xref: /openbmc/linux/mm/slub.c (revision 05bcf503)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34 
35 #include <trace/events/kmem.h>
36 
37 #include "internal.h"
38 
39 /*
40  * Lock order:
41  *   1. slab_mutex (Global Mutex)
42  *   2. node->list_lock
43  *   3. slab_lock(page) (Only on some arches and for debugging)
44  *
45  *   slab_mutex
46  *
47  *   The role of the slab_mutex is to protect the list of all the slabs
48  *   and to synchronize major metadata changes to slab cache structures.
49  *
50  *   The slab_lock is only used for debugging and on arches that do not
51  *   have the ability to do a cmpxchg_double. It only protects the second
52  *   double word in the page struct. Meaning
53  *	A. page->freelist	-> List of object free in a page
54  *	B. page->counters	-> Counters of objects
55  *	C. page->frozen		-> frozen state
56  *
57  *   If a slab is frozen then it is exempt from list management. It is not
58  *   on any list. The processor that froze the slab is the one who can
59  *   perform list operations on the page. Other processors may put objects
60  *   onto the freelist but the processor that froze the slab is the only
61  *   one that can retrieve the objects from the page's freelist.
62  *
63  *   The list_lock protects the partial and full list on each node and
64  *   the partial slab counter. If taken then no new slabs may be added or
65  *   removed from the lists nor make the number of partial slabs be modified.
66  *   (Note that the total number of slabs is an atomic value that may be
67  *   modified without taking the list lock).
68  *
69  *   The list_lock is a centralized lock and thus we avoid taking it as
70  *   much as possible. As long as SLUB does not have to handle partial
71  *   slabs, operations can continue without any centralized lock. F.e.
72  *   allocating a long series of objects that fill up slabs does not require
73  *   the list lock.
74  *   Interrupts are disabled during allocation and deallocation in order to
75  *   make the slab allocator safe to use in the context of an irq. In addition
76  *   interrupts are disabled to ensure that the processor does not change
77  *   while handling per_cpu slabs, due to kernel preemption.
78  *
79  * SLUB assigns one slab for allocation to each processor.
80  * Allocations only occur from these slabs called cpu slabs.
81  *
82  * Slabs with free elements are kept on a partial list and during regular
83  * operations no list for full slabs is used. If an object in a full slab is
84  * freed then the slab will show up again on the partial lists.
85  * We track full slabs for debugging purposes though because otherwise we
86  * cannot scan all objects.
87  *
88  * Slabs are freed when they become empty. Teardown and setup is
89  * minimal so we rely on the page allocators per cpu caches for
90  * fast frees and allocs.
91  *
92  * Overloading of page flags that are otherwise used for LRU management.
93  *
94  * PageActive 		The slab is frozen and exempt from list processing.
95  * 			This means that the slab is dedicated to a purpose
96  * 			such as satisfying allocations for a specific
97  * 			processor. Objects may be freed in the slab while
98  * 			it is frozen but slab_free will then skip the usual
99  * 			list operations. It is up to the processor holding
100  * 			the slab to integrate the slab into the slab lists
101  * 			when the slab is no longer needed.
102  *
103  * 			One use of this flag is to mark slabs that are
104  * 			used for allocations. Then such a slab becomes a cpu
105  * 			slab. The cpu slab may be equipped with an additional
106  * 			freelist that allows lockless access to
107  * 			free objects in addition to the regular freelist
108  * 			that requires the slab lock.
109  *
110  * PageError		Slab requires special handling due to debug
111  * 			options set. This moves	slab handling out of
112  * 			the fast path and disables lockless freelists.
113  */
114 
115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 		SLAB_TRACE | SLAB_DEBUG_FREE)
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 /*
128  * Issues still to be resolved:
129  *
130  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131  *
132  * - Variable sizing of the per node arrays
133  */
134 
135 /* Enable to test recovery from slab corruption on boot */
136 #undef SLUB_RESILIENCY_TEST
137 
138 /* Enable to log cmpxchg failures */
139 #undef SLUB_DEBUG_CMPXCHG
140 
141 /*
142  * Mininum number of partial slabs. These will be left on the partial
143  * lists even if they are empty. kmem_cache_shrink may reclaim them.
144  */
145 #define MIN_PARTIAL 5
146 
147 /*
148  * Maximum number of desirable partial slabs.
149  * The existence of more partial slabs makes kmem_cache_shrink
150  * sort the partial list by the number of objects in the.
151  */
152 #define MAX_PARTIAL 10
153 
154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 				SLAB_POISON | SLAB_STORE_USER)
156 
157 /*
158  * Debugging flags that require metadata to be stored in the slab.  These get
159  * disabled when slub_debug=O is used and a cache's min order increases with
160  * metadata.
161  */
162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
163 
164 /*
165  * Set of flags that will prevent slab merging
166  */
167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 		SLAB_FAILSLAB)
170 
171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
172 		SLAB_CACHE_DMA | SLAB_NOTRACK)
173 
174 #define OO_SHIFT	16
175 #define OO_MASK		((1 << OO_SHIFT) - 1)
176 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
177 
178 /* Internal SLUB flags */
179 #define __OBJECT_POISON		0x80000000UL /* Poison object */
180 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
181 
182 static int kmem_size = sizeof(struct kmem_cache);
183 
184 #ifdef CONFIG_SMP
185 static struct notifier_block slab_notifier;
186 #endif
187 
188 /*
189  * Tracking user of a slab.
190  */
191 #define TRACK_ADDRS_COUNT 16
192 struct track {
193 	unsigned long addr;	/* Called from address */
194 #ifdef CONFIG_STACKTRACE
195 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
196 #endif
197 	int cpu;		/* Was running on cpu */
198 	int pid;		/* Pid context */
199 	unsigned long when;	/* When did the operation occur */
200 };
201 
202 enum track_item { TRACK_ALLOC, TRACK_FREE };
203 
204 #ifdef CONFIG_SYSFS
205 static int sysfs_slab_add(struct kmem_cache *);
206 static int sysfs_slab_alias(struct kmem_cache *, const char *);
207 static void sysfs_slab_remove(struct kmem_cache *);
208 
209 #else
210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 							{ return 0; }
213 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
214 
215 #endif
216 
217 static inline void stat(const struct kmem_cache *s, enum stat_item si)
218 {
219 #ifdef CONFIG_SLUB_STATS
220 	__this_cpu_inc(s->cpu_slab->stat[si]);
221 #endif
222 }
223 
224 /********************************************************************
225  * 			Core slab cache functions
226  *******************************************************************/
227 
228 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
229 {
230 	return s->node[node];
231 }
232 
233 /* Verify that a pointer has an address that is valid within a slab page */
234 static inline int check_valid_pointer(struct kmem_cache *s,
235 				struct page *page, const void *object)
236 {
237 	void *base;
238 
239 	if (!object)
240 		return 1;
241 
242 	base = page_address(page);
243 	if (object < base || object >= base + page->objects * s->size ||
244 		(object - base) % s->size) {
245 		return 0;
246 	}
247 
248 	return 1;
249 }
250 
251 static inline void *get_freepointer(struct kmem_cache *s, void *object)
252 {
253 	return *(void **)(object + s->offset);
254 }
255 
256 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
257 {
258 	prefetch(object + s->offset);
259 }
260 
261 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
262 {
263 	void *p;
264 
265 #ifdef CONFIG_DEBUG_PAGEALLOC
266 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
267 #else
268 	p = get_freepointer(s, object);
269 #endif
270 	return p;
271 }
272 
273 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
274 {
275 	*(void **)(object + s->offset) = fp;
276 }
277 
278 /* Loop over all objects in a slab */
279 #define for_each_object(__p, __s, __addr, __objects) \
280 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
281 			__p += (__s)->size)
282 
283 /* Determine object index from a given position */
284 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
285 {
286 	return (p - addr) / s->size;
287 }
288 
289 static inline size_t slab_ksize(const struct kmem_cache *s)
290 {
291 #ifdef CONFIG_SLUB_DEBUG
292 	/*
293 	 * Debugging requires use of the padding between object
294 	 * and whatever may come after it.
295 	 */
296 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
297 		return s->object_size;
298 
299 #endif
300 	/*
301 	 * If we have the need to store the freelist pointer
302 	 * back there or track user information then we can
303 	 * only use the space before that information.
304 	 */
305 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
306 		return s->inuse;
307 	/*
308 	 * Else we can use all the padding etc for the allocation
309 	 */
310 	return s->size;
311 }
312 
313 static inline int order_objects(int order, unsigned long size, int reserved)
314 {
315 	return ((PAGE_SIZE << order) - reserved) / size;
316 }
317 
318 static inline struct kmem_cache_order_objects oo_make(int order,
319 		unsigned long size, int reserved)
320 {
321 	struct kmem_cache_order_objects x = {
322 		(order << OO_SHIFT) + order_objects(order, size, reserved)
323 	};
324 
325 	return x;
326 }
327 
328 static inline int oo_order(struct kmem_cache_order_objects x)
329 {
330 	return x.x >> OO_SHIFT;
331 }
332 
333 static inline int oo_objects(struct kmem_cache_order_objects x)
334 {
335 	return x.x & OO_MASK;
336 }
337 
338 /*
339  * Per slab locking using the pagelock
340  */
341 static __always_inline void slab_lock(struct page *page)
342 {
343 	bit_spin_lock(PG_locked, &page->flags);
344 }
345 
346 static __always_inline void slab_unlock(struct page *page)
347 {
348 	__bit_spin_unlock(PG_locked, &page->flags);
349 }
350 
351 /* Interrupts must be disabled (for the fallback code to work right) */
352 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
353 		void *freelist_old, unsigned long counters_old,
354 		void *freelist_new, unsigned long counters_new,
355 		const char *n)
356 {
357 	VM_BUG_ON(!irqs_disabled());
358 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
359     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
360 	if (s->flags & __CMPXCHG_DOUBLE) {
361 		if (cmpxchg_double(&page->freelist, &page->counters,
362 			freelist_old, counters_old,
363 			freelist_new, counters_new))
364 		return 1;
365 	} else
366 #endif
367 	{
368 		slab_lock(page);
369 		if (page->freelist == freelist_old && page->counters == counters_old) {
370 			page->freelist = freelist_new;
371 			page->counters = counters_new;
372 			slab_unlock(page);
373 			return 1;
374 		}
375 		slab_unlock(page);
376 	}
377 
378 	cpu_relax();
379 	stat(s, CMPXCHG_DOUBLE_FAIL);
380 
381 #ifdef SLUB_DEBUG_CMPXCHG
382 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
383 #endif
384 
385 	return 0;
386 }
387 
388 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
389 		void *freelist_old, unsigned long counters_old,
390 		void *freelist_new, unsigned long counters_new,
391 		const char *n)
392 {
393 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
394     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
395 	if (s->flags & __CMPXCHG_DOUBLE) {
396 		if (cmpxchg_double(&page->freelist, &page->counters,
397 			freelist_old, counters_old,
398 			freelist_new, counters_new))
399 		return 1;
400 	} else
401 #endif
402 	{
403 		unsigned long flags;
404 
405 		local_irq_save(flags);
406 		slab_lock(page);
407 		if (page->freelist == freelist_old && page->counters == counters_old) {
408 			page->freelist = freelist_new;
409 			page->counters = counters_new;
410 			slab_unlock(page);
411 			local_irq_restore(flags);
412 			return 1;
413 		}
414 		slab_unlock(page);
415 		local_irq_restore(flags);
416 	}
417 
418 	cpu_relax();
419 	stat(s, CMPXCHG_DOUBLE_FAIL);
420 
421 #ifdef SLUB_DEBUG_CMPXCHG
422 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
423 #endif
424 
425 	return 0;
426 }
427 
428 #ifdef CONFIG_SLUB_DEBUG
429 /*
430  * Determine a map of object in use on a page.
431  *
432  * Node listlock must be held to guarantee that the page does
433  * not vanish from under us.
434  */
435 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
436 {
437 	void *p;
438 	void *addr = page_address(page);
439 
440 	for (p = page->freelist; p; p = get_freepointer(s, p))
441 		set_bit(slab_index(p, s, addr), map);
442 }
443 
444 /*
445  * Debug settings:
446  */
447 #ifdef CONFIG_SLUB_DEBUG_ON
448 static int slub_debug = DEBUG_DEFAULT_FLAGS;
449 #else
450 static int slub_debug;
451 #endif
452 
453 static char *slub_debug_slabs;
454 static int disable_higher_order_debug;
455 
456 /*
457  * Object debugging
458  */
459 static void print_section(char *text, u8 *addr, unsigned int length)
460 {
461 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
462 			length, 1);
463 }
464 
465 static struct track *get_track(struct kmem_cache *s, void *object,
466 	enum track_item alloc)
467 {
468 	struct track *p;
469 
470 	if (s->offset)
471 		p = object + s->offset + sizeof(void *);
472 	else
473 		p = object + s->inuse;
474 
475 	return p + alloc;
476 }
477 
478 static void set_track(struct kmem_cache *s, void *object,
479 			enum track_item alloc, unsigned long addr)
480 {
481 	struct track *p = get_track(s, object, alloc);
482 
483 	if (addr) {
484 #ifdef CONFIG_STACKTRACE
485 		struct stack_trace trace;
486 		int i;
487 
488 		trace.nr_entries = 0;
489 		trace.max_entries = TRACK_ADDRS_COUNT;
490 		trace.entries = p->addrs;
491 		trace.skip = 3;
492 		save_stack_trace(&trace);
493 
494 		/* See rant in lockdep.c */
495 		if (trace.nr_entries != 0 &&
496 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
497 			trace.nr_entries--;
498 
499 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
500 			p->addrs[i] = 0;
501 #endif
502 		p->addr = addr;
503 		p->cpu = smp_processor_id();
504 		p->pid = current->pid;
505 		p->when = jiffies;
506 	} else
507 		memset(p, 0, sizeof(struct track));
508 }
509 
510 static void init_tracking(struct kmem_cache *s, void *object)
511 {
512 	if (!(s->flags & SLAB_STORE_USER))
513 		return;
514 
515 	set_track(s, object, TRACK_FREE, 0UL);
516 	set_track(s, object, TRACK_ALLOC, 0UL);
517 }
518 
519 static void print_track(const char *s, struct track *t)
520 {
521 	if (!t->addr)
522 		return;
523 
524 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
525 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
526 #ifdef CONFIG_STACKTRACE
527 	{
528 		int i;
529 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
530 			if (t->addrs[i])
531 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
532 			else
533 				break;
534 	}
535 #endif
536 }
537 
538 static void print_tracking(struct kmem_cache *s, void *object)
539 {
540 	if (!(s->flags & SLAB_STORE_USER))
541 		return;
542 
543 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
544 	print_track("Freed", get_track(s, object, TRACK_FREE));
545 }
546 
547 static void print_page_info(struct page *page)
548 {
549 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
550 		page, page->objects, page->inuse, page->freelist, page->flags);
551 
552 }
553 
554 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
555 {
556 	va_list args;
557 	char buf[100];
558 
559 	va_start(args, fmt);
560 	vsnprintf(buf, sizeof(buf), fmt, args);
561 	va_end(args);
562 	printk(KERN_ERR "========================================"
563 			"=====================================\n");
564 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
565 	printk(KERN_ERR "----------------------------------------"
566 			"-------------------------------------\n\n");
567 
568 	add_taint(TAINT_BAD_PAGE);
569 }
570 
571 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
572 {
573 	va_list args;
574 	char buf[100];
575 
576 	va_start(args, fmt);
577 	vsnprintf(buf, sizeof(buf), fmt, args);
578 	va_end(args);
579 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
580 }
581 
582 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
583 {
584 	unsigned int off;	/* Offset of last byte */
585 	u8 *addr = page_address(page);
586 
587 	print_tracking(s, p);
588 
589 	print_page_info(page);
590 
591 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
592 			p, p - addr, get_freepointer(s, p));
593 
594 	if (p > addr + 16)
595 		print_section("Bytes b4 ", p - 16, 16);
596 
597 	print_section("Object ", p, min_t(unsigned long, s->object_size,
598 				PAGE_SIZE));
599 	if (s->flags & SLAB_RED_ZONE)
600 		print_section("Redzone ", p + s->object_size,
601 			s->inuse - s->object_size);
602 
603 	if (s->offset)
604 		off = s->offset + sizeof(void *);
605 	else
606 		off = s->inuse;
607 
608 	if (s->flags & SLAB_STORE_USER)
609 		off += 2 * sizeof(struct track);
610 
611 	if (off != s->size)
612 		/* Beginning of the filler is the free pointer */
613 		print_section("Padding ", p + off, s->size - off);
614 
615 	dump_stack();
616 }
617 
618 static void object_err(struct kmem_cache *s, struct page *page,
619 			u8 *object, char *reason)
620 {
621 	slab_bug(s, "%s", reason);
622 	print_trailer(s, page, object);
623 }
624 
625 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
626 {
627 	va_list args;
628 	char buf[100];
629 
630 	va_start(args, fmt);
631 	vsnprintf(buf, sizeof(buf), fmt, args);
632 	va_end(args);
633 	slab_bug(s, "%s", buf);
634 	print_page_info(page);
635 	dump_stack();
636 }
637 
638 static void init_object(struct kmem_cache *s, void *object, u8 val)
639 {
640 	u8 *p = object;
641 
642 	if (s->flags & __OBJECT_POISON) {
643 		memset(p, POISON_FREE, s->object_size - 1);
644 		p[s->object_size - 1] = POISON_END;
645 	}
646 
647 	if (s->flags & SLAB_RED_ZONE)
648 		memset(p + s->object_size, val, s->inuse - s->object_size);
649 }
650 
651 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
652 						void *from, void *to)
653 {
654 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
655 	memset(from, data, to - from);
656 }
657 
658 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
659 			u8 *object, char *what,
660 			u8 *start, unsigned int value, unsigned int bytes)
661 {
662 	u8 *fault;
663 	u8 *end;
664 
665 	fault = memchr_inv(start, value, bytes);
666 	if (!fault)
667 		return 1;
668 
669 	end = start + bytes;
670 	while (end > fault && end[-1] == value)
671 		end--;
672 
673 	slab_bug(s, "%s overwritten", what);
674 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
675 					fault, end - 1, fault[0], value);
676 	print_trailer(s, page, object);
677 
678 	restore_bytes(s, what, value, fault, end);
679 	return 0;
680 }
681 
682 /*
683  * Object layout:
684  *
685  * object address
686  * 	Bytes of the object to be managed.
687  * 	If the freepointer may overlay the object then the free
688  * 	pointer is the first word of the object.
689  *
690  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
691  * 	0xa5 (POISON_END)
692  *
693  * object + s->object_size
694  * 	Padding to reach word boundary. This is also used for Redzoning.
695  * 	Padding is extended by another word if Redzoning is enabled and
696  * 	object_size == inuse.
697  *
698  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
699  * 	0xcc (RED_ACTIVE) for objects in use.
700  *
701  * object + s->inuse
702  * 	Meta data starts here.
703  *
704  * 	A. Free pointer (if we cannot overwrite object on free)
705  * 	B. Tracking data for SLAB_STORE_USER
706  * 	C. Padding to reach required alignment boundary or at mininum
707  * 		one word if debugging is on to be able to detect writes
708  * 		before the word boundary.
709  *
710  *	Padding is done using 0x5a (POISON_INUSE)
711  *
712  * object + s->size
713  * 	Nothing is used beyond s->size.
714  *
715  * If slabcaches are merged then the object_size and inuse boundaries are mostly
716  * ignored. And therefore no slab options that rely on these boundaries
717  * may be used with merged slabcaches.
