(). We must be the last thread 3148 * using the cache and therefore we do not need to lock anymore. 3149 */ 3150 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3151 { 3152 struct page *page, *h; 3153 3154 list_for_each_entry_safe(page, h, &n->partial, lru) { 3155 if (!page->inuse) { 3156 remove_partial(n, page); 3157 discard_slab(s, page); 3158 } else { 3159 list_slab_objects(s, page, 3160 "Objects remaining on kmem_cache_close()"); 3161 } 3162 } 3163 } 3164 3165 /* 3166 * Release all resources used by a slab cache. 3167 */ 3168 static inline int kmem_cache_close(struct kmem_cache *s) 3169 { 3170 int node; 3171 3172 flush_all(s); 3173 free_percpu(s->cpu_slab); 3174 /* Attempt to free all objects */ 3175 for_each_node_state(node, N_NORMAL_MEMORY) { 3176 struct kmem_cache_node *n = get_node(s, node); 3177 3178 free_partial(s, n); 3179 if (n->nr_partial || slabs_node(s, node)) 3180 return 1; 3181 } 3182 free_kmem_cache_nodes(s); 3183 return 0; 3184 } 3185 3186 /* 3187 * Close a cache and release the kmem_cache structure 3188 * (must be used for caches created using kmem_cache_create) 3189 */ 3190 void kmem_cache_destroy(struct kmem_cache *s) 3191 { 3192 down_write(&slub_lock); 3193 s->refcount--; 3194 if (!s->refcount) { 3195 list_del(&s->list); 3196 up_write(&slub_lock); 3197 if (kmem_cache_close(s)) { 3198 printk(KERN_ERR "SLUB %s: %s called for cache that " 3199 "still has objects.\n", s->name, __func__); 3200 dump_stack(); 3201 } 3202 if (s->flags & SLAB_DESTROY_BY_RCU) 3203 rcu_barrier(); 3204 sysfs_slab_remove(s); 3205 } else 3206 up_write(&slub_lock); 3207 } 3208 EXPORT_SYMBOL(kmem_cache_destroy); 3209 3210 /******************************************************************** 3211 * Kmalloc subsystem 3212 *******************************************************************/ 3213 3214 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 3215 EXPORT_SYMBOL(kmalloc_caches); 3216 3217 static struct kmem_cache *kmem_cache; 3218 3219 #ifdef CONFIG_ZONE_DMA 3220 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; 3221 #endif 3222 3223 static int __init setup_slub_min_order(char *str) 3224 { 3225 get_option(&str, &slub_min_order); 3226 3227 return 1; 3228 } 3229 3230 __setup("slub_min_order=", setup_slub_min_order); 3231 3232 static int __init setup_slub_max_order(char *str) 3233 { 3234 get_option(&str, &slub_max_order); 3235 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3236 3237 return 1; 3238 } 3239 3240 __setup("slub_max_order=", setup_slub_max_order); 3241 3242 static int __init setup_slub_min_objects(char *str) 3243 { 3244 get_option(&str, &slub_min_objects); 3245 3246 return 1; 3247 } 3248 3249 __setup("slub_min_objects=", setup_slub_min_objects); 3250 3251 static int __init setup_slub_nomerge(char *str) 3252 { 3253 slub_nomerge = 1; 3254 return 1; 3255 } 3256 3257 __setup("slub_nomerge", setup_slub_nomerge); 3258 3259 static struct kmem_cache *__init create_kmalloc_cache(const char *name, 3260 int size, unsigned int flags) 3261 { 3262 struct kmem_cache *s; 3263 3264 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3265 3266 /* 3267 * This function is called with IRQs disabled during early-boot on 3268 * single CPU so there's no need to take slub_lock here. 3269 */ 3270 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN, 3271 flags, NULL)) 3272 goto panic; 3273 3274 list_add(&s->list, &slab_caches); 3275 return s; 3276 3277 panic: 3278 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 3279 return NULL; 3280 } 3281 3282 /* 3283 * Conversion table for small slabs sizes / 8 to the index in the 3284 * kmalloc array. This is necessary for slabs < 192 since we have non power 3285 * of two cache sizes there. The size of larger slabs can be determined using 3286 * fls. 3287 */ 3288 static s8 size_index[24] = { 3289 3, /* 8 */ 3290 4, /* 16 */ 3291 5, /* 24 */ 3292 5, /* 32 */ 3293 6, /* 40 */ 3294 6, /* 48 */ 3295 6, /* 56 */ 3296 6, /* 64 */ 3297 1, /* 72 */ 3298 1, /* 80 */ 3299 1, /* 88 */ 3300 1, /* 96 */ 3301 7, /* 104 */ 3302 7, /* 112 */ 3303 7, /* 120 */ 3304 7, /* 128 */ 3305 2, /* 136 */ 3306 2, /* 144 */ 3307 2, /* 152 */ 3308 2, /* 160 */ 3309 2, /* 168 */ 3310 2, /* 176 */ 3311 2, /* 184 */ 3312 2 /* 192 */ 3313 }; 3314 3315 static inline int size_index_elem(size_t bytes) 3316 { 3317 return (bytes - 1) / 8; 3318 } 3319 3320 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 3321 { 3322 int index; 3323 3324 if (size <= 192) { 3325 if (!size) 3326 return ZERO_SIZE_PTR; 3327 3328 index = size_index[size_index_elem(size)]; 3329 } else 3330 index = fls(size - 1); 3331 3332 #ifdef CONFIG_ZONE_DMA 3333 if (unlikely((flags & SLUB_DMA))) 3334 return kmalloc_dma_caches[index]; 3335 3336 #endif 3337 return kmalloc_caches[index]; 3338 } 3339 3340 void *__kmalloc(size_t size, gfp_t flags) 3341 { 3342 struct kmem_cache *s; 3343 void *ret; 3344 3345 if (unlikely(size > SLUB_MAX_SIZE)) 3346 return kmalloc_large(size, flags); 3347 3348 s = get_slab(size, flags); 3349 3350 if (unlikely(ZERO_OR_NULL_PTR(s))) 3351 return s; 3352 3353 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); 3354 3355 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3356 3357 return ret; 3358 } 3359 EXPORT_SYMBOL(__kmalloc); 3360 3361 #ifdef CONFIG_NUMA 3362 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3363 { 3364 struct page *page; 3365 void *ptr = NULL; 3366 3367 flags |= __GFP_COMP | __GFP_NOTRACK; 3368 page = alloc_pages_node(node, flags, get_order(size)); 3369 if (page) 3370 ptr = page_address(page); 3371 3372 kmemleak_alloc(ptr, size, 1, flags); 3373 return ptr; 3374 } 3375 3376 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3377 { 3378 struct kmem_cache *s; 3379 void *ret; 3380 3381 if (unlikely(size > SLUB_MAX_SIZE)) { 3382 ret = kmalloc_large_node(size, flags, node); 3383 3384 trace_kmalloc_node(_RET_IP_, ret, 3385 size, PAGE_SIZE << get_order(size), 3386 flags, node); 3387 3388 return ret; 3389 } 3390 3391 s = get_slab(size, flags); 3392 3393 if (unlikely(ZERO_OR_NULL_PTR(s))) 3394 return s; 3395 3396 ret = slab_alloc(s, flags, node, _RET_IP_); 3397 3398 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3399 3400 return ret; 3401 } 3402 EXPORT_SYMBOL(__kmalloc_node); 3403 #endif 3404 3405 size_t ksize(const void *object) 3406 { 3407 struct page *page; 3408 3409 if (unlikely(object == ZERO_SIZE_PTR)) 3410 return 0; 3411 3412 page = virt_to_head_page(object); 3413 3414 if (unlikely(!PageSlab(page))) { 3415 WARN_ON(!PageCompound(page)); 3416 return PAGE_SIZE << compound_order(page); 3417 } 3418 3419 return slab_ksize(page->slab); 3420 } 3421 EXPORT_SYMBOL(ksize); 3422 3423 #ifdef CONFIG_SLUB_DEBUG 3424 bool verify_mem_not_deleted(const void *x) 3425 { 3426 struct page *page; 3427 void *object = (void *)x; 3428 unsigned long flags; 3429 bool rv; 3430 3431 if (unlikely(ZERO_OR_NULL_PTR(x))) 3432 return false; 3433 3434 local_irq_save(flags); 3435 3436 page = virt_to_head_page(x); 3437 if (unlikely(!PageSlab(page))) { 3438 /* maybe it was from stack? */ 3439 rv = true; 3440 goto out_unlock; 3441 } 3442 3443 slab_lock(page); 3444 if (on_freelist(page->slab, page, object)) { 3445 object_err(page->slab, page, object, "Object is on free-list"); 3446 rv = false; 3447 } else { 3448 rv = true; 3449 } 3450 slab_unlock(page); 3451 3452 out_unlock: 3453 local_irq_restore(flags); 3454 return rv; 3455 } 3456 EXPORT_SYMBOL(verify_mem_not_deleted); 3457 #endif 3458 3459 void kfree(const void *x) 3460 { 3461 struct page *page; 3462 void *object = (void *)x; 3463 3464 trace_kfree(_RET_IP_, x); 3465 3466 if (unlikely(ZERO_OR_NULL_PTR(x))) 3467 return; 3468 3469 page = virt_to_head_page(x); 3470 if (unlikely(!PageSlab(page))) { 3471 BUG_ON(!PageCompound(page)); 3472 kmemleak_free(x); 3473 put_page(page); 3474 return; 3475 } 3476 slab_free(page->slab, page, object, _RET_IP_); 3477 } 3478 EXPORT_SYMBOL(kfree); 3479 3480 /* 3481 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3482 * the remaining slabs by the number of items in use. The slabs with the 3483 * most items in use come first. New allocations will then fill those up 3484 * and thus they can be removed from the partial lists. 