1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/kmemcheck.h> 23 #include <linux/cpu.h> 24 #include <linux/cpuset.h> 25 #include <linux/mempolicy.h> 26 #include <linux/ctype.h> 27 #include <linux/debugobjects.h> 28 #include <linux/kallsyms.h> 29 #include <linux/memory.h> 30 #include <linux/math64.h> 31 #include <linux/fault-inject.h> 32 #include <linux/stacktrace.h> 33 #include <linux/prefetch.h> 34 35 #include <trace/events/kmem.h> 36 37 #include "internal.h" 38 39 /* 40 * Lock order: 41 * 1. slab_mutex (Global Mutex) 42 * 2. node->list_lock 43 * 3. slab_lock(page) (Only on some arches and for debugging) 44 * 45 * slab_mutex 46 * 47 * The role of the slab_mutex is to protect the list of all the slabs 48 * and to synchronize major metadata changes to slab cache structures. 49 * 50 * The slab_lock is only used for debugging and on arches that do not 51 * have the ability to do a cmpxchg_double. It only protects the second 52 * double word in the page struct. Meaning 53 * A. page->freelist -> List of object free in a page 54 * B. page->counters -> Counters of objects 55 * C. page->frozen -> frozen state 56 * 57 * If a slab is frozen then it is exempt from list management. It is not 58 * on any list. The processor that froze the slab is the one who can 59 * perform list operations on the page. Other processors may put objects 60 * onto the freelist but the processor that froze the slab is the only 61 * one that can retrieve the objects from the page's freelist. 62 * 63 * The list_lock protects the partial and full list on each node and 64 * the partial slab counter. If taken then no new slabs may be added or 65 * removed from the lists nor make the number of partial slabs be modified. 66 * (Note that the total number of slabs is an atomic value that may be 67 * modified without taking the list lock). 68 * 69 * The list_lock is a centralized lock and thus we avoid taking it as 70 * much as possible. As long as SLUB does not have to handle partial 71 * slabs, operations can continue without any centralized lock. F.e. 72 * allocating a long series of objects that fill up slabs does not require 73 * the list lock. 74 * Interrupts are disabled during allocation and deallocation in order to 75 * make the slab allocator safe to use in the context of an irq. In addition 76 * interrupts are disabled to ensure that the processor does not change 77 * while handling per_cpu slabs, due to kernel preemption. 78 * 79 * SLUB assigns one slab for allocation to each processor. 80 * Allocations only occur from these slabs called cpu slabs. 81 * 82 * Slabs with free elements are kept on a partial list and during regular 83 * operations no list for full slabs is used. If an object in a full slab is 84 * freed then the slab will show up again on the partial lists. 85 * We track full slabs for debugging purposes though because otherwise we 86 * cannot scan all objects. 87 * 88 * Slabs are freed when they become empty. Teardown and setup is 89 * minimal so we rely on the page allocators per cpu caches for 90 * fast frees and allocs. 91 * 92 * Overloading of page flags that are otherwise used for LRU management. 93 * 94 * PageActive The slab is frozen and exempt from list processing. 95 * This means that the slab is dedicated to a purpose 96 * such as satisfying allocations for a specific 97 * processor. Objects may be freed in the slab while 98 * it is frozen but slab_free will then skip the usual 99 * list operations. It is up to the processor holding 100 * the slab to integrate the slab into the slab lists 101 * when the slab is no longer needed. 102 * 103 * One use of this flag is to mark slabs that are 104 * used for allocations. Then such a slab becomes a cpu 105 * slab. The cpu slab may be equipped with an additional 106 * freelist that allows lockless access to 107 * free objects in addition to the regular freelist 108 * that requires the slab lock. 109 * 110 * PageError Slab requires special handling due to debug 111 * options set. This moves slab handling out of 112 * the fast path and disables lockless freelists. 113 */ 114 115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 116 SLAB_TRACE | SLAB_DEBUG_FREE) 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 /* 128 * Issues still to be resolved: 129 * 130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 131 * 132 * - Variable sizing of the per node arrays 133 */ 134 135 /* Enable to test recovery from slab corruption on boot */ 136 #undef SLUB_RESILIENCY_TEST 137 138 /* Enable to log cmpxchg failures */ 139 #undef SLUB_DEBUG_CMPXCHG 140 141 /* 142 * Mininum number of partial slabs. These will be left on the partial 143 * lists even if they are empty. kmem_cache_shrink may reclaim them. 144 */ 145 #define MIN_PARTIAL 5 146 147 /* 148 * Maximum number of desirable partial slabs. 149 * The existence of more partial slabs makes kmem_cache_shrink 150 * sort the partial list by the number of objects in the. 151 */ 152 #define MAX_PARTIAL 10 153 154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 155 SLAB_POISON | SLAB_STORE_USER) 156 157 /* 158 * Debugging flags that require metadata to be stored in the slab. These get 159 * disabled when slub_debug=O is used and a cache's min order increases with 160 * metadata. 161 */ 162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 163 164 /* 165 * Set of flags that will prevent slab merging 166 */ 167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 169 SLAB_FAILSLAB) 170 171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 172 SLAB_CACHE_DMA | SLAB_NOTRACK) 173 174 #define OO_SHIFT 16 175 #define OO_MASK ((1 << OO_SHIFT) - 1) 176 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 177 178 /* Internal SLUB flags */ 179 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 180 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 181 182 static int kmem_size = sizeof(struct kmem_cache); 183 184 #ifdef CONFIG_SMP 185 static struct notifier_block slab_notifier; 186 #endif 187 188 /* 189 * Tracking user of a slab. 190 */ 191 #define TRACK_ADDRS_COUNT 16 192 struct track { 193 unsigned long addr; /* Called from address */ 194 #ifdef CONFIG_STACKTRACE 195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 196 #endif 197 int cpu; /* Was running on cpu */ 198 int pid; /* Pid context */ 199 unsigned long when; /* When did the operation occur */ 200 }; 201 202 enum track_item { TRACK_ALLOC, TRACK_FREE }; 203 204 #ifdef CONFIG_SYSFS 205 static int sysfs_slab_add(struct kmem_cache *); 206 static int sysfs_slab_alias(struct kmem_cache *, const char *); 207 static void sysfs_slab_remove(struct kmem_cache *); 208 209 #else 210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 212 { return 0; } 213 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 214 215 #endif 216 217 static inline void stat(const struct kmem_cache *s, enum stat_item si) 218 { 219 #ifdef CONFIG_SLUB_STATS 220 __this_cpu_inc(s->cpu_slab->stat[si]); 221 #endif 222 } 223 224 /******************************************************************** 225 * Core slab cache functions 226 *******************************************************************/ 227 228 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 229 { 230 return s->node[node]; 231 } 232 233 /* Verify that a pointer has an address that is valid within a slab page */ 234 static inline int check_valid_pointer(struct kmem_cache *s, 235 struct page *page, const void *object) 236 { 237 void *base; 238 239 if (!object) 240 return 1; 241 242 base = page_address(page); 243 if (object < base || object >= base + page->objects * s->size || 244 (object - base) % s->size) { 245 return 0; 246 } 247 248 return 1; 249 } 250 251 static inline void *get_freepointer(struct kmem_cache *s, void *object) 252 { 253 return *(void **)(object + s->offset); 254 } 255 256 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 257 { 258 prefetch(object + s->offset); 259 } 260 261 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 262 { 263 void *p; 264 265 #ifdef CONFIG_DEBUG_PAGEALLOC 266 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 267 #else 268 p = get_freepointer(s, object); 269 #endif 270 return p; 271 } 272 273 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 274 { 275 *(void **)(object + s->offset) = fp; 276 } 277 278 /* Loop over all objects in a slab */ 279 #define for_each_object(__p, __s, __addr, __objects) \ 280 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 281 __p += (__s)->size) 282 283 /* Determine object index from a given position */ 284 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 285 { 286 return (p - addr) / s->size; 287 } 288 289 static inline size_t slab_ksize(const struct kmem_cache *s) 290 { 291 #ifdef CONFIG_SLUB_DEBUG 292 /* 293 * Debugging requires use of the padding between object 294 * and whatever may come after it. 295 */ 296 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 297 return s->object_size; 298 299 #endif 300 /* 301 * If we have the need to store the freelist pointer 302 * back there or track user information then we can 303 * only use the space before that information. 304 */ 305 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 306 return s->inuse; 307 /* 308 * Else we can use all the padding etc for the allocation 309 */ 310 return s->size; 311 } 312 313 static inline int order_objects(int order, unsigned long size, int reserved) 314 { 315 return ((PAGE_SIZE << order) - reserved) / size; 316 } 317 318 static inline struct kmem_cache_order_objects oo_make(int order, 319 unsigned long size, int reserved) 320 { 321 struct kmem_cache_order_objects x = { 322 (order << OO_SHIFT) + order_objects(order, size, reserved) 323 }; 324 325 return x; 326 } 327 328 static inline int oo_order(struct kmem_cache_order_objects x) 329 { 330 return x.x >> OO_SHIFT; 331 } 332 333 static inline int oo_objects(struct kmem_cache_order_objects x) 334 { 335 return x.x & OO_MASK; 336 } 337 338 /* 339 * Per slab locking using the pagelock 340 */ 341 static __always_inline void slab_lock(struct page *page) 342 { 343 bit_spin_lock(PG_locked, &page->flags); 344 } 345 346 static __always_inline void slab_unlock(struct page *page) 347 { 348 __bit_spin_unlock(PG_locked, &page->flags); 349 } 350 351 /* Interrupts must be disabled (for the fallback code to work right) */ 352 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 353 void *freelist_old, unsigned long counters_old, 354 void *freelist_new, unsigned long counters_new, 355 const char *n) 356 { 357 VM_BUG_ON(!irqs_disabled()); 358 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 359 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 360 if (s->flags & __CMPXCHG_DOUBLE) { 361 if (cmpxchg_double(&page->freelist, &page->counters, 