718  */
719 
720 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
721 {
722 	unsigned long off = s->inuse;	/* The end of info */
723 
724 	if (s->offset)
725 		/* Freepointer is placed after the object. */
726 		off += sizeof(void *);
727 
728 	if (s->flags & SLAB_STORE_USER)
729 		/* We also have user information there */
730 		off += 2 * sizeof(struct track);
731 
732 	if (s->size == off)
733 		return 1;
734 
735 	return check_bytes_and_report(s, page, p, "Object padding",
736 				p + off, POISON_INUSE, s->size - off);
737 }
738 
739 /* Check the pad bytes at the end of a slab page */
740 static int slab_pad_check(struct kmem_cache *s, struct page *page)
741 {
742 	u8 *start;
743 	u8 *fault;
744 	u8 *end;
745 	int length;
746 	int remainder;
747 
748 	if (!(s->flags & SLAB_POISON))
749 		return 1;
750 
751 	start = page_address(page);
752 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
753 	end = start + length;
754 	remainder = length % s->size;
755 	if (!remainder)
756 		return 1;
757 
758 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
759 	if (!fault)
760 		return 1;
761 	while (end > fault && end[-1] == POISON_INUSE)
762 		end--;
763 
764 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
765 	print_section("Padding ", end - remainder, remainder);
766 
767 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
768 	return 0;
769 }
770 
771 static int check_object(struct kmem_cache *s, struct page *page,
772 					void *object, u8 val)
773 {
774 	u8 *p = object;
775 	u8 *endobject = object + s->object_size;
776 
777 	if (s->flags & SLAB_RED_ZONE) {
778 		if (!check_bytes_and_report(s, page, object, "Redzone",
779 			endobject, val, s->inuse - s->object_size))
780 			return 0;
781 	} else {
782 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
783 			check_bytes_and_report(s, page, p, "Alignment padding",
784 				endobject, POISON_INUSE, s->inuse - s->object_size);
785 		}
786 	}
787 
788 	if (s->flags & SLAB_POISON) {
789 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
790 			(!check_bytes_and_report(s, page, p, "Poison", p,
791 					POISON_FREE, s->object_size - 1) ||
792 			 !check_bytes_and_report(s, page, p, "Poison",
793 				p + s->object_size - 1, POISON_END, 1)))
794 			return 0;
795 		/*
796 		 * check_pad_bytes cleans up on its own.
797 		 */
798 		check_pad_bytes(s, page, p);
799 	}
800 
801 	if (!s->offset && val == SLUB_RED_ACTIVE)
802 		/*
803 		 * Object and freepointer overlap. Cannot check
804 		 * freepointer while object is allocated.
805 		 */
806 		return 1;
807 
808 	/* Check free pointer validity */
809 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
810 		object_err(s, page, p, "Freepointer corrupt");
811 		/*
812 		 * No choice but to zap it and thus lose the remainder
813 		 * of the free objects in this slab. May cause
814 		 * another error because the object count is now wrong.
815 		 */
816 		set_freepointer(s, p, NULL);
817 		return 0;
818 	}
819 	return 1;
820 }
821 
822 static int check_slab(struct kmem_cache *s, struct page *page)
823 {
824 	int maxobj;
825 
826 	VM_BUG_ON(!irqs_disabled());
827 
828 	if (!PageSlab(page)) {
829 		slab_err(s, page, "Not a valid slab page");
830 		return 0;
831 	}
832 
833 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
834 	if (page->objects > maxobj) {
835 		slab_err(s, page, "objects %u > max %u",
836 			s->name, page->objects, maxobj);
837 		return 0;
838 	}
839 	if (page->inuse > page->objects) {
840 		slab_err(s, page, "inuse %u > max %u",
841 			s->name, page->inuse, page->objects);
842 		return 0;
843 	}
844 	/* Slab_pad_check fixes things up after itself */
845 	slab_pad_check(s, page);
846 	return 1;
847 }
848 
849 /*
850  * Determine if a certain object on a page is on the freelist. Must hold the
851  * slab lock to guarantee that the chains are in a consistent state.
852  */
853 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
854 {
855 	int nr = 0;
856 	void *fp;
857 	void *object = NULL;
858 	unsigned long max_objects;
859 
860 	fp = page->freelist;
861 	while (fp && nr <= page->objects) {
862 		if (fp == search)
863 			return 1;
864 		if (!check_valid_pointer(s, page, fp)) {
865 			if (object) {
866 				object_err(s, page, object,
867 					"Freechain corrupt");
868 				set_freepointer(s, object, NULL);
869 				break;
870 			} else {
871 				slab_err(s, page, "Freepointer corrupt");
872 				page->freelist = NULL;
873 				page->inuse = page->objects;
874 				slab_fix(s, "Freelist cleared");
875 				return 0;
876 			}
877 			break;
878 		}
879 		object = fp;
880 		fp = get_freepointer(s, object);
881 		nr++;
882 	}
883 
884 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
885 	if (max_objects > MAX_OBJS_PER_PAGE)
886 		max_objects = MAX_OBJS_PER_PAGE;
887 
888 	if (page->objects != max_objects) {
889 		slab_err(s, page, "Wrong number of objects. Found %d but "
890 			"should be %d", page->objects, max_objects);
891 		page->objects = max_objects;
892 		slab_fix(s, "Number of objects adjusted.");
893 	}
894 	if (page->inuse != page->objects - nr) {
895 		slab_err(s, page, "Wrong object count. Counter is %d but "
896 			"counted were %d", page->inuse, page->objects - nr);
897 		page->inuse = page->objects - nr;
898 		slab_fix(s, "Object count adjusted.");
899 	}
900 	return search == NULL;
901 }
902 
903 static void trace(struct kmem_cache *s, struct page *page, void *object,
904 								int alloc)
905 {
906 	if (s->flags & SLAB_TRACE) {
907 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
908 			s->name,
909 			alloc ? "alloc" : "free",
910 			object, page->inuse,
911 			page->freelist);
912 
913 		if (!alloc)
914 			print_section("Object ", (void *)object, s->object_size);
915 
916 		dump_stack();
917 	}
918 }
919 
920 /*
921  * Hooks for other subsystems that check memory allocations. In a typical
922  * production configuration these hooks all should produce no code at all.
923  */
924 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
925 {
926 	flags &= gfp_allowed_mask;
927 	lockdep_trace_alloc(flags);
928 	might_sleep_if(flags & __GFP_WAIT);
929 
930 	return should_failslab(s->object_size, flags, s->flags);
931 }
932 
933 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
934 {
935 	flags &= gfp_allowed_mask;
936 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
937 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
938 }
939 
940 static inline void slab_free_hook(struct kmem_cache *s, void *x)
941 {
942 	kmemleak_free_recursive(x, s->flags);
943 
944 	/*
945 	 * Trouble is that we may no longer disable interupts in the fast path
946 	 * So in order to make the debug calls that expect irqs to be
947 	 * disabled we need to disable interrupts temporarily.
948 	 */
949 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
950 	{
951 		unsigned long flags;
952 
953 		local_irq_save(flags);
954 		kmemcheck_slab_free(s, x, s->object_size);
955 		debug_check_no_locks_freed(x, s->object_size);
956 		local_irq_restore(flags);
957 	}
958 #endif
959 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
960 		debug_check_no_obj_freed(x, s->object_size);
961 }
962 
963 /*
964  * Tracking of fully allocated slabs for debugging purposes.
965  *
966  * list_lock must be held.
967  */
968 static void add_full(struct kmem_cache *s,
969 	struct kmem_cache_node *n, struct page *page)
970 {
971 	if (!(s->flags & SLAB_STORE_USER))
972 		return;
973 
974 	list_add(&page->lru, &n->full);
975 }
976 
977 /*
978  * list_lock must be held.
979  */
980 static void remove_full(struct kmem_cache *s, struct page *page)
981 {
982 	if (!(s->flags & SLAB_STORE_USER))
983 		return;
984 
985 	list_del(&page->lru);
986 }
987 
988 /* Tracking of the number of slabs for debugging purposes */
989 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
990 {
991 	struct kmem_cache_node *n = get_node(s, node);
992 
993 	return atomic_long_read(&n->nr_slabs);
994 }
995 
996 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
997 {
998 	return atomic_long_read(&n->nr_slabs);
999 }
1000 
1001 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1002 {
1003 	struct kmem_cache_node *n = get_node(s, node);
1004 
1005 	/*
1006 	 * May be called early in order to allocate a slab for the
1007 	 * kmem_cache_node structure. Solve the chicken-egg
1008 	 * dilemma by deferring the increment of the count during
1009 	 * bootstrap (see early_kmem_cache_node_alloc).
1010 	 */
1011 	if (n) {
1012 		atomic_long_inc(&n->nr_slabs);
1013 		atomic_long_add(objects, &n->total_objects);
1014 	}
1015 }
1016 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1017 {
1018 	struct kmem_cache_node *n = get_node(s, node);
1019 
1020 	atomic_long_dec(&n->nr_slabs);
1021 	atomic_long_sub(objects, &n->total_objects);
1022 }
1023 
1024 /* Object debug checks for alloc/free paths */
1025 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1026 								void *object)
1027 {
1028 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1029 		return;
1030 
1031 	init_object(s, object, SLUB_RED_INACTIVE);
1032 	init_tracking(s, object);
1033 }
1034 
1035 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1036 					void *object, unsigned long addr)
1037 {
1038 	if (!check_slab(s, page))
1039 		goto bad;
1040 
1041 	if (!check_valid_pointer(s, page, object)) {
1042 		object_err(s, page, object, "Freelist Pointer check fails");
1043 		goto bad;
1044 	}
1045 
1046 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1047 		goto bad;
1048 
1049 	/* Success perform special debug activities for allocs */
1050 	if (s->flags & SLAB_STORE_USER)
1051 		set_track(s, object, TRACK_ALLOC, addr);
1052 	trace(s, page, object, 1);
1053 	init_object(s, object, SLUB_RED_ACTIVE);
1054 	return 1;
1055 
1056 bad:
1057 	if (PageSlab(page)) {
1058 		/*
1059 		 * If this is a slab page then lets do the best we can
1060 		 * to avoid issues in the future. Marking all objects
1061 		 * as used avoids touching the remaining objects.
1062 		 */
1063 		slab_fix(s, "Marking all objects used");
1064 		page->inuse = page->objects;
1065 		page->freelist = NULL;
1066 	}
1067 	return 0;
1068 }
1069 
1070 static noinline struct kmem_cache_node *free_debug_processing(
1071 	struct kmem_cache *s, struct page *page, void *object,
1072 	unsigned long addr, unsigned long *flags)
1073 {
1074 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1075 
1076 	spin_lock_irqsave(&n->list_lock, *flags);
1077 	slab_lock(page);
1078 
1079 	if (!check_slab(s, page))
1080 		goto fail;
1081 
1082 	if (!check_valid_pointer(s, page, object)) {
1083 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1084 		goto fail;
1085 	}
1086 
1087 	if (on_freelist(s, page, object)) {
1088 		object_err(s, page, object, "Object already free");
1089 		goto fail;
1090 	}
1091 
1092 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1093 		goto out;
1094 
1095 	if (unlikely(s != page->slab)) {
1096 		if (!PageSlab(page)) {
1097 			slab_err(s, page, "Attempt to free object(0x%p) "
1098 				"outside of slab", object);
1099 		} else if (!page->slab) {
1100 			printk(KERN_ERR
1101 				"SLUB <none>: no slab for object 0x%p.\n",
1102 						object);
1103 			dump_stack();
1104 		} else
1105 			object_err(s, page, object,
1106 					"page slab pointer corrupt.");
1107 		goto fail;
1108 	}
1109 
1110 	if (s->flags & SLAB_STORE_USER)
1111 		set_track(s, object, TRACK_FREE, addr);
1112 	trace(s, page, object, 0);
1113 	init_object(s, object, SLUB_RED_INACTIVE);
1114 out:
1115 	slab_unlock(page);
1116 	/*
1117 	 * Keep node_lock to preserve integrity
1118 	 * until the object is actually freed
1119 	 */
1120 	return n;
1121 
1122 fail:
1123 	slab_unlock(page);
1124 	spin_unlock_irqrestore(&n->list_lock, *flags);
1125 	slab_fix(s, "Object at 0x%p not freed", object);
1126 	return NULL;
1127 }
1128 
1129 static int __init setup_slub_debug(char *str)
1130 {
1131 	slub_debug = DEBUG_DEFAULT_FLAGS;
1132 	if (*str++ != '=' || !*str)
1133 		/*
1134 		 * No options specified. Switch on full debugging.
1135 		 */
1136 		goto out;
1137 
1138 	if (*str == ',')
1139 		/*
1140 		 * No options but restriction on slabs. This means full
1141 		 * debugging for slabs matching a pattern.
1142 		 */
1143 		goto check_slabs;
1144 
1145 	if (tolower(*str) == 'o') {
1146 		/*
1147 		 * Avoid enabling debugging on caches if its minimum order
1148 		 * would increase as a result.
1149 		 */
1150 		disable_higher_order_debug = 1;
1151 		goto out;
1152 	}
1153 
1154 	slub_debug = 0;
1155 	if (*str == '-')
1156 		/*
1157 		 * Switch off all debugging measures.
1158 		 */
1159 		goto out;
1160 
1161 	/*
1162 	 * Determine which debug features should be switched on
1163 	 */
1164 	for (; *str && *str != ','; str++) {
1165 		switch (tolower(*str)) {
1166 		case 'f':
1167 			slub_debug |= SLAB_DEBUG_FREE;
1168 			break;
1169 		case 'z':
1170 			slub_debug |= SLAB_RED_ZONE;
1171 			break;
1172 		case 'p':
1173 			slub_debug |= SLAB_POISON;
1174 			break;
1175 		case 'u':
1176 			slub_debug |= SLAB_STORE_USER;
1177 			break;
1178 		case 't':
1179 			slub_debug |= SLAB_TRACE;
1180 			break;
1181 		case 'a':
1182 			slub_debug |= SLAB_FAILSLAB;
1183 			break;
1184 		default:
1185 			printk(KERN_ERR "slub_debug option '%c' "
1186 				"unknown. skipped\n", *str);
1187 		}
1188 	}
1189 
1190 check_slabs:
1191 	if (*str == ',')
1192 		slub_debug_slabs = str + 1;
1193 out:
1194 	return 1;
1195 }
1196 
1197 __setup("slub_debug", setup_slub_debug);
1198 
1199 static unsigned long kmem_cache_flags(unsigned long object_size,
1200 	unsigned long flags, const char *name,
1201 	void (*ctor)(void *))
1202 {
1203 	/*
1204 	 * Enable debugging if selected on the kernel commandline.
1205 	 */
1206 	if (slub_debug && (!slub_debug_slabs ||
1207 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1208 		flags |= slub_debug;
1209 
1210 	return flags;
1211 }
1212 #else
1213 static inline void setup_object_debug(struct kmem_cache *s,
1214 			struct page *page, void *object) {}
1215 
1216 static inline int alloc_debug_processing(struct kmem_cache *s,
1217 	struct page *page, void *object, unsigned long addr) { return 0; }
1218 
1219 static inline struct kmem_cache_node *free_debug_processing(
1220 	struct kmem_cache *s, struct page *page, void *object,
1221 	unsigned long addr, unsigned long *flags) { return NULL; }
1222 
1223 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1224 			{ return 1; }
1225 static inline int check_object(struct kmem_cache *s, struct page *page,
1226 			void *object, u8 val) { return 1; }
1227 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1228 					struct page *page) {}
1229 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1230 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1231 	unsigned long flags, const char *name,
1232 	void (*ctor)(void *))
1233 {
1234 	return flags;
1235 }
1236 #define slub_debug 0
1237 
1238 #define disable_higher_order_debug 0
1239 
1240 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1241 							{ return 0; }
1242 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1243 							{ return 0; }
1244 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1245 							int objects) {}
1246 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1247 							int objects) {}
1248 
1249 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1250 							{ return 0; }
1251 
1252 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1253 		void *object) {}
1254 
1255 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1256 
1257 #endif /* CONFIG_SLUB_DEBUG */
1258 
1259 /*
1260  * Slab allocation and freeing
1261  */
1262 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1263 					struct kmem_cache_order_objects oo)
1264 {
1265 	int order = oo_order(oo);
1266 
1267 	flags |= __GFP_NOTRACK;
1268 
1269 	if (node == NUMA_NO_NODE)
1270 		return alloc_pages(flags, order);
1271 	else
1272 		return alloc_pages_exact_node(node, flags, order);
1273 }
1274 
1275 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1276 {
1277 	struct page *page;
1278 	struct kmem_cache_order_objects oo = s->oo;
1279 	gfp_t alloc_gfp;
1280 
1281 	flags &= gfp_allowed_mask;
1282 
1283 	if (flags & __GFP_WAIT)
1284 		local_irq_enable();
1285 
1286 	flags |= s->allocflags;
1287 
1288 	/*
1289 	 * Let the initial higher-order allocation fail under memory pressure
1290 	 * so we fall-back to the minimum order allocation.
1291 	 */
1292 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1293 
1294 	page = alloc_slab_page(alloc_gfp, node, oo);
1295 	if (unlikely(!page)) {
1296 		oo = s->min;
1297 		/*
1298 		 * Allocation may have failed due to fragmentation.
1299 		 * Try a lower order alloc if possible
1300 		 */
1301 		page = alloc_slab_page(flags, node, oo);
1302 
1303 		if (page)
1304 			stat(s, ORDER_FALLBACK);
1305 	}
1306 
1307 	if (kmemcheck_enabled && page
1308 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1309 		int pages = 1 << oo_order(oo);
1310 
1311 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1312 
1313 		/*
1314 		 * Objects from caches that have a constructor don't get
1315 		 * cleared when they're allocated, so we need to do it here.
1316 		 */
1317 		if (s->ctor)
1318 			kmemcheck_mark_uninitialized_pages(page, pages);
1319 		else
1320 			kmemcheck_mark_unallocated_pages(page, pages);
1321 	}
1322 
1323 	if (flags & __GFP_WAIT)
1324 		local_irq_disable();
1325 	if (!page)
1326 		return NULL;
1327 
1328 	page->objects = oo_objects(oo);
1329 	mod_zone_page_state(page_zone(page),
1330 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1331 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1332 		1 << oo_order(oo));
1333 
1334 	return page;
1335 }
1336 
1337 static void setup_object(struct kmem_cache *s, struct page *page,
1338 				void *object)
1339 {
1340 	setup_object_debug(s, page, object);
1341 	if (unlikely(s->ctor))
1342 		s->ctor(object);
1343 }
1344 
1345 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1346 {
1347 	struct page *page;
1348 	void *start;
1349 	void *last;
1350 	void *p;
1351 
1352 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1353 
1354 	page = allocate_slab(s,
1355 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1356 	if (!page)
1357 		goto out;
1358 
1359 	inc_slabs_node(s, page_to_nid(page), page->objects);
1360 	page->slab = s;
1361 	__SetPageSlab(page);
1362 	if (page->pfmemalloc)
1363 		SetPageSlabPfmemalloc(page);
1364 
1365 	start = page_address(page);
1366 
1367 	if (unlikely(s->flags & SLAB_POISON))
1368 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1369 
1370 	last = start;
1371 	for_each_object(p, s, start, page->objects) {
1372 		setup_object(s, page, last);
1373 		set_freepointer(s, last, p);
1374 		last = p;
1375 	}
1376 	setup_object(s, page, last);
1377 	set_freepointer(s, last, NULL);
1378 
1379 	page->freelist = start;
1380 	page->inuse = page->objects;
1381 	page->frozen = 1;
1382 out:
1383 	return page;
1384 }
1385 
1386 static void __free_slab(struct kmem_cache *s, struct page *page)
1387 {
1388 	int order = compound_order(page);
1389 	int pages = 1 << order;
1390 
1391 	if (kmem_cache_debug(s)) {
1392 		void *p;
1393 
1394 		slab_pad_check(s, page);
1395 		for_each_object(p, s, page_address(page),
1396 						page->objects)
1397 			check_object(s, page, p, SLUB_RED_INACTIVE);
1398 	}
1399 
1400 	kmemcheck_free_shadow(page, compound_order(page));
1401 
1402 	mod_zone_page_state(page_zone(page),
1403 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1404 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1405 		-pages);
1406 
1407 	__ClearPageSlabPfmemalloc(page);
1408 	__ClearPageSlab(page);
1409 	reset_page_mapcount(page);
1410 	if (current->reclaim_state)
1411 		current->reclaim_state->reclaimed_slab += pages;
1412 	__free_pages(page, order);
1413 }
1414 
1415 #define need_reserve_slab_rcu						\
1416 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1417 
1418 static void rcu_free_slab(struct rcu_head *h)
1419 {
1420 	struct page *page;
1421 
1422 	if (need_reserve_slab_rcu)
1423 		page = virt_to_head_page(h);
1424 	else
1425 		page = container_of((struct list_head *)h, struct page, lru);
1426 
1427 	__free_slab(page->slab, page);
1428 }
1429 
1430 static void free_slab(struct kmem_cache *s, struct page *page)
1431 {
1432 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1433 		struct rcu_head *head;
1434 
1435 		if (need_reserve_slab_rcu) {
1436 			int order = compound_order(page);
1437 			int offset = (PAGE_SIZE << order) - s->reserved;
1438 
1439 			VM_BUG_ON(s->reserved != sizeof(*head));
1440 			head = page_address(page) + offset;
1441 		} else {
1442 			/*
1443 			 * RCU free overloads the RCU head over the LRU
1444 			 */
1445 			head = (void *)&page->lru;
1446 		}
1447 
1448 		call_rcu(head, rcu_free_slab);
1449 	} else
1450 		__free_slab(s, page);
1451 }
1452 
1453 static void discard_slab(struct kmem_cache *s, struct page *page)
1454 {
1455 	dec_slabs_node(s, page_to_nid(page), page->objects);
1456 	free_slab(s, page);
1457 }
1458 
1459 /*
1460  * Management of partially allocated slabs.