3485 * 3486 * The slabs with the least items are placed last. This results in them 3487 * being allocated from last increasing the chance that the last objects 3488 * are freed in them. 3489 */ 3490 int kmem_cache_shrink(struct kmem_cache *s) 3491 { 3492 int node; 3493 int i; 3494 struct kmem_cache_node *n; 3495 struct page *page; 3496 struct page *t; 3497 int objects = oo_objects(s->max); 3498 struct list_head *slabs_by_inuse = 3499 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3500 unsigned long flags; 3501 3502 if (!slabs_by_inuse) 3503 return -ENOMEM; 3504 3505 flush_all(s); 3506 for_each_node_state(node, N_NORMAL_MEMORY) { 3507 n = get_node(s, node); 3508 3509 if (!n->nr_partial) 3510 continue; 3511 3512 for (i = 0; i < objects; i++) 3513 INIT_LIST_HEAD(slabs_by_inuse + i); 3514 3515 spin_lock_irqsave(&n->list_lock, flags); 3516 3517 /* 3518 * Build lists indexed by the items in use in each slab. 3519 * 3520 * Note that concurrent frees may occur while we hold the 3521 * list_lock. page->inuse here is the upper limit. 3522 */ 3523 list_for_each_entry_safe(page, t, &n->partial, lru) { 3524 list_move(&page->lru, slabs_by_inuse + page->inuse); 3525 if (!page->inuse) 3526 n->nr_partial--; 3527 } 3528 3529 /* 3530 * Rebuild the partial list with the slabs filled up most 3531 * first and the least used slabs at the end. 3532 */ 3533 for (i = objects - 1; i > 0; i--) 3534 list_splice(slabs_by_inuse + i, n->partial.prev); 3535 3536 spin_unlock_irqrestore(&n->list_lock, flags); 3537 3538 /* Release empty slabs */ 3539 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3540 discard_slab(s, page); 3541 } 3542 3543 kfree(slabs_by_inuse); 3544 return 0; 3545 } 3546 EXPORT_SYMBOL(kmem_cache_shrink); 3547 3548 #if defined(CONFIG_MEMORY_HOTPLUG) 3549 static int slab_mem_going_offline_callback(void *arg) 3550 { 3551 struct kmem_cache *s; 3552 3553 down_read(&slub_lock); 3554 list_for_each_entry(s, &slab_caches, list) 3555 kmem_cache_shrink(s); 3556 up_read(&slub_lock); 3557 3558 return 0; 3559 } 3560 3561 static void slab_mem_offline_callback(void *arg) 3562 { 3563 struct kmem_cache_node *n; 3564 struct kmem_cache *s; 3565 struct memory_notify *marg = arg; 3566 int offline_node; 3567 3568 offline_node = marg->status_change_nid; 3569 3570 /* 3571 * If the node still has available memory. we need kmem_cache_node 3572 * for it yet. 3573 */ 3574 if (offline_node < 0) 3575 return; 3576 3577 down_read(&slub_lock); 3578 list_for_each_entry(s, &slab_caches, list) { 3579 n = get_node(s, offline_node); 3580 if (n) { 3581 /* 3582 * if n->nr_slabs > 0, slabs still exist on the node 3583 * that is going down. We were unable to free them, 3584 * and offline_pages() function shouldn't call this 3585 * callback. So, we must fail. 3586 */ 3587 BUG_ON(slabs_node(s, offline_node)); 3588 3589 s->node[offline_node] = NULL; 3590 kmem_cache_free(kmem_cache_node, n); 3591 } 3592 } 3593 up_read(&slub_lock); 3594 } 3595 3596 static int slab_mem_going_online_callback(void *arg) 3597 { 3598 struct kmem_cache_node *n; 3599 struct kmem_cache *s; 3600 struct memory_notify *marg = arg; 3601 int nid = marg->status_change_nid; 3602 int ret = 0; 3603 3604 /* 3605 * If the node's memory is already available, then kmem_cache_node is 3606 * already created. Nothing to do. 3607 */ 3608 if (nid < 0) 3609 return 0; 3610 3611 /* 3612 * We are bringing a node online. No memory is available yet. We must 3613 * allocate a kmem_cache_node structure in order to bring the node 3614 * online. 3615 */ 3616 down_read(&slub_lock); 3617 list_for_each_entry(s, &slab_caches, list) { 3618 /* 3619 * XXX: kmem_cache_alloc_node will fallback to other nodes 3620 * since memory is not yet available from the node that 3621 * is brought up. 3622 */ 3623 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3624 if (!n) { 3625 ret = -ENOMEM; 3626 goto out; 3627 } 3628 init_kmem_cache_node(n, s); 3629 s->node[nid] = n; 3630 } 3631 out: 3632 up_read(&slub_lock); 3633 return ret; 3634 } 3635 3636 static int slab_memory_callback(struct notifier_block *self, 3637 unsigned long action, void *arg) 3638 { 3639 int ret = 0; 3640 3641 switch (action) { 3642 case MEM_GOING_ONLINE: 3643 ret = slab_mem_going_online_callback(arg); 3644 break; 3645 case MEM_GOING_OFFLINE: 3646 ret = slab_mem_going_offline_callback(arg); 3647 break; 3648 case MEM_OFFLINE: 3649 case MEM_CANCEL_ONLINE: 3650 slab_mem_offline_callback(arg); 3651 break; 3652 case MEM_ONLINE: 3653 case MEM_CANCEL_OFFLINE: 3654 break; 3655 } 3656 if (ret) 3657 ret = notifier_from_errno(ret); 3658 else 3659 ret = NOTIFY_OK; 3660 return ret; 3661 } 3662 3663 #endif /* CONFIG_MEMORY_HOTPLUG */ 3664 3665 /******************************************************************** 3666 * Basic setup of slabs 3667 *******************************************************************/ 3668 3669 /* 3670 * Used for early kmem_cache structures that were allocated using 3671 * the page allocator 3672 */ 3673 3674 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s) 3675 { 3676 int node; 3677 3678 list_add(&s->list, &slab_caches); 3679 s->refcount = -1; 3680 3681 for_each_node_state(node, N_NORMAL_MEMORY) { 3682 struct kmem_cache_node *n = get_node(s, node); 3683 struct page *p; 3684 3685 if (n) { 3686 list_for_each_entry(p, &n->partial, lru) 3687 p->slab = s; 3688 3689 #ifdef CONFIG_SLUB_DEBUG 3690 list_for_each_entry(p, &n->full, lru) 3691 p->slab = s; 3692 #endif 3693 } 3694 } 3695 } 3696 3697 void __init kmem_cache_init(void) 3698 { 3699 int i; 3700 int caches = 0; 3701 struct kmem_cache *temp_kmem_cache; 3702 int order; 3703 struct kmem_cache *temp_kmem_cache_node; 3704 unsigned long kmalloc_size; 3705 3706 if (debug_guardpage_minorder()) 3707 slub_max_order = 0; 3708 3709 kmem_size = offsetof(struct kmem_cache, node) + 3710 nr_node_ids * sizeof(struct kmem_cache_node *); 3711 3712 /* Allocate two kmem_caches from the page allocator */ 3713 kmalloc_size = ALIGN(kmem_size, cache_line_size()); 3714 order = get_order(2 * kmalloc_size); 3715 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order); 3716 3717 /* 3718 * Must first have the slab cache available for the allocations of the 3719 * struct kmem_cache_node's. There is special bootstrap code in 3720 * kmem_cache_open for slab_state == DOWN. 3721 */ 3722 kmem_cache_node = (void *)kmem_cache + kmalloc_size; 3723 3724 kmem_cache_open(kmem_cache_node, "kmem_cache_node", 3725 sizeof(struct kmem_cache_node), 3726 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3727 3728 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3729 3730 /* Able to allocate the per node structures */ 3731 slab_state = PARTIAL; 3732 3733 temp_kmem_cache = kmem_cache; 3734 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size, 3735 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3736 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3737 memcpy(kmem_cache, temp_kmem_cache, kmem_size); 3738 3739 /* 3740 * Allocate kmem_cache_node properly from the kmem_cache slab. 3741 * kmem_cache_node is separately allocated so no need to 3742 * update any list pointers. 