362 freelist_old, counters_old, 363 freelist_new, counters_new)) 364 return 1; 365 } else 366 #endif 367 { 368 slab_lock(page); 369 if (page->freelist == freelist_old && page->counters == counters_old) { 370 page->freelist = freelist_new; 371 page->counters = counters_new; 372 slab_unlock(page); 373 return 1; 374 } 375 slab_unlock(page); 376 } 377 378 cpu_relax(); 379 stat(s, CMPXCHG_DOUBLE_FAIL); 380 381 #ifdef SLUB_DEBUG_CMPXCHG 382 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 383 #endif 384 385 return 0; 386 } 387 388 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 389 void *freelist_old, unsigned long counters_old, 390 void *freelist_new, unsigned long counters_new, 391 const char *n) 392 { 393 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 394 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 395 if (s->flags & __CMPXCHG_DOUBLE) { 396 if (cmpxchg_double(&page->freelist, &page->counters, 397 freelist_old, counters_old, 398 freelist_new, counters_new)) 399 return 1; 400 } else 401 #endif 402 { 403 unsigned long flags; 404 405 local_irq_save(flags); 406 slab_lock(page); 407 if (page->freelist == freelist_old && page->counters == counters_old) { 408 page->freelist = freelist_new; 409 page->counters = counters_new; 410 slab_unlock(page); 411 local_irq_restore(flags); 412 return 1; 413 } 414 slab_unlock(page); 415 local_irq_restore(flags); 416 } 417 418 cpu_relax(); 419 stat(s, CMPXCHG_DOUBLE_FAIL); 420 421 #ifdef SLUB_DEBUG_CMPXCHG 422 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 423 #endif 424 425 return 0; 426 } 427 428 #ifdef CONFIG_SLUB_DEBUG 429 /* 430 * Determine a map of object in use on a page. 431 * 432 * Node listlock must be held to guarantee that the page does 433 * not vanish from under us. 434 */ 435 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 436 { 437 void *p; 438 void *addr = page_address(page); 439 440 for (p = page->freelist; p; p = get_freepointer(s, p)) 441 set_bit(slab_index(p, s, addr), map); 442 } 443 444 /* 445 * Debug settings: 446 */ 447 #ifdef CONFIG_SLUB_DEBUG_ON 448 static int slub_debug = DEBUG_DEFAULT_FLAGS; 449 #else 450 static int slub_debug; 451 #endif 452 453 static char *slub_debug_slabs; 454 static int disable_higher_order_debug; 455 456 /* 457 * Object debugging 458 */ 459 static void print_section(char *text, u8 *addr, unsigned int length) 460 { 461 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 462 length, 1); 463 } 464 465 static struct track *get_track(struct kmem_cache *s, void *object, 466 enum track_item alloc) 467 { 468 struct track *p; 469 470 if (s->offset) 471 p = object + s->offset + sizeof(void *); 472 else 473 p = object + s->inuse; 474 475 return p + alloc; 476 } 477 478 static void set_track(struct kmem_cache *s, void *object, 479 enum track_item alloc, unsigned long addr) 480 { 481 struct track *p = get_track(s, object, alloc); 482 483 if (addr) { 484 #ifdef CONFIG_STACKTRACE 485 struct stack_trace trace; 486 int i; 487 488 trace.nr_entries = 0; 489 trace.max_entries = TRACK_ADDRS_COUNT; 490 trace.entries = p->addrs; 491 trace.skip = 3; 492 save_stack_trace(&trace); 493 494 /* See rant in lockdep.c */ 495 if (trace.nr_entries != 0 && 496 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 497 trace.nr_entries--; 498 499 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 500 p->addrs[i] = 0; 501 #endif 502 p->addr = addr; 503 p->cpu = smp_processor_id(); 504 p->pid = current->pid; 505 p->when = jiffies; 506 } else 507 memset(p, 0, sizeof(struct track)); 508 } 509 510 static void init_tracking(struct kmem_cache *s, void *object) 511 { 512 if (!(s->flags & SLAB_STORE_USER)) 513 return; 514 515 set_track(s, object, TRACK_FREE, 0UL); 516 set_track(s, object, TRACK_ALLOC, 0UL); 517 } 518 519 static void print_track(const char *s, struct track *t) 520 { 521 if (!t->addr) 522 return; 523 524 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 525 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 526 #ifdef CONFIG_STACKTRACE 527 { 528 int i; 529 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 530 if (t->addrs[i]) 531 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 532 else 533 break; 534 } 535 #endif 536 } 537 538 static void print_tracking(struct kmem_cache *s, void *object) 539 { 540 if (!(s->flags & SLAB_STORE_USER)) 541 return; 542 543 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 544 print_track("Freed", get_track(s, object, TRACK_FREE)); 545 } 546 547 static void print_page_info(struct page *page) 548 { 549 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 550 page, page->objects, page->inuse, page->freelist, page->flags); 551 552 } 553 554 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 555 { 556 va_list args; 557 char buf[100]; 558 559 va_start(args, fmt); 560 vsnprintf(buf, sizeof(buf), fmt, args); 561 va_end(args); 562 printk(KERN_ERR "========================================" 563 "=====================================\n"); 564 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf); 565 printk(KERN_ERR "----------------------------------------" 566 "-------------------------------------\n\n"); 567 568 add_taint(TAINT_BAD_PAGE); 569 } 570 571 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 572 { 573 va_list args; 574 char buf[100]; 575 576 va_start(args, fmt); 577 vsnprintf(buf, sizeof(buf), fmt, args); 578 va_end(args); 579 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 580 } 581 582 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 583 { 584 unsigned int off; /* Offset of last byte */ 585 u8 *addr = page_address(page); 586 587 print_tracking(s, p); 588 589 print_page_info(page); 590 591 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 592 p, p - addr, get_freepointer(s, p)); 593 594 if (p > addr + 16) 595 print_section("Bytes b4 ", p - 16, 16); 596 597 print_section("Object ", p, min_t(unsigned long, s->object_size, 598 PAGE_SIZE)); 599 if (s->flags & SLAB_RED_ZONE) 600 print_section("Redzone ", p + s->object_size, 601 s->inuse - s->object_size); 602 603 if (s->offset) 604 off = s->offset + sizeof(void *); 605 else 606 off = s->inuse; 607 608 if (s->flags & SLAB_STORE_USER) 609 off += 2 * sizeof(struct track); 610 611 if (off != s->size) 612 /* Beginning of the filler is the free pointer */ 613 print_section("Padding ", p + off, s->size - off); 614 615 dump_stack(); 616 } 617 618 static void object_err(struct kmem_cache *s, struct page *page, 619 u8 *object, char *reason) 620 { 621 slab_bug(s, "%s", reason); 622 print_trailer(s, page, object); 623 } 624 625 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...) 626 { 627 va_list args; 628 char buf[100]; 629 630 va_start(args, fmt); 631 vsnprintf(buf, sizeof(buf), fmt, args); 632 va_end(args); 633 slab_bug(s, "%s", buf); 634 print_page_info(page); 635 dump_stack(); 636 } 637 638 static void init_object(struct kmem_cache *s, void *object, u8 val) 639 { 640 u8 *p = object; 641 642 if (s->flags & __OBJECT_POISON) { 643 memset(p, POISON_FREE, s->object_size - 1); 644 p[s->object_size - 1] = POISON_END; 645 } 646 647 if (s->flags & SLAB_RED_ZONE) 648 memset(p + s->object_size, val, s->inuse - s->object_size); 649 } 650 651 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 652 void *from, void *to) 653 { 654 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 655 memset(from, data, to - from); 656 } 657 658 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 659 u8 *object, char *what, 660 u8 *start, unsigned int value, unsigned int bytes) 661 { 662 u8 *fault; 663 u8 *end; 664 665 fault = memchr_inv(start, value, bytes); 666 if (!fault) 667 return 1; 668 669 end = start + bytes; 670 while (end > fault && end[-1] == value) 671 end--; 672 673 slab_bug(s, "%s overwritten", what); 674 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 675 fault, end - 1, fault[0], value); 676 print_trailer(s, page, object); 677 678 restore_bytes(s, what, value, fault, end); 679 return 0; 680 } 681 682 /* 683 * Object layout: 684 * 685 * object address 686 * Bytes of the object to be managed. 687 * If the freepointer may overlay the object then the free 688 * pointer is the first word of the object. 689 * 690 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 691 * 0xa5 (POISON_END) 692 * 693 * object + s->object_size 694 * Padding to reach word boundary. This is also used for Redzoning. 695 * Padding is extended by another word if Redzoning is enabled and 696 * object_size == inuse. 697 * 698 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 699 * 0xcc (RED_ACTIVE) for objects in use. 700 * 701 * object + s->inuse 702 * Meta data starts here. 703 * 704 * A. Free pointer (if we cannot overwrite object on free) 705 * B. Tracking data for SLAB_STORE_USER 706 * C. Padding to reach required alignment boundary or at mininum 707 * one word if debugging is on to be able to detect writes 708 * before the word boundary. 709 * 710 * Padding is done using 0x5a (POISON_INUSE) 711 * 712 * object + s->size 713 * Nothing is used beyond s->size. 714 * 715 * If slabcaches are merged then the object_size and inuse boundaries are mostly 716 * ignored. And therefore no slab options that rely on these boundaries 717 * may be used with merged slabcaches. 718 */ 719 720 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 721 { 722 unsigned long off = s->inuse; /* The end of info */ 723 724 if (s->offset) 725 /* Freepointer is placed after the object. */ 726 off += sizeof(void *); 727 728 if (s->flags & SLAB_STORE_USER) 729 /* We also have user information there */ 730 off += 2 * sizeof(struct track); 731 732 if (s->size == off) 733 return 1; 734 735 return check_bytes_and_report(s, page, p, "Object padding", 736 p + off, POISON_INUSE, s->size - off); 737 } 738 739 /* Check the pad bytes at the end of a slab page */ 740 static int slab_pad_check(struct kmem_cache *s, struct page *page) 741 { 742 u8 *start; 743 u8 *fault; 744 u8 *end; 745 int length; 746 int remainder; 747 748 if (!