1461  *
1462  * list_lock must be held.
1463  */
1464 static inline void add_partial(struct kmem_cache_node *n,
1465 				struct page *page, int tail)
1466 {
1467 	n->nr_partial++;
1468 	if (tail == DEACTIVATE_TO_TAIL)
1469 		list_add_tail(&page->lru, &n->partial);
1470 	else
1471 		list_add(&page->lru, &n->partial);
1472 }
1473 
1474 /*
1475  * list_lock must be held.
1476  */
1477 static inline void remove_partial(struct kmem_cache_node *n,
1478 					struct page *page)
1479 {
1480 	list_del(&page->lru);
1481 	n->nr_partial--;
1482 }
1483 
1484 /*
1485  * Remove slab from the partial list, freeze it and
1486  * return the pointer to the freelist.
1487  *
1488  * Returns a list of objects or NULL if it fails.
1489  *
1490  * Must hold list_lock since we modify the partial list.
1491  */
1492 static inline void *acquire_slab(struct kmem_cache *s,
1493 		struct kmem_cache_node *n, struct page *page,
1494 		int mode)
1495 {
1496 	void *freelist;
1497 	unsigned long counters;
1498 	struct page new;
1499 
1500 	/*
1501 	 * Zap the freelist and set the frozen bit.
1502 	 * The old freelist is the list of objects for the
1503 	 * per cpu allocation list.
1504 	 */
1505 	freelist = page->freelist;
1506 	counters = page->counters;
1507 	new.counters = counters;
1508 	if (mode) {
1509 		new.inuse = page->objects;
1510 		new.freelist = NULL;
1511 	} else {
1512 		new.freelist = freelist;
1513 	}
1514 
1515 	VM_BUG_ON(new.frozen);
1516 	new.frozen = 1;
1517 
1518 	if (!__cmpxchg_double_slab(s, page,
1519 			freelist, counters,
1520 			new.freelist, new.counters,
1521 			"acquire_slab"))
1522 		return NULL;
1523 
1524 	remove_partial(n, page);
1525 	WARN_ON(!freelist);
1526 	return freelist;
1527 }
1528 
1529 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1530 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1531 
1532 /*
1533  * Try to allocate a partial slab from a specific node.
1534  */
1535 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1536 				struct kmem_cache_cpu *c, gfp_t flags)
1537 {
1538 	struct page *page, *page2;
1539 	void *object = NULL;
1540 
1541 	/*
1542 	 * Racy check. If we mistakenly see no partial slabs then we
1543 	 * just allocate an empty slab. If we mistakenly try to get a
1544 	 * partial slab and there is none available then get_partials()
1545 	 * will return NULL.
1546 	 */
1547 	if (!n || !n->nr_partial)
1548 		return NULL;
1549 
1550 	spin_lock(&n->list_lock);
1551 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1552 		void *t;
1553 		int available;
1554 
1555 		if (!pfmemalloc_match(page, flags))
1556 			continue;
1557 
1558 		t = acquire_slab(s, n, page, object == NULL);
1559 		if (!t)
1560 			break;
1561 
1562 		if (!object) {
1563 			c->page = page;
1564 			stat(s, ALLOC_FROM_PARTIAL);
1565 			object = t;
1566 			available =  page->objects - page->inuse;
1567 		} else {
1568 			available = put_cpu_partial(s, page, 0);
1569 			stat(s, CPU_PARTIAL_NODE);
1570 		}
1571 		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1572 			break;
1573 
1574 	}
1575 	spin_unlock(&n->list_lock);
1576 	return object;
1577 }
1578 
1579 /*
1580  * Get a page from somewhere. Search in increasing NUMA distances.
1581  */
1582 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1583 		struct kmem_cache_cpu *c)
1584 {
1585 #ifdef CONFIG_NUMA
1586 	struct zonelist *zonelist;
1587 	struct zoneref *z;
1588 	struct zone *zone;
1589 	enum zone_type high_zoneidx = gfp_zone(flags);
1590 	void *object;
1591 	unsigned int cpuset_mems_cookie;
1592 
1593 	/*
1594 	 * The defrag ratio allows a configuration of the tradeoffs between
1595 	 * inter node defragmentation and node local allocations. A lower
1596 	 * defrag_ratio increases the tendency to do local allocations
1597 	 * instead of attempting to obtain partial slabs from other nodes.
1598 	 *
1599 	 * If the defrag_ratio is set to 0 then kmalloc() always
1600 	 * returns node local objects. If the ratio is higher then kmalloc()
1601 	 * may return off node objects because partial slabs are obtained
1602 	 * from other nodes and filled up.
1603 	 *
1604 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1605 	 * defrag_ratio = 1000) then every (well almost) allocation will
1606 	 * first attempt to defrag slab caches on other nodes. This means
1607 	 * scanning over all nodes to look for partial slabs which may be
1608 	 * expensive if we do it every time we are trying to find a slab
1609 	 * with available objects.
1610 	 */
1611 	if (!s->remote_node_defrag_ratio ||
1612 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1613 		return NULL;
1614 
1615 	do {
1616 		cpuset_mems_cookie = get_mems_allowed();
1617 		zonelist = node_zonelist(slab_node(), flags);
1618 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1619 			struct kmem_cache_node *n;
1620 
1621 			n = get_node(s, zone_to_nid(zone));
1622 
1623 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1624 					n->nr_partial > s->min_partial) {
1625 				object = get_partial_node(s, n, c, flags);
1626 				if (object) {
1627 					/*
1628 					 * Return the object even if
1629 					 * put_mems_allowed indicated that
1630 					 * the cpuset mems_allowed was
1631 					 * updated in parallel. It's a
1632 					 * harmless race between the alloc
1633 					 * and the cpuset update.
1634 					 */
1635 					put_mems_allowed(cpuset_mems_cookie);
1636 					return object;
1637 				}
1638 			}
1639 		}
1640 	} while (!put_mems_allowed(cpuset_mems_cookie));
1641 #endif
1642 	return NULL;
1643 }
1644 
1645 /*
1646  * Get a partial page, lock it and return it.
1647  */
1648 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1649 		struct kmem_cache_cpu *c)
1650 {
1651 	void *object;
1652 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1653 
1654 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1655 	if (object || node != NUMA_NO_NODE)
1656 		return object;
1657 
1658 	return get_any_partial(s, flags, c);
1659 }
1660 
1661 #ifdef CONFIG_PREEMPT
1662 /*
1663  * Calculate the next globally unique transaction for disambiguiation
1664  * during cmpxchg. The transactions start with the cpu number and are then
1665  * incremented by CONFIG_NR_CPUS.
1666  */
1667 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1668 #else
1669 /*
1670  * No preemption supported therefore also no need to check for
1671  * different cpus.
1672  */
1673 #define TID_STEP 1
1674 #endif
1675 
1676 static inline unsigned long next_tid(unsigned long tid)
1677 {
1678 	return tid + TID_STEP;
1679 }
1680 
1681 static inline unsigned int tid_to_cpu(unsigned long tid)
1682 {
1683 	return tid % TID_STEP;
1684 }
1685 
1686 static inline unsigned long tid_to_event(unsigned long tid)
1687 {
1688 	return tid / TID_STEP;
1689 }
1690 
1691 static inline unsigned int init_tid(int cpu)
1692 {
1693 	return cpu;
1694 }
1695 
1696 static inline void note_cmpxchg_failure(const char *n,
1697 		const struct kmem_cache *s, unsigned long tid)
1698 {
1699 #ifdef SLUB_DEBUG_CMPXCHG
1700 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1701 
1702 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1703 
1704 #ifdef CONFIG_PREEMPT
1705 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1706 		printk("due to cpu change %d -> %d\n",
1707 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1708 	else
1709 #endif
1710 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1711 		printk("due to cpu running other code. Event %ld->%ld\n",
1712 			tid_to_event(tid), tid_to_event(actual_tid));
1713 	else
1714 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1715 			actual_tid, tid, next_tid(tid));
1716 #endif
1717 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1718 }
1719 
1720 static void init_kmem_cache_cpus(struct kmem_cache *s)
1721 {
1722 	int cpu;
1723 
1724 	for_each_possible_cpu(cpu)
1725 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1726 }
1727 
1728 /*
1729  * Remove the cpu slab
1730  */
1731 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1732 {
1733 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1734 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1735 	int lock = 0;
1736 	enum slab_modes l = M_NONE, m = M_NONE;
1737 	void *nextfree;
1738 	int tail = DEACTIVATE_TO_HEAD;
1739 	struct page new;
1740 	struct page old;
1741 
1742 	if (page->freelist) {
1743 		stat(s, DEACTIVATE_REMOTE_FREES);
1744 		tail = DEACTIVATE_TO_TAIL;
1745 	}
1746 
1747 	/*
1748 	 * Stage one: Free all available per cpu objects back
1749 	 * to the page freelist while it is still frozen. Leave the
1750 	 * last one.
1751 	 *
1752 	 * There is no need to take the list->lock because the page
1753 	 * is still frozen.
1754 	 */
1755 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1756 		void *prior;
1757 		unsigned long counters;
1758 
1759 		do {
1760 			prior = page->freelist;
1761 			counters = page->counters;
1762 			set_freepointer(s, freelist, prior);
1763 			new.counters = counters;
1764 			new.inuse--;
1765 			VM_BUG_ON(!new.frozen);
1766 
1767 		} while (!__cmpxchg_double_slab(s, page,
1768 			prior, counters,
1769 			freelist, new.counters,
1770 			"drain percpu freelist"));
1771 
1772 		freelist = nextfree;
1773 	}
1774 
1775 	/*
1776 	 * Stage two: Ensure that the page is unfrozen while the
1777 	 * list presence reflects the actual number of objects
1778 	 * during unfreeze.
1779 	 *
1780 	 * We setup the list membership and then perform a cmpxchg
1781 	 * with the count. If there is a mismatch then the page
1782 	 * is not unfrozen but the page is on the wrong list.
1783 	 *
1784 	 * Then we restart the process which may have to remove
1785 	 * the page from the list that we just put it on again
1786 	 * because the number of objects in the slab may have
1787 	 * changed.
1788 	 */
1789 redo:
1790 
1791 	old.freelist = page->freelist;
1792 	old.counters = page->counters;
1793 	VM_BUG_ON(!old.frozen);
1794 
1795 	/* Determine target state of the slab */
1796 	new.counters = old.counters;
1797 	if (freelist) {
1798 		new.inuse--;
1799 		set_freepointer(s, freelist, old.freelist);
1800 		new.freelist = freelist;
1801 	} else
1802 		new.freelist = old.freelist;
1803 
1804 	new.frozen = 0;
1805 
1806 	if (!new.inuse && n->nr_partial > s->min_partial)
1807 		m = M_FREE;
1808 	else if (new.freelist) {
1809 		m = M_PARTIAL;
1810 		if (!lock) {
1811 			lock = 1;
1812 			/*
1813 			 * Taking the spinlock removes the possiblity
1814 			 * that acquire_slab() will see a slab page that
1815 			 * is frozen
1816 			 */
1817 			spin_lock(&n->list_lock);
1818 		}
1819 	} else {
1820 		m = M_FULL;
1821 		if (kmem_cache_debug(s) && !lock) {
1822 			lock = 1;
1823 			/*
1824 			 * This also ensures that the scanning of full
1825 			 * slabs from diagnostic functions will not see
1826 			 * any frozen slabs.
1827 			 */
1828 			spin_lock(&n->list_lock);
1829 		}
1830 	}
1831 
1832 	if (l != m) {
1833 
1834 		if (l == M_PARTIAL)
1835 
1836 			remove_partial(n, page);
1837 
1838 		else if (l == M_FULL)
1839 
1840 			remove_full(s, page);
1841 
1842 		if (m == M_PARTIAL) {
1843 
1844 			add_partial(n, page, tail);
1845 			stat(s, tail);
1846 
1847 		} else if (m == M_FULL) {
1848 
1849 			stat(s, DEACTIVATE_FULL);
1850 			add_full(s, n, page);
1851 
1852 		}
1853 	}
1854 
1855 	l = m;
1856 	if (!__cmpxchg_double_slab(s, page,
1857 				old.freelist, old.counters,
1858 				new.freelist, new.counters,
1859 				"unfreezing slab"))
1860 		goto redo;
1861 
1862 	if (lock)
1863 		spin_unlock(&n->list_lock);
1864 
1865 	if (m == M_FREE) {
1866 		stat(s, DEACTIVATE_EMPTY);
1867 		discard_slab(s, page);
1868 		stat(s, FREE_SLAB);
1869 	}
1870 }
1871 
1872 /*
1873  * Unfreeze all the cpu partial slabs.
1874  *
1875  * This function must be called with interrupt disabled.
1876  */
1877 static void unfreeze_partials(struct kmem_cache *s)
1878 {
1879 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1880 	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1881 	struct page *page, *discard_page = NULL;
1882 
1883 	while ((page = c->partial)) {
1884 		struct page new;
1885 		struct page old;
1886 
1887 		c->partial = page->next;
1888 
1889 		n2 = get_node(s, page_to_nid(page));
1890 		if (n != n2) {
1891 			if (n)
1892 				spin_unlock(&n->list_lock);
1893 
1894 			n = n2;
1895 			spin_lock(&n->list_lock);
1896 		}
1897 
1898 		do {
1899 
1900 			old.freelist = page->freelist;
1901 			old.counters = page->counters;
1902 			VM_BUG_ON(!old.frozen);
1903 
1904 			new.counters = old.counters;
1905 			new.freelist = old.freelist;
1906 
1907 			new.frozen = 0;
1908 
1909 		} while (!__cmpxchg_double_slab(s, page,
1910 				old.freelist, old.counters,
1911 				new.freelist, new.counters,
1912 				"unfreezing slab"));
1913 
1914 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1915 			page->next = discard_page;
1916 			discard_page = page;
1917 		} else {
1918 			add_partial(n, page, DEACTIVATE_TO_TAIL);
1919 			stat(s, FREE_ADD_PARTIAL);
1920 		}
1921 	}
1922 
1923 	if (n)
1924 		spin_unlock(&n->list_lock);
1925 
1926 	while (discard_page) {
1927 		page = discard_page;
1928 		discard_page = discard_page->next;
1929 
1930 		stat(s, DEACTIVATE_EMPTY);
1931 		discard_slab(s, page);
1932 		stat(s, FREE_SLAB);
1933 	}
1934 }
1935 
1936 /*
1937  * Put a page that was just frozen (in __slab_free) into a partial page
1938  * slot if available. This is done without interrupts disabled and without
1939  * preemption disabled. The cmpxchg is racy and may put the partial page
1940  * onto a random cpus partial slot.
1941  *
1942  * If we did not find a slot then simply move all the partials to the
1943  * per node partial list.
1944  */
1945 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1946 {
1947 	struct page *oldpage;
1948 	int pages;
1949 	int pobjects;
1950 
1951 	do {
1952 		pages = 0;
1953 		pobjects = 0;
1954 		oldpage = this_cpu_read(s->cpu_slab->partial);
1955 
1956 		if (oldpage) {
1957 			pobjects = oldpage->pobjects;
1958 			pages = oldpage->pages;
1959 			if (drain && pobjects > s->cpu_partial) {
1960 				unsigned long flags;
1961 				/*
1962 				 * partial array is full. Move the existing
1963 				 * set to the per node partial list.
1964 				 */
1965 				local_irq_save(flags);
1966 				unfreeze_partials(s);
1967 				local_irq_restore(flags);
1968 				oldpage = NULL;
1969 				pobjects = 0;
1970 				pages = 0;
1971 				stat(s, CPU_PARTIAL_DRAIN);
1972 			}
1973 		}
1974 
1975 		pages++;
1976 		pobjects += page->objects - page->inuse;
1977 
1978 		page->pages = pages;
1979 		page->pobjects = pobjects;
1980 		page->next = oldpage;
1981 
1982 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1983 	return pobjects;
1984 }
1985 
1986 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1987 {
1988 	stat(s, CPUSLAB_FLUSH);
1989 	deactivate_slab(s, c->page, c->freelist);
1990 
1991 	c->tid = next_tid(c->tid);
1992 	c->page = NULL;
1993 	c->freelist = NULL;
1994 }
1995 
1996 /*
1997  * Flush cpu slab.
1998  *
1999  * Called from IPI handler with interrupts disabled.
2000  */
2001 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2002 {
2003 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2004 
2005 	if (likely(c)) {
2006 		if (c->page)
2007 			flush_slab(s, c);
2008 
2009 		unfreeze_partials(s);
2010 	}
2011 }
2012 
2013 static void flush_cpu_slab(void *d)
2014 {
2015 	struct kmem_cache *s = d;
2016 
2017 	__flush_cpu_slab(s, smp_processor_id());
2018 }
2019 
2020 static bool has_cpu_slab(int cpu, void *info)
2021 {
2022 	struct kmem_cache *s = info;
2023 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2024 
2025 	return c->page || c->partial;
2026 }
2027 
2028 static void flush_all(struct kmem_cache *s)
2029 {
2030 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2031 }
2032 
2033 /*
2034  * Check if the objects in a per cpu structure fit numa
2035  * locality expectations.
2036  */
2037 static inline int node_match(struct page *page, int node)
2038 {
2039 #ifdef CONFIG_NUMA
2040 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2041 		return 0;
2042 #endif
2043 	return 1;
2044 }
2045 
2046 static int count_free(struct page *page)
2047 {
2048 	return page->objects - page->inuse;
2049 }
2050 
2051 static unsigned long count_partial(struct kmem_cache_node *n,
2052 					int (*get_count)(struct page *))
2053 {
2054 	unsigned long flags;
2055 	unsigned long x = 0;
2056 	struct page *page;
2057 
2058 	spin_lock_irqsave(&n->list_lock, flags);
2059 	list_for_each_entry(page, &n->partial, lru)
2060 		x += get_count(page);
2061 	spin_unlock_irqrestore(&n->list_lock, flags);
2062 	return x;
2063 }
2064 
2065 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2066 {
2067 #ifdef CONFIG_SLUB_DEBUG
2068 	return atomic_long_read(&n->total_objects);
2069 #else
2070 	return 0;
2071 #endif
2072 }
2073 
2074 static noinline void
2075 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2076 {
2077 	int node;
2078 
2079 	printk(KERN_WARNING
2080 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2081 		nid, gfpflags);
2082 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2083 		"default order: %d, min order: %d\n", s->name, s->object_size,
2084 		s->size, oo_order(s->oo), oo_order(s->min));
2085 
2086 	if (oo_order(s->min) > get_order(s->object_size))
2087 		printk(KERN_WARNING "  %s debugging increased min order, use "
2088 		       "slub_debug=O to disable.\n", s->name);
2089 
2090 	for_each_online_node(node) {
2091 		struct kmem_cache_node *n = get_node(s, node);
2092 		unsigned long nr_slabs;
2093 		unsigned long nr_objs;
2094 		unsigned long nr_free;
2095 
2096 		if (!n)
2097 			continue;
2098 
2099 		nr_free  = count_partial(n, count_free);
2100 		nr_slabs = node_nr_slabs(n);
2101 		nr_objs  = node_nr_objs(n);
2102 
2103 		printk(KERN_WARNING
2104 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2105 			node, nr_slabs, nr_objs, nr_free);
2106 	}
2107 }
2108 
2109 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2110 			int node, struct kmem_cache_cpu **pc)
2111 {
2112 	void *freelist;
2113 	struct kmem_cache_cpu *c = *pc;
2114 	struct page *page;
2115 
2116 	freelist = get_partial(s, flags, node, c);
2117 
2118 	if (freelist)
2119 		return freelist;
2120 
2121 	page = new_slab(s, flags, node);
2122 	if (page) {
2123 		c = __this_cpu_ptr(s->cpu_slab);
2124 		if (c->page)
2125 			flush_slab(s, c);
2126 
2127 		/*
2128 		 * No other reference to the page yet so we can
2129 		 * muck around with it freely without cmpxchg
2130 		 */
2131 		freelist = page->freelist;
2132 		page->freelist = NULL;
2133 
2134 		stat(s, ALLOC_SLAB);
2135 		c->page = page;
2136 		*pc = c;
2137 	} else
2138 		freelist = NULL;
2139 
2140 	return freelist;
2141 }
2142 
2143 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2144 {
2145 	if (unlikely(PageSlabPfmemalloc(page)))
2146 		return gfp_pfmemalloc_allowed(gfpflags);
2147 
2148 	return true;
2149 }
2150 
2151 /*
2152  * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2153  * or deactivate the page.