3743 */ 3744 temp_kmem_cache_node = kmem_cache_node; 3745 3746 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3747 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size); 3748 3749 kmem_cache_bootstrap_fixup(kmem_cache_node); 3750 3751 caches++; 3752 kmem_cache_bootstrap_fixup(kmem_cache); 3753 caches++; 3754 /* Free temporary boot structure */ 3755 free_pages((unsigned long)temp_kmem_cache, order); 3756 3757 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3758 3759 /* 3760 * Patch up the size_index table if we have strange large alignment 3761 * requirements for the kmalloc array. This is only the case for 3762 * MIPS it seems. The standard arches will not generate any code here. 3763 * 3764 * Largest permitted alignment is 256 bytes due to the way we 3765 * handle the index determination for the smaller caches. 3766 * 3767 * Make sure that nothing crazy happens if someone starts tinkering 3768 * around with ARCH_KMALLOC_MINALIGN 3769 */ 3770 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3771 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3772 3773 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3774 int elem = size_index_elem(i); 3775 if (elem >= ARRAY_SIZE(size_index)) 3776 break; 3777 size_index[elem] = KMALLOC_SHIFT_LOW; 3778 } 3779 3780 if (KMALLOC_MIN_SIZE == 64) { 3781 /* 3782 * The 96 byte size cache is not used if the alignment 3783 * is 64 byte. 3784 */ 3785 for (i = 64 + 8; i <= 96; i += 8) 3786 size_index[size_index_elem(i)] = 7; 3787 } else if (KMALLOC_MIN_SIZE == 128) { 3788 /* 3789 * The 192 byte sized cache is not used if the alignment 3790 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3791 * instead. 3792 */ 3793 for (i = 128 + 8; i <= 192; i += 8) 3794 size_index[size_index_elem(i)] = 8; 3795 } 3796 3797 /* Caches that are not of the two-to-the-power-of size */ 3798 if (KMALLOC_MIN_SIZE <= 32) { 3799 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); 3800 caches++; 3801 } 3802 3803 if (KMALLOC_MIN_SIZE <= 64) { 3804 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); 3805 caches++; 3806 } 3807 3808 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3809 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); 3810 caches++; 3811 } 3812 3813 slab_state = UP; 3814 3815 /* Provide the correct kmalloc names now that the caches are up */ 3816 if (KMALLOC_MIN_SIZE <= 32) { 3817 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); 3818 BUG_ON(!kmalloc_caches[1]->name); 3819 } 3820 3821 if (KMALLOC_MIN_SIZE <= 64) { 3822 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); 3823 BUG_ON(!kmalloc_caches[2]->name); 3824 } 3825 3826 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3827 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3828 3829 BUG_ON(!s); 3830 kmalloc_caches[i]->name = s; 3831 } 3832 3833 #ifdef CONFIG_SMP 3834 register_cpu_notifier(&slab_notifier); 3835 #endif 3836 3837 #ifdef CONFIG_ZONE_DMA 3838 for (i = 0; i < SLUB_PAGE_SHIFT; i++) { 3839 struct kmem_cache *s = kmalloc_caches[i]; 3840 3841 if (s && s->size) { 3842 char *name = kasprintf(GFP_NOWAIT, 3843 "dma-kmalloc-%d", s->objsize); 3844 3845 BUG_ON(!name); 3846 kmalloc_dma_caches[i] = create_kmalloc_cache(name, 3847 s->objsize, SLAB_CACHE_DMA); 3848 } 3849 } 3850 #endif 3851 printk(KERN_INFO 3852 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3853 " CPUs=%d, Nodes=%d\n", 3854 caches, cache_line_size(), 3855 slub_min_order, slub_max_order, slub_min_objects, 3856 nr_cpu_ids, nr_node_ids); 3857 } 3858 3859 void __init kmem_cache_init_late(void) 3860 { 3861 } 3862 3863 /* 3864 * Find a mergeable slab cache 3865 */ 3866 static int slab_unmergeable(struct kmem_cache *s) 3867 { 3868 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3869 return 1; 3870 3871 if (s->ctor) 3872 return 1; 3873 3874 /* 3875 * We may have set a slab to be unmergeable during bootstrap. 3876 */ 3877 if (s->refcount < 0) 3878 return 1; 3879 3880 return 0; 3881 } 3882 3883 static struct kmem_cache *find_mergeable(size_t size, 3884 size_t align, unsigned long flags, const char *name, 3885 void (*ctor)(void *)) 3886 { 3887 struct kmem_cache *s; 3888 3889 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3890 return NULL; 3891 3892 if (ctor) 3893 return NULL; 3894 3895 size = ALIGN(size, sizeof(void *)); 3896 align = calculate_alignment(flags, align, size); 3897 size = ALIGN(size, align); 3898 flags = kmem_cache_flags(size, flags, name, NULL); 3899 3900 list_for_each_entry(s, &slab_caches, list) { 3901 if (slab_unmergeable(s)) 3902 continue; 3903 3904 if (size > s->size) 3905 continue; 3906 3907 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3908 continue; 3909 /* 3910 * Check if alignment is compatible. 3911 * Courtesy of Adrian Drzewiecki 3912 */ 3913 if ((s->size & ~(align - 1)) != s->size) 3914 continue; 3915 3916 if (s->size - size >= sizeof(void *)) 3917 continue; 3918 3919 return s; 3920 } 3921 return NULL; 3922 } 3923 3924 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3925 size_t align, unsigned long flags, void (*ctor)(void *)) 3926 { 3927 struct kmem_cache *s; 3928 char *n; 3929 3930 if (WARN_ON(!name)) 3931 return NULL; 3932 3933 down_write(&slub_lock); 3934 s = find_mergeable(size, align, flags, name, ctor); 3935 if (s) { 3936 s->refcount++; 3937 /* 3938 * Adjust the object sizes so that we clear 3939 * the complete object on kzalloc. 3940 */ 3941 s->objsize = max(s->objsize, (int)size); 3942 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3943 3944 if (sysfs_slab_alias(s, name)) { 3945 s->refcount--; 3946 goto err; 3947 } 3948 up_write(&slub_lock); 3949 return s; 3950 } 3951 3952 n = kstrdup(name, GFP_KERNEL); 3953 if (!n) 3954 goto err; 3955 3956 s = kmalloc(kmem_size, GFP_KERNEL); 3957 if (s) { 3958 if (kmem_cache_open(s, n, 3959 size, align, flags, ctor)) { 3960 list_add(&s->list, &slab_caches); 3961 up_write(&slub_lock); 3962 if (sysfs_slab_add(s)) { 3963 down_write(&slub_lock); 3964 list_del(&s->list); 3965 kfree(n); 3966 kfree(s); 3967 goto err; 3968 } 3969 return s; 3970 } 3971 kfree(n); 3972 kfree(s); 3973 } 3974 err: 3975 up_write(&slub_lock); 3976 3977 if (flags & SLAB_PANIC) 3978 panic("Cannot create slabcache %s\n", name); 3979 else 3980 s = NULL; 3981 return s; 3982 } 3983 EXPORT_SYMBOL(kmem_cache_create); 3984 3985 #ifdef CONFIG_SMP 3986 /* 3987 * Use the cpu notifier to insure that the cpu slabs are flushed when 3988 * necessary. 