(s->flags & SLAB_POISON)) 749 return 1; 750 751 start = page_address(page); 752 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 753 end = start + length; 754 remainder = length % s->size; 755 if (!remainder) 756 return 1; 757 758 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 759 if (!fault) 760 return 1; 761 while (end > fault && end[-1] == POISON_INUSE) 762 end--; 763 764 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 765 print_section("Padding ", end - remainder, remainder); 766 767 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 768 return 0; 769 } 770 771 static int check_object(struct kmem_cache *s, struct page *page, 772 void *object, u8 val) 773 { 774 u8 *p = object; 775 u8 *endobject = object + s->object_size; 776 777 if (s->flags & SLAB_RED_ZONE) { 778 if (!check_bytes_and_report(s, page, object, "Redzone", 779 endobject, val, s->inuse - s->object_size)) 780 return 0; 781 } else { 782 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 783 check_bytes_and_report(s, page, p, "Alignment padding", 784 endobject, POISON_INUSE, s->inuse - s->object_size); 785 } 786 } 787 788 if (s->flags & SLAB_POISON) { 789 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 790 (!check_bytes_and_report(s, page, p, "Poison", p, 791 POISON_FREE, s->object_size - 1) || 792 !check_bytes_and_report(s, page, p, "Poison", 793 p + s->object_size - 1, POISON_END, 1))) 794 return 0; 795 /* 796 * check_pad_bytes cleans up on its own. 797 */ 798 check_pad_bytes(s, page, p); 799 } 800 801 if (!s->offset && val == SLUB_RED_ACTIVE) 802 /* 803 * Object and freepointer overlap. Cannot check 804 * freepointer while object is allocated. 805 */ 806 return 1; 807 808 /* Check free pointer validity */ 809 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 810 object_err(s, page, p, "Freepointer corrupt"); 811 /* 812 * No choice but to zap it and thus lose the remainder 813 * of the free objects in this slab. May cause 814 * another error because the object count is now wrong. 815 */ 816 set_freepointer(s, p, NULL); 817 return 0; 818 } 819 return 1; 820 } 821 822 static int check_slab(struct kmem_cache *s, struct page *page) 823 { 824 int maxobj; 825 826 VM_BUG_ON(!irqs_disabled()); 827 828 if (!PageSlab(page)) { 829 slab_err(s, page, "Not a valid slab page"); 830 return 0; 831 } 832 833 maxobj = order_objects(compound_order(page), s->size, s->reserved); 834 if (page->objects > maxobj) { 835 slab_err(s, page, "objects %u > max %u", 836 s->name, page->objects, maxobj); 837 return 0; 838 } 839 if (page->inuse > page->objects) { 840 slab_err(s, page, "inuse %u > max %u", 841 s->name, page->inuse, page->objects); 842 return 0; 843 } 844 /* Slab_pad_check fixes things up after itself */ 845 slab_pad_check(s, page); 846 return 1; 847 } 848 849 /* 850 * Determine if a certain object on a page is on the freelist. Must hold the 851 * slab lock to guarantee that the chains are in a consistent state. 852 */ 853 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 854 { 855 int nr = 0; 856 void *fp; 857 void *object = NULL; 858 unsigned long max_objects; 859 860 fp = page->freelist; 861 while (fp && nr <= page->objects) { 862 if (fp == search) 863 return 1; 864 if (!check_valid_pointer(s, page, fp)) { 865 if (object) { 866 object_err(s, page, object, 867 "Freechain corrupt"); 868 set_freepointer(s, object, NULL); 869 break; 870 } else { 871 slab_err(s, page, "Freepointer corrupt"); 872 page->freelist = NULL; 873 page->inuse = page->objects; 874 slab_fix(s, "Freelist cleared"); 875 return 0; 876 } 877 break; 878 } 879 object = fp; 880 fp = get_freepointer(s, object); 881 nr++; 882 } 883 884 max_objects = order_objects(compound_order(page), s->size, s->reserved); 885 if (max_objects > MAX_OBJS_PER_PAGE) 886 max_objects = MAX_OBJS_PER_PAGE; 887 888 if (page->objects != max_objects) { 889 slab_err(s, page, "Wrong number of objects. Found %d but " 890 "should be %d", page->objects, max_objects); 891 page->objects = max_objects; 892 slab_fix(s, "Number of objects adjusted."); 893 } 894 if (page->inuse != page->objects - nr) { 895 slab_err(s, page, "Wrong object count. Counter is %d but " 896 "counted were %d", page->inuse, page->objects - nr); 897 page->inuse = page->objects - nr; 898 slab_fix(s, "Object count adjusted."); 899 } 900 return search == NULL; 901 } 902 903 static void trace(struct kmem_cache *s, struct page *page, void *object, 904 int alloc) 905 { 906 if (s->flags & SLAB_TRACE) { 907 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 908 s->name, 909 alloc ? "alloc" : "free", 910 object, page->inuse, 911 page->freelist); 912 913 if (!alloc) 914 print_section("Object ", (void *)object, s->object_size); 915 916 dump_stack(); 917 } 918 } 919 920 /* 921 * Hooks for other subsystems that check memory allocations. In a typical 922 * production configuration these hooks all should produce no code at all. 923 */ 924 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 925 { 926 flags &= gfp_allowed_mask; 927 lockdep_trace_alloc(flags); 928 might_sleep_if(flags & __GFP_WAIT); 929 930 return should_failslab(s->object_size, flags, s->flags); 931 } 932 933 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) 934 { 935 flags &= gfp_allowed_mask; 936 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 937 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 938 } 939 940 static inline void slab_free_hook(struct kmem_cache *s, void *x) 941 { 942 kmemleak_free_recursive(x, s->flags); 943 944 /* 945 * Trouble is that we may no longer disable interupts in the fast path 946 * So in order to make the debug calls that expect irqs to be 947 * disabled we need to disable interrupts temporarily. 948 */ 949 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 950 { 951 unsigned long flags; 952 953 local_irq_save(flags); 954 kmemcheck_slab_free(s, x, s->object_size); 955 debug_check_no_locks_freed(x, s->object_size); 956 local_irq_restore(flags); 957 } 958 #endif 959 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 960 debug_check_no_obj_freed(x, s->object_size); 961 } 962 963 /* 964 * Tracking of fully allocated slabs for debugging purposes. 965 * 966 * list_lock must be held. 967 */ 968 static void add_full(struct kmem_cache *s, 969 struct kmem_cache_node *n, struct page *page) 970 { 971 if (!(s->flags & SLAB_STORE_USER)) 972 return; 973 974 list_add(&page->lru, &n->full); 975 } 976 977 /* 978 * list_lock must be held. 979 */ 980 static void remove_full(struct kmem_cache *s, struct page *page) 981 { 982 if (!(s->flags & SLAB_STORE_USER)) 983 return; 984 985 list_del(&page->lru); 986 } 987 988 /* Tracking of the number of slabs for debugging purposes */ 989 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 990 { 991 struct kmem_cache_node *n = get_node(s, node); 992 993 return atomic_long_read(&n->nr_slabs); 994 } 995 996 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 997 { 998 return atomic_long_read(&n->nr_slabs); 999 } 1000 1001 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1002 { 1003 struct kmem_cache_node *n = get_node(s, node); 1004 1005 /* 1006 * May be called early in order to allocate a slab for the 1007 * kmem_cache_node structure. Solve the chicken-egg 1008 * dilemma by deferring the increment of the count during 1009 * bootstrap (see early_kmem_cache_node_alloc). 1010 */ 1011 if (n) { 1012 atomic_long_inc(&n->nr_slabs); 1013 atomic_long_add(objects, &n->total_objects); 1014 } 1015 } 1016 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1017 { 1018 struct kmem_cache_node *n = get_node(s, node); 1019 1020 atomic_long_dec(&n->nr_slabs); 1021 atomic_long_sub(objects, &n->total_objects); 1022 } 1023 1024 /* Object debug checks for alloc/free paths */ 1025 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1026 void *object) 1027 { 1028 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1029 return; 1030 1031 init_object(s, object, SLUB_RED_INACTIVE); 1032 init_tracking(s, object); 1033 } 1034 1035 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, 1036 void *object, unsigned long addr) 1037 { 1038 if (!check_slab(s, page)) 1039 goto bad; 1040 1041 if (!check_valid_pointer(s, page, object)) { 1042 object_err(s, page, object, "Freelist Pointer check fails"); 1043 goto bad; 1044 } 1045 1046 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1047 goto bad; 1048 1049 /* Success perform special debug activities for allocs */ 1050 if (s->flags & SLAB_STORE_USER) 1051 set_track(s, object, TRACK_ALLOC, addr); 1052 trace(s, page, object, 1); 1053 init_object(s, object, SLUB_RED_ACTIVE); 1054 return 1; 1055 1056 bad: 1057 if (PageSlab(page)) { 1058 /* 1059 * If this is a slab page then lets do the best we can 1060 * to avoid issues in the future. Marking all objects 1061 * as used avoids touching the remaining objects. 1062 */ 1063 slab_fix(s, "Marking all objects used"); 1064 page->inuse = page->objects; 1065 page->freelist = NULL; 1066 } 1067 return 0; 1068 } 1069 1070 static noinline struct kmem_cache_node *free_debug_processing( 1071 struct kmem_cache *s, struct page *page, void *object, 1072 unsigned long addr, unsigned long *flags) 1073 { 1074 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1075 1076 spin_lock_irqsave(&n->list_lock, *flags); 1077 slab_lock(page); 1078 1079 if (!check_slab(s, page)) 1080 goto fail; 1081 1082 if (!check_valid_pointer(s, page, object)) { 1083 slab_err(s, page, "Invalid object pointer 0x%p", object); 1084 goto fail; 1085 } 1086 1087 if (on_freelist(s, page, object)) { 1088 object_err(s, page, object, "Object already free"); 1089 goto fail; 1090 } 1091 1092 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1093 goto out; 1094 1095 if (unlikely(s != page->slab)) { 1096 if (!PageSlab(page)) { 1097 slab_err(s, page, "Attempt to free object(0x%p) " 1098 "outside of slab", object); 1099 } else if (!page->slab) { 1100 printk(KERN_ERR 1101 "SLUB <none>: no slab for object 0x%p.\n", 1102 object); 1103 dump_stack(); 1104 } else 1105 object_err(s, page, object, 1106 "page slab pointer corrupt."); 1107 goto fail; 1108 } 1109 1110 if (s->flags & SLAB_STORE_USER) 1111 set_track(s, object, TRACK_FREE, addr); 1112 trace(s, page, object, 0); 1113 init_object(s, object, SLUB_RED_INACTIVE); 1114 out: 1115 slab_unlock(page); 1116 /* 1117 * Keep node_lock to preserve integrity 1118 * until the object is actually freed 1119 */ 1120 return n; 1121 1122 fail: 1123 slab_unlock(page); 1124 spin_unlock_irqrestore(&n->list_lock, *flags); 1125 slab_fix(s, "Object at 0x%p not freed", object); 1126 return NULL; 1127 } 1128 1129 static int __init setup_slub_debug(char *str) 1130 { 1131 slub_debug = DEBUG_DEFAULT_FLAGS; 1132 if (*str++ != '=' || !*str) 1133 /* 1134 * No options specified. Switch on full debugging. 1135 */ 1136 goto out; 1137 1138 if (*str == ',') 1139 /* 1140 * No options but restriction on slabs. This means full 1141 * debugging for slabs matching a pattern. 1142 */ 1143 goto check_slabs; 1144 1145 if (tolower(*str) == 'o') { 1146 /* 1147 * Avoid enabling debugging on caches if its minimum order 1148 * would increase as a result. 1149 */ 1150 disable_higher_order_debug = 1; 1151 goto out; 1152 } 1153 1154 slub_debug = 0; 1155 if (*str == '-') 1156 /* 1157 * Switch off all debugging measures. 