2154  *
2155  * The page is still frozen if the return value is not NULL.
2156  *
2157  * If this function returns NULL then the page has been unfrozen.
2158  *
2159  * This function must be called with interrupt disabled.
2160  */
2161 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2162 {
2163 	struct page new;
2164 	unsigned long counters;
2165 	void *freelist;
2166 
2167 	do {
2168 		freelist = page->freelist;
2169 		counters = page->counters;
2170 
2171 		new.counters = counters;
2172 		VM_BUG_ON(!new.frozen);
2173 
2174 		new.inuse = page->objects;
2175 		new.frozen = freelist != NULL;
2176 
2177 	} while (!__cmpxchg_double_slab(s, page,
2178 		freelist, counters,
2179 		NULL, new.counters,
2180 		"get_freelist"));
2181 
2182 	return freelist;
2183 }
2184 
2185 /*
2186  * Slow path. The lockless freelist is empty or we need to perform
2187  * debugging duties.
2188  *
2189  * Processing is still very fast if new objects have been freed to the
2190  * regular freelist. In that case we simply take over the regular freelist
2191  * as the lockless freelist and zap the regular freelist.
2192  *
2193  * If that is not working then we fall back to the partial lists. We take the
2194  * first element of the freelist as the object to allocate now and move the
2195  * rest of the freelist to the lockless freelist.
2196  *
2197  * And if we were unable to get a new slab from the partial slab lists then
2198  * we need to allocate a new slab. This is the slowest path since it involves
2199  * a call to the page allocator and the setup of a new slab.
2200  */
2201 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2202 			  unsigned long addr, struct kmem_cache_cpu *c)
2203 {
2204 	void *freelist;
2205 	struct page *page;
2206 	unsigned long flags;
2207 
2208 	local_irq_save(flags);
2209 #ifdef CONFIG_PREEMPT
2210 	/*
2211 	 * We may have been preempted and rescheduled on a different
2212 	 * cpu before disabling interrupts. Need to reload cpu area
2213 	 * pointer.
2214 	 */
2215 	c = this_cpu_ptr(s->cpu_slab);
2216 #endif
2217 
2218 	page = c->page;
2219 	if (!page)
2220 		goto new_slab;
2221 redo:
2222 
2223 	if (unlikely(!node_match(page, node))) {
2224 		stat(s, ALLOC_NODE_MISMATCH);
2225 		deactivate_slab(s, page, c->freelist);
2226 		c->page = NULL;
2227 		c->freelist = NULL;
2228 		goto new_slab;
2229 	}
2230 
2231 	/*
2232 	 * By rights, we should be searching for a slab page that was
2233 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2234 	 * information when the page leaves the per-cpu allocator
2235 	 */
2236 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2237 		deactivate_slab(s, page, c->freelist);
2238 		c->page = NULL;
2239 		c->freelist = NULL;
2240 		goto new_slab;
2241 	}
2242 
2243 	/* must check again c->freelist in case of cpu migration or IRQ */
2244 	freelist = c->freelist;
2245 	if (freelist)
2246 		goto load_freelist;
2247 
2248 	stat(s, ALLOC_SLOWPATH);
2249 
2250 	freelist = get_freelist(s, page);
2251 
2252 	if (!freelist) {
2253 		c->page = NULL;
2254 		stat(s, DEACTIVATE_BYPASS);
2255 		goto new_slab;
2256 	}
2257 
2258 	stat(s, ALLOC_REFILL);
2259 
2260 load_freelist:
2261 	/*
2262 	 * freelist is pointing to the list of objects to be used.
2263 	 * page is pointing to the page from which the objects are obtained.
2264 	 * That page must be frozen for per cpu allocations to work.
2265 	 */
2266 	VM_BUG_ON(!c->page->frozen);
2267 	c->freelist = get_freepointer(s, freelist);
2268 	c->tid = next_tid(c->tid);
2269 	local_irq_restore(flags);
2270 	return freelist;
2271 
2272 new_slab:
2273 
2274 	if (c->partial) {
2275 		page = c->page = c->partial;
2276 		c->partial = page->next;
2277 		stat(s, CPU_PARTIAL_ALLOC);
2278 		c->freelist = NULL;
2279 		goto redo;
2280 	}
2281 
2282 	freelist = new_slab_objects(s, gfpflags, node, &c);
2283 
2284 	if (unlikely(!freelist)) {
2285 		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2286 			slab_out_of_memory(s, gfpflags, node);
2287 
2288 		local_irq_restore(flags);
2289 		return NULL;
2290 	}
2291 
2292 	page = c->page;
2293 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2294 		goto load_freelist;
2295 
2296 	/* Only entered in the debug case */
2297 	if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2298 		goto new_slab;	/* Slab failed checks. Next slab needed */
2299 
2300 	deactivate_slab(s, page, get_freepointer(s, freelist));
2301 	c->page = NULL;
2302 	c->freelist = NULL;
2303 	local_irq_restore(flags);
2304 	return freelist;
2305 }
2306 
2307 /*
2308  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2309  * have the fastpath folded into their functions. So no function call
2310  * overhead for requests that can be satisfied on the fastpath.
2311  *
2312  * The fastpath works by first checking if the lockless freelist can be used.
2313  * If not then __slab_alloc is called for slow processing.
2314  *
2315  * Otherwise we can simply pick the next object from the lockless free list.
2316  */
2317 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2318 		gfp_t gfpflags, int node, unsigned long addr)
2319 {
2320 	void **object;
2321 	struct kmem_cache_cpu *c;
2322 	struct page *page;
2323 	unsigned long tid;
2324 
2325 	if (slab_pre_alloc_hook(s, gfpflags))
2326 		return NULL;
2327 
2328 redo:
2329 
2330 	/*
2331 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2332 	 * enabled. We may switch back and forth between cpus while
2333 	 * reading from one cpu area. That does not matter as long
2334 	 * as we end up on the original cpu again when doing the cmpxchg.
2335 	 */
2336 	c = __this_cpu_ptr(s->cpu_slab);
2337 
2338 	/*
2339 	 * The transaction ids are globally unique per cpu and per operation on
2340 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2341 	 * occurs on the right processor and that there was no operation on the
2342 	 * linked list in between.
2343 	 */
2344 	tid = c->tid;
2345 	barrier();
2346 
2347 	object = c->freelist;
2348 	page = c->page;
2349 	if (unlikely(!object || !node_match(page, node)))
2350 		object = __slab_alloc(s, gfpflags, node, addr, c);
2351 
2352 	else {
2353 		void *next_object = get_freepointer_safe(s, object);
2354 
2355 		/*
2356 		 * The cmpxchg will only match if there was no additional
2357 		 * operation and if we are on the right processor.
2358 		 *
2359 		 * The cmpxchg does the following atomically (without lock semantics!)
2360 		 * 1. Relocate first pointer to the current per cpu area.
2361 		 * 2. Verify that tid and freelist have not been changed
2362 		 * 3. If they were not changed replace tid and freelist
2363 		 *
2364 		 * Since this is without lock semantics the protection is only against
2365 		 * code executing on this cpu *not* from access by other cpus.
2366 		 */
2367 		if (unlikely(!this_cpu_cmpxchg_double(
2368 				s->cpu_slab->freelist, s->cpu_slab->tid,
2369 				object, tid,
2370 				next_object, next_tid(tid)))) {
2371 
2372 			note_cmpxchg_failure("slab_alloc", s, tid);
2373 			goto redo;
2374 		}
2375 		prefetch_freepointer(s, next_object);
2376 		stat(s, ALLOC_FASTPATH);
2377 	}
2378 
2379 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2380 		memset(object, 0, s->object_size);
2381 
2382 	slab_post_alloc_hook(s, gfpflags, object);
2383 
2384 	return object;
2385 }
2386 
2387 static __always_inline void *slab_alloc(struct kmem_cache *s,
2388 		gfp_t gfpflags, unsigned long addr)
2389 {
2390 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2391 }
2392 
2393 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2394 {
2395 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2396 
2397 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2398 
2399 	return ret;
2400 }
2401 EXPORT_SYMBOL(kmem_cache_alloc);
2402 
2403 #ifdef CONFIG_TRACING
2404 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2405 {
2406 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2407 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2408 	return ret;
2409 }
2410 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2411 
2412 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2413 {
2414 	void *ret = kmalloc_order(size, flags, order);
2415 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2416 	return ret;
2417 }
2418 EXPORT_SYMBOL(kmalloc_order_trace);
2419 #endif
2420 
2421 #ifdef CONFIG_NUMA
2422 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2423 {
2424 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2425 
2426 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2427 				    s->object_size, s->size, gfpflags, node);
2428 
2429 	return ret;
2430 }
2431 EXPORT_SYMBOL(kmem_cache_alloc_node);
2432 
2433 #ifdef CONFIG_TRACING
2434 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2435 				    gfp_t gfpflags,
2436 				    int node, size_t size)
2437 {
2438 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2439 
2440 	trace_kmalloc_node(_RET_IP_, ret,
2441 			   size, s->size, gfpflags, node);
2442 	return ret;
2443 }
2444 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2445 #endif
2446 #endif
2447 
2448 /*
2449  * Slow patch handling. This may still be called frequently since objects
2450  * have a longer lifetime than the cpu slabs in most processing loads.
2451  *
2452  * So we still attempt to reduce cache line usage. Just take the slab
2453  * lock and free the item. If there is no additional partial page
2454  * handling required then we can return immediately.
2455  */
2456 static void __slab_free(struct kmem_cache *s, struct page *page,
2457 			void *x, unsigned long addr)
2458 {
2459 	void *prior;
2460 	void **object = (void *)x;
2461 	int was_frozen;
2462 	int inuse;
2463 	struct page new;
2464 	unsigned long counters;
2465 	struct kmem_cache_node *n = NULL;
2466 	unsigned long uninitialized_var(flags);
2467 
2468 	stat(s, FREE_SLOWPATH);
2469 
2470 	if (kmem_cache_debug(s) &&
2471 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2472 		return;
2473 
2474 	do {
2475 		prior = page->freelist;
2476 		counters = page->counters;
2477 		set_freepointer(s, object, prior);
2478 		new.counters = counters;
2479 		was_frozen = new.frozen;
2480 		new.inuse--;
2481 		if ((!new.inuse || !prior) && !was_frozen && !n) {
2482 
2483 			if (!kmem_cache_debug(s) && !prior)
2484 
2485 				/*
2486 				 * Slab was on no list before and will be partially empty
2487 				 * We can defer the list move and instead freeze it.
2488 				 */
2489 				new.frozen = 1;
2490 
2491 			else { /* Needs to be taken off a list */
2492 
2493 	                        n = get_node(s, page_to_nid(page));
2494 				/*
2495 				 * Speculatively acquire the list_lock.
2496 				 * If the cmpxchg does not succeed then we may
2497 				 * drop the list_lock without any processing.
2498 				 *
2499 				 * Otherwise the list_lock will synchronize with
2500 				 * other processors updating the list of slabs.
2501 				 */
2502 				spin_lock_irqsave(&n->list_lock, flags);
2503 
2504 			}
2505 		}
2506 		inuse = new.inuse;
2507 
2508 	} while (!cmpxchg_double_slab(s, page,
2509 		prior, counters,
2510 		object, new.counters,
2511 		"__slab_free"));
2512 
2513 	if (likely(!n)) {
2514 
2515 		/*
2516 		 * If we just froze the page then put it onto the
2517 		 * per cpu partial list.
2518 		 */
2519 		if (new.frozen && !was_frozen) {
2520 			put_cpu_partial(s, page, 1);
2521 			stat(s, CPU_PARTIAL_FREE);
2522 		}
2523 		/*
2524 		 * The list lock was not taken therefore no list
2525 		 * activity can be necessary.
2526 		 */
2527                 if (was_frozen)
2528                         stat(s, FREE_FROZEN);
2529                 return;
2530         }
2531 
2532 	/*
2533 	 * was_frozen may have been set after we acquired the list_lock in
2534 	 * an earlier loop. So we need to check it here again.
2535 	 */
2536 	if (was_frozen)
2537 		stat(s, FREE_FROZEN);
2538 	else {
2539 		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2540                         goto slab_empty;
2541 
2542 		/*
2543 		 * Objects left in the slab. If it was not on the partial list before
2544 		 * then add it.
2545 		 */
2546 		if (unlikely(!prior)) {
2547 			remove_full(s, page);
2548 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2549 			stat(s, FREE_ADD_PARTIAL);
2550 		}
2551 	}
2552 	spin_unlock_irqrestore(&n->list_lock, flags);
2553 	return;
2554 
2555 slab_empty:
2556 	if (prior) {
2557 		/*
2558 		 * Slab on the partial list.
2559 		 */
2560 		remove_partial(n, page);
2561 		stat(s, FREE_REMOVE_PARTIAL);
2562 	} else
2563 		/* Slab must be on the full list */
2564 		remove_full(s, page);
2565 
2566 	spin_unlock_irqrestore(&n->list_lock, flags);
2567 	stat(s, FREE_SLAB);
2568 	discard_slab(s, page);
2569 }
2570 
2571 /*
2572  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2573  * can perform fastpath freeing without additional function calls.
2574  *
2575  * The fastpath is only possible if we are freeing to the current cpu slab
2576  * of this processor. This typically the case if we have just allocated
2577  * the item before.
2578  *
2579  * If fastpath is not possible then fall back to __slab_free where we deal
2580  * with all sorts of special processing.
2581  */
2582 static __always_inline void slab_free(struct kmem_cache *s,
2583 			struct page *page, void *x, unsigned long addr)
2584 {
2585 	void **object = (void *)x;
2586 	struct kmem_cache_cpu *c;
2587 	unsigned long tid;
2588 
2589 	slab_free_hook(s, x);
2590 
2591 redo:
2592 	/*
2593 	 * Determine the currently cpus per cpu slab.
2594 	 * The cpu may change afterward. However that does not matter since
2595 	 * data is retrieved via this pointer. If we are on the same cpu
2596 	 * during the cmpxchg then the free will succedd.
2597 	 */
2598 	c = __this_cpu_ptr(s->cpu_slab);
2599 
2600 	tid = c->tid;
2601 	barrier();
2602 
2603 	if (likely(page == c->page)) {
2604 		set_freepointer(s, object, c->freelist);
2605 
2606 		if (unlikely(!this_cpu_cmpxchg_double(
2607 				s->cpu_slab->freelist, s->cpu_slab->tid,
2608 				c->freelist, tid,
2609 				object, next_tid(tid)))) {
2610 
2611 			note_cmpxchg_failure("slab_free", s, tid);
2612 			goto redo;
2613 		}
2614 		stat(s, FREE_FASTPATH);
2615 	} else
2616 		__slab_free(s, page, x, addr);
2617 
2618 }
2619 
2620 void kmem_cache_free(struct kmem_cache *s, void *x)
2621 {
2622 	struct page *page;
2623 
2624 	page = virt_to_head_page(x);
2625 
2626 	if (kmem_cache_debug(s) && page->slab != s) {
2627 		pr_err("kmem_cache_free: Wrong slab cache. %s but object"
2628 			" is from  %s\n", page->slab->name, s->name);
2629 		WARN_ON_ONCE(1);
2630 		return;
2631 	}
2632 
2633 	slab_free(s, page, x, _RET_IP_);
2634 
2635 	trace_kmem_cache_free(_RET_IP_, x);
2636 }
2637 EXPORT_SYMBOL(kmem_cache_free);
2638 
2639 /*
2640  * Object placement in a slab is made very easy because we always start at
2641  * offset 0. If we tune the size of the object to the alignment then we can
2642  * get the required alignment by putting one properly sized object after
2643  * another.
2644  *
2645  * Notice that the allocation order determines the sizes of the per cpu
2646  * caches. Each processor has always one slab available for allocations.
2647  * Increasing the allocation order reduces the number of times that slabs
2648  * must be moved on and off the partial lists and is therefore a factor in
2649  * locking overhead.
2650  */
2651 
2652 /*
2653  * Mininum / Maximum order of slab pages. This influences locking overhead
2654  * and slab fragmentation. A higher order reduces the number of partial slabs
2655  * and increases the number of allocations possible without having to
2656  * take the list_lock.
2657  */
2658 static int slub_min_order;
2659 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2660 static int slub_min_objects;
2661 
2662 /*
2663  * Merge control. If this is set then no merging of slab caches will occur.
2664  * (Could be removed. This was introduced to pacify the merge skeptics.)
2665  */
2666 static int slub_nomerge;
2667 
2668 /*
2669  * Calculate the order of allocation given an slab object size.
2670  *
2671  * The order of allocation has significant impact on performance and other
2672  * system components. Generally order 0 allocations should be preferred since
2673  * order 0 does not cause fragmentation in the page allocator. Larger objects
2674  * be problematic to put into order 0 slabs because there may be too much
2675  * unused space left. We go to a higher order if more than 1/16th of the slab
2676  * would be wasted.
2677  *
2678  * In order to reach satisfactory performance we must ensure that a minimum
2679  * number of objects is in one slab. Otherwise we may generate too much
2680  * activity on the partial lists which requires taking the list_lock. This is
2681  * less a concern for large slabs though which are rarely used.
2682  *
2683  * slub_max_order specifies the order where we begin to stop considering the
2684  * number of objects in a slab as critical. If we reach slub_max_order then
2685  * we try to keep the page order as low as possible. So we accept more waste
2686  * of space in favor of a small page order.
2687  *
2688  * Higher order allocations also allow the placement of more objects in a
2689  * slab and thereby reduce object handling overhead. If the user has
2690  * requested a higher mininum order then we start with that one instead of
2691  * the smallest order which will fit the object.
2692  */
2693 static inline int slab_order(int size, int min_objects,
2694 				int max_order, int fract_leftover, int reserved)
2695 {
2696 	int order;
2697 	int rem;
2698 	int min_order = slub_min_order;
2699 
2700 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2701 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2702 
2703 	for (order = max(min_order,
2704 				fls(min_objects * size - 1) - PAGE_SHIFT);
2705 			order <= max_order; order++) {
2706 
2707 		unsigned long slab_size = PAGE_SIZE << order;
2708 
2709 		if (slab_size < min_objects * size + reserved)
2710 			continue;
2711 
2712 		rem = (slab_size - reserved) % size;
2713 
2714 		if (rem <= slab_size / fract_leftover)
2715 			break;
2716 
2717 	}
2718 
2719 	return order;
2720 }
2721 
2722 static inline int calculate_order(int size, int reserved)
2723 {
2724 	int order;
2725 	int min_objects;
2726 	int fraction;
2727 	int max_objects;
2728 
2729 	/*
2730 	 * Attempt to find best configuration for a slab. This
2731 	 * works by first attempting to generate a layout with
2732 	 * the best configuration and backing off gradually.
2733 	 *
2734 	 * First we reduce the acceptable waste in a slab. Then
2735 	 * we reduce the minimum objects required in a slab.
2736 	 */
2737 	min_objects = slub_min_objects;
2738 	if (!min_objects)
2739 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2740 	max_objects = order_objects(slub_max_order, size, reserved);
2741 	min_objects = min(min_objects, max_objects);
2742 
2743 	while (min_objects > 1) {
2744 		fraction = 16;
2745 		while (fraction >= 4) {
2746 			order = slab_order(size, min_objects,
2747 					slub_max_order, fraction, reserved);
2748 			if (order <= slub_max_order)
2749 				return order;
2750 			fraction /= 2;
2751 		}
2752 		min_objects--;
2753 	}
2754 
2755 	/*
2756 	 * We were unable to place multiple objects in a slab. Now
2757 	 * lets see if we can place a single object there.
2758 	 */
2759 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2760 	if (order <= slub_max_order)
2761 		return order;
2762 
2763 	/*
2764 	 * Doh this slab cannot be placed using slub_max_order.
2765 	 */
2766 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2767 	if (order < MAX_ORDER)
2768 		return order;
2769 	return -ENOSYS;
2770 }
2771 
2772 /*
2773  * Figure out what the alignment of the objects will be.