3989 */ 3990 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3991 unsigned long action, void *hcpu) 3992 { 3993 long cpu = (long)hcpu; 3994 struct kmem_cache *s; 3995 unsigned long flags; 3996 3997 switch (action) { 3998 case CPU_UP_CANCELED: 3999 case CPU_UP_CANCELED_FROZEN: 4000 case CPU_DEAD: 4001 case CPU_DEAD_FROZEN: 4002 down_read(&slub_lock); 4003 list_for_each_entry(s, &slab_caches, list) { 4004 local_irq_save(flags); 4005 __flush_cpu_slab(s, cpu); 4006 local_irq_restore(flags); 4007 } 4008 up_read(&slub_lock); 4009 break; 4010 default: 4011 break; 4012 } 4013 return NOTIFY_OK; 4014 } 4015 4016 static struct notifier_block __cpuinitdata slab_notifier = { 4017 .notifier_call = slab_cpuup_callback 4018 }; 4019 4020 #endif 4021 4022 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4023 { 4024 struct kmem_cache *s; 4025 void *ret; 4026 4027 if (unlikely(size > SLUB_MAX_SIZE)) 4028 return kmalloc_large(size, gfpflags); 4029 4030 s = get_slab(size, gfpflags); 4031 4032 if (unlikely(ZERO_OR_NULL_PTR(s))) 4033 return s; 4034 4035 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); 4036 4037 /* Honor the call site pointer we received. */ 4038 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4039 4040 return ret; 4041 } 4042 4043 #ifdef CONFIG_NUMA 4044 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4045 int node, unsigned long caller) 4046 { 4047 struct kmem_cache *s; 4048 void *ret; 4049 4050 if (unlikely(size > SLUB_MAX_SIZE)) { 4051 ret = kmalloc_large_node(size, gfpflags, node); 4052 4053 trace_kmalloc_node(caller, ret, 4054 size, PAGE_SIZE << get_order(size), 4055 gfpflags, node); 4056 4057 return ret; 4058 } 4059 4060 s = get_slab(size, gfpflags); 4061 4062 if (unlikely(ZERO_OR_NULL_PTR(s))) 4063 return s; 4064 4065 ret = slab_alloc(s, gfpflags, node, caller); 4066 4067 /* Honor the call site pointer we received. */ 4068 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4069 4070 return ret; 4071 } 4072 #endif 4073 4074 #ifdef CONFIG_SYSFS 4075 static int count_inuse(struct page *page) 4076 { 4077 return page->inuse; 4078 } 4079 4080 static int count_total(struct page *page) 4081 { 4082 return page->objects; 4083 } 4084 #endif 4085 4086 #ifdef CONFIG_SLUB_DEBUG 4087 static int validate_slab(struct kmem_cache *s, struct page *page, 4088 unsigned long *map) 4089 { 4090 void *p; 4091 void *addr = page_address(page); 4092 4093 if (!check_slab(s, page) || 4094 !on_freelist(s, page, NULL)) 4095 return 0; 4096 4097 /* Now we know that a valid freelist exists */ 4098 bitmap_zero(map, page->objects); 4099 4100 get_map(s, page, map); 4101 for_each_object(p, s, addr, page->objects) { 4102 if (test_bit(slab_index(p, s, addr), map)) 4103 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4104 return 0; 4105 } 4106 4107 for_each_object(p, s, addr, page->objects) 4108 if (!test_bit(slab_index(p, s, addr), map)) 4109 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4110 return 0; 4111 return 1; 4112 } 4113 4114 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4115 unsigned long *map) 4116 { 4117 slab_lock(page); 4118 validate_slab(s, page, map); 4119 slab_unlock(page); 4120 } 4121 4122 static int validate_slab_node(struct kmem_cache *s, 4123 struct kmem_cache_node *n, unsigned long *map) 4124 { 4125 unsigned long count = 0; 4126 struct page *page; 4127 unsigned long flags; 4128 4129 spin_lock_irqsave(&n->list_lock, flags); 4130 4131 list_for_each_entry(page, &n->partial, lru) { 4132 validate_slab_slab(s, page, map); 4133 count++; 4134 } 4135 if (count != n->nr_partial) 4136 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 4137 "counter=%ld\n", s->name, count, n->nr_partial); 4138 4139 if (!(s->flags & SLAB_STORE_USER)) 4140 goto out; 4141 4142 list_for_each_entry(page, &n->full, lru) { 4143 validate_slab_slab(s, page, map); 4144 count++; 4145 } 4146 if (count != atomic_long_read(&n->nr_slabs)) 4147 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 4148 "counter=%ld\n", s->name, count, 4149 atomic_long_read(&n->nr_slabs)); 4150 4151 out: 4152 spin_unlock_irqrestore(&n->list_lock, flags); 4153 return count; 4154 } 4155 4156 static long validate_slab_cache(struct kmem_cache *s) 4157 { 4158 int node; 4159 unsigned long count = 0; 4160 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4161 sizeof(unsigned long), GFP_KERNEL); 4162 4163 if (!map) 4164 return -ENOMEM; 4165 4166 flush_all(s); 4167 for_each_node_state(node, N_NORMAL_MEMORY) { 4168 struct kmem_cache_node *n = get_node(s, node); 4169 4170 count += validate_slab_node(s, n, map); 4171 } 4172 kfree(map); 4173 return count; 4174 } 4175 /* 4176 * Generate lists of code addresses where slabcache objects are allocated 4177 * and freed. 4178 */ 4179 4180 struct location { 4181 unsigned long count; 4182 unsigned long addr; 4183 long long sum_time; 4184 long min_time; 4185 long max_time; 4186 long min_pid; 4187 long max_pid; 4188 DECLARE_BITMAP(cpus, NR_CPUS); 4189 nodemask_t nodes; 4190 }; 4191 4192 struct loc_track { 4193 unsigned long max; 4194 unsigned long count; 4195 struct location *loc; 4196 }; 4197 4198 static void free_loc_track(struct loc_track *t) 4199 { 4200 if (t->max) 4201 free_pages((unsigned long)t->loc, 4202 get_order(sizeof(struct location) * t->max)); 4203 } 4204 4205 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4206 { 4207 struct location *l; 4208 int order; 4209 4210 order = get_order(sizeof(struct location) * max); 4211 4212 l = (void *)__get_free_pages(flags, order); 4213 if (!l) 4214 return 0; 4215 4216 if (t->count) { 4217 memcpy(l, t->loc, sizeof(struct location) * t->count); 4218 free_loc_track(t); 4219 } 4220 t->max = max; 4221 t->loc = l; 4222 return 1; 4223 } 4224 4225 static int add_location(struct loc_track *t, struct kmem_cache *s, 4226 const struct track *track) 4227 { 4228 long start, end, pos; 4229 struct location *l; 4230 unsigned long caddr; 4231 unsigned long age = jiffies - track->when; 4232 4233 start = -1; 4234 end = t->count; 4235 4236 for ( ; ; ) { 4237 pos = start + (end - start + 1) / 2; 4238 4239 /* 4240 * There is nothing at "end". If we end up there 4241 * we need to add something to before end. 4242 */ 4243 if (pos == end) 4244 break; 4245 4246 caddr = t->loc[pos].addr; 4247 if (track->addr == caddr) { 4248 4249 l = &t->loc[pos]; 4250 l->count++; 4251 if (track->when) { 4252 l->sum_time += age; 4253 if (age < l->min_time) 4254 l->min_time = age; 4255 if (age > l->max_time) 4256 l->max_time = age; 4257 4258 if (track->pid < l->min_pid) 4259 l->min_pid = track->pid; 4260 if (track->pid > l->max_pid) 4261 l->max_pid = track->pid; 4262 4263 cpumask_set_cpu(track->cpu, 4264 to_cpumask(l->cpus)); 4265 } 4266 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4267 return 1; 4268 } 4269 4270 if (track->addr < caddr) 4271 end = pos; 4272 else 4273 start = pos; 4274 } 4275 4276 /* 4277 * Not found. Insert new tracking element. 4278 */ 4279 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4280 return 0; 4281 4282 l = t->loc + pos; 4283 if (pos < t->count) 4284 memmove(l + 1, l, 4285 (t->count - pos) * sizeof(struct location)); 4286 t->count++; 4287 l->count = 1; 4288 l->addr = track->addr; 4289 l->sum_time = age; 4290 l->min_time = age; 4291 l->max_time = age; 4292 l->min_pid = track->pid; 4293 l->max_pid = track->pid; 4294 cpumask_clear(to_cpumask(l->cpus)); 4295 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4296 nodes_clear(l->nodes); 4297 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4298 return 1; 4299 } 4300 4301 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4302 struct page *page, enum track_item alloc, 4303 unsigned long *map) 4304 { 4305 void *addr = page_address(page); 4306 void *p; 4307 4308 bitmap_zero(map, page->objects); 4309 get_map(s, page, map); 4310 4311 for_each_object(p, s, addr, page->objects) 4312 if (!test_bit(slab_index(p, s, addr), map)) 4313 add_location(t, s, get_track(s, p, alloc)); 4314 } 4315 4316 static int list_locations(struct kmem_cache *s, char *buf, 4317 enum track_item alloc) 4318 { 4319 int len = 0; 4320 unsigned long i; 4321 struct loc_track t = { 0, 0, NULL }; 4322 int node; 4323 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4324 sizeof(unsigned long), GFP_KERNEL); 4325 4326 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4327 GFP_TEMPORARY)) { 4328 kfree(map); 4329 return sprintf(buf, "Out of memory\n"); 4330 } 4331 /* Push back cpu slabs */ 4332 flush_all(s); 4333 4334 for_each_node_state(node, N_NORMAL_MEMORY) { 4335 struct kmem_cache_node *n = get_node(s, node); 4336 unsigned long flags; 4337 struct page *page; 4338 4339 if (!atomic_long_read(&n->nr_slabs)) 4340 continue; 4341 4342 spin_lock_irqsave(&n->list_lock, flags); 4343 