1158 */ 1159 goto out; 1160 1161 /* 1162 * Determine which debug features should be switched on 1163 */ 1164 for (; *str && *str != ','; str++) { 1165 switch (tolower(*str)) { 1166 case 'f': 1167 slub_debug |= SLAB_DEBUG_FREE; 1168 break; 1169 case 'z': 1170 slub_debug |= SLAB_RED_ZONE; 1171 break; 1172 case 'p': 1173 slub_debug |= SLAB_POISON; 1174 break; 1175 case 'u': 1176 slub_debug |= SLAB_STORE_USER; 1177 break; 1178 case 't': 1179 slub_debug |= SLAB_TRACE; 1180 break; 1181 case 'a': 1182 slub_debug |= SLAB_FAILSLAB; 1183 break; 1184 default: 1185 printk(KERN_ERR "slub_debug option '%c' " 1186 "unknown. skipped\n", *str); 1187 } 1188 } 1189 1190 check_slabs: 1191 if (*str == ',') 1192 slub_debug_slabs = str + 1; 1193 out: 1194 return 1; 1195 } 1196 1197 __setup("slub_debug", setup_slub_debug); 1198 1199 static unsigned long kmem_cache_flags(unsigned long object_size, 1200 unsigned long flags, const char *name, 1201 void (*ctor)(void *)) 1202 { 1203 /* 1204 * Enable debugging if selected on the kernel commandline. 1205 */ 1206 if (slub_debug && (!slub_debug_slabs || 1207 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1208 flags |= slub_debug; 1209 1210 return flags; 1211 } 1212 #else 1213 static inline void setup_object_debug(struct kmem_cache *s, 1214 struct page *page, void *object) {} 1215 1216 static inline int alloc_debug_processing(struct kmem_cache *s, 1217 struct page *page, void *object, unsigned long addr) { return 0; } 1218 1219 static inline struct kmem_cache_node *free_debug_processing( 1220 struct kmem_cache *s, struct page *page, void *object, 1221 unsigned long addr, unsigned long *flags) { return NULL; } 1222 1223 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1224 { return 1; } 1225 static inline int check_object(struct kmem_cache *s, struct page *page, 1226 void *object, u8 val) { return 1; } 1227 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1228 struct page *page) {} 1229 static inline void remove_full(struct kmem_cache *s, struct page *page) {} 1230 static inline unsigned long kmem_cache_flags(unsigned long object_size, 1231 unsigned long flags, const char *name, 1232 void (*ctor)(void *)) 1233 { 1234 return flags; 1235 } 1236 #define slub_debug 0 1237 1238 #define disable_higher_order_debug 0 1239 1240 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1241 { return 0; } 1242 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1243 { return 0; } 1244 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1245 int objects) {} 1246 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1247 int objects) {} 1248 1249 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1250 { return 0; } 1251 1252 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1253 void *object) {} 1254 1255 static inline void slab_free_hook(struct kmem_cache *s, void *x) {} 1256 1257 #endif /* CONFIG_SLUB_DEBUG */ 1258 1259 /* 1260 * Slab allocation and freeing 1261 */ 1262 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1263 struct kmem_cache_order_objects oo) 1264 { 1265 int order = oo_order(oo); 1266 1267 flags |= __GFP_NOTRACK; 1268 1269 if (node == NUMA_NO_NODE) 1270 return alloc_pages(flags, order); 1271 else 1272 return alloc_pages_exact_node(node, flags, order); 1273 } 1274 1275 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1276 { 1277 struct page *page; 1278 struct kmem_cache_order_objects oo = s->oo; 1279 gfp_t alloc_gfp; 1280 1281 flags &= gfp_allowed_mask; 1282 1283 if (flags & __GFP_WAIT) 1284 local_irq_enable(); 1285 1286 flags |= s->allocflags; 1287 1288 /* 1289 * Let the initial higher-order allocation fail under memory pressure 1290 * so we fall-back to the minimum order allocation. 1291 */ 1292 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1293 1294 page = alloc_slab_page(alloc_gfp, node, oo); 1295 if (unlikely(!page)) { 1296 oo = s->min; 1297 /* 1298 * Allocation may have failed due to fragmentation. 1299 * Try a lower order alloc if possible 1300 */ 1301 page = alloc_slab_page(flags, node, oo); 1302 1303 if (page) 1304 stat(s, ORDER_FALLBACK); 1305 } 1306 1307 if (kmemcheck_enabled && page 1308 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1309 int pages = 1 << oo_order(oo); 1310 1311 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1312 1313 /* 1314 * Objects from caches that have a constructor don't get 1315 * cleared when they're allocated, so we need to do it here. 1316 */ 1317 if (s->ctor) 1318 kmemcheck_mark_uninitialized_pages(page, pages); 1319 else 1320 kmemcheck_mark_unallocated_pages(page, pages); 1321 } 1322 1323 if (flags & __GFP_WAIT) 1324 local_irq_disable(); 1325 if (!page) 1326 return NULL; 1327 1328 page->objects = oo_objects(oo); 1329 mod_zone_page_state(page_zone(page), 1330 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1331 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1332 1 << oo_order(oo)); 1333 1334 return page; 1335 } 1336 1337 static void setup_object(struct kmem_cache *s, struct page *page, 1338 void *object) 1339 { 1340 setup_object_debug(s, page, object); 1341 if (unlikely(s->ctor)) 1342 s->ctor(object); 1343 } 1344 1345 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1346 { 1347 struct page *page; 1348 void *start; 1349 void *last; 1350 void *p; 1351 1352 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1353 1354 page = allocate_slab(s, 1355 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1356 if (!page) 1357 goto out; 1358 1359 inc_slabs_node(s, page_to_nid(page), page->objects); 1360 page->slab = s; 1361 __SetPageSlab(page); 1362 if (page->pfmemalloc) 1363 SetPageSlabPfmemalloc(page); 1364 1365 start = page_address(page); 1366 1367 if (unlikely(s->flags & SLAB_POISON)) 1368 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1369 1370 last = start; 1371 for_each_object(p, s, start, page->objects) { 1372 setup_object(s, page, last); 1373 set_freepointer(s, last, p); 1374 last = p; 1375 } 1376 setup_object(s, page, last); 1377 set_freepointer(s, last, NULL); 1378 1379 page->freelist = start; 1380 page->inuse = page->objects; 1381 page->frozen = 1; 1382 out: 1383 return page; 1384 } 1385 1386 static void __free_slab(struct kmem_cache *s, struct page *page) 1387 { 1388 int order = compound_order(page); 1389 int pages = 1 << order; 1390 1391 if (kmem_cache_debug(s)) { 1392 void *p; 1393 1394 slab_pad_check(s, page); 1395 for_each_object(p, s, page_address(page), 1396 page->objects) 1397 check_object(s, page, p, SLUB_RED_INACTIVE); 1398 } 1399 1400 kmemcheck_free_shadow(page, compound_order(page)); 1401 1402 mod_zone_page_state(page_zone(page), 1403 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1404 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1405 -pages); 1406 1407 __ClearPageSlabPfmemalloc(page); 1408 __ClearPageSlab(page); 1409 reset_page_mapcount(page); 1410 if (current->reclaim_state) 1411 current->reclaim_state->reclaimed_slab += pages; 1412 __free_pages(page, order); 1413 } 1414 1415 #define need_reserve_slab_rcu \ 1416 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1417 1418 static void rcu_free_slab(struct rcu_head *h) 1419 { 1420 struct page *page; 1421 1422 if (need_reserve_slab_rcu) 1423 page = virt_to_head_page(h); 1424 else 1425 page = container_of((struct list_head *)h, struct page, lru); 1426 1427 __free_slab(page->slab, page); 1428 } 1429 1430 static void free_slab(struct kmem_cache *s, struct page *page) 1431 { 1432 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1433 struct rcu_head *head; 1434 1435 if (need_reserve_slab_rcu) { 1436 int order = compound_order(page); 1437 int offset = (PAGE_SIZE << order) - s->reserved; 1438 1439 VM_BUG_ON(s->reserved != sizeof(*head)); 1440 head = page_address(page) + offset; 1441 } else { 1442 /* 1443 * RCU free overloads the RCU head over the LRU 1444 */ 1445 head = (void *)&page->lru; 1446 } 1447 1448 call_rcu(head, rcu_free_slab); 1449 } else 1450 __free_slab(s, page); 1451 } 1452 1453 static void discard_slab(struct kmem_cache *s, struct page *page) 1454 { 1455 dec_slabs_node(s, page_to_nid(page), page->objects); 1456 free_slab(s, page); 1457 } 1458 1459 /* 1460 * Management of partially allocated slabs. 1461 * 1462 * list_lock must be held. 1463 */ 1464 static inline void add_partial(struct kmem_cache_node *n, 1465 struct page *page, int tail) 1466 { 1467 n->nr_partial++; 1468 if (tail == DEACTIVATE_TO_TAIL) 1469 list_add_tail(&page->lru, &n->partial); 1470 else 1471 list_add(&page->lru, &n->partial); 1472 } 1473 1474 /* 1475 * list_lock must be held. 1476 */ 1477 static inline void remove_partial(struct kmem_cache_node *n, 1478 struct page *page) 1479 { 1480 list_del(&page->lru); 1481 n->nr_partial--; 1482 } 1483 1484 /* 1485 * Remove slab from the partial list, freeze it and 1486 * return the pointer to the freelist. 1487 * 1488 * Returns a list of objects or NULL if it fails. 1489 * 1490 * Must hold list_lock since we modify the partial list. 1491 */ 1492 static inline void *acquire_slab(struct kmem_cache *s, 1493 struct kmem_cache_node *n, struct page *page, 1494 int mode) 1495 { 1496 void *freelist; 1497 unsigned long counters; 1498 struct page new; 1499 1500 /* 1501 * Zap the freelist and set the frozen bit. 1502 * The old freelist is the list of objects for the 1503 * per cpu allocation list. 1504 */ 1505 freelist = page->freelist; 1506 counters = page->counters; 1507 new.counters = counters; 1508 if (mode) { 1509 new.inuse = page->objects; 1510 new.freelist = NULL; 1511 } else { 1512 new.freelist = freelist; 1513 } 1514 1515 VM_BUG_ON(new.frozen); 1516 new.frozen = 1; 1517 1518 if (!__cmpxchg_double_slab(s, page, 1519 freelist, counters, 1520 new.freelist, new.counters, 1521 "acquire_slab")) 1522 return NULL; 1523 1524 remove_partial(n, page); 1525 WARN_ON(!freelist); 1526 return freelist; 1527 } 1528 1529 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1530 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1531 1532 /* 1533 * Try to allocate a partial slab from a specific node. 1534 */ 1535 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1536 struct kmem_cache_cpu *c, gfp_t flags) 1537 { 1538 struct page *page, *page2; 1539 void *object = NULL; 1540 1541 /* 1542 * Racy check. If we mistakenly see no partial slabs then we 1543 * just allocate an empty slab. If we mistakenly try to get a 1544 * partial slab and there is none available then get_partials() 1545 * will return NULL. 1546 */ 1547 if (!n || !n->nr_partial) 1548 return NULL; 1549 1550 spin_lock(&n->list_lock); 1551 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1552 void *t; 1553 int available; 1554 1555 if (!pfmemalloc_match(page, flags)) 1556 continue; 1557 1558 t = acquire_slab(s, n, page, object == NULL); 1559 if (!t) 1560 break; 1561 1562 if (!object) { 1563 c->page = page; 1564 stat(s, ALLOC_FROM_PARTIAL); 1565 object = t; 1566 available = page->objects - page->inuse; 1567 } else { 1568 available = put_cpu_partial(s, page, 0); 1569 stat(s, CPU_PARTIAL_NODE); 1570 } 1571 if (kmem_cache_debug(s) || available > s->cpu_partial / 2) 1572 break; 1573 1574 } 1575 spin_unlock(&n->list_lock); 1576 return object; 1577 } 1578 1579 /* 1580 * Get a page from somewhere. Search in increasing NUMA distances. 