2774  */
2775 static unsigned long calculate_alignment(unsigned long flags,
2776 		unsigned long align, unsigned long size)
2777 {
2778 	/*
2779 	 * If the user wants hardware cache aligned objects then follow that
2780 	 * suggestion if the object is sufficiently large.
2781 	 *
2782 	 * The hardware cache alignment cannot override the specified
2783 	 * alignment though. If that is greater then use it.
2784 	 */
2785 	if (flags & SLAB_HWCACHE_ALIGN) {
2786 		unsigned long ralign = cache_line_size();
2787 		while (size <= ralign / 2)
2788 			ralign /= 2;
2789 		align = max(align, ralign);
2790 	}
2791 
2792 	if (align < ARCH_SLAB_MINALIGN)
2793 		align = ARCH_SLAB_MINALIGN;
2794 
2795 	return ALIGN(align, sizeof(void *));
2796 }
2797 
2798 static void
2799 init_kmem_cache_node(struct kmem_cache_node *n)
2800 {
2801 	n->nr_partial = 0;
2802 	spin_lock_init(&n->list_lock);
2803 	INIT_LIST_HEAD(&n->partial);
2804 #ifdef CONFIG_SLUB_DEBUG
2805 	atomic_long_set(&n->nr_slabs, 0);
2806 	atomic_long_set(&n->total_objects, 0);
2807 	INIT_LIST_HEAD(&n->full);
2808 #endif
2809 }
2810 
2811 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2812 {
2813 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2814 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2815 
2816 	/*
2817 	 * Must align to double word boundary for the double cmpxchg
2818 	 * instructions to work; see __pcpu_double_call_return_bool().
2819 	 */
2820 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2821 				     2 * sizeof(void *));
2822 
2823 	if (!s->cpu_slab)
2824 		return 0;
2825 
2826 	init_kmem_cache_cpus(s);
2827 
2828 	return 1;
2829 }
2830 
2831 static struct kmem_cache *kmem_cache_node;
2832 
2833 /*
2834  * No kmalloc_node yet so do it by hand. We know that this is the first
2835  * slab on the node for this slabcache. There are no concurrent accesses
2836  * possible.
2837  *
2838  * Note that this function only works on the kmalloc_node_cache
2839  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2840  * memory on a fresh node that has no slab structures yet.
2841  */
2842 static void early_kmem_cache_node_alloc(int node)
2843 {
2844 	struct page *page;
2845 	struct kmem_cache_node *n;
2846 
2847 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2848 
2849 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2850 
2851 	BUG_ON(!page);
2852 	if (page_to_nid(page) != node) {
2853 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2854 				"node %d\n", node);
2855 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2856 				"in order to be able to continue\n");
2857 	}
2858 
2859 	n = page->freelist;
2860 	BUG_ON(!n);
2861 	page->freelist = get_freepointer(kmem_cache_node, n);
2862 	page->inuse = 1;
2863 	page->frozen = 0;
2864 	kmem_cache_node->node[node] = n;
2865 #ifdef CONFIG_SLUB_DEBUG
2866 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2867 	init_tracking(kmem_cache_node, n);
2868 #endif
2869 	init_kmem_cache_node(n);
2870 	inc_slabs_node(kmem_cache_node, node, page->objects);
2871 
2872 	add_partial(n, page, DEACTIVATE_TO_HEAD);
2873 }
2874 
2875 static void free_kmem_cache_nodes(struct kmem_cache *s)
2876 {
2877 	int node;
2878 
2879 	for_each_node_state(node, N_NORMAL_MEMORY) {
2880 		struct kmem_cache_node *n = s->node[node];
2881 
2882 		if (n)
2883 			kmem_cache_free(kmem_cache_node, n);
2884 
2885 		s->node[node] = NULL;
2886 	}
2887 }
2888 
2889 static int init_kmem_cache_nodes(struct kmem_cache *s)
2890 {
2891 	int node;
2892 
2893 	for_each_node_state(node, N_NORMAL_MEMORY) {
2894 		struct kmem_cache_node *n;
2895 
2896 		if (slab_state == DOWN) {
2897 			early_kmem_cache_node_alloc(node);
2898 			continue;
2899 		}
2900 		n = kmem_cache_alloc_node(kmem_cache_node,
2901 						GFP_KERNEL, node);
2902 
2903 		if (!n) {
2904 			free_kmem_cache_nodes(s);
2905 			return 0;
2906 		}
2907 
2908 		s->node[node] = n;
2909 		init_kmem_cache_node(n);
2910 	}
2911 	return 1;
2912 }
2913 
2914 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2915 {
2916 	if (min < MIN_PARTIAL)
2917 		min = MIN_PARTIAL;
2918 	else if (min > MAX_PARTIAL)
2919 		min = MAX_PARTIAL;
2920 	s->min_partial = min;
2921 }
2922 
2923 /*
2924  * calculate_sizes() determines the order and the distribution of data within
2925  * a slab object.
2926  */
2927 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2928 {
2929 	unsigned long flags = s->flags;
2930 	unsigned long size = s->object_size;
2931 	unsigned long align = s->align;
2932 	int order;
2933 
2934 	/*
2935 	 * Round up object size to the next word boundary. We can only
2936 	 * place the free pointer at word boundaries and this determines
2937 	 * the possible location of the free pointer.
2938 	 */
2939 	size = ALIGN(size, sizeof(void *));
2940 
2941 #ifdef CONFIG_SLUB_DEBUG
2942 	/*
2943 	 * Determine if we can poison the object itself. If the user of
2944 	 * the slab may touch the object after free or before allocation
2945 	 * then we should never poison the object itself.
2946 	 */
2947 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2948 			!s->ctor)
2949 		s->flags |= __OBJECT_POISON;
2950 	else
2951 		s->flags &= ~__OBJECT_POISON;
2952 
2953 
2954 	/*
2955 	 * If we are Redzoning then check if there is some space between the
2956 	 * end of the object and the free pointer. If not then add an
2957 	 * additional word to have some bytes to store Redzone information.
2958 	 */
2959 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2960 		size += sizeof(void *);
2961 #endif
2962 
2963 	/*
2964 	 * With that we have determined the number of bytes in actual use
2965 	 * by the object. This is the potential offset to the free pointer.
2966 	 */
2967 	s->inuse = size;
2968 
2969 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2970 		s->ctor)) {
2971 		/*
2972 		 * Relocate free pointer after the object if it is not
2973 		 * permitted to overwrite the first word of the object on
2974 		 * kmem_cache_free.
2975 		 *
2976 		 * This is the case if we do RCU, have a constructor or
2977 		 * destructor or are poisoning the objects.
2978 		 */
2979 		s->offset = size;
2980 		size += sizeof(void *);
2981 	}
2982 
2983 #ifdef CONFIG_SLUB_DEBUG
2984 	if (flags & SLAB_STORE_USER)
2985 		/*
2986 		 * Need to store information about allocs and frees after
2987 		 * the object.
2988 		 */
2989 		size += 2 * sizeof(struct track);
2990 
2991 	if (flags & SLAB_RED_ZONE)
2992 		/*
2993 		 * Add some empty padding so that we can catch
2994 		 * overwrites from earlier objects rather than let
2995 		 * tracking information or the free pointer be
2996 		 * corrupted if a user writes before the start
2997 		 * of the object.
2998 		 */
2999 		size += sizeof(void *);
3000 #endif
3001 
3002 	/*
3003 	 * Determine the alignment based on various parameters that the
3004 	 * user specified and the dynamic determination of cache line size
3005 	 * on bootup.
3006 	 */
3007 	align = calculate_alignment(flags, align, s->object_size);
3008 	s->align = align;
3009 
3010 	/*
3011 	 * SLUB stores one object immediately after another beginning from
3012 	 * offset 0. In order to align the objects we have to simply size
3013 	 * each object to conform to the alignment.
3014 	 */
3015 	size = ALIGN(size, align);
3016 	s->size = size;
3017 	if (forced_order >= 0)
3018 		order = forced_order;
3019 	else
3020 		order = calculate_order(size, s->reserved);
3021 
3022 	if (order < 0)
3023 		return 0;
3024 
3025 	s->allocflags = 0;
3026 	if (order)
3027 		s->allocflags |= __GFP_COMP;
3028 
3029 	if (s->flags & SLAB_CACHE_DMA)
3030 		s->allocflags |= SLUB_DMA;
3031 
3032 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3033 		s->allocflags |= __GFP_RECLAIMABLE;
3034 
3035 	/*
3036 	 * Determine the number of objects per slab
3037 	 */
3038 	s->oo = oo_make(order, size, s->reserved);
3039 	s->min = oo_make(get_order(size), size, s->reserved);
3040 	if (oo_objects(s->oo) > oo_objects(s->max))
3041 		s->max = s->oo;
3042 
3043 	return !!oo_objects(s->oo);
3044 
3045 }
3046 
3047 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3048 {
3049 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3050 	s->reserved = 0;
3051 
3052 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3053 		s->reserved = sizeof(struct rcu_head);
3054 
3055 	if (!calculate_sizes(s, -1))
3056 		goto error;
3057 	if (disable_higher_order_debug) {
3058 		/*
3059 		 * Disable debugging flags that store metadata if the min slab
3060 		 * order increased.
3061 		 */
3062 		if (get_order(s->size) > get_order(s->object_size)) {
3063 			s->flags &= ~DEBUG_METADATA_FLAGS;
3064 			s->offset = 0;
3065 			if (!calculate_sizes(s, -1))
3066 				goto error;
3067 		}
3068 	}
3069 
3070 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3071     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3072 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3073 		/* Enable fast mode */
3074 		s->flags |= __CMPXCHG_DOUBLE;
3075 #endif
3076 
3077 	/*
3078 	 * The larger the object size is, the more pages we want on the partial
3079 	 * list to avoid pounding the page allocator excessively.
3080 	 */
3081 	set_min_partial(s, ilog2(s->size) / 2);
3082 
3083 	/*
3084 	 * cpu_partial determined the maximum number of objects kept in the
3085 	 * per cpu partial lists of a processor.
3086 	 *
3087 	 * Per cpu partial lists mainly contain slabs that just have one
3088 	 * object freed. If they are used for allocation then they can be
3089 	 * filled up again with minimal effort. The slab will never hit the
3090 	 * per node partial lists and therefore no locking will be required.
3091 	 *
3092 	 * This setting also determines
3093 	 *
3094 	 * A) The number of objects from per cpu partial slabs dumped to the
3095 	 *    per node list when we reach the limit.
3096 	 * B) The number of objects in cpu partial slabs to extract from the
3097 	 *    per node list when we run out of per cpu objects. We only fetch 50%
3098 	 *    to keep some capacity around for frees.
3099 	 */
3100 	if (kmem_cache_debug(s))
3101 		s->cpu_partial = 0;
3102 	else if (s->size >= PAGE_SIZE)
3103 		s->cpu_partial = 2;
3104 	else if (s->size >= 1024)
3105 		s->cpu_partial = 6;
3106 	else if (s->size >= 256)
3107 		s->cpu_partial = 13;
3108 	else
3109 		s->cpu_partial = 30;
3110 
3111 #ifdef CONFIG_NUMA
3112 	s->remote_node_defrag_ratio = 1000;
3113 #endif
3114 	if (!init_kmem_cache_nodes(s))
3115 		goto error;
3116 
3117 	if (alloc_kmem_cache_cpus(s))
3118 		return 0;
3119 
3120 	free_kmem_cache_nodes(s);
3121 error:
3122 	if (flags & SLAB_PANIC)
3123 		panic("Cannot create slab %s size=%lu realsize=%u "
3124 			"order=%u offset=%u flags=%lx\n",
3125 			s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3126 			s->offset, flags);
3127 	return -EINVAL;
3128 }
3129 
3130 /*
3131  * Determine the size of a slab object
3132  */
3133 unsigned int kmem_cache_size(struct kmem_cache *s)
3134 {
3135 	return s->object_size;
3136 }
3137 EXPORT_SYMBOL(kmem_cache_size);
3138 
3139 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3140 							const char *text)
3141 {
3142 #ifdef CONFIG_SLUB_DEBUG
3143 	void *addr = page_address(page);
3144 	void *p;
3145 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3146 				     sizeof(long), GFP_ATOMIC);
3147 	if (!map)
3148 		return;
3149 	slab_err(s, page, text, s->name);
3150 	slab_lock(page);
3151 
3152 	get_map(s, page, map);
3153 	for_each_object(p, s, addr, page->objects) {
3154 
3155 		if (!test_bit(slab_index(p, s, addr), map)) {
3156 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3157 							p, p - addr);
3158 			print_tracking(s, p);
3159 		}
3160 	}
3161 	slab_unlock(page);
3162 	kfree(map);
3163 #endif
3164 }
3165 
3166 /*
3167  * Attempt to free all partial slabs on a node.
3168  * This is called from kmem_cache_close(). We must be the last thread
3169  * using the cache and therefore we do not need to lock anymore.
3170  */
3171 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3172 {
3173 	struct page *page, *h;
3174 
3175 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3176 		if (!page->inuse) {
3177 			remove_partial(n, page);
3178 			discard_slab(s, page);
3179 		} else {
3180 			list_slab_objects(s, page,
3181 			"Objects remaining in %s on kmem_cache_close()");
3182 		}
3183 	}
3184 }
3185 
3186 /*
3187  * Release all resources used by a slab cache.
3188  */
3189 static inline int kmem_cache_close(struct kmem_cache *s)
3190 {
3191 	int node;
3192 
3193 	flush_all(s);
3194 	/* Attempt to free all objects */
3195 	for_each_node_state(node, N_NORMAL_MEMORY) {
3196 		struct kmem_cache_node *n = get_node(s, node);
3197 
3198 		free_partial(s, n);
3199 		if (n->nr_partial || slabs_node(s, node))
3200 			return 1;
3201 	}
3202 	free_percpu(s->cpu_slab);
3203 	free_kmem_cache_nodes(s);
3204 	return 0;
3205 }
3206 
3207 int __kmem_cache_shutdown(struct kmem_cache *s)
3208 {
3209 	int rc = kmem_cache_close(s);
3210 
3211 	if (!rc)
3212 		sysfs_slab_remove(s);
3213 
3214 	return rc;
3215 }
3216 
3217 /********************************************************************
3218  *		Kmalloc subsystem
3219  *******************************************************************/
3220 
3221 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3222 EXPORT_SYMBOL(kmalloc_caches);
3223 
3224 #ifdef CONFIG_ZONE_DMA
3225 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3226 #endif
3227 
3228 static int __init setup_slub_min_order(char *str)
3229 {
3230 	get_option(&str, &slub_min_order);
3231 
3232 	return 1;
3233 }
3234 
3235 __setup("slub_min_order=", setup_slub_min_order);
3236 
3237 static int __init setup_slub_max_order(char *str)
3238 {
3239 	get_option(&str, &slub_max_order);
3240 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3241 
3242 	return 1;
3243 }
3244 
3245 __setup("slub_max_order=", setup_slub_max_order);
3246 
3247 static int __init setup_slub_min_objects(char *str)
3248 {
3249 	get_option(&str, &slub_min_objects);
3250 
3251 	return 1;
3252 }
3253 
3254 __setup("slub_min_objects=", setup_slub_min_objects);
3255 
3256 static int __init setup_slub_nomerge(char *str)
3257 {
3258 	slub_nomerge = 1;
3259 	return 1;
3260 }
3261 
3262 __setup("slub_nomerge", setup_slub_nomerge);
3263 
3264 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3265 						int size, unsigned int flags)
3266 {
3267 	struct kmem_cache *s;
3268 
3269 	s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3270 
3271 	s->name = name;
3272 	s->size = s->object_size = size;
3273 	s->align = ARCH_KMALLOC_MINALIGN;
3274 
3275 	/*
3276 	 * This function is called with IRQs disabled during early-boot on
3277 	 * single CPU so there's no need to take slab_mutex here.
3278 	 */
3279 	if (kmem_cache_open(s, flags))
3280 		goto panic;
3281 
3282 	list_add(&s->list, &slab_caches);
3283 	return s;
3284 
3285 panic:
3286 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3287 	return NULL;
3288 }
3289 
3290 /*
3291  * Conversion table for small slabs sizes / 8 to the index in the
3292  * kmalloc array. This is necessary for slabs < 192 since we have non power
3293  * of two cache sizes there. The size of larger slabs can be determined using
3294  * fls.
3295  */
3296 static s8 size_index[24] = {
3297 	3,	/* 8 */
3298 	4,	/* 16 */
3299 	5,	/* 24 */
3300 	5,	/* 32 */
3301 	6,	/* 40 */
3302 	6,	/* 48 */
3303 	6,	/* 56 */
3304 	6,	/* 64 */
3305 	1,	/* 72 */
3306 	1,	/* 80 */
3307 	1,	/* 88 */
3308 	1,	/* 96 */
3309 	7,	/* 104 */
3310 	7,	/* 112 */
3311 	7,	/* 120 */
3312 	7,	/* 128 */
3313 	2,	/* 136 */
3314 	2,	/* 144 */
3315 	2,	/* 152 */
3316 	2,	/* 160 */
3317 	2,	/* 168 */
3318 	2,	/* 176 */
3319 	2,	/* 184 */
3320 	2	/* 192 */
3321 };
3322 
3323 static inline int size_index_elem(size_t bytes)
3324 {
3325 	return (bytes - 1) / 8;
3326 }
3327 
3328 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3329 {
3330 	int index;
3331 
3332 	if (size <= 192) {
3333 		if (!size)
3334 			return ZERO_SIZE_PTR;
3335 
3336 		index = size_index[size_index_elem(size)];
3337 	} else
3338 		index = fls(size - 1);
3339 
3340 #ifdef CONFIG_ZONE_DMA
3341 	if (unlikely((flags & SLUB_DMA)))
3342 		return kmalloc_dma_caches[index];
3343 
3344 #endif
3345 	return kmalloc_caches[index];
3346 }
3347 
3348 void *__kmalloc(size_t size, gfp_t flags)
3349 {
3350 	struct kmem_cache *s;
3351 	void *ret;
3352 
3353 	if (unlikely(size > SLUB_MAX_SIZE))
3354 		return kmalloc_large(size, flags);
3355 
3356 	s = get_slab(size, flags);
3357 
3358 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3359 		return s;
3360 
3361 	ret = slab_alloc(s, flags, _RET_IP_);
3362 
3363 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3364 
3365 	return ret;
3366 }
3367 EXPORT_SYMBOL(__kmalloc);
3368 
3369 #ifdef CONFIG_NUMA
3370 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3371 {
3372 	struct page *page;
3373 	void *ptr = NULL;
3374 
3375 	flags |= __GFP_COMP | __GFP_NOTRACK;
3376 	page = alloc_pages_node(node, flags, get_order(size));
3377 	if (page)
3378 		ptr = page_address(page);
3379 
3380 	kmemleak_alloc(ptr, size, 1, flags);
3381 	return ptr;
3382 }
3383 
3384 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3385 {
3386 	struct kmem_cache *s;
3387 	void *ret;
3388 
3389 	if (unlikely(size > SLUB_MAX_SIZE)) {
3390 		ret = kmalloc_large_node(size, flags, node);
3391 
3392 		trace_kmalloc_node(_RET_IP_, ret,
3393 				   size, PAGE_SIZE << get_order(size),
3394 				   flags, node);
3395 
3396 		return ret;
3397 	}
3398 
3399 	s = get_slab(size, flags);
3400 
3401 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3402 		return s;
3403 
3404 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3405 
3406 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3407 
3408 	return ret;
3409 }
3410 EXPORT_SYMBOL(__kmalloc_node);
3411 #endif
3412 
3413 size_t ksize(const void *object)
3414 {
3415 	struct page *page;
3416 
3417 	if (unlikely(object == ZERO_SIZE_PTR))
3418 		return 0;
3419 
3420 	page = virt_to_head_page(object);
3421 
3422 	if (unlikely(!PageSlab(page))) {
3423 		WARN_ON(!PageCompound(page));
3424 		return PAGE_SIZE << compound_order(page);
3425 	}
3426 
3427 	return slab_ksize(page->slab);
3428 }
3429 EXPORT_SYMBOL(ksize);
3430 
3431 #ifdef CONFIG_SLUB_DEBUG
3432 bool verify_mem_not_deleted(const void *x)
3433 {
3434 	struct page *page;
3435 	void *object = (void *)x;
3436 	unsigned long flags;
3437 	bool rv;
3438 
3439 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3440 		return false;
3441 
3442 	local_irq_save(flags);
3443 
3444 	page = virt_to_head_page(x);
3445 	if (unlikely(!PageSlab(page))) {
3446 		/* maybe it was from stack? */
3447 		rv = true;
3448 		goto out_unlock;
3449 	}
3450 
3451 	slab_lock(page);
3452 	if (on_freelist(page->slab, page, object)) {
3453 		object_err(page->slab, page, object, "Object is on free-list");
3454 		rv = false;
3455 	} else {
3456 		rv = true;
3457 	}
3458 	slab_unlock(page);
3459 
3460 out_unlock:
3461 	local_irq_restore(flags);
3462 	return rv;
3463 }
3464 EXPORT_SYMBOL(verify_mem_not_deleted);
3465 #endif
3466 
3467 void kfree(const void *x)
3468 {
3469 	struct page *page;
3470 	void *object = (void *)x;
3471 
3472 	trace_kfree(_RET_IP_, x);
3473 
3474 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3475 		return;
3476 
3477 	page = virt_to_head_page(x);
3478 	if (unlikely(!PageSlab(page))) {
3479 		BUG_ON(!PageCompound(page));
3480 		kmemleak_free(x);
3481 		__free_pages(page, compound_order(page));
3482 		return;
3483 	}
3484 	slab_free(page->slab, page, object, _RET_IP_);
3485 }
3486 EXPORT_SYMBOL(kfree);
3487 
3488 /*
3489  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3490  * the remaining slabs by the number of items in use. The slabs with the
3491  * most items in use come first. New allocations will then fill those up
3492  * and thus they can be removed from the partial lists.