list_for_each_entry(page, &n->partial, lru) 4344 process_slab(&t, s, page, alloc, map); 4345 list_for_each_entry(page, &n->full, lru) 4346 process_slab(&t, s, page, alloc, map); 4347 spin_unlock_irqrestore(&n->list_lock, flags); 4348 } 4349 4350 for (i = 0; i < t.count; i++) { 4351 struct location *l = &t.loc[i]; 4352 4353 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4354 break; 4355 len += sprintf(buf + len, "%7ld ", l->count); 4356 4357 if (l->addr) 4358 len += sprintf(buf + len, "%pS", (void *)l->addr); 4359 else 4360 len += sprintf(buf + len, "<not-available>"); 4361 4362 if (l->sum_time != l->min_time) { 4363 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4364 l->min_time, 4365 (long)div_u64(l->sum_time, l->count), 4366 l->max_time); 4367 } else 4368 len += sprintf(buf + len, " age=%ld", 4369 l->min_time); 4370 4371 if (l->min_pid != l->max_pid) 4372 len += sprintf(buf + len, " pid=%ld-%ld", 4373 l->min_pid, l->max_pid); 4374 else 4375 len += sprintf(buf + len, " pid=%ld", 4376 l->min_pid); 4377 4378 if (num_online_cpus() > 1 && 4379 !cpumask_empty(to_cpumask(l->cpus)) && 4380 len < PAGE_SIZE - 60) { 4381 len += sprintf(buf + len, " cpus="); 4382 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4383 to_cpumask(l->cpus)); 4384 } 4385 4386 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4387 len < PAGE_SIZE - 60) { 4388 len += sprintf(buf + len, " nodes="); 4389 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4390 l->nodes); 4391 } 4392 4393 len += sprintf(buf + len, "\n"); 4394 } 4395 4396 free_loc_track(&t); 4397 kfree(map); 4398 if (!t.count) 4399 len += sprintf(buf, "No data\n"); 4400 return len; 4401 } 4402 #endif 4403 4404 #ifdef SLUB_RESILIENCY_TEST 4405 static void resiliency_test(void) 4406 { 4407 u8 *p; 4408 4409 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); 4410 4411 printk(KERN_ERR "SLUB resiliency testing\n"); 4412 printk(KERN_ERR "-----------------------\n"); 4413 printk(KERN_ERR "A. Corruption after allocation\n"); 4414 4415 p = kzalloc(16, GFP_KERNEL); 4416 p[16] = 0x12; 4417 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4418 " 0x12->0x%p\n\n", p + 16); 4419 4420 validate_slab_cache(kmalloc_caches[4]); 4421 4422 /* Hmmm... The next two are dangerous */ 4423 p = kzalloc(32, GFP_KERNEL); 4424 p[32 + sizeof(void *)] = 0x34; 4425 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4426 " 0x34 -> -0x%p\n", p); 4427 printk(KERN_ERR 4428 "If allocated object is overwritten then not detectable\n\n"); 4429 4430 validate_slab_cache(kmalloc_caches[5]); 4431 p = kzalloc(64, GFP_KERNEL); 4432 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4433 *p = 0x56; 4434 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4435 p); 4436 printk(KERN_ERR 4437 "If allocated object is overwritten then not detectable\n\n"); 4438 validate_slab_cache(kmalloc_caches[6]); 4439 4440 printk(KERN_ERR "\nB. Corruption after free\n"); 4441 p = kzalloc(128, GFP_KERNEL); 4442 kfree(p); 4443 *p = 0x78; 4444 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4445 validate_slab_cache(kmalloc_caches[7]); 4446 4447 p = kzalloc(256, GFP_KERNEL); 4448 kfree(p); 4449 p[50] = 0x9a; 4450 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4451 p); 4452 validate_slab_cache(kmalloc_caches[8]); 4453 4454 p = kzalloc(512, GFP_KERNEL); 4455 kfree(p); 4456 p[512] = 0xab; 4457 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4458 validate_slab_cache(kmalloc_caches[9]); 4459 } 4460 #else 4461 #ifdef CONFIG_SYSFS 4462 static void resiliency_test(void) {}; 4463 #endif 4464 #endif 4465 4466 #ifdef CONFIG_SYSFS 4467 enum slab_stat_type { 4468 SL_ALL, /* All slabs */ 4469 SL_PARTIAL, /* Only partially allocated slabs */ 4470 SL_CPU, /* Only slabs used for cpu caches */ 4471 SL_OBJECTS, /* Determine allocated objects not slabs */ 4472 SL_TOTAL /* Determine object capacity not slabs */ 4473 }; 4474 4475 #define SO_ALL (1 << SL_ALL) 4476 #define SO_PARTIAL (1 << SL_PARTIAL) 4477 #define SO_CPU (1 << SL_CPU) 4478 #define SO_OBJECTS (1 << SL_OBJECTS) 4479 #define SO_TOTAL (1 << SL_TOTAL) 4480 4481 static ssize_t show_slab_objects(struct kmem_cache *s, 4482 char *buf, unsigned long flags) 4483 { 4484 unsigned long total = 0; 4485 int node; 4486 int x; 4487 unsigned long *nodes; 4488 unsigned long *per_cpu; 4489 4490 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4491 if (!nodes) 4492 return -ENOMEM; 4493 per_cpu = nodes + nr_node_ids; 4494 4495 if (flags & SO_CPU) { 4496 int cpu; 4497 4498 for_each_possible_cpu(cpu) { 4499 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 4500 int node = ACCESS_ONCE(c->node); 4501 struct page *page; 4502 4503 if (node < 0) 4504 continue; 4505 page = ACCESS_ONCE(c->page); 4506 if (page) { 4507 if (flags & SO_TOTAL) 4508 x = page->objects; 4509 else if (flags & SO_OBJECTS) 4510 x = page->inuse; 4511 else 4512 x = 1; 4513 4514 total += x; 4515 nodes[node] += x; 4516 } 4517 page = c->partial; 4518 4519 if (page) { 4520 x = page->pobjects; 4521 total += x; 4522 nodes[node] += x; 4523 } 4524 per_cpu[node]++; 4525 } 4526 } 4527 4528 lock_memory_hotplug(); 4529 #ifdef CONFIG_SLUB_DEBUG 4530 if (flags & SO_ALL) { 4531 for_each_node_state(node, N_NORMAL_MEMORY) { 4532 struct kmem_cache_node *n = get_node(s, node); 4533 4534 if (flags & SO_TOTAL) 4535 x = atomic_long_read(&n->total_objects); 4536 else if (flags & SO_OBJECTS) 4537 x = atomic_long_read(&n->total_objects) - 4538 count_partial(n, count_free); 4539 4540 else 4541 x = atomic_long_read(&n->nr_slabs); 4542 total += x; 4543 nodes[node] += x; 4544 } 4545 4546 } else 4547 #endif 4548 if (flags & SO_PARTIAL) { 4549 for_each_node_state(node, N_NORMAL_MEMORY) { 4550 struct kmem_cache_node *n = get_node(s, node); 4551 4552 if (flags & SO_TOTAL) 4553 x = count_partial(n, count_total); 4554 else if (flags & SO_OBJECTS) 4555 x = count_partial(n, count_inuse); 4556 else 4557 x = n->nr_partial; 4558 total += x; 4559 nodes[node] += x; 4560 } 4561 } 4562 x = sprintf(buf, "%lu", total); 4563 #ifdef CONFIG_NUMA 4564 for_each_node_state(node, N_NORMAL_MEMORY) 4565 if (nodes[node]) 4566 x += sprintf(buf + x, " N%d=%lu", 4567 node, nodes[node]); 4568 #endif 4569 unlock_memory_hotplug(); 4570 kfree(nodes); 4571 return x + sprintf(buf + x, "\n"); 4572 } 4573 4574 #ifdef CONFIG_SLUB_DEBUG 4575 static int any_slab_objects(struct kmem_cache *s) 4576 { 4577 int node; 4578 4579 for_each_online_node(node) { 4580 struct kmem_cache_node *n = get_node(s, node); 4581 4582 if (!n) 4583 continue; 4584 4585 if (atomic_long_read(&n->total_objects)) 4586 return 1; 4587 } 4588 return 0; 4589 } 4590 #endif 4591 4592 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4593 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4594 4595 struct slab_attribute { 4596 struct attribute attr; 4597 ssize_t (*show)(struct kmem_cache *s, char *buf); 4598 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4599 }; 4600 4601 #define SLAB_ATTR_RO(_name) \ 4602 static struct slab_attribute _name##_attr = \ 4603 __ATTR(_name, 0400, _name##_show, NULL) 4604 4605 #define SLAB_ATTR(_name) \ 4606 static struct slab_attribute _name##_attr = \ 4607 __ATTR(_name, 0600, _name##_show, _name##_store) 4608 4609 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4610 { 4611 return sprintf(buf, "%d\n", s->size); 4612 } 4613 SLAB_ATTR_RO(slab_size); 4614 4615 static ssize_t align_show(struct kmem_cache *s, char *buf) 4616 { 4617 return sprintf(buf, "%d\n", s->align); 4618 } 4619 SLAB_ATTR_RO(align); 4620 4621 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4622 { 4623 return sprintf(buf, "%d\n", s->objsize); 4624 } 4625 