1581 */ 1582 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1583 struct kmem_cache_cpu *c) 1584 { 1585 #ifdef CONFIG_NUMA 1586 struct zonelist *zonelist; 1587 struct zoneref *z; 1588 struct zone *zone; 1589 enum zone_type high_zoneidx = gfp_zone(flags); 1590 void *object; 1591 unsigned int cpuset_mems_cookie; 1592 1593 /* 1594 * The defrag ratio allows a configuration of the tradeoffs between 1595 * inter node defragmentation and node local allocations. A lower 1596 * defrag_ratio increases the tendency to do local allocations 1597 * instead of attempting to obtain partial slabs from other nodes. 1598 * 1599 * If the defrag_ratio is set to 0 then kmalloc() always 1600 * returns node local objects. If the ratio is higher then kmalloc() 1601 * may return off node objects because partial slabs are obtained 1602 * from other nodes and filled up. 1603 * 1604 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1605 * defrag_ratio = 1000) then every (well almost) allocation will 1606 * first attempt to defrag slab caches on other nodes. This means 1607 * scanning over all nodes to look for partial slabs which may be 1608 * expensive if we do it every time we are trying to find a slab 1609 * with available objects. 1610 */ 1611 if (!s->remote_node_defrag_ratio || 1612 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1613 return NULL; 1614 1615 do { 1616 cpuset_mems_cookie = get_mems_allowed(); 1617 zonelist = node_zonelist(slab_node(), flags); 1618 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1619 struct kmem_cache_node *n; 1620 1621 n = get_node(s, zone_to_nid(zone)); 1622 1623 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1624 n->nr_partial > s->min_partial) { 1625 object = get_partial_node(s, n, c, flags); 1626 if (object) { 1627 /* 1628 * Return the object even if 1629 * put_mems_allowed indicated that 1630 * the cpuset mems_allowed was 1631 * updated in parallel. It's a 1632 * harmless race between the alloc 1633 * and the cpuset update. 1634 */ 1635 put_mems_allowed(cpuset_mems_cookie); 1636 return object; 1637 } 1638 } 1639 } 1640 } while (!put_mems_allowed(cpuset_mems_cookie)); 1641 #endif 1642 return NULL; 1643 } 1644 1645 /* 1646 * Get a partial page, lock it and return it. 1647 */ 1648 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1649 struct kmem_cache_cpu *c) 1650 { 1651 void *object; 1652 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1653 1654 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1655 if (object || node != NUMA_NO_NODE) 1656 return object; 1657 1658 return get_any_partial(s, flags, c); 1659 } 1660 1661 #ifdef CONFIG_PREEMPT 1662 /* 1663 * Calculate the next globally unique transaction for disambiguiation 1664 * during cmpxchg. The transactions start with the cpu number and are then 1665 * incremented by CONFIG_NR_CPUS. 1666 */ 1667 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1668 #else 1669 /* 1670 * No preemption supported therefore also no need to check for 1671 * different cpus. 1672 */ 1673 #define TID_STEP 1 1674 #endif 1675 1676 static inline unsigned long next_tid(unsigned long tid) 1677 { 1678 return tid + TID_STEP; 1679 } 1680 1681 static inline unsigned int tid_to_cpu(unsigned long tid) 1682 { 1683 return tid % TID_STEP; 1684 } 1685 1686 static inline unsigned long tid_to_event(unsigned long tid) 1687 { 1688 return tid / TID_STEP; 1689 } 1690 1691 static inline unsigned int init_tid(int cpu) 1692 { 1693 return cpu; 1694 } 1695 1696 static inline void note_cmpxchg_failure(const char *n, 1697 const struct kmem_cache *s, unsigned long tid) 1698 { 1699 #ifdef SLUB_DEBUG_CMPXCHG 1700 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1701 1702 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1703 1704 #ifdef CONFIG_PREEMPT 1705 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1706 printk("due to cpu change %d -> %d\n", 1707 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1708 else 1709 #endif 1710 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1711 printk("due to cpu running other code. Event %ld->%ld\n", 1712 tid_to_event(tid), tid_to_event(actual_tid)); 1713 else 1714 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1715 actual_tid, tid, next_tid(tid)); 1716 #endif 1717 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1718 } 1719 1720 static void init_kmem_cache_cpus(struct kmem_cache *s) 1721 { 1722 int cpu; 1723 1724 for_each_possible_cpu(cpu) 1725 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1726 } 1727 1728 /* 1729 * Remove the cpu slab 1730 */ 1731 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist) 1732 { 1733 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1734 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1735 int lock = 0; 1736 enum slab_modes l = M_NONE, m = M_NONE; 1737 void *nextfree; 1738 int tail = DEACTIVATE_TO_HEAD; 1739 struct page new; 1740 struct page old; 1741 1742 if (page->freelist) { 1743 stat(s, DEACTIVATE_REMOTE_FREES); 1744 tail = DEACTIVATE_TO_TAIL; 1745 } 1746 1747 /* 1748 * Stage one: Free all available per cpu objects back 1749 * to the page freelist while it is still frozen. Leave the 1750 * last one. 1751 * 1752 * There is no need to take the list->lock because the page 1753 * is still frozen. 1754 */ 1755 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1756 void *prior; 1757 unsigned long counters; 1758 1759 do { 1760 prior = page->freelist; 1761 counters = page->counters; 1762 set_freepointer(s, freelist, prior); 1763 new.counters = counters; 1764 new.inuse--; 1765 VM_BUG_ON(!new.frozen); 1766 1767 } while (!__cmpxchg_double_slab(s, page, 1768 prior, counters, 1769 freelist, new.counters, 1770 "drain percpu freelist")); 1771 1772 freelist = nextfree; 1773 } 1774 1775 /* 1776 * Stage two: Ensure that the page is unfrozen while the 1777 * list presence reflects the actual number of objects 1778 * during unfreeze. 1779 * 1780 * We setup the list membership and then perform a cmpxchg 1781 * with the count. If there is a mismatch then the page 1782 * is not unfrozen but the page is on the wrong list. 1783 * 1784 * Then we restart the process which may have to remove 1785 * the page from the list that we just put it on again 1786 * because the number of objects in the slab may have 1787 * changed. 1788 */ 1789 redo: 1790 1791 old.freelist = page->freelist; 1792 old.counters = page->counters; 1793 VM_BUG_ON(!old.frozen); 1794 1795 /* Determine target state of the slab */ 1796 new.counters = old.counters; 1797 if (freelist) { 1798 new.inuse--; 1799 set_freepointer(s, freelist, old.freelist); 1800 new.freelist = freelist; 1801 } else 1802 new.freelist = old.freelist; 1803 1804 new.frozen = 0; 1805 1806 if (!new.inuse && n->nr_partial > s->min_partial) 1807 m = M_FREE; 1808 else if (new.freelist) { 1809 m = M_PARTIAL; 1810 if (!lock) { 1811 lock = 1; 1812 /* 1813 * Taking the spinlock removes the possiblity 1814 * that acquire_slab() will see a slab page that 1815 * is frozen 1816 */ 1817 spin_lock(&n->list_lock); 1818 } 1819 } else { 1820 m = M_FULL; 1821 if (kmem_cache_debug(s) && !lock) { 1822 lock = 1; 1823 /* 1824 * This also ensures that the scanning of full 1825 * slabs from diagnostic functions will not see 1826 * any frozen slabs. 1827 */ 1828 spin_lock(&n->list_lock); 1829 } 1830 } 1831 1832 if (l != m) { 1833 1834 if (l == M_PARTIAL) 1835 1836 remove_partial(n, page); 1837 1838 else if (l == M_FULL) 1839 1840 remove_full(s, page); 1841 1842 if (m == M_PARTIAL) { 1843 1844 add_partial(n, page, tail); 1845 stat(s, tail); 1846 1847 } else if (m == M_FULL) { 1848 1849 stat(s, DEACTIVATE_FULL); 1850 add_full(s, n, page); 1851 1852 } 1853 } 1854 1855 l = m; 1856 if (!__cmpxchg_double_slab(s, page, 1857 old.freelist, old.counters, 1858 new.freelist, new.counters, 1859 "unfreezing slab")) 1860 goto redo; 1861 1862 if (lock) 1863 spin_unlock(&n->list_lock); 1864 1865 if (m == M_FREE) { 1866 stat(s, DEACTIVATE_EMPTY); 1867 discard_slab(s, page); 1868 stat(s, FREE_SLAB); 1869 } 1870 } 1871 1872 /* 1873 * Unfreeze all the cpu partial slabs. 1874 * 1875 * This function must be called with interrupt disabled. 1876 */ 1877 static void unfreeze_partials(struct kmem_cache *s) 1878 { 1879 struct kmem_cache_node *n = NULL, *n2 = NULL; 1880 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); 1881 struct page *page, *discard_page = NULL; 1882 1883 while ((page = c->partial)) { 1884 struct page new; 1885 struct page old; 1886 1887 c->partial = page->next; 1888 1889 n2 = get_node(s, page_to_nid(page)); 1890 if (n != n2) { 1891 if (n) 1892 spin_unlock(&n->list_lock); 1893 1894 n = n2; 1895 spin_lock(&n->list_lock); 1896 } 1897 1898 do { 1899 1900 old.freelist = page->freelist; 1901 old.counters = page->counters; 1902 VM_BUG_ON(!old.frozen); 1903 1904 new.counters = old.counters; 1905 new.freelist = old.freelist; 1906 1907 new.frozen = 0; 1908 1909 } while (!__cmpxchg_double_slab(s, page, 1910 old.freelist, old.counters, 1911 new.freelist, new.counters, 1912 "unfreezing slab")); 1913 1914 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { 1915 page->next = discard_page; 1916 discard_page = page; 1917 } else { 1918 add_partial(n, page, DEACTIVATE_TO_TAIL); 1919 stat(s, FREE_ADD_PARTIAL); 1920 } 1921 } 1922 1923 if (n) 1924 spin_unlock(&n->list_lock); 1925 1926 while (discard_page) { 1927 page = discard_page; 1928 discard_page = discard_page->next; 1929 1930 stat(s, DEACTIVATE_EMPTY); 1931 discard_slab(s, page); 1932 stat(s, FREE_SLAB); 1933 } 1934 } 1935 1936 /* 1937 * Put a page that was just frozen (in __slab_free) into a partial page 1938 * slot if available. This is done without interrupts disabled and without 1939 * preemption disabled. The cmpxchg is racy and may put the partial page 1940 * onto a random cpus partial slot. 1941 * 1942 * If we did not find a slot then simply move all the partials to the 1943 * per node partial list. 1944 */ 1945 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 1946 { 1947 struct page *oldpage; 1948 int pages; 1949 int pobjects; 1950 1951 do { 1952 pages = 0; 1953 pobjects = 0; 1954 oldpage = this_cpu_read(s->cpu_slab->partial); 1955 1956 if (oldpage) { 1957 pobjects = oldpage->pobjects; 1958 pages = oldpage->pages; 1959 if (drain && pobjects > s->cpu_partial) { 1960 unsigned long flags; 1961 /* 1962 * partial array is full. Move the existing 1963 * set to the per node partial list. 1964 */ 1965 local_irq_save(flags); 1966 unfreeze_partials(s); 1967 local_irq_restore(flags); 1968 oldpage = NULL; 1969 pobjects = 0; 1970 pages = 0; 1971 stat(s, CPU_PARTIAL_DRAIN); 1972 } 1973 } 1974 1975 pages++; 1976 pobjects += page->objects - page->inuse; 1977 1978 page->pages = pages; 1979 page->pobjects = pobjects; 1980 page->next = oldpage; 1981 1982 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); 1983 return pobjects; 1984 } 1985 1986 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1987 { 1988 stat(s, CPUSLAB_FLUSH); 1989 deactivate_slab(s, c->page, c->freelist); 1990 1991 c->tid = next_tid(c->tid); 1992 c->page = NULL; 1993 c->freelist = NULL; 1994 } 1995 1996 /* 1997 * Flush cpu slab. 1998 * 1999 * Called from IPI handler with interrupts disabled. 