3493  *
3494  * The slabs with the least items are placed last. This results in them
3495  * being allocated from last increasing the chance that the last objects
3496  * are freed in them.
3497  */
3498 int kmem_cache_shrink(struct kmem_cache *s)
3499 {
3500 	int node;
3501 	int i;
3502 	struct kmem_cache_node *n;
3503 	struct page *page;
3504 	struct page *t;
3505 	int objects = oo_objects(s->max);
3506 	struct list_head *slabs_by_inuse =
3507 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3508 	unsigned long flags;
3509 
3510 	if (!slabs_by_inuse)
3511 		return -ENOMEM;
3512 
3513 	flush_all(s);
3514 	for_each_node_state(node, N_NORMAL_MEMORY) {
3515 		n = get_node(s, node);
3516 
3517 		if (!n->nr_partial)
3518 			continue;
3519 
3520 		for (i = 0; i < objects; i++)
3521 			INIT_LIST_HEAD(slabs_by_inuse + i);
3522 
3523 		spin_lock_irqsave(&n->list_lock, flags);
3524 
3525 		/*
3526 		 * Build lists indexed by the items in use in each slab.
3527 		 *
3528 		 * Note that concurrent frees may occur while we hold the
3529 		 * list_lock. page->inuse here is the upper limit.
3530 		 */
3531 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3532 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3533 			if (!page->inuse)
3534 				n->nr_partial--;
3535 		}
3536 
3537 		/*
3538 		 * Rebuild the partial list with the slabs filled up most
3539 		 * first and the least used slabs at the end.
3540 		 */
3541 		for (i = objects - 1; i > 0; i--)
3542 			list_splice(slabs_by_inuse + i, n->partial.prev);
3543 
3544 		spin_unlock_irqrestore(&n->list_lock, flags);
3545 
3546 		/* Release empty slabs */
3547 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3548 			discard_slab(s, page);
3549 	}
3550 
3551 	kfree(slabs_by_inuse);
3552 	return 0;
3553 }
3554 EXPORT_SYMBOL(kmem_cache_shrink);
3555 
3556 #if defined(CONFIG_MEMORY_HOTPLUG)
3557 static int slab_mem_going_offline_callback(void *arg)
3558 {
3559 	struct kmem_cache *s;
3560 
3561 	mutex_lock(&slab_mutex);
3562 	list_for_each_entry(s, &slab_caches, list)
3563 		kmem_cache_shrink(s);
3564 	mutex_unlock(&slab_mutex);
3565 
3566 	return 0;
3567 }
3568 
3569 static void slab_mem_offline_callback(void *arg)
3570 {
3571 	struct kmem_cache_node *n;
3572 	struct kmem_cache *s;
3573 	struct memory_notify *marg = arg;
3574 	int offline_node;
3575 
3576 	offline_node = marg->status_change_nid;
3577 
3578 	/*
3579 	 * If the node still has available memory. we need kmem_cache_node
3580 	 * for it yet.
3581 	 */
3582 	if (offline_node < 0)
3583 		return;
3584 
3585 	mutex_lock(&slab_mutex);
3586 	list_for_each_entry(s, &slab_caches, list) {
3587 		n = get_node(s, offline_node);
3588 		if (n) {
3589 			/*
3590 			 * if n->nr_slabs > 0, slabs still exist on the node
3591 			 * that is going down. We were unable to free them,
3592 			 * and offline_pages() function shouldn't call this
3593 			 * callback. So, we must fail.
3594 			 */
3595 			BUG_ON(slabs_node(s, offline_node));
3596 
3597 			s->node[offline_node] = NULL;
3598 			kmem_cache_free(kmem_cache_node, n);
3599 		}
3600 	}
3601 	mutex_unlock(&slab_mutex);
3602 }
3603 
3604 static int slab_mem_going_online_callback(void *arg)
3605 {
3606 	struct kmem_cache_node *n;
3607 	struct kmem_cache *s;
3608 	struct memory_notify *marg = arg;
3609 	int nid = marg->status_change_nid;
3610 	int ret = 0;
3611 
3612 	/*
3613 	 * If the node's memory is already available, then kmem_cache_node is
3614 	 * already created. Nothing to do.
3615 	 */
3616 	if (nid < 0)
3617 		return 0;
3618 
3619 	/*
3620 	 * We are bringing a node online. No memory is available yet. We must
3621 	 * allocate a kmem_cache_node structure in order to bring the node
3622 	 * online.
3623 	 */
3624 	mutex_lock(&slab_mutex);
3625 	list_for_each_entry(s, &slab_caches, list) {
3626 		/*
3627 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3628 		 *      since memory is not yet available from the node that
3629 		 *      is brought up.
3630 		 */
3631 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3632 		if (!n) {
3633 			ret = -ENOMEM;
3634 			goto out;
3635 		}
3636 		init_kmem_cache_node(n);
3637 		s->node[nid] = n;
3638 	}
3639 out:
3640 	mutex_unlock(&slab_mutex);
3641 	return ret;
3642 }
3643 
3644 static int slab_memory_callback(struct notifier_block *self,
3645 				unsigned long action, void *arg)
3646 {
3647 	int ret = 0;
3648 
3649 	switch (action) {
3650 	case MEM_GOING_ONLINE:
3651 		ret = slab_mem_going_online_callback(arg);
3652 		break;
3653 	case MEM_GOING_OFFLINE:
3654 		ret = slab_mem_going_offline_callback(arg);
3655 		break;
3656 	case MEM_OFFLINE:
3657 	case MEM_CANCEL_ONLINE:
3658 		slab_mem_offline_callback(arg);
3659 		break;
3660 	case MEM_ONLINE:
3661 	case MEM_CANCEL_OFFLINE:
3662 		break;
3663 	}
3664 	if (ret)
3665 		ret = notifier_from_errno(ret);
3666 	else
3667 		ret = NOTIFY_OK;
3668 	return ret;
3669 }
3670 
3671 #endif /* CONFIG_MEMORY_HOTPLUG */
3672 
3673 /********************************************************************
3674  *			Basic setup of slabs
3675  *******************************************************************/
3676 
3677 /*
3678  * Used for early kmem_cache structures that were allocated using
3679  * the page allocator
3680  */
3681 
3682 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3683 {
3684 	int node;
3685 
3686 	list_add(&s->list, &slab_caches);
3687 	s->refcount = -1;
3688 
3689 	for_each_node_state(node, N_NORMAL_MEMORY) {
3690 		struct kmem_cache_node *n = get_node(s, node);
3691 		struct page *p;
3692 
3693 		if (n) {
3694 			list_for_each_entry(p, &n->partial, lru)
3695 				p->slab = s;
3696 
3697 #ifdef CONFIG_SLUB_DEBUG
3698 			list_for_each_entry(p, &n->full, lru)
3699 				p->slab = s;
3700 #endif
3701 		}
3702 	}
3703 }
3704 
3705 void __init kmem_cache_init(void)
3706 {
3707 	int i;
3708 	int caches = 0;
3709 	struct kmem_cache *temp_kmem_cache;
3710 	int order;
3711 	struct kmem_cache *temp_kmem_cache_node;
3712 	unsigned long kmalloc_size;
3713 
3714 	if (debug_guardpage_minorder())
3715 		slub_max_order = 0;
3716 
3717 	kmem_size = offsetof(struct kmem_cache, node) +
3718 			nr_node_ids * sizeof(struct kmem_cache_node *);
3719 
3720 	/* Allocate two kmem_caches from the page allocator */
3721 	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3722 	order = get_order(2 * kmalloc_size);
3723 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT | __GFP_ZERO, order);
3724 
3725 	/*
3726 	 * Must first have the slab cache available for the allocations of the
3727 	 * struct kmem_cache_node's. There is special bootstrap code in
3728 	 * kmem_cache_open for slab_state == DOWN.
3729 	 */
3730 	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3731 
3732 	kmem_cache_node->name = "kmem_cache_node";
3733 	kmem_cache_node->size = kmem_cache_node->object_size =
3734 		sizeof(struct kmem_cache_node);
3735 	kmem_cache_open(kmem_cache_node, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3736 
3737 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3738 
3739 	/* Able to allocate the per node structures */
3740 	slab_state = PARTIAL;
3741 
3742 	temp_kmem_cache = kmem_cache;
3743 	kmem_cache->name = "kmem_cache";
3744 	kmem_cache->size = kmem_cache->object_size = kmem_size;
3745 	kmem_cache_open(kmem_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3746 
3747 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3748 	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3749 
3750 	/*
3751 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3752 	 * kmem_cache_node is separately allocated so no need to
3753 	 * update any list pointers.
3754 	 */
3755 	temp_kmem_cache_node = kmem_cache_node;
3756 
3757 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3758 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3759 
3760 	kmem_cache_bootstrap_fixup(kmem_cache_node);
3761 
3762 	caches++;
3763 	kmem_cache_bootstrap_fixup(kmem_cache);
3764 	caches++;
3765 	/* Free temporary boot structure */
3766 	free_pages((unsigned long)temp_kmem_cache, order);
3767 
3768 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3769 
3770 	/*
3771 	 * Patch up the size_index table if we have strange large alignment
3772 	 * requirements for the kmalloc array. This is only the case for
3773 	 * MIPS it seems. The standard arches will not generate any code here.
3774 	 *
3775 	 * Largest permitted alignment is 256 bytes due to the way we
3776 	 * handle the index determination for the smaller caches.
3777 	 *
3778 	 * Make sure that nothing crazy happens if someone starts tinkering
3779 	 * around with ARCH_KMALLOC_MINALIGN
3780 	 */
3781 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3782 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3783 
3784 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3785 		int elem = size_index_elem(i);
3786 		if (elem >= ARRAY_SIZE(size_index))
3787 			break;
3788 		size_index[elem] = KMALLOC_SHIFT_LOW;
3789 	}
3790 
3791 	if (KMALLOC_MIN_SIZE == 64) {
3792 		/*
3793 		 * The 96 byte size cache is not used if the alignment
3794 		 * is 64 byte.
3795 		 */
3796 		for (i = 64 + 8; i <= 96; i += 8)
3797 			size_index[size_index_elem(i)] = 7;
3798 	} else if (KMALLOC_MIN_SIZE == 128) {
3799 		/*
3800 		 * The 192 byte sized cache is not used if the alignment
3801 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3802 		 * instead.
3803 		 */
3804 		for (i = 128 + 8; i <= 192; i += 8)
3805 			size_index[size_index_elem(i)] = 8;
3806 	}
3807 
3808 	/* Caches that are not of the two-to-the-power-of size */
3809 	if (KMALLOC_MIN_SIZE <= 32) {
3810 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3811 		caches++;
3812 	}
3813 
3814 	if (KMALLOC_MIN_SIZE <= 64) {
3815 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3816 		caches++;
3817 	}
3818 
3819 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3820 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3821 		caches++;
3822 	}
3823 
3824 	slab_state = UP;
3825 
3826 	/* Provide the correct kmalloc names now that the caches are up */
3827 	if (KMALLOC_MIN_SIZE <= 32) {
3828 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3829 		BUG_ON(!kmalloc_caches[1]->name);
3830 	}
3831 
3832 	if (KMALLOC_MIN_SIZE <= 64) {
3833 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3834 		BUG_ON(!kmalloc_caches[2]->name);
3835 	}
3836 
3837 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3838 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3839 
3840 		BUG_ON(!s);
3841 		kmalloc_caches[i]->name = s;
3842 	}
3843 
3844 #ifdef CONFIG_SMP
3845 	register_cpu_notifier(&slab_notifier);
3846 #endif
3847 
3848 #ifdef CONFIG_ZONE_DMA
3849 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3850 		struct kmem_cache *s = kmalloc_caches[i];
3851 
3852 		if (s && s->size) {
3853 			char *name = kasprintf(GFP_NOWAIT,
3854 				 "dma-kmalloc-%d", s->object_size);
3855 
3856 			BUG_ON(!name);
3857 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3858 				s->object_size, SLAB_CACHE_DMA);
3859 		}
3860 	}
3861 #endif
3862 	printk(KERN_INFO
3863 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3864 		" CPUs=%d, Nodes=%d\n",
3865 		caches, cache_line_size(),
3866 		slub_min_order, slub_max_order, slub_min_objects,
3867 		nr_cpu_ids, nr_node_ids);
3868 }
3869 
3870 void __init kmem_cache_init_late(void)
3871 {
3872 }
3873 
3874 /*
3875  * Find a mergeable slab cache
3876  */
3877 static int slab_unmergeable(struct kmem_cache *s)
3878 {
3879 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3880 		return 1;
3881 
3882 	if (s->ctor)
3883 		return 1;
3884 
3885 	/*
3886 	 * We may have set a slab to be unmergeable during bootstrap.
3887 	 */
3888 	if (s->refcount < 0)
3889 		return 1;
3890 
3891 	return 0;
3892 }
3893 
3894 static struct kmem_cache *find_mergeable(size_t size,
3895 		size_t align, unsigned long flags, const char *name,
3896 		void (*ctor)(void *))
3897 {
3898 	struct kmem_cache *s;
3899 
3900 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3901 		return NULL;
3902 
3903 	if (ctor)
3904 		return NULL;
3905 
3906 	size = ALIGN(size, sizeof(void *));
3907 	align = calculate_alignment(flags, align, size);
3908 	size = ALIGN(size, align);
3909 	flags = kmem_cache_flags(size, flags, name, NULL);
3910 
3911 	list_for_each_entry(s, &slab_caches, list) {
3912 		if (slab_unmergeable(s))
3913 			continue;
3914 
3915 		if (size > s->size)
3916 			continue;
3917 
3918 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3919 				continue;
3920 		/*
3921 		 * Check if alignment is compatible.
3922 		 * Courtesy of Adrian Drzewiecki
3923 		 */
3924 		if ((s->size & ~(align - 1)) != s->size)
3925 			continue;
3926 
3927 		if (s->size - size >= sizeof(void *))
3928 			continue;
3929 
3930 		return s;
3931 	}
3932 	return NULL;
3933 }
3934 
3935 struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
3936 		size_t align, unsigned long flags, void (*ctor)(void *))
3937 {
3938 	struct kmem_cache *s;
3939 
3940 	s = find_mergeable(size, align, flags, name, ctor);
3941 	if (s) {
3942 		s->refcount++;
3943 		/*
3944 		 * Adjust the object sizes so that we clear
3945 		 * the complete object on kzalloc.
3946 		 */
3947 		s->object_size = max(s->object_size, (int)size);
3948 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3949 
3950 		if (sysfs_slab_alias(s, name)) {
3951 			s->refcount--;
3952 			s = NULL;
3953 		}
3954 	}
3955 
3956 	return s;
3957 }
3958 
3959 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3960 {
3961 	int err;
3962 
3963 	err = kmem_cache_open(s, flags);
3964 	if (err)
3965 		return err;
3966 
3967 	mutex_unlock(&slab_mutex);
3968 	err = sysfs_slab_add(s);
3969 	mutex_lock(&slab_mutex);
3970 
3971 	if (err)
3972 		kmem_cache_close(s);
3973 
3974 	return err;
3975 }
3976 
3977 #ifdef CONFIG_SMP
3978 /*
3979  * Use the cpu notifier to insure that the cpu slabs are flushed when
3980  * necessary.
3981  */
3982 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3983 		unsigned long action, void *hcpu)
3984 {
3985 	long cpu = (long)hcpu;
3986 	struct kmem_cache *s;
3987 	unsigned long flags;
3988 
3989 	switch (action) {
3990 	case CPU_UP_CANCELED:
3991 	case CPU_UP_CANCELED_FROZEN:
3992 	case CPU_DEAD:
3993 	case CPU_DEAD_FROZEN:
3994 		mutex_lock(&slab_mutex);
3995 		list_for_each_entry(s, &slab_caches, list) {
3996 			local_irq_save(flags);
3997 			__flush_cpu_slab(s, cpu);
3998 			local_irq_restore(flags);
3999 		}
4000 		mutex_unlock(&slab_mutex);
4001 		break;
4002 	default:
4003 		break;
4004 	}
4005 	return NOTIFY_OK;
4006 }
4007 
4008 static struct notifier_block __cpuinitdata slab_notifier = {
4009 	.notifier_call = slab_cpuup_callback
4010 };
4011 
4012 #endif
4013 
4014 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4015 {
4016 	struct kmem_cache *s;
4017 	void *ret;
4018 
4019 	if (unlikely(size > SLUB_MAX_SIZE))
4020 		return kmalloc_large(size, gfpflags);
4021 
4022 	s = get_slab(size, gfpflags);
4023 
4024 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4025 		return s;
4026 
4027 	ret = slab_alloc(s, gfpflags, caller);
4028 
4029 	/* Honor the call site pointer we received. */
4030 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4031 
4032 	return ret;
4033 }
4034 
4035 #ifdef CONFIG_NUMA
4036 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4037 					int node, unsigned long caller)
4038 {
4039 	struct kmem_cache *s;
4040 	void *ret;
4041 
4042 	if (unlikely(size > SLUB_MAX_SIZE)) {
4043 		ret = kmalloc_large_node(size, gfpflags, node);
4044 
4045 		trace_kmalloc_node(caller, ret,
4046 				   size, PAGE_SIZE << get_order(size),
4047 				   gfpflags, node);
4048 
4049 		return ret;
4050 	}
4051 
4052 	s = get_slab(size, gfpflags);
4053 
4054 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4055 		return s;
4056 
4057 	ret = slab_alloc_node(s, gfpflags, node, caller);
4058 
4059 	/* Honor the call site pointer we received. */
4060 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4061 
4062 	return ret;
4063 }
4064 #endif
4065 
4066 #ifdef CONFIG_SYSFS
4067 static int count_inuse(struct page *page)
4068 {
4069 	return page->inuse;
4070 }
4071 
4072 static int count_total(struct page *page)
4073 {
4074 	return page->objects;
4075 }
4076 #endif
4077 
4078 #ifdef CONFIG_SLUB_DEBUG
4079 static int validate_slab(struct kmem_cache *s, struct page *page,
4080 						unsigned long *map)
4081 {
4082 	void *p;
4083 	void *addr = page_address(page);
4084 
4085 	if (!check_slab(s, page) ||
4086 			!on_freelist(s, page, NULL))
4087 		return 0;
4088 
4089 	/* Now we know that a valid freelist exists */
4090 	bitmap_zero(map, page->objects);
4091 
4092 	get_map(s, page, map);
4093 	for_each_object(p, s, addr, page->objects) {
4094 		if (test_bit(slab_index(p, s, addr), map))
4095 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4096 				return 0;
4097 	}
4098 
4099 	for_each_object(p, s, addr, page->objects)
4100 		if (!test_bit(slab_index(p, s, addr), map))
4101 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4102 				return 0;
4103 	return 1;
4104 }
4105 
4106 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4107 						unsigned long *map)
4108 {
4109 	slab_lock(page);
4110 	validate_slab(s, page, map);
4111 	slab_unlock(page);
4112 }
4113 
4114 static int validate_slab_node(struct kmem_cache *s,
4115 		struct kmem_cache_node *n, unsigned long *map)
4116 {
4117 	unsigned long count = 0;
4118 	struct page *page;
4119 	unsigned long flags;
4120 
4121 	spin_lock_irqsave(&n->list_lock, flags);
4122 
4123 	list_for_each_entry(page, &n->partial, lru) {
4124 		validate_slab_slab(s, page, map);
4125 		count++;
4126 	}
4127 	if (count != n->nr_partial)
4128 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4129 			"counter=%ld\n", s->name, count, n->nr_partial);
4130 
4131 	if (!(s->flags & SLAB_STORE_USER))
4132 		goto out;
4133 
4134 	list_for_each_entry(page, &n->full, lru) {
4135 		validate_slab_slab(s, page, map);
4136 		count++;
4137 	}
4138 	if (count != atomic_long_read(&n->nr_slabs))
4139 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4140 			"counter=%ld\n", s->name, count,
4141 			atomic_long_read(&n->nr_slabs));
4142 
4143 out:
4144 	spin_unlock_irqrestore(&n->list_lock, flags);
4145 	return count;
4146 }
4147 
4148 static long validate_slab_cache(struct kmem_cache *s)
4149 {
4150 	int node;
4151 	unsigned long count = 0;
4152 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4153 				sizeof(unsigned long), GFP_KERNEL);
4154 
4155 	if (!map)
4156 		return -ENOMEM;
4157 
4158 	flush_all(s);
4159 	for_each_node_state(node, N_NORMAL_MEMORY) {
4160 		struct kmem_cache_node *n = get_node(s, node);
4161 
4162 		count += validate_slab_node(s, n, map);
4163 	}
4164 	kfree(map);
4165 	return count;
4166 }
4167 /*
4168  * Generate lists of code addresses where slabcache objects are allocated
4169  * and freed.