SLAB_ATTR_RO(object_size); 4626 4627 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4628 { 4629 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4630 } 4631 SLAB_ATTR_RO(objs_per_slab); 4632 4633 static ssize_t order_store(struct kmem_cache *s, 4634 const char *buf, size_t length) 4635 { 4636 unsigned long order; 4637 int err; 4638 4639 err = strict_strtoul(buf, 10, &order); 4640 if (err) 4641 return err; 4642 4643 if (order > slub_max_order || order < slub_min_order) 4644 return -EINVAL; 4645 4646 calculate_sizes(s, order); 4647 return length; 4648 } 4649 4650 static ssize_t order_show(struct kmem_cache *s, char *buf) 4651 { 4652 return sprintf(buf, "%d\n", oo_order(s->oo)); 4653 } 4654 SLAB_ATTR(order); 4655 4656 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4657 { 4658 return sprintf(buf, "%lu\n", s->min_partial); 4659 } 4660 4661 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4662 size_t length) 4663 { 4664 unsigned long min; 4665 int err; 4666 4667 err = strict_strtoul(buf, 10, &min); 4668 if (err) 4669 return err; 4670 4671 set_min_partial(s, min); 4672 return length; 4673 } 4674 SLAB_ATTR(min_partial); 4675 4676 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4677 { 4678 return sprintf(buf, "%u\n", s->cpu_partial); 4679 } 4680 4681 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4682 size_t length) 4683 { 4684 unsigned long objects; 4685 int err; 4686 4687 err = strict_strtoul(buf, 10, &objects); 4688 if (err) 4689 return err; 4690 if (objects && kmem_cache_debug(s)) 4691 return -EINVAL; 4692 4693 s->cpu_partial = objects; 4694 flush_all(s); 4695 return length; 4696 } 4697 SLAB_ATTR(cpu_partial); 4698 4699 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4700 { 4701 if (!s->ctor) 4702 return 0; 4703 return sprintf(buf, "%pS\n", s->ctor); 4704 } 4705 SLAB_ATTR_RO(ctor); 4706 4707 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4708 { 4709 return sprintf(buf, "%d\n", s->refcount - 1); 4710 } 4711 SLAB_ATTR_RO(aliases); 4712 4713 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4714 { 4715 return show_slab_objects(s, buf, SO_PARTIAL); 4716 } 4717 SLAB_ATTR_RO(partial); 4718 4719 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4720 { 4721 return show_slab_objects(s, buf, SO_CPU); 4722 } 4723 SLAB_ATTR_RO(cpu_slabs); 4724 4725 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4726 { 4727 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4728 } 4729 SLAB_ATTR_RO(objects); 4730 4731 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4732 { 4733 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4734 } 4735 SLAB_ATTR_RO(objects_partial); 4736 4737 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4738 { 4739 int objects = 0; 4740 int pages = 0; 4741 int cpu; 4742 int len; 4743 4744 for_each_online_cpu(cpu) { 4745 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4746 4747 if (page) { 4748 pages += page->pages; 4749 objects += page->pobjects; 4750 } 4751 } 4752 4753 len = sprintf(buf, "%d(%d)", objects, pages); 4754 4755 #ifdef CONFIG_SMP 4756 for_each_online_cpu(cpu) { 4757 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4758 4759 if (page && len < PAGE_SIZE - 20) 4760 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4761 page->pobjects, page->pages); 4762 } 4763 #endif 4764 return len + sprintf(buf + len, "\n"); 4765 } 4766 SLAB_ATTR_RO(slabs_cpu_partial); 4767 4768 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4769 { 4770 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4771 } 4772 4773 static ssize_t reclaim_account_store(struct kmem_cache *s, 4774 const char *buf, size_t length) 4775 { 4776 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4777 if (buf[0] == '1') 4778 s->flags |= SLAB_RECLAIM_ACCOUNT; 4779 return length; 4780 } 4781 SLAB_ATTR(reclaim_account); 4782 4783 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4784 { 4785 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4786 } 4787 SLAB_ATTR_RO(hwcache_align); 4788 4789 #ifdef CONFIG_ZONE_DMA 4790 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4791 { 4792 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4793 } 4794 SLAB_ATTR_RO(cache_dma); 4795 #endif 4796 4797 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4798 { 4799 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4800 } 4801 SLAB_ATTR_RO(destroy_by_rcu); 4802 4803 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4804 { 4805 return sprintf(buf, "%d\n", s->reserved); 4806 } 4807 SLAB_ATTR_RO(reserved); 4808 4809 #ifdef CONFIG_SLUB_DEBUG 4810 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4811 { 4812 return show_slab_objects(s, buf, SO_ALL); 4813 } 4814 SLAB_ATTR_RO(slabs); 4815 4816 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4817 { 4818 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4819 } 4820 SLAB_ATTR_RO(total_objects); 4821 4822 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4823 { 4824 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4825 } 4826 4827 static ssize_t sanity_checks_store(struct kmem_cache *s, 4828 const char *buf, size_t length) 4829 { 4830 s->flags &= ~SLAB_DEBUG_FREE; 4831 if (buf[0] == '1') { 4832 s->flags &= ~__CMPXCHG_DOUBLE; 4833 s->flags |= SLAB_DEBUG_FREE; 4834 } 4835 return length; 4836 } 4837 SLAB_ATTR(sanity_checks); 4838 4839 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4840 { 4841 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4842 } 4843 4844 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4845 size_t length) 4846 { 4847 s->flags &= ~SLAB_TRACE; 4848 if (buf[0] == '1') { 4849 s->flags &= ~__CMPXCHG_DOUBLE; 4850 s->flags |= SLAB_TRACE; 4851 } 4852 return length; 4853 } 4854 SLAB_ATTR(trace); 4855 4856 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4857 { 4858 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4859 } 4860 4861 static ssize_t red_zone_store(struct kmem_cache *s, 4862 const char *buf, size_t length) 4863 { 4864 if (any_slab_objects(s)) 4865 return -EBUSY; 4866 4867 s->flags &= ~SLAB_RED_ZONE; 4868 if (buf[0] == '1') { 4869 s->flags &= ~__CMPXCHG_DOUBLE; 4870 s->flags |= SLAB_RED_ZONE; 4871 } 4872 calculate_sizes(s, -1); 4873 return length; 4874 } 4875 SLAB_ATTR(red_zone); 4876 4877 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4878 { 4879 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4880 } 4881 4882 static ssize_t poison_store(struct kmem_cache *s, 4883 const char *buf, size_t length) 4884 { 4885 if (any_slab_objects(s)) 4886 return -EBUSY; 4887 4888 s->flags &= ~SLAB_POISON; 4889 if (buf[0] == '1') { 4890 s->flags &= ~__CMPXCHG_DOUBLE; 4891 s->flags |= SLAB_POISON; 4892 } 4893 calculate_sizes(s, -1); 4894 return length; 4895 } 4896 SLAB_ATTR(poison); 4897 4898 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4899 { 4900 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4901 } 4902 4903 static ssize_t store_user_store(struct kmem_cache *s, 4904 const char *buf, size_t length) 4905 { 4906 if (any_slab_objects(s)) 4907 return -EBUSY; 4908 4909 s->flags &= ~SLAB_STORE_USER; 4910 if (buf[0] == '1') { 4911 s->flags &= ~__CMPXCHG_DOUBLE; 4912 s->flags |= SLAB_STORE_USER; 4913 } 4914 calculate_sizes(s, -1); 4915 return length; 4916 } 4917 SLAB_ATTR(store_user); 4918 4919 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4920 { 4921 return 0; 4922 } 4923 4924 static ssize_t validate_store(struct kmem_cache *s, 4925 const char *buf, size_t length) 4926 { 4927 int ret = -EINVAL; 4928 4929 if (buf[0] == '1') { 4930 ret = validate_slab_cache(s); 4931 if (ret >= 0) 4932 ret = length; 4933 } 4934 return ret; 4935 } 4936 SLAB_ATTR(validate); 4937 4938 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4939 { 4940 if (!