2000 */ 2001 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2002 { 2003 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2004 2005 if (likely(c)) { 2006 if (c->page) 2007 flush_slab(s, c); 2008 2009 unfreeze_partials(s); 2010 } 2011 } 2012 2013 static void flush_cpu_slab(void *d) 2014 { 2015 struct kmem_cache *s = d; 2016 2017 __flush_cpu_slab(s, smp_processor_id()); 2018 } 2019 2020 static bool has_cpu_slab(int cpu, void *info) 2021 { 2022 struct kmem_cache *s = info; 2023 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2024 2025 return c->page || c->partial; 2026 } 2027 2028 static void flush_all(struct kmem_cache *s) 2029 { 2030 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2031 } 2032 2033 /* 2034 * Check if the objects in a per cpu structure fit numa 2035 * locality expectations. 2036 */ 2037 static inline int node_match(struct page *page, int node) 2038 { 2039 #ifdef CONFIG_NUMA 2040 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2041 return 0; 2042 #endif 2043 return 1; 2044 } 2045 2046 static int count_free(struct page *page) 2047 { 2048 return page->objects - page->inuse; 2049 } 2050 2051 static unsigned long count_partial(struct kmem_cache_node *n, 2052 int (*get_count)(struct page *)) 2053 { 2054 unsigned long flags; 2055 unsigned long x = 0; 2056 struct page *page; 2057 2058 spin_lock_irqsave(&n->list_lock, flags); 2059 list_for_each_entry(page, &n->partial, lru) 2060 x += get_count(page); 2061 spin_unlock_irqrestore(&n->list_lock, flags); 2062 return x; 2063 } 2064 2065 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2066 { 2067 #ifdef CONFIG_SLUB_DEBUG 2068 return atomic_long_read(&n->total_objects); 2069 #else 2070 return 0; 2071 #endif 2072 } 2073 2074 static noinline void 2075 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2076 { 2077 int node; 2078 2079 printk(KERN_WARNING 2080 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2081 nid, gfpflags); 2082 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2083 "default order: %d, min order: %d\n", s->name, s->object_size, 2084 s->size, oo_order(s->oo), oo_order(s->min)); 2085 2086 if (oo_order(s->min) > get_order(s->object_size)) 2087 printk(KERN_WARNING " %s debugging increased min order, use " 2088 "slub_debug=O to disable.\n", s->name); 2089 2090 for_each_online_node(node) { 2091 struct kmem_cache_node *n = get_node(s, node); 2092 unsigned long nr_slabs; 2093 unsigned long nr_objs; 2094 unsigned long nr_free; 2095 2096 if (!n) 2097 continue; 2098 2099 nr_free = count_partial(n, count_free); 2100 nr_slabs = node_nr_slabs(n); 2101 nr_objs = node_nr_objs(n); 2102 2103 printk(KERN_WARNING 2104 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2105 node, nr_slabs, nr_objs, nr_free); 2106 } 2107 } 2108 2109 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2110 int node, struct kmem_cache_cpu **pc) 2111 { 2112 void *freelist; 2113 struct kmem_cache_cpu *c = *pc; 2114 struct page *page; 2115 2116 freelist = get_partial(s, flags, node, c); 2117 2118 if (freelist) 2119 return freelist; 2120 2121 page = new_slab(s, flags, node); 2122 if (page) { 2123 c = __this_cpu_ptr(s->cpu_slab); 2124 if (c->page) 2125 flush_slab(s, c); 2126 2127 /* 2128 * No other reference to the page yet so we can 2129 * muck around with it freely without cmpxchg 2130 */ 2131 freelist = page->freelist; 2132 page->freelist = NULL; 2133 2134 stat(s, ALLOC_SLAB); 2135 c->page = page; 2136 *pc = c; 2137 } else 2138 freelist = NULL; 2139 2140 return freelist; 2141 } 2142 2143 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2144 { 2145 if (unlikely(PageSlabPfmemalloc(page))) 2146 return gfp_pfmemalloc_allowed(gfpflags); 2147 2148 return true; 2149 } 2150 2151 /* 2152 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist 2153 * or deactivate the page. 2154 * 2155 * The page is still frozen if the return value is not NULL. 2156 * 2157 * If this function returns NULL then the page has been unfrozen. 2158 * 2159 * This function must be called with interrupt disabled. 2160 */ 2161 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2162 { 2163 struct page new; 2164 unsigned long counters; 2165 void *freelist; 2166 2167 do { 2168 freelist = page->freelist; 2169 counters = page->counters; 2170 2171 new.counters = counters; 2172 VM_BUG_ON(!new.frozen); 2173 2174 new.inuse = page->objects; 2175 new.frozen = freelist != NULL; 2176 2177 } while (!__cmpxchg_double_slab(s, page, 2178 freelist, counters, 2179 NULL, new.counters, 2180 "get_freelist")); 2181 2182 return freelist; 2183 } 2184 2185 /* 2186 * Slow path. The lockless freelist is empty or we need to perform 2187 * debugging duties. 2188 * 2189 * Processing is still very fast if new objects have been freed to the 2190 * regular freelist. In that case we simply take over the regular freelist 2191 * as the lockless freelist and zap the regular freelist. 2192 * 2193 * If that is not working then we fall back to the partial lists. We take the 2194 * first element of the freelist as the object to allocate now and move the 2195 * rest of the freelist to the lockless freelist. 2196 * 2197 * And if we were unable to get a new slab from the partial slab lists then 2198 * we need to allocate a new slab. This is the slowest path since it involves 2199 * a call to the page allocator and the setup of a new slab. 2200 */ 2201 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2202 unsigned long addr, struct kmem_cache_cpu *c) 2203 { 2204 void *freelist; 2205 struct page *page; 2206 unsigned long flags; 2207 2208 local_irq_save(flags); 2209 #ifdef CONFIG_PREEMPT 2210 /* 2211 * We may have been preempted and rescheduled on a different 2212 * cpu before disabling interrupts. Need to reload cpu area 2213 * pointer. 2214 */ 2215 c = this_cpu_ptr(s->cpu_slab); 2216 #endif 2217 2218 page = c->page; 2219 if (!page) 2220 goto new_slab; 2221 redo: 2222 2223 if (unlikely(!node_match(page, node))) { 2224 stat(s, ALLOC_NODE_MISMATCH); 2225 deactivate_slab(s, page, c->freelist); 2226 c->page = NULL; 2227 c->freelist = NULL; 2228 goto new_slab; 2229 } 2230 2231 /* 2232 * By rights, we should be searching for a slab page that was 2233 * PFMEMALLOC but right now, we are losing the pfmemalloc 2234 * information when the page leaves the per-cpu allocator 2235 */ 2236 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2237 deactivate_slab(s, page, c->freelist); 2238 c->page = NULL; 2239 c->freelist = NULL; 2240 goto new_slab; 2241 } 2242 2243 /* must check again c->freelist in case of cpu migration or IRQ */ 2244 freelist = c->freelist; 2245 if (freelist) 2246 goto load_freelist; 2247 2248 stat(s, ALLOC_SLOWPATH); 2249 2250 freelist = get_freelist(s, page); 2251 2252 if (!freelist) { 2253 c->page = NULL; 2254 stat(s, DEACTIVATE_BYPASS); 2255 goto new_slab; 2256 } 2257 2258 stat(s, ALLOC_REFILL); 2259 2260 load_freelist: 2261 /* 2262 * freelist is pointing to the list of objects to be used. 2263 * page is pointing to the page from which the objects are obtained. 2264 * That page must be frozen for per cpu allocations to work. 2265 */ 2266 VM_BUG_ON(!c->page->frozen); 2267 c->freelist = get_freepointer(s, freelist); 2268 c->tid = next_tid(c->tid); 2269 local_irq_restore(flags); 2270 return freelist; 2271 2272 new_slab: 2273 2274 if (c->partial) { 2275 page = c->page = c->partial; 2276 c->partial = page->next; 2277 stat(s, CPU_PARTIAL_ALLOC); 2278 c->freelist = NULL; 2279 goto redo; 2280 } 2281 2282 freelist = new_slab_objects(s, gfpflags, node, &c); 2283 2284 if (unlikely(!freelist)) { 2285 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2286 slab_out_of_memory(s, gfpflags, node); 2287 2288 local_irq_restore(flags); 2289 return NULL; 2290 } 2291 2292 page = c->page; 2293 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2294 goto load_freelist; 2295 2296 /* Only entered in the debug case */ 2297 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr)) 2298 goto new_slab; /* Slab failed checks. Next slab needed */ 2299 2300 deactivate_slab(s, page, get_freepointer(s, freelist)); 2301 c->page = NULL; 2302 c->freelist = NULL; 2303 local_irq_restore(flags); 2304 return freelist; 2305 } 2306 2307 /* 2308 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2309 * have the fastpath folded into their functions. So no function call 2310 * overhead for requests that can be satisfied on the fastpath. 2311 * 2312 * The fastpath works by first checking if the lockless freelist can be used. 2313 * If not then __slab_alloc is called for slow processing. 2314 * 2315 * Otherwise we can simply pick the next object from the lockless free list. 2316 */ 2317 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2318 gfp_t gfpflags, int node, unsigned long addr) 2319 { 2320 void **object; 2321 struct kmem_cache_cpu *c; 2322 struct page *page; 2323 unsigned long tid; 2324 2325 if (slab_pre_alloc_hook(s, gfpflags)) 2326 return NULL; 2327 2328 redo: 2329 2330 /* 2331 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2332 * enabled. We may switch back and forth between cpus while 2333 * reading from one cpu area. That does not matter as long 2334 * as we end up on the original cpu again when doing the cmpxchg. 2335 */ 2336 c = __this_cpu_ptr(s->cpu_slab); 2337 2338 /* 2339 * The transaction ids are globally unique per cpu and per operation on 2340 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2341 * occurs on the right processor and that there was no operation on the 2342 * linked list in between. 2343 */ 2344 tid = c->tid; 2345 barrier(); 2346 2347 object = c->freelist; 2348 page = c->page; 2349 if (unlikely(!object || !node_match(page, node))) 2350 object = __slab_alloc(s, gfpflags, node, addr, c); 2351 2352 else { 2353 void *next_object = get_freepointer_safe(s, object); 2354 2355 /* 2356 * The cmpxchg will only match if there was no additional 2357 * operation and if we are on the right processor. 2358 * 2359 * The cmpxchg does the following atomically (without lock semantics!) 