4170  */
4171 
4172 struct location {
4173 	unsigned long count;
4174 	unsigned long addr;
4175 	long long sum_time;
4176 	long min_time;
4177 	long max_time;
4178 	long min_pid;
4179 	long max_pid;
4180 	DECLARE_BITMAP(cpus, NR_CPUS);
4181 	nodemask_t nodes;
4182 };
4183 
4184 struct loc_track {
4185 	unsigned long max;
4186 	unsigned long count;
4187 	struct location *loc;
4188 };
4189 
4190 static void free_loc_track(struct loc_track *t)
4191 {
4192 	if (t->max)
4193 		free_pages((unsigned long)t->loc,
4194 			get_order(sizeof(struct location) * t->max));
4195 }
4196 
4197 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4198 {
4199 	struct location *l;
4200 	int order;
4201 
4202 	order = get_order(sizeof(struct location) * max);
4203 
4204 	l = (void *)__get_free_pages(flags, order);
4205 	if (!l)
4206 		return 0;
4207 
4208 	if (t->count) {
4209 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4210 		free_loc_track(t);
4211 	}
4212 	t->max = max;
4213 	t->loc = l;
4214 	return 1;
4215 }
4216 
4217 static int add_location(struct loc_track *t, struct kmem_cache *s,
4218 				const struct track *track)
4219 {
4220 	long start, end, pos;
4221 	struct location *l;
4222 	unsigned long caddr;
4223 	unsigned long age = jiffies - track->when;
4224 
4225 	start = -1;
4226 	end = t->count;
4227 
4228 	for ( ; ; ) {
4229 		pos = start + (end - start + 1) / 2;
4230 
4231 		/*
4232 		 * There is nothing at "end". If we end up there
4233 		 * we need to add something to before end.
4234 		 */
4235 		if (pos == end)
4236 			break;
4237 
4238 		caddr = t->loc[pos].addr;
4239 		if (track->addr == caddr) {
4240 
4241 			l = &t->loc[pos];
4242 			l->count++;
4243 			if (track->when) {
4244 				l->sum_time += age;
4245 				if (age < l->min_time)
4246 					l->min_time = age;
4247 				if (age > l->max_time)
4248 					l->max_time = age;
4249 
4250 				if (track->pid < l->min_pid)
4251 					l->min_pid = track->pid;
4252 				if (track->pid > l->max_pid)
4253 					l->max_pid = track->pid;
4254 
4255 				cpumask_set_cpu(track->cpu,
4256 						to_cpumask(l->cpus));
4257 			}
4258 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4259 			return 1;
4260 		}
4261 
4262 		if (track->addr < caddr)
4263 			end = pos;
4264 		else
4265 			start = pos;
4266 	}
4267 
4268 	/*
4269 	 * Not found. Insert new tracking element.
4270 	 */
4271 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4272 		return 0;
4273 
4274 	l = t->loc + pos;
4275 	if (pos < t->count)
4276 		memmove(l + 1, l,
4277 			(t->count - pos) * sizeof(struct location));
4278 	t->count++;
4279 	l->count = 1;
4280 	l->addr = track->addr;
4281 	l->sum_time = age;
4282 	l->min_time = age;
4283 	l->max_time = age;
4284 	l->min_pid = track->pid;
4285 	l->max_pid = track->pid;
4286 	cpumask_clear(to_cpumask(l->cpus));
4287 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4288 	nodes_clear(l->nodes);
4289 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4290 	return 1;
4291 }
4292 
4293 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4294 		struct page *page, enum track_item alloc,
4295 		unsigned long *map)
4296 {
4297 	void *addr = page_address(page);
4298 	void *p;
4299 
4300 	bitmap_zero(map, page->objects);
4301 	get_map(s, page, map);
4302 
4303 	for_each_object(p, s, addr, page->objects)
4304 		if (!test_bit(slab_index(p, s, addr), map))
4305 			add_location(t, s, get_track(s, p, alloc));
4306 }
4307 
4308 static int list_locations(struct kmem_cache *s, char *buf,
4309 					enum track_item alloc)
4310 {
4311 	int len = 0;
4312 	unsigned long i;
4313 	struct loc_track t = { 0, 0, NULL };
4314 	int node;
4315 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4316 				     sizeof(unsigned long), GFP_KERNEL);
4317 
4318 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4319 				     GFP_TEMPORARY)) {
4320 		kfree(map);
4321 		return sprintf(buf, "Out of memory\n");
4322 	}
4323 	/* Push back cpu slabs */
4324 	flush_all(s);
4325 
4326 	for_each_node_state(node, N_NORMAL_MEMORY) {
4327 		struct kmem_cache_node *n = get_node(s, node);
4328 		unsigned long flags;
4329 		struct page *page;
4330 
4331 		if (!atomic_long_read(&n->nr_slabs))
4332 			continue;
4333 
4334 		spin_lock_irqsave(&n->list_lock, flags);
4335 		list_for_each_entry(page, &n->partial, lru)
4336 			process_slab(&t, s, page, alloc, map);
4337 		list_for_each_entry(page, &n->full, lru)
4338 			process_slab(&t, s, page, alloc, map);
4339 		spin_unlock_irqrestore(&n->list_lock, flags);
4340 	}
4341 
4342 	for (i = 0; i < t.count; i++) {
4343 		struct location *l = &t.loc[i];
4344 
4345 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4346 			break;
4347 		len += sprintf(buf + len, "%7ld ", l->count);
4348 
4349 		if (l->addr)
4350 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4351 		else
4352 			len += sprintf(buf + len, "<not-available>");
4353 
4354 		if (l->sum_time != l->min_time) {
4355 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4356 				l->min_time,
4357 				(long)div_u64(l->sum_time, l->count),
4358 				l->max_time);
4359 		} else
4360 			len += sprintf(buf + len, " age=%ld",
4361 				l->min_time);
4362 
4363 		if (l->min_pid != l->max_pid)
4364 			len += sprintf(buf + len, " pid=%ld-%ld",
4365 				l->min_pid, l->max_pid);
4366 		else
4367 			len += sprintf(buf + len, " pid=%ld",
4368 				l->min_pid);
4369 
4370 		if (num_online_cpus() > 1 &&
4371 				!cpumask_empty(to_cpumask(l->cpus)) &&
4372 				len < PAGE_SIZE - 60) {
4373 			len += sprintf(buf + len, " cpus=");
4374 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4375 						 to_cpumask(l->cpus));
4376 		}
4377 
4378 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4379 				len < PAGE_SIZE - 60) {
4380 			len += sprintf(buf + len, " nodes=");
4381 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4382 					l->nodes);
4383 		}
4384 
4385 		len += sprintf(buf + len, "\n");
4386 	}
4387 
4388 	free_loc_track(&t);
4389 	kfree(map);
4390 	if (!t.count)
4391 		len += sprintf(buf, "No data\n");
4392 	return len;
4393 }
4394 #endif
4395 
4396 #ifdef SLUB_RESILIENCY_TEST
4397 static void resiliency_test(void)
4398 {
4399 	u8 *p;
4400 
4401 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4402 
4403 	printk(KERN_ERR "SLUB resiliency testing\n");
4404 	printk(KERN_ERR "-----------------------\n");
4405 	printk(KERN_ERR "A. Corruption after allocation\n");
4406 
4407 	p = kzalloc(16, GFP_KERNEL);
4408 	p[16] = 0x12;
4409 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4410 			" 0x12->0x%p\n\n", p + 16);
4411 
4412 	validate_slab_cache(kmalloc_caches[4]);
4413 
4414 	/* Hmmm... The next two are dangerous */
4415 	p = kzalloc(32, GFP_KERNEL);
4416 	p[32 + sizeof(void *)] = 0x34;
4417 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4418 			" 0x34 -> -0x%p\n", p);
4419 	printk(KERN_ERR
4420 		"If allocated object is overwritten then not detectable\n\n");
4421 
4422 	validate_slab_cache(kmalloc_caches[5]);
4423 	p = kzalloc(64, GFP_KERNEL);
4424 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4425 	*p = 0x56;
4426 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4427 									p);
4428 	printk(KERN_ERR
4429 		"If allocated object is overwritten then not detectable\n\n");
4430 	validate_slab_cache(kmalloc_caches[6]);
4431 
4432 	printk(KERN_ERR "\nB. Corruption after free\n");
4433 	p = kzalloc(128, GFP_KERNEL);
4434 	kfree(p);
4435 	*p = 0x78;
4436 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4437 	validate_slab_cache(kmalloc_caches[7]);
4438 
4439 	p = kzalloc(256, GFP_KERNEL);
4440 	kfree(p);
4441 	p[50] = 0x9a;
4442 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4443 			p);
4444 	validate_slab_cache(kmalloc_caches[8]);
4445 
4446 	p = kzalloc(512, GFP_KERNEL);
4447 	kfree(p);
4448 	p[512] = 0xab;
4449 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4450 	validate_slab_cache(kmalloc_caches[9]);
4451 }
4452 #else
4453 #ifdef CONFIG_SYSFS
4454 static void resiliency_test(void) {};
4455 #endif
4456 #endif
4457 
4458 #ifdef CONFIG_SYSFS
4459 enum slab_stat_type {
4460 	SL_ALL,			/* All slabs */
4461 	SL_PARTIAL,		/* Only partially allocated slabs */
4462 	SL_CPU,			/* Only slabs used for cpu caches */
4463 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4464 	SL_TOTAL		/* Determine object capacity not slabs */
4465 };
4466 
4467 #define SO_ALL		(1 << SL_ALL)
4468 #define SO_PARTIAL	(1 << SL_PARTIAL)
4469 #define SO_CPU		(1 << SL_CPU)
4470 #define SO_OBJECTS	(1 << SL_OBJECTS)
4471 #define SO_TOTAL	(1 << SL_TOTAL)
4472 
4473 static ssize_t show_slab_objects(struct kmem_cache *s,
4474 			    char *buf, unsigned long flags)
4475 {
4476 	unsigned long total = 0;
4477 	int node;
4478 	int x;
4479 	unsigned long *nodes;
4480 	unsigned long *per_cpu;
4481 
4482 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4483 	if (!nodes)
4484 		return -ENOMEM;
4485 	per_cpu = nodes + nr_node_ids;
4486 
4487 	if (flags & SO_CPU) {
4488 		int cpu;
4489 
4490 		for_each_possible_cpu(cpu) {
4491 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4492 			int node;
4493 			struct page *page;
4494 
4495 			page = ACCESS_ONCE(c->page);
4496 			if (!page)
4497 				continue;
4498 
4499 			node = page_to_nid(page);
4500 			if (flags & SO_TOTAL)
4501 				x = page->objects;
4502 			else if (flags & SO_OBJECTS)
4503 				x = page->inuse;
4504 			else
4505 				x = 1;
4506 
4507 			total += x;
4508 			nodes[node] += x;
4509 
4510 			page = ACCESS_ONCE(c->partial);
4511 			if (page) {
4512 				x = page->pobjects;
4513 				total += x;
4514 				nodes[node] += x;
4515 			}
4516 
4517 			per_cpu[node]++;
4518 		}
4519 	}
4520 
4521 	lock_memory_hotplug();
4522 #ifdef CONFIG_SLUB_DEBUG
4523 	if (flags & SO_ALL) {
4524 		for_each_node_state(node, N_NORMAL_MEMORY) {
4525 			struct kmem_cache_node *n = get_node(s, node);
4526 
4527 		if (flags & SO_TOTAL)
4528 			x = atomic_long_read(&n->total_objects);
4529 		else if (flags & SO_OBJECTS)
4530 			x = atomic_long_read(&n->total_objects) -
4531 				count_partial(n, count_free);
4532 
4533 			else
4534 				x = atomic_long_read(&n->nr_slabs);
4535 			total += x;
4536 			nodes[node] += x;
4537 		}
4538 
4539 	} else
4540 #endif
4541 	if (flags & SO_PARTIAL) {
4542 		for_each_node_state(node, N_NORMAL_MEMORY) {
4543 			struct kmem_cache_node *n = get_node(s, node);
4544 
4545 			if (flags & SO_TOTAL)
4546 				x = count_partial(n, count_total);
4547 			else if (flags & SO_OBJECTS)
4548 				x = count_partial(n, count_inuse);
4549 			else
4550 				x = n->nr_partial;
4551 			total += x;
4552 			nodes[node] += x;
4553 		}
4554 	}
4555 	x = sprintf(buf, "%lu", total);
4556 #ifdef CONFIG_NUMA
4557 	for_each_node_state(node, N_NORMAL_MEMORY)
4558 		if (nodes[node])
4559 			x += sprintf(buf + x, " N%d=%lu",
4560 					node, nodes[node]);
4561 #endif
4562 	unlock_memory_hotplug();
4563 	kfree(nodes);
4564 	return x + sprintf(buf + x, "\n");
4565 }
4566 
4567 #ifdef CONFIG_SLUB_DEBUG
4568 static int any_slab_objects(struct kmem_cache *s)
4569 {
4570 	int node;
4571 
4572 	for_each_online_node(node) {
4573 		struct kmem_cache_node *n = get_node(s, node);
4574 
4575 		if (!n)
4576 			continue;
4577 
4578 		if (atomic_long_read(&n->total_objects))
4579 			return 1;
4580 	}
4581 	return 0;
4582 }
4583 #endif
4584 
4585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4586 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4587 
4588 struct slab_attribute {
4589 	struct attribute attr;
4590 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4591 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4592 };
4593 
4594 #define SLAB_ATTR_RO(_name) \
4595 	static struct slab_attribute _name##_attr = \
4596 	__ATTR(_name, 0400, _name##_show, NULL)
4597 
4598 #define SLAB_ATTR(_name) \
4599 	static struct slab_attribute _name##_attr =  \
4600 	__ATTR(_name, 0600, _name##_show, _name##_store)
4601 
4602 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4603 {
4604 	return sprintf(buf, "%d\n", s->size);
4605 }
4606 SLAB_ATTR_RO(slab_size);
4607 
4608 static ssize_t align_show(struct kmem_cache *s, char *buf)
4609 {
4610 	return sprintf(buf, "%d\n", s->align);
4611 }
4612 SLAB_ATTR_RO(align);
4613 
4614 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4615 {
4616 	return sprintf(buf, "%d\n", s->object_size);
4617 }
4618 SLAB_ATTR_RO(object_size);
4619 
4620 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4621 {
4622 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4623 }
4624 SLAB_ATTR_RO(objs_per_slab);
4625 
4626 static ssize_t order_store(struct kmem_cache *s,
4627 				const char *buf, size_t length)
4628 {
4629 	unsigned long order;
4630 	int err;
4631 
4632 	err = strict_strtoul(buf, 10, &order);
4633 	if (err)
4634 		return err;
4635 
4636 	if (order > slub_max_order || order < slub_min_order)
4637 		return -EINVAL;
4638 
4639 	calculate_sizes(s, order);
4640 	return length;
4641 }
4642 
4643 static ssize_t order_show(struct kmem_cache *s, char *buf)
4644 {
4645 	return sprintf(buf, "%d\n", oo_order(s->oo));
4646 }
4647 SLAB_ATTR(order);
4648 
4649 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4650 {
4651 	return sprintf(buf, "%lu\n", s->min_partial);
4652 }
4653 
4654 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4655 				 size_t length)
4656 {
4657 	unsigned long min;
4658 	int err;
4659 
4660 	err = strict_strtoul(buf, 10, &min);
4661 	if (err)
4662 		return err;
4663 
4664 	set_min_partial(s, min);
4665 	return length;
4666 }
4667 SLAB_ATTR(min_partial);
4668 
4669 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4670 {
4671 	return sprintf(buf, "%u\n", s->cpu_partial);
4672 }
4673 
4674 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4675 				 size_t length)
4676 {
4677 	unsigned long objects;
4678 	int err;
4679 
4680 	err = strict_strtoul(buf, 10, &objects);
4681 	if (err)
4682 		return err;
4683 	if (objects && kmem_cache_debug(s))
4684 		return -EINVAL;
4685 
4686 	s->cpu_partial = objects;
4687 	flush_all(s);
4688 	return length;
4689 }
4690 SLAB_ATTR(cpu_partial);
4691 
4692 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4693 {
4694 	if (!s->ctor)
4695 		return 0;
4696 	return sprintf(buf, "%pS\n", s->ctor);
4697 }
4698 SLAB_ATTR_RO(ctor);
4699 
4700 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4701 {
4702 	return sprintf(buf, "%d\n", s->refcount - 1);
4703 }
4704 SLAB_ATTR_RO(aliases);
4705 
4706 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4707 {
4708 	return show_slab_objects(s, buf, SO_PARTIAL);
4709 }
4710 SLAB_ATTR_RO(partial);
4711 
4712 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4713 {
4714 	return show_slab_objects(s, buf, SO_CPU);
4715 }
4716 SLAB_ATTR_RO(cpu_slabs);
4717 
4718 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4719 {
4720 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4721 }
4722 SLAB_ATTR_RO(objects);
4723 
4724 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4725 {
4726 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4727 }
4728 SLAB_ATTR_RO(objects_partial);
4729 
4730 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4731 {
4732 	int objects = 0;
4733 	int pages = 0;
4734 	int cpu;
4735 	int len;
4736 
4737 	for_each_online_cpu(cpu) {
4738 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4739 
4740 		if (page) {
4741 			pages += page->pages;
4742 			objects += page->pobjects;
4743 		}
4744 	}
4745 
4746 	len = sprintf(buf, "%d(%d)", objects, pages);
4747 
4748 #ifdef CONFIG_SMP
4749 	for_each_online_cpu(cpu) {
4750 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4751 
4752 		if (page && len < PAGE_SIZE - 20)
4753 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4754 				page->pobjects, page->pages);
4755 	}
4756 #endif
4757 	return len + sprintf(buf + len, "\n");
4758 }
4759 SLAB_ATTR_RO(slabs_cpu_partial);
4760 
4761 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4762 {
4763 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4764 }
4765 
4766 static ssize_t reclaim_account_store(struct kmem_cache *s,
4767 				const char *buf, size_t length)
4768 {
4769 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4770 	if (buf[0] == '1')
4771 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4772 	return length;
4773 }
4774 SLAB_ATTR(reclaim_account);
4775 
4776 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4777 {
4778 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4779 }
4780 SLAB_ATTR_RO(hwcache_align);
4781 
4782 #ifdef CONFIG_ZONE_DMA
4783 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4784 {
4785 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4786 }
4787 SLAB_ATTR_RO(cache_dma);
4788 #endif
4789 
4790 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4791 {
4792 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4793 }
4794 SLAB_ATTR_RO(destroy_by_rcu);
4795 
4796 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4797 {
4798 	return sprintf(buf, "%d\n", s->reserved);
4799 }
4800 SLAB_ATTR_RO(reserved);
4801 
4802 #ifdef CONFIG_SLUB_DEBUG
4803 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4804 {
4805 	return show_slab_objects(s, buf, SO_ALL);
4806 }
4807 SLAB_ATTR_RO(slabs);
4808 
4809 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4810 {
4811 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4812 }
4813 SLAB_ATTR_RO(total_objects);
4814 
4815 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4816 {
4817 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4818 }
4819 
4820 static ssize_t sanity_checks_store(struct kmem_cache *s,
4821 				const char *buf, size_t length)
4822 {
4823 	s->flags &= ~SLAB_DEBUG_FREE;
4824 	if (buf[0] == '1') {
4825 		s->flags &= ~__CMPXCHG_DOUBLE;
4826 		s->flags |= SLAB_DEBUG_FREE;
4827 	}
4828 	return length;
4829 }
4830 SLAB_ATTR(sanity_checks);
4831 
4832 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4833 {
4834 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4835 }