(s->flags & SLAB_STORE_USER)) 4941 return -ENOSYS; 4942 return list_locations(s, buf, TRACK_ALLOC); 4943 } 4944 SLAB_ATTR_RO(alloc_calls); 4945 4946 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4947 { 4948 if (!(s->flags & SLAB_STORE_USER)) 4949 return -ENOSYS; 4950 return list_locations(s, buf, TRACK_FREE); 4951 } 4952 SLAB_ATTR_RO(free_calls); 4953 #endif /* CONFIG_SLUB_DEBUG */ 4954 4955 #ifdef CONFIG_FAILSLAB 4956 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4957 { 4958 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4959 } 4960 4961 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4962 size_t length) 4963 { 4964 s->flags &= ~SLAB_FAILSLAB; 4965 if (buf[0] == '1') 4966 s->flags |= SLAB_FAILSLAB; 4967 return length; 4968 } 4969 SLAB_ATTR(failslab); 4970 #endif 4971 4972 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4973 { 4974 return 0; 4975 } 4976 4977 static ssize_t shrink_store(struct kmem_cache *s, 4978 const char *buf, size_t length) 4979 { 4980 if (buf[0] == '1') { 4981 int rc = kmem_cache_shrink(s); 4982 4983 if (rc) 4984 return rc; 4985 } else 4986 return -EINVAL; 4987 return length; 4988 } 4989 SLAB_ATTR(shrink); 4990 4991 #ifdef CONFIG_NUMA 4992 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4993 { 4994 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4995 } 4996 4997 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4998 const char *buf, size_t length) 4999 { 5000 unsigned long ratio; 5001 int err; 5002 5003 err = strict_strtoul(buf, 10, &ratio); 5004 if (err) 5005 return err; 5006 5007 if (ratio <= 100) 5008 s->remote_node_defrag_ratio = ratio * 10; 5009 5010 return length; 5011 } 5012 SLAB_ATTR(remote_node_defrag_ratio); 5013 #endif 5014 5015 #ifdef CONFIG_SLUB_STATS 5016 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5017 { 5018 unsigned long sum = 0; 5019 int cpu; 5020 int len; 5021 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5022 5023 if (!data) 5024 return -ENOMEM; 5025 5026 for_each_online_cpu(cpu) { 5027 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5028 5029 data[cpu] = x; 5030 sum += x; 5031 } 5032 5033 len = sprintf(buf, "%lu", sum); 5034 5035 #ifdef CONFIG_SMP 5036 for_each_online_cpu(cpu) { 5037 if (data[cpu] && len < PAGE_SIZE - 20) 5038 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5039 } 5040 #endif 5041 kfree(data); 5042 return len + sprintf(buf + len, "\n"); 5043 } 5044 5045 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5046 { 5047 int cpu; 5048 5049 for_each_online_cpu(cpu) 5050 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5051 } 5052 5053 #define STAT_ATTR(si, text) \ 5054 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5055 { \ 5056 return show_stat(s, buf, si); \ 5057 } \ 5058 static ssize_t text##_store(struct kmem_cache *s, \ 5059 const char *buf, size_t length) \ 5060 { \ 5061 if (buf[0] != '0') \ 5062 return -EINVAL; \ 5063 clear_stat(s, si); \ 5064 return length; \ 5065 } \ 5066 SLAB_ATTR(text); \ 5067 5068 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5069 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5070 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5071 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5072 STAT_ATTR(FREE_FROZEN, free_frozen); 5073 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5074 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5075 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5076 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5077 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5078 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5079 STAT_ATTR(FREE_SLAB, free_slab); 5080 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5081 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5082 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5083 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5084 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5085 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5086 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5087 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5088 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5089 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5090 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5091 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5092 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5093 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5094 #endif 5095 5096 static struct attribute *slab_attrs[] = { 5097 &slab_size_attr.attr, 5098 &object_size_attr.attr, 5099 &objs_per_slab_attr.attr, 5100 &order_attr.attr, 5101 &min_partial_attr.attr, 5102 &cpu_partial_attr.attr, 5103 &objects_attr.attr, 5104 &objects_partial_attr.attr, 5105 &partial_attr.attr, 5106 &cpu_slabs_attr.attr, 5107 &ctor_attr.attr, 5108 &aliases_attr.attr, 5109 &align_attr.attr, 5110 &hwcache_align_attr.attr, 5111 &reclaim_account_attr.attr, 5112 &destroy_by_rcu_attr.attr, 5113 &shrink_attr.attr, 5114 &reserved_attr.attr, 5115 &slabs_cpu_partial_attr.attr, 5116 #ifdef CONFIG_SLUB_DEBUG 5117 &total_objects_attr.attr, 5118 &slabs_attr.attr, 5119 &sanity_checks_attr.attr, 5120 &trace_attr.attr, 5121 &red_zone_attr.attr, 5122 &poison_attr.attr, 5123 &store_user_attr.attr, 5124 &validate_attr.attr, 5125 &alloc_calls_attr.attr, 5126 &free_calls_attr.attr, 5127 #endif 5128 #ifdef CONFIG_ZONE_DMA 5129 &cache_dma_attr.attr, 5130 #endif 5131 #ifdef CONFIG_NUMA 5132 &remote_node_defrag_ratio_attr.attr, 5133 #endif 5134 #ifdef CONFIG_SLUB_STATS 5135 &alloc_fastpath_attr.attr, 5136 &alloc_slowpath_attr.attr, 5137 &free_fastpath_attr.attr, 5138 &free_slowpath_attr.attr, 5139 &free_frozen_attr.attr, 5140 &free_add_partial_attr.attr, 5141 &free_remove_partial_attr.attr, 5142 &alloc_from_partial_attr.attr, 5143 &alloc_slab_attr.attr, 5144 &alloc_refill_attr.attr, 5145 &alloc_node_mismatch_attr.attr, 5146 &free_slab_attr.attr, 5147 &cpuslab_flush_attr.attr, 5148 &deactivate_full_attr.attr, 5149 &deactivate_empty_attr.attr, 5150 &deactivate_to_head_attr.attr, 5151 &deactivate_to_tail_attr.attr, 5152 &deactivate_remote_frees_attr.attr, 5153 &deactivate_bypass_attr.attr, 5154 &order_fallback_attr.attr, 5155 &cmpxchg_double_fail_attr.attr, 5156 &cmpxchg_double_cpu_fail_attr.attr, 5157 &cpu_partial_alloc_attr.attr, 5158 &cpu_partial_free_attr.attr, 5159 &cpu_partial_node_attr.attr, 5160 &cpu_partial_drain_attr.attr, 5161 #endif 5162 #ifdef CONFIG_FAILSLAB 5163 &failslab_attr.attr, 5164 #endif 5165 5166 NULL 5167 }; 5168 5169 static struct attribute_group slab_attr_group = { 5170 .attrs = slab_attrs, 5171 }; 5172 5173 static ssize_t slab_attr_show(struct kobject *kobj, 5174 struct attribute *attr, 5175 char *buf) 5176 { 5177 struct slab_attribute *attribute; 5178 struct kmem_cache *s; 5179 int err; 5180 5181 attribute = to_slab_attr(attr); 5182 s = to_slab(kobj); 5183 5184 if (!attribute->show) 5185 return -EIO; 5186 5187 err = attribute->show(s, buf); 5188 5189 return err; 5190 } 5191 5192 static ssize_t slab_attr_store(struct kobject *kobj, 5193 struct attribute *attr, 5194 const char *buf, size_t len) 5195 { 5196 struct slab_attribute *attribute; 5197 struct kmem_cache *s; 5198 int err; 5199 5200 attribute = to_slab_attr(attr); 5201 s = to_slab(kobj); 5202 5203 if (!attribute->store) 5204 return -EIO; 5205 5206 err = attribute->store(s, buf, len); 5207 5208 return err; 5209 } 5210 5211 static void kmem_cache_release(struct kobject *kobj) 5212 { 5213 