2360 * 1. Relocate first pointer to the current per cpu area. 2361 * 2. Verify that tid and freelist have not been changed 2362 * 3. If they were not changed replace tid and freelist 2363 * 2364 * Since this is without lock semantics the protection is only against 2365 * code executing on this cpu *not* from access by other cpus. 2366 */ 2367 if (unlikely(!this_cpu_cmpxchg_double( 2368 s->cpu_slab->freelist, s->cpu_slab->tid, 2369 object, tid, 2370 next_object, next_tid(tid)))) { 2371 2372 note_cmpxchg_failure("slab_alloc", s, tid); 2373 goto redo; 2374 } 2375 prefetch_freepointer(s, next_object); 2376 stat(s, ALLOC_FASTPATH); 2377 } 2378 2379 if (unlikely(gfpflags & __GFP_ZERO) && object) 2380 memset(object, 0, s->object_size); 2381 2382 slab_post_alloc_hook(s, gfpflags, object); 2383 2384 return object; 2385 } 2386 2387 static __always_inline void *slab_alloc(struct kmem_cache *s, 2388 gfp_t gfpflags, unsigned long addr) 2389 { 2390 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2391 } 2392 2393 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2394 { 2395 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2396 2397 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags); 2398 2399 return ret; 2400 } 2401 EXPORT_SYMBOL(kmem_cache_alloc); 2402 2403 #ifdef CONFIG_TRACING 2404 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2405 { 2406 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2407 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2408 return ret; 2409 } 2410 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2411 2412 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 2413 { 2414 void *ret = kmalloc_order(size, flags, order); 2415 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 2416 return ret; 2417 } 2418 EXPORT_SYMBOL(kmalloc_order_trace); 2419 #endif 2420 2421 #ifdef CONFIG_NUMA 2422 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2423 { 2424 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2425 2426 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2427 s->object_size, s->size, gfpflags, node); 2428 2429 return ret; 2430 } 2431 EXPORT_SYMBOL(kmem_cache_alloc_node); 2432 2433 #ifdef CONFIG_TRACING 2434 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2435 gfp_t gfpflags, 2436 int node, size_t size) 2437 { 2438 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2439 2440 trace_kmalloc_node(_RET_IP_, ret, 2441 size, s->size, gfpflags, node); 2442 return ret; 2443 } 2444 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2445 #endif 2446 #endif 2447 2448 /* 2449 * Slow patch handling. This may still be called frequently since objects 2450 * have a longer lifetime than the cpu slabs in most processing loads. 2451 * 2452 * So we still attempt to reduce cache line usage. Just take the slab 2453 * lock and free the item. If there is no additional partial page 2454 * handling required then we can return immediately. 2455 */ 2456 static void __slab_free(struct kmem_cache *s, struct page *page, 2457 void *x, unsigned long addr) 2458 { 2459 void *prior; 2460 void **object = (void *)x; 2461 int was_frozen; 2462 int inuse; 2463 struct page new; 2464 unsigned long counters; 2465 struct kmem_cache_node *n = NULL; 2466 unsigned long uninitialized_var(flags); 2467 2468 stat(s, FREE_SLOWPATH); 2469 2470 if (kmem_cache_debug(s) && 2471 !(n = free_debug_processing(s, page, x, addr, &flags))) 2472 return; 2473 2474 do { 2475 prior = page->freelist; 2476 counters = page->counters; 2477 set_freepointer(s, object, prior); 2478 new.counters = counters; 2479 was_frozen = new.frozen; 2480 new.inuse--; 2481 if ((!new.inuse || !prior) && !was_frozen && !n) { 2482 2483 if (!kmem_cache_debug(s) && !prior) 2484 2485 /* 2486 * Slab was on no list before and will be partially empty 2487 * We can defer the list move and instead freeze it. 2488 */ 2489 new.frozen = 1; 2490 2491 else { /* Needs to be taken off a list */ 2492 2493 n = get_node(s, page_to_nid(page)); 2494 /* 2495 * Speculatively acquire the list_lock. 2496 * If the cmpxchg does not succeed then we may 2497 * drop the list_lock without any processing. 2498 * 2499 * Otherwise the list_lock will synchronize with 2500 * other processors updating the list of slabs. 2501 */ 2502 spin_lock_irqsave(&n->list_lock, flags); 2503 2504 } 2505 } 2506 inuse = new.inuse; 2507 2508 } while (!cmpxchg_double_slab(s, page, 2509 prior, counters, 2510 object, new.counters, 2511 "__slab_free")); 2512 2513 if (likely(!n)) { 2514 2515 /* 2516 * If we just froze the page then put it onto the 2517 * per cpu partial list. 2518 */ 2519 if (new.frozen && !was_frozen) { 2520 put_cpu_partial(s, page, 1); 2521 stat(s, CPU_PARTIAL_FREE); 2522 } 2523 /* 2524 * The list lock was not taken therefore no list 2525 * activity can be necessary. 2526 */ 2527 if (was_frozen) 2528 stat(s, FREE_FROZEN); 2529 return; 2530 } 2531 2532 /* 2533 * was_frozen may have been set after we acquired the list_lock in 2534 * an earlier loop. So we need to check it here again. 2535 */ 2536 if (was_frozen) 2537 stat(s, FREE_FROZEN); 2538 else { 2539 if (unlikely(!inuse && n->nr_partial > s->min_partial)) 2540 goto slab_empty; 2541 2542 /* 2543 * Objects left in the slab. If it was not on the partial list before 2544 * then add it. 2545 */ 2546 if (unlikely(!prior)) { 2547 remove_full(s, page); 2548 add_partial(n, page, DEACTIVATE_TO_TAIL); 2549 stat(s, FREE_ADD_PARTIAL); 2550 } 2551 } 2552 spin_unlock_irqrestore(&n->list_lock, flags); 2553 return; 2554 2555 slab_empty: 2556 if (prior) { 2557 /* 2558 * Slab on the partial list. 2559 */ 2560 remove_partial(n, page); 2561 stat(s, FREE_REMOVE_PARTIAL); 2562 } else 2563 /* Slab must be on the full list */ 2564 remove_full(s, page); 2565 2566 spin_unlock_irqrestore(&n->list_lock, flags); 2567 stat(s, FREE_SLAB); 2568 discard_slab(s, page); 2569 } 2570 2571 /* 2572 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2573 * can perform fastpath freeing without additional function calls. 2574 * 2575 * The fastpath is only possible if we are freeing to the current cpu slab 2576 * of this processor. This typically the case if we have just allocated 2577 * the item before. 2578 * 2579 * If fastpath is not possible then fall back to __slab_free where we deal 2580 * with all sorts of special processing. 2581 */ 2582 static __always_inline void slab_free(struct kmem_cache *s, 2583 struct page *page, void *x, unsigned long addr) 2584 { 2585 void **object = (void *)x; 2586 struct kmem_cache_cpu *c; 2587 unsigned long tid; 2588 2589 slab_free_hook(s, x); 2590 2591 redo: 2592 /* 2593 * Determine the currently cpus per cpu slab. 2594 * The cpu may change afterward. However that does not matter since 2595 * data is retrieved via this pointer. If we are on the same cpu 2596 * during the cmpxchg then the free will succedd. 2597 */ 2598 c = __this_cpu_ptr(s->cpu_slab); 2599 2600 tid = c->tid; 2601 barrier(); 2602 2603 if (likely(page == c->page)) { 2604 set_freepointer(s, object, c->freelist); 2605 2606 if (unlikely(!this_cpu_cmpxchg_double( 2607 s->cpu_slab->freelist, s->cpu_slab->tid, 2608 c->freelist, tid, 2609 object, next_tid(tid)))) { 2610 2611 note_cmpxchg_failure("slab_free", s, tid); 2612 goto redo; 2613 } 2614 stat(s, FREE_FASTPATH); 2615 } else 2616 __slab_free(s, page, x, addr); 2617 2618 } 2619 2620 void kmem_cache_free(struct kmem_cache *s, void *x) 2621 { 2622 struct page *page; 2623 2624 page = virt_to_head_page(x); 2625 2626 if (kmem_cache_debug(s) && page->slab != s) { 2627 pr_err("kmem_cache_free: Wrong slab cache. %s but object" 2628 " is from %s\n", page->slab->name, s->name); 2629 WARN_ON_ONCE(1); 2630 return; 2631 } 2632 2633 slab_free(s, page, x, _RET_IP_); 2634 2635 trace_kmem_cache_free(_RET_IP_, x); 2636 } 2637 EXPORT_SYMBOL(kmem_cache_free); 2638 2639 /* 2640 * Object placement in a slab is made very easy because we always start at 2641 * offset 0. If we tune the size of the object to the alignment then we can 2642 * get the required alignment by putting one properly sized object after 2643 * another. 2644 * 2645 * Notice that the allocation order determines the sizes of the per cpu 2646 * caches. Each processor has always one slab available for allocations. 2647 * Increasing the allocation order reduces the number of times that slabs 2648 * must be moved on and off the partial lists and is therefore a factor in 2649 * locking overhead. 2650 */ 2651 2652 /* 2653 * Mininum / Maximum order of slab pages. This influences locking overhead 2654 * and slab fragmentation. A higher order reduces the number of partial slabs 2655 * and increases the number of allocations possible without having to 2656 * take the list_lock. 2657 */ 2658 static int slub_min_order; 2659 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2660 static int slub_min_objects; 2661 2662 /* 2663 * Merge control. If this is set then no merging of slab caches will occur. 2664 * (Could be removed. This was introduced to pacify the merge skeptics.) 2665 */ 2666 static int slub_nomerge; 2667 2668 /* 2669 * Calculate the order of allocation given an slab object size. 2670 * 2671 * The order of allocation has significant impact on performance and other 2672 * system components. Generally order 0 allocations should be preferred since 2673 * order 0 does not cause fragmentation in the page allocator. Larger objects 2674 * be problematic to put into order 0 slabs because there may be too much 2675 * unused space left. We go to a higher order if more than 1/16th of the slab 2676 * would be wasted. 2677 * 2678 * In order to reach satisfactory performance we must ensure that a minimum 2679 * number of objects is in one slab. Otherwise we may generate too much 2680 * activity on the partial lists which requires taking the list_lock. This is 2681 * less a concern for large slabs though which are rarely used. 2682 * 2683 * slub_max_order specifies the order where we begin to stop considering the 2684 * number of objects in a slab as critical. If we reach slub_max_order then 2685 * we try to keep the page order as low as possible. So we accept more waste 2686 * of space in favor of a small page order. 2687 * 2688 * Higher order allocations also allow the placement of more objects in a 2689 * slab and thereby reduce object handling overhead. If the user has 2690 * requested a higher mininum order then we start with that one instead of 2691 * the smallest order which will fit the object. 