4836 
4837 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4838 							size_t length)
4839 {
4840 	s->flags &= ~SLAB_TRACE;
4841 	if (buf[0] == '1') {
4842 		s->flags &= ~__CMPXCHG_DOUBLE;
4843 		s->flags |= SLAB_TRACE;
4844 	}
4845 	return length;
4846 }
4847 SLAB_ATTR(trace);
4848 
4849 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4850 {
4851 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4852 }
4853 
4854 static ssize_t red_zone_store(struct kmem_cache *s,
4855 				const char *buf, size_t length)
4856 {
4857 	if (any_slab_objects(s))
4858 		return -EBUSY;
4859 
4860 	s->flags &= ~SLAB_RED_ZONE;
4861 	if (buf[0] == '1') {
4862 		s->flags &= ~__CMPXCHG_DOUBLE;
4863 		s->flags |= SLAB_RED_ZONE;
4864 	}
4865 	calculate_sizes(s, -1);
4866 	return length;
4867 }
4868 SLAB_ATTR(red_zone);
4869 
4870 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4871 {
4872 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4873 }
4874 
4875 static ssize_t poison_store(struct kmem_cache *s,
4876 				const char *buf, size_t length)
4877 {
4878 	if (any_slab_objects(s))
4879 		return -EBUSY;
4880 
4881 	s->flags &= ~SLAB_POISON;
4882 	if (buf[0] == '1') {
4883 		s->flags &= ~__CMPXCHG_DOUBLE;
4884 		s->flags |= SLAB_POISON;
4885 	}
4886 	calculate_sizes(s, -1);
4887 	return length;
4888 }
4889 SLAB_ATTR(poison);
4890 
4891 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4892 {
4893 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4894 }
4895 
4896 static ssize_t store_user_store(struct kmem_cache *s,
4897 				const char *buf, size_t length)
4898 {
4899 	if (any_slab_objects(s))
4900 		return -EBUSY;
4901 
4902 	s->flags &= ~SLAB_STORE_USER;
4903 	if (buf[0] == '1') {
4904 		s->flags &= ~__CMPXCHG_DOUBLE;
4905 		s->flags |= SLAB_STORE_USER;
4906 	}
4907 	calculate_sizes(s, -1);
4908 	return length;
4909 }
4910 SLAB_ATTR(store_user);
4911 
4912 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4913 {
4914 	return 0;
4915 }
4916 
4917 static ssize_t validate_store(struct kmem_cache *s,
4918 			const char *buf, size_t length)
4919 {
4920 	int ret = -EINVAL;
4921 
4922 	if (buf[0] == '1') {
4923 		ret = validate_slab_cache(s);
4924 		if (ret >= 0)
4925 			ret = length;
4926 	}
4927 	return ret;
4928 }
4929 SLAB_ATTR(validate);
4930 
4931 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4932 {
4933 	if (!(s->flags & SLAB_STORE_USER))
4934 		return -ENOSYS;
4935 	return list_locations(s, buf, TRACK_ALLOC);
4936 }
4937 SLAB_ATTR_RO(alloc_calls);
4938 
4939 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4940 {
4941 	if (!(s->flags & SLAB_STORE_USER))
4942 		return -ENOSYS;
4943 	return list_locations(s, buf, TRACK_FREE);
4944 }
4945 SLAB_ATTR_RO(free_calls);
4946 #endif /* CONFIG_SLUB_DEBUG */
4947 
4948 #ifdef CONFIG_FAILSLAB
4949 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4950 {
4951 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4952 }
4953 
4954 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4955 							size_t length)
4956 {
4957 	s->flags &= ~SLAB_FAILSLAB;
4958 	if (buf[0] == '1')
4959 		s->flags |= SLAB_FAILSLAB;
4960 	return length;
4961 }
4962 SLAB_ATTR(failslab);
4963 #endif
4964 
4965 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4966 {
4967 	return 0;
4968 }
4969 
4970 static ssize_t shrink_store(struct kmem_cache *s,
4971 			const char *buf, size_t length)
4972 {
4973 	if (buf[0] == '1') {
4974 		int rc = kmem_cache_shrink(s);
4975 
4976 		if (rc)
4977 			return rc;
4978 	} else
4979 		return -EINVAL;
4980 	return length;
4981 }
4982 SLAB_ATTR(shrink);
4983 
4984 #ifdef CONFIG_NUMA
4985 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4986 {
4987 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4988 }
4989 
4990 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4991 				const char *buf, size_t length)
4992 {
4993 	unsigned long ratio;
4994 	int err;
4995 
4996 	err = strict_strtoul(buf, 10, &ratio);
4997 	if (err)
4998 		return err;
4999 
5000 	if (ratio <= 100)
5001 		s->remote_node_defrag_ratio = ratio * 10;
5002 
5003 	return length;
5004 }
5005 SLAB_ATTR(remote_node_defrag_ratio);
5006 #endif
5007 
5008 #ifdef CONFIG_SLUB_STATS
5009 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5010 {
5011 	unsigned long sum  = 0;
5012 	int cpu;
5013 	int len;
5014 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5015 
5016 	if (!data)
5017 		return -ENOMEM;
5018 
5019 	for_each_online_cpu(cpu) {
5020 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5021 
5022 		data[cpu] = x;
5023 		sum += x;
5024 	}
5025 
5026 	len = sprintf(buf, "%lu", sum);
5027 
5028 #ifdef CONFIG_SMP
5029 	for_each_online_cpu(cpu) {
5030 		if (data[cpu] && len < PAGE_SIZE - 20)
5031 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5032 	}
5033 #endif
5034 	kfree(data);
5035 	return len + sprintf(buf + len, "\n");
5036 }
5037 
5038 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5039 {
5040 	int cpu;
5041 
5042 	for_each_online_cpu(cpu)
5043 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5044 }
5045 
5046 #define STAT_ATTR(si, text) 					\
5047 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5048 {								\
5049 	return show_stat(s, buf, si);				\
5050 }								\
5051 static ssize_t text##_store(struct kmem_cache *s,		\
5052 				const char *buf, size_t length)	\
5053 {								\
5054 	if (buf[0] != '0')					\
5055 		return -EINVAL;					\
5056 	clear_stat(s, si);					\
5057 	return length;						\
5058 }								\
5059 SLAB_ATTR(text);						\
5060 
5061 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5062 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5063 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5064 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5065 STAT_ATTR(FREE_FROZEN, free_frozen);
5066 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5067 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5068 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5069 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5070 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5071 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5072 STAT_ATTR(FREE_SLAB, free_slab);
5073 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5074 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5075 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5076 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5077 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5078 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5079 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5080 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5081 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5082 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5083 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5084 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5085 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5086 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5087 #endif
5088 
5089 static struct attribute *slab_attrs[] = {
5090 	&slab_size_attr.attr,
5091 	&object_size_attr.attr,
5092 	&objs_per_slab_attr.attr,
5093 	&order_attr.attr,
5094 	&min_partial_attr.attr,
5095 	&cpu_partial_attr.attr,
5096 	&objects_attr.attr,
5097 	&objects_partial_attr.attr,
5098 	&partial_attr.attr,
5099 	&cpu_slabs_attr.attr,
5100 	&ctor_attr.attr,
5101 	&aliases_attr.attr,
5102 	&align_attr.attr,
5103 	&hwcache_align_attr.attr,
5104 	&reclaim_account_attr.attr,
5105 	&destroy_by_rcu_attr.attr,
5106 	&shrink_attr.attr,
5107 	&reserved_attr.attr,
5108 	&slabs_cpu_partial_attr.attr,
5109 #ifdef CONFIG_SLUB_DEBUG
5110 	&total_objects_attr.attr,
5111 	&slabs_attr.attr,
5112 	&sanity_checks_attr.attr,
5113 	&trace_attr.attr,
5114 	&red_zone_attr.attr,
5115 	&poison_attr.attr,
5116 	&store_user_attr.attr,
5117 	&validate_attr.attr,
5118 	&alloc_calls_attr.attr,
5119 	&free_calls_attr.attr,
5120 #endif
5121 #ifdef CONFIG_ZONE_DMA
5122 	&cache_dma_attr.attr,
5123 #endif
5124 #ifdef CONFIG_NUMA
5125 	&remote_node_defrag_ratio_attr.attr,
5126 #endif
5127 #ifdef CONFIG_SLUB_STATS
5128 	&alloc_fastpath_attr.attr,
5129 	&alloc_slowpath_attr.attr,
5130 	&free_fastpath_attr.attr,
5131 	&free_slowpath_attr.attr,
5132 	&free_frozen_attr.attr,
5133 	&free_add_partial_attr.attr,
5134 	&free_remove_partial_attr.attr,
5135 	&alloc_from_partial_attr.attr,
5136 	&alloc_slab_attr.attr,
5137 	&alloc_refill_attr.attr,
5138 	&alloc_node_mismatch_attr.attr,
5139 	&free_slab_attr.attr,
5140 	&cpuslab_flush_attr.attr,
5141 	&deactivate_full_attr.attr,
5142 	&deactivate_empty_attr.attr,
5143 	&deactivate_to_head_attr.attr,
5144 	&deactivate_to_tail_attr.attr,
5145 	&deactivate_remote_frees_attr.attr,
5146 	&deactivate_bypass_attr.attr,
5147 	&order_fallback_attr.attr,
5148 	&cmpxchg_double_fail_attr.attr,
5149 	&cmpxchg_double_cpu_fail_attr.attr,
5150 	&cpu_partial_alloc_attr.attr,
5151 	&cpu_partial_free_attr.attr,
5152 	&cpu_partial_node_attr.attr,
5153 	&cpu_partial_drain_attr.attr,
5154 #endif
5155 #ifdef CONFIG_FAILSLAB
5156 	&failslab_attr.attr,
5157 #endif
5158 
5159 	NULL
5160 };
5161 
5162 static struct attribute_group slab_attr_group = {
5163 	.attrs = slab_attrs,
5164 };
5165 
5166 static ssize_t slab_attr_show(struct kobject *kobj,
5167 				struct attribute *attr,
5168 				char *buf)
5169 {
5170 	struct slab_attribute *attribute;
5171 	struct kmem_cache *s;
5172 	int err;
5173 
5174 	attribute = to_slab_attr(attr);
5175 	s = to_slab(kobj);
5176 
5177 	if (!attribute->show)
5178 		return -EIO;
5179 
5180 	err = attribute->show(s, buf);
5181 
5182 	return err;
5183 }
5184 
5185 static ssize_t slab_attr_store(struct kobject *kobj,
5186 				struct attribute *attr,
5187 				const char *buf, size_t len)
5188 {
5189 	struct slab_attribute *attribute;
5190 	struct kmem_cache *s;
5191 	int err;
5192 
5193 	attribute = to_slab_attr(attr);
5194 	s = to_slab(kobj);
5195 
5196 	if (!attribute->store)
5197 		return -EIO;
5198 
5199 	err = attribute->store(s, buf, len);
5200 
5201 	return err;
5202 }
5203 
5204 static const struct sysfs_ops slab_sysfs_ops = {
5205 	.show = slab_attr_show,
5206 	.store = slab_attr_store,
5207 };
5208 
5209 static struct kobj_type slab_ktype = {
5210 	.sysfs_ops = &slab_sysfs_ops,
5211 };
5212 
5213 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5214 {
5215 	struct kobj_type *ktype = get_ktype(kobj);
5216 
5217 	if (ktype == &slab_ktype)
5218 		return 1;
5219 	return 0;
5220 }
5221 
5222 static const struct kset_uevent_ops slab_uevent_ops = {
5223 	.filter = uevent_filter,
5224 };
5225 
5226 static struct kset *slab_kset;
5227 
5228 #define ID_STR_LENGTH 64
5229 
5230 /* Create a unique string id for a slab cache:
5231  *
5232  * Format	:[flags-]size
5233  */
5234 static char *create_unique_id(struct kmem_cache *s)
5235 {
5236 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5237 	char *p = name;
5238 
5239 	BUG_ON(!name);
5240 
5241 	*p++ = ':';
5242 	/*
5243 	 * First flags affecting slabcache operations. We will only
5244 	 * get here for aliasable slabs so we do not need to support
5245 	 * too many flags. The flags here must cover all flags that
5246 	 * are matched during merging to guarantee that the id is
5247 	 * unique.
5248 	 */
5249 	if (s->flags & SLAB_CACHE_DMA)
5250 		*p++ = 'd';
5251 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5252 		*p++ = 'a';
5253 	if (s->flags & SLAB_DEBUG_FREE)
5254 		*p++ = 'F';
5255 	if (!(s->flags & SLAB_NOTRACK))
5256 		*p++ = 't';
5257 	if (p != name + 1)
5258 		*p++ = '-';
5259 	p += sprintf(p, "%07d", s->size);
5260 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5261 	return name;
5262 }
5263 
5264 static int sysfs_slab_add(struct kmem_cache *s)
5265 {
5266 	int err;
5267 	const char *name;
5268 	int unmergeable;
5269 
5270 	if (slab_state < FULL)
5271 		/* Defer until later */
5272 		return 0;
5273 
5274 	unmergeable = slab_unmergeable(s);
5275 	if (unmergeable) {
5276 		/*
5277 		 * Slabcache can never be merged so we can use the name proper.
5278 		 * This is typically the case for debug situations. In that
5279 		 * case we can catch duplicate names easily.
5280 		 */
5281 		sysfs_remove_link(&slab_kset->kobj, s->name);
5282 		name = s->name;
5283 	} else {
5284 		/*
5285 		 * Create a unique name for the slab as a target
5286 		 * for the symlinks.
5287 		 */
5288 		name = create_unique_id(s);
5289 	}
5290 
5291 	s->kobj.kset = slab_kset;
5292 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5293 	if (err) {
5294 		kobject_put(&s->kobj);
5295 		return err;
5296 	}
5297 
5298 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5299 	if (err) {
5300 		kobject_del(&s->kobj);
5301 		kobject_put(&s->kobj);
5302 		return err;
5303 	}
5304 	kobject_uevent(&s->kobj, KOBJ_ADD);
5305 	if (!unmergeable) {
5306 		/* Setup first alias */
5307 		sysfs_slab_alias(s, s->name);
5308 		kfree(name);
5309 	}
5310 	return 0;
5311 }
5312 
5313 static void sysfs_slab_remove(struct kmem_cache *s)
5314 {
5315 	if (slab_state < FULL)
5316 		/*
5317 		 * Sysfs has not been setup yet so no need to remove the
5318 		 * cache from sysfs.
5319 		 */
5320 		return;
5321 
5322 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5323 	kobject_del(&s->kobj);
5324 	kobject_put(&s->kobj);
5325 }
5326 
5327 /*
5328  * Need to buffer aliases during bootup until sysfs becomes
5329  * available lest we lose that information.
5330  */
5331 struct saved_alias {
5332 	struct kmem_cache *s;
5333 	const char *name;
5334 	struct saved_alias *next;
5335 };
5336 
5337 static struct saved_alias *alias_list;
5338 
5339 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5340 {
5341 	struct saved_alias *al;
5342 
5343 	if (slab_state == FULL) {
5344 		/*
5345 		 * If we have a leftover link then remove it.
5346 		 */
5347 		sysfs_remove_link(&slab_kset->kobj, name);
5348 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5349 	}
5350 
5351 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5352 	if (!al)
5353 		return -ENOMEM;
5354 
5355 	al->s = s;
5356 	al->name = name;
5357 	al->next = alias_list;
5358 	alias_list = al;
5359 	return 0;
5360 }
5361 
5362 static int __init slab_sysfs_init(void)
5363 {
5364 	struct kmem_cache *s;
5365 	int err;
5366 
5367 	mutex_lock(&slab_mutex);
5368 
5369 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5370 	if (!slab_kset) {
5371 		mutex_unlock(&slab_mutex);
5372 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5373 		return -ENOSYS;
5374 	}
5375 
5376 	slab_state = FULL;
5377 
5378 	list_for_each_entry(s, &slab_caches, list) {
5379 		err = sysfs_slab_add(s);
5380 		if (err)
5381 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5382 						" to sysfs\n", s->name);
5383 	}
5384 
5385 	while (alias_list) {
5386 		struct saved_alias *al = alias_list;
5387 
5388 		alias_list = alias_list->next;
5389 		err = sysfs_slab_alias(al->s, al->name);
5390 		if (err)
5391 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5392 					" %s to sysfs\n", al->name);
5393 		kfree(al);
5394 	}
5395 
5396 	mutex_unlock(&slab_mutex);
5397 	resiliency_test();
5398 	return 0;
5399 }
5400 
5401 __initcall(slab_sysfs_init);
5402 #endif /* CONFIG_SYSFS */
5403 
5404 /*
5405  * The /proc/slabinfo ABI
5406  */
5407 #ifdef CONFIG_SLABINFO
5408 static void print_slabinfo_header(struct seq_file *m)
5409 {
5410 	seq_puts(m, "slabinfo - version: 2.1\n");
5411 	seq_puts(m, "# name            <active_objs> <num_objs> <object_size> "
5412 		 "<objperslab> <pagesperslab>");
5413 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5414 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5415 	seq_putc(m, '\n');
5416 }
5417 
5418 static void *s_start(struct seq_file *m, loff_t *pos)
5419 {
5420 	loff_t n = *pos;
5421 
5422 	mutex_lock(&slab_mutex);
5423 	if (!n)
5424 		print_slabinfo_header(m);
5425 
5426 	return seq_list_start(&slab_caches, *pos);
5427 }
5428 
5429 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5430 {
5431 	return seq_list_next(p, &slab_caches, pos);
5432 }
5433 
5434 static void s_stop(struct seq_file *m, void *p)
5435 {
5436 	mutex_unlock(&slab_mutex);
5437 }
5438 
5439 static int s_show(struct seq_file *m, void *p)
5440 {
5441 	unsigned long nr_partials = 0;
5442 	unsigned long nr_slabs = 0;
5443 	unsigned long nr_inuse = 0;
5444 	unsigned long nr_objs = 0;
5445 	unsigned long nr_free = 0;
5446 	struct kmem_cache *s;
5447 	int node;
5448 
5449 	s = list_entry(p, struct kmem_cache, list);
5450 
5451 	for_each_online_node(node) {
5452 		struct kmem_cache_node *n = get_node(s, node);
5453 
5454 		if (!n)
5455 			continue;
5456 
5457 		nr_partials += n->nr_partial;
5458 		nr_slabs += atomic_long_read(&n->nr_slabs);
5459 		nr_objs += atomic_long_read(&n->total_objects);
5460 		nr_free += count_partial(n, count_free);
5461 	}
5462 
5463 	nr_inuse = nr_objs - nr_free;
5464 
5465 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5466 		   nr_objs, s->size, oo_objects(s->oo),
5467 		   (1 << oo_order(s->oo)));
5468 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5469 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5470 		   0UL);
5471 	seq_putc(m, '\n');
5472 	return 0;
5473 }
5474 
5475 static const struct seq_operations slabinfo_op = {
5476 	.start = s_start,
5477 	.next = s_next,
5478 	.stop = s_stop,
5479 	.show = s_show,
5480 };
5481 
5482 static int slabinfo_open(struct inode *inode, struct file *file)
5483 {
5484 	return seq_open(file, &slabinfo_op);
5485 }
5486 
5487 static const struct file_operations proc_slabinfo_operations = {
5488 	.open		= slabinfo_open,
5489 	.read		= seq_read,
5490 	.llseek		= seq_lseek,
5491 	.release	= seq_release,
5492 };
5493 
5494 static int __init slab_proc_init(void)
5495 {
5496 	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5497 	return 0;
5498 }
5499 module_init(slab_proc_init);
5500 #endif /* CONFIG_SLABINFO */
5501