struct kmem_cache *s = to_slab(kobj); 5214 5215 kfree(s->name); 5216 kfree(s); 5217 } 5218 5219 static const struct sysfs_ops slab_sysfs_ops = { 5220 .show = slab_attr_show, 5221 .store = slab_attr_store, 5222 }; 5223 5224 static struct kobj_type slab_ktype = { 5225 .sysfs_ops = &slab_sysfs_ops, 5226 .release = kmem_cache_release 5227 }; 5228 5229 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5230 { 5231 struct kobj_type *ktype = get_ktype(kobj); 5232 5233 if (ktype == &slab_ktype) 5234 return 1; 5235 return 0; 5236 } 5237 5238 static const struct kset_uevent_ops slab_uevent_ops = { 5239 .filter = uevent_filter, 5240 }; 5241 5242 static struct kset *slab_kset; 5243 5244 #define ID_STR_LENGTH 64 5245 5246 /* Create a unique string id for a slab cache: 5247 * 5248 * Format :[flags-]size 5249 */ 5250 static char *create_unique_id(struct kmem_cache *s) 5251 { 5252 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5253 char *p = name; 5254 5255 BUG_ON(!name); 5256 5257 *p++ = ':'; 5258 /* 5259 * First flags affecting slabcache operations. We will only 5260 * get here for aliasable slabs so we do not need to support 5261 * too many flags. The flags here must cover all flags that 5262 * are matched during merging to guarantee that the id is 5263 * unique. 5264 */ 5265 if (s->flags & SLAB_CACHE_DMA) 5266 *p++ = 'd'; 5267 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5268 *p++ = 'a'; 5269 if (s->flags & SLAB_DEBUG_FREE) 5270 *p++ = 'F'; 5271 if (!(s->flags & SLAB_NOTRACK)) 5272 *p++ = 't'; 5273 if (p != name + 1) 5274 *p++ = '-'; 5275 p += sprintf(p, "%07d", s->size); 5276 BUG_ON(p > name + ID_STR_LENGTH - 1); 5277 return name; 5278 } 5279 5280 static int sysfs_slab_add(struct kmem_cache *s) 5281 { 5282 int err; 5283 const char *name; 5284 int unmergeable; 5285 5286 if (slab_state < SYSFS) 5287 /* Defer until later */ 5288 return 0; 5289 5290 unmergeable = slab_unmergeable(s); 5291 if (unmergeable) { 5292 /* 5293 * Slabcache can never be merged so we can use the name proper. 5294 * This is typically the case for debug situations. In that 5295 * case we can catch duplicate names easily. 5296 */ 5297 sysfs_remove_link(&slab_kset->kobj, s->name); 5298 name = s->name; 5299 } else { 5300 /* 5301 * Create a unique name for the slab as a target 5302 * for the symlinks. 5303 */ 5304 name = create_unique_id(s); 5305 } 5306 5307 s->kobj.kset = slab_kset; 5308 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 5309 if (err) { 5310 kobject_put(&s->kobj); 5311 return err; 5312 } 5313 5314 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5315 if (err) { 5316 kobject_del(&s->kobj); 5317 kobject_put(&s->kobj); 5318 return err; 5319 } 5320 kobject_uevent(&s->kobj, KOBJ_ADD); 5321 if (!unmergeable) { 5322 /* Setup first alias */ 5323 sysfs_slab_alias(s, s->name); 5324 kfree(name); 5325 } 5326 return 0; 5327 } 5328 5329 static void sysfs_slab_remove(struct kmem_cache *s) 5330 { 5331 if (slab_state < SYSFS) 5332 /* 5333 * Sysfs has not been setup yet so no need to remove the 5334 * cache from sysfs. 5335 */ 5336 return; 5337 5338 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5339 kobject_del(&s->kobj); 5340 kobject_put(&s->kobj); 5341 } 5342 5343 /* 5344 * Need to buffer aliases during bootup until sysfs becomes 5345 * available lest we lose that information. 5346 */ 5347 struct saved_alias { 5348 struct kmem_cache *s; 5349 const char *name; 5350 struct saved_alias *next; 5351 }; 5352 5353 static struct saved_alias *alias_list; 5354 5355 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5356 { 5357 struct saved_alias *al; 5358 5359 if (slab_state == SYSFS) { 5360 /* 5361 * If we have a leftover link then remove it. 5362 */ 5363 sysfs_remove_link(&slab_kset->kobj, name); 5364 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5365 } 5366 5367 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5368 if (!al) 5369 return -ENOMEM; 5370 5371 al->s = s; 5372 al->name = name; 5373 al->next = alias_list; 5374 alias_list = al; 5375 return 0; 5376 } 5377 5378 static int __init slab_sysfs_init(void) 5379 { 5380 struct kmem_cache *s; 5381 int err; 5382 5383 down_write(&slub_lock); 5384 5385 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5386 if (!slab_kset) { 5387 up_write(&slub_lock); 5388 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5389 return -ENOSYS; 5390 } 5391 5392 slab_state = SYSFS; 5393 5394 list_for_each_entry(s, &slab_caches, list) { 5395 err = sysfs_slab_add(s); 5396 if (err) 5397 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5398 " to sysfs\n", s->name); 5399 } 5400 5401 while (alias_list) { 5402 struct saved_alias *al = alias_list; 5403 5404 alias_list = alias_list->next; 5405 err = sysfs_slab_alias(al->s, al->name); 5406 if (err) 5407 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5408 " %s to sysfs\n", s->name); 5409 kfree(al); 5410 } 5411 5412 up_write(&slub_lock); 5413 resiliency_test(); 5414 return 0; 5415 } 5416 5417 __initcall(slab_sysfs_init); 5418 #endif /* CONFIG_SYSFS */ 5419 5420 /* 5421 * The /proc/slabinfo ABI 5422 */ 5423 #ifdef CONFIG_SLABINFO 5424 static void print_slabinfo_header(struct seq_file *m) 5425 { 5426 seq_puts(m, "slabinfo - version: 2.1\n"); 5427 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 5428 "<objperslab> <pagesperslab>"); 5429 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 5430 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 5431 seq_putc(m, '\n'); 5432 } 5433 5434 static void *s_start(struct seq_file *m, loff_t *pos) 5435 { 5436 loff_t n = *pos; 5437 5438 down_read(&slub_lock); 5439 if (!n) 5440 print_slabinfo_header(m); 5441 5442 return seq_list_start(&slab_caches, *pos); 5443 } 5444 5445 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 5446 { 5447 return seq_list_next(p, &slab_caches, pos); 5448 } 5449 5450 static void s_stop(struct seq_file *m, void *p) 5451 { 5452 up_read(&slub_lock); 5453 } 5454 5455 static int s_show(struct seq_file *m, void *p) 5456 { 5457 unsigned long nr_partials = 0; 5458 unsigned long nr_slabs = 0; 5459 unsigned long nr_inuse = 0; 5460 unsigned long nr_objs = 0; 5461 unsigned long nr_free = 0; 5462 struct kmem_cache *s; 5463 int node; 5464 5465 s = list_entry(p, struct kmem_cache, list); 5466 5467 for_each_online_node(node) { 5468 struct kmem_cache_node *n = get_node(s, node); 5469 5470 if (!n) 5471 continue; 5472 5473 nr_partials += n->nr_partial; 5474 nr_slabs += atomic_long_read(&n->nr_slabs); 5475 nr_objs += atomic_long_read(&n->total_objects); 5476 nr_free += count_partial(n, count_free); 5477 } 5478 5479 nr_inuse = nr_objs - nr_free; 5480 5481 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 5482 nr_objs, s->size, oo_objects(s->oo), 5483 (1 << oo_order(s->oo))); 5484 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 5485 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 5486 0UL); 5487 seq_putc(m, '\n'); 5488 return 0; 5489 } 5490 5491 static const struct seq_operations slabinfo_op = { 5492 .start = s_start, 5493 .next = s_next, 5494 .stop = s_stop, 5495 .show = s_show, 5496 }; 5497 5498 static int slabinfo_open(struct inode *inode, struct file *file) 5499 { 5500 return seq_open(file, &slabinfo_op); 5501 } 5502 5503 static const struct file_operations proc_slabinfo_operations = { 5504 .open = slabinfo_open, 5505 .read = seq_read, 5506 .llseek = seq_lseek, 5507 .release = seq_release, 5508 }; 5509 5510 static int __init slab_proc_init(void) 5511 { 5512 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations); 5513 return 0; 5514 } 5515 module_init(slab_proc_init); 5516 #endif /* CONFIG_SLABINFO */ 5517