2692 */ 2693 static inline int slab_order(int size, int min_objects, 2694 int max_order, int fract_leftover, int reserved) 2695 { 2696 int order; 2697 int rem; 2698 int min_order = slub_min_order; 2699 2700 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2701 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2702 2703 for (order = max(min_order, 2704 fls(min_objects * size - 1) - PAGE_SHIFT); 2705 order <= max_order; order++) { 2706 2707 unsigned long slab_size = PAGE_SIZE << order; 2708 2709 if (slab_size < min_objects * size + reserved) 2710 continue; 2711 2712 rem = (slab_size - reserved) % size; 2713 2714 if (rem <= slab_size / fract_leftover) 2715 break; 2716 2717 } 2718 2719 return order; 2720 } 2721 2722 static inline int calculate_order(int size, int reserved) 2723 { 2724 int order; 2725 int min_objects; 2726 int fraction; 2727 int max_objects; 2728 2729 /* 2730 * Attempt to find best configuration for a slab. This 2731 * works by first attempting to generate a layout with 2732 * the best configuration and backing off gradually. 2733 * 2734 * First we reduce the acceptable waste in a slab. Then 2735 * we reduce the minimum objects required in a slab. 2736 */ 2737 min_objects = slub_min_objects; 2738 if (!min_objects) 2739 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2740 max_objects = order_objects(slub_max_order, size, reserved); 2741 min_objects = min(min_objects, max_objects); 2742 2743 while (min_objects > 1) { 2744 fraction = 16; 2745 while (fraction >= 4) { 2746 order = slab_order(size, min_objects, 2747 slub_max_order, fraction, reserved); 2748 if (order <= slub_max_order) 2749 return order; 2750 fraction /= 2; 2751 } 2752 min_objects--; 2753 } 2754 2755 /* 2756 * We were unable to place multiple objects in a slab. Now 2757 * lets see if we can place a single object there. 2758 */ 2759 order = slab_order(size, 1, slub_max_order, 1, reserved); 2760 if (order <= slub_max_order) 2761 return order; 2762 2763 /* 2764 * Doh this slab cannot be placed using slub_max_order. 2765 */ 2766 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2767 if (order < MAX_ORDER) 2768 return order; 2769 return -ENOSYS; 2770 } 2771 2772 /* 2773 * Figure out what the alignment of the objects will be. 2774 */ 2775 static unsigned long calculate_alignment(unsigned long flags, 2776 unsigned long align, unsigned long size) 2777 { 2778 /* 2779 * If the user wants hardware cache aligned objects then follow that 2780 * suggestion if the object is sufficiently large. 2781 * 2782 * The hardware cache alignment cannot override the specified 2783 * alignment though. If that is greater then use it. 2784 */ 2785 if (flags & SLAB_HWCACHE_ALIGN) { 2786 unsigned long ralign = cache_line_size(); 2787 while (size <= ralign / 2) 2788 ralign /= 2; 2789 align = max(align, ralign); 2790 } 2791 2792 if (align < ARCH_SLAB_MINALIGN) 2793 align = ARCH_SLAB_MINALIGN; 2794 2795 return ALIGN(align, sizeof(void *)); 2796 } 2797 2798 static void 2799 init_kmem_cache_node(struct kmem_cache_node *n) 2800 { 2801 n->nr_partial = 0; 2802 spin_lock_init(&n->list_lock); 2803 INIT_LIST_HEAD(&n->partial); 2804 #ifdef CONFIG_SLUB_DEBUG 2805 atomic_long_set(&n->nr_slabs, 0); 2806 atomic_long_set(&n->total_objects, 0); 2807 INIT_LIST_HEAD(&n->full); 2808 #endif 2809 } 2810 2811 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2812 { 2813 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2814 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); 2815 2816 /* 2817 * Must align to double word boundary for the double cmpxchg 2818 * instructions to work; see __pcpu_double_call_return_bool(). 2819 */ 2820 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2821 2 * sizeof(void *)); 2822 2823 if (!s->cpu_slab) 2824 return 0; 2825 2826 init_kmem_cache_cpus(s); 2827 2828 return 1; 2829 } 2830 2831 static struct kmem_cache *kmem_cache_node; 2832 2833 /* 2834 * No kmalloc_node yet so do it by hand. We know that this is the first 2835 * slab on the node for this slabcache. There are no concurrent accesses 2836 * possible. 2837 * 2838 * Note that this function only works on the kmalloc_node_cache 2839 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2840 * memory on a fresh node that has no slab structures yet. 2841 */ 2842 static void early_kmem_cache_node_alloc(int node) 2843 { 2844 struct page *page; 2845 struct kmem_cache_node *n; 2846 2847 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2848 2849 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2850 2851 BUG_ON(!page); 2852 if (page_to_nid(page) != node) { 2853 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2854 "node %d\n", node); 2855 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2856 "in order to be able to continue\n"); 2857 } 2858 2859 n = page->freelist; 2860 BUG_ON(!n); 2861 page->freelist = get_freepointer(kmem_cache_node, n); 2862 page->inuse = 1; 2863 page->frozen = 0; 2864 kmem_cache_node->node[node] = n; 2865 #ifdef CONFIG_SLUB_DEBUG 2866 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2867 init_tracking(kmem_cache_node, n); 2868 #endif 2869 init_kmem_cache_node(n); 2870 inc_slabs_node(kmem_cache_node, node, page->objects); 2871 2872 add_partial(n, page, DEACTIVATE_TO_HEAD); 2873 } 2874 2875 static void free_kmem_cache_nodes(struct kmem_cache *s) 2876 { 2877 int node; 2878 2879 for_each_node_state(node, N_NORMAL_MEMORY) { 2880 struct kmem_cache_node *n = s->node[node]; 2881 2882 if (n) 2883 kmem_cache_free(kmem_cache_node, n); 2884 2885 s->node[node] = NULL; 2886 } 2887 } 2888 2889 static int init_kmem_cache_nodes(struct kmem_cache *s) 2890 { 2891 int node; 2892 2893 for_each_node_state(node, N_NORMAL_MEMORY) { 2894 struct kmem_cache_node *n; 2895 2896 if (slab_state == DOWN) { 2897 early_kmem_cache_node_alloc(node); 2898 continue; 2899 } 2900 n = kmem_cache_alloc_node(kmem_cache_node, 2901 GFP_KERNEL, node); 2902 2903 if (!n) { 2904 free_kmem_cache_nodes(s); 2905 return 0; 2906 } 2907 2908 s->node[node] = n; 2909 init_kmem_cache_node(n); 2910 } 2911 return 1; 2912 } 2913 2914 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2915 { 2916 if (min < MIN_PARTIAL) 2917 min = MIN_PARTIAL; 2918 else if (min > MAX_PARTIAL) 2919 min = MAX_PARTIAL; 2920 s->min_partial = min; 2921 } 2922 2923 /* 2924 * calculate_sizes() determines the order and the distribution of data within 2925 * a slab object. 2926 */ 2927 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2928 { 2929 unsigned long flags = s->flags; 2930 unsigned long size = s->object_size; 2931 unsigned long align = s->align; 2932 int order; 2933 2934 /* 2935 * Round up object size to the next word boundary. We can only 2936 * place the free pointer at word boundaries and this determines 2937 * the possible location of the free pointer. 2938 */ 2939 size = ALIGN(size, sizeof(void *)); 2940 2941 #ifdef CONFIG_SLUB_DEBUG 2942 /* 2943 * Determine if we can poison the object itself. If the user of 2944 * the slab may touch the object after free or before allocation 2945 * then we should never poison the object itself. 2946 */ 2947 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2948 !s->ctor) 2949 s->flags |= __OBJECT_POISON; 2950 else 2951 s->flags &= ~__OBJECT_POISON; 2952 2953 2954 /* 2955 * If we are Redzoning then check if there is some space between the 2956 * end of the object and the free pointer. If not then add an 2957 * additional word to have some bytes to store Redzone information. 2958 */ 2959 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 2960 size += sizeof(void *); 2961 #endif 2962 2963 /* 2964 * With that we have determined the number of bytes in actual use 2965 * by the object. This is the potential offset to the free pointer. 2966 */ 2967 s->inuse = size; 2968 2969 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2970 s->ctor)) { 2971 /* 2972 * Relocate free pointer after the object if it is not 2973 * permitted to overwrite the first word of the object on 2974 * kmem_cache_free. 2975 * 2976 * This is the case if we do RCU, have a constructor or 2977 * destructor or are poisoning the objects. 2978 */ 2979 s->offset = size; 2980 size += sizeof(void *); 2981 } 2982 2983 #ifdef CONFIG_SLUB_DEBUG 2984 if (flags & SLAB_STORE_USER) 2985 /* 2986 * Need to store information about allocs and frees after 2987 * the object. 2988 */ 2989 size += 2 * sizeof(struct track); 2990 2991 if (flags & SLAB_RED_ZONE) 2992 /* 2993 * Add some empty padding so that we can catch 2994 * overwrites from earlier objects rather than let 2995 * tracking information or the free pointer be 2996 * corrupted if a user writes before the start 2997 * of the object. 2998 */ 2999 size += sizeof(void *); 3000 #endif 3001 3002 /* 3003 * Determine the alignment based on various parameters that the 3004 * user specified and the dynamic determination of cache line size 3005 * on bootup. 3006 */ 3007 align = calculate_alignment(flags, align, s->object_size); 3008 s->align = align; 3009 3010 /* 3011 * SLUB stores one object immediately after another beginning from 3012 * offset 0. In order to align the objects we have to simply size 3013 * each object to conform to the alignment. 3014 */ 3015 size = ALIGN(size, align); 3016 s->size = size; 3017 if (forced_order >= 0) 3018 order = forced_order; 3019 else 3020 order = calculate_order(size, s->reserved); 3021 3022 if (order < 0) 3023 return 0; 3024 3025 s->allocflags = 0; 3026 if (order) 3027 s->allocflags |= __GFP_COMP; 3028 3029 if (s->flags & SLAB_CACHE_DMA) 3030 s->allocflags |= SLUB_DMA; 3031 3032 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3033 s->allocflags |= __GFP_RECLAIMABLE; 3034 3035 /* 3036 * Determine the number of objects per slab 3037 */ 3038 s->oo = oo_make(order, size, s->reserved); 3039 s->min = oo_make(get_order(size), size, s->reserved); 3040 if (oo_objects(s->oo) > oo_objects(s->max)) 3041 s->max = s->oo; 3042 3043 return !!oo_objects(s->oo); 3044 3045 } 3046 3047 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3048 { 3049 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3050 s->reserved = 0; 3051 3052 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3053 s->reserved = sizeof(struct rcu_head); 3054 3055 if (!calculate_sizes(s, -1)) 3056 goto error; 3057 if (disable_higher_order_debug) { 3058 /* 3059 * Disable debugging flags that store metadata if the min slab 3060 * order increased. 3061 */ 3062 if (get_order(s->size) > get_order(s->object_size)) { 3063 s->flags &= ~DEBUG_METADATA_FLAGS; 3064 s->offset = 0; 3065 if (!calculate_sizes(s, -1)) 3066 goto error; 3067 } 3068 } 3069 3070 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3071 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3072 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3073 /* Enable fast mode */ 3074 s->flags |= __CMPXCHG_DOUBLE; 3075 #endif 3076 3077 /* 3078 * The larger the object size is, the more pages we want on the partial 3079 * list to avoid pounding the page allocator excessively. 3080 */ 3081 set_min_partial(s, ilog2(s->size) / 2); 3082 3083 /* 3084 * cpu_partial determined the maximum number of objects kept in the 3085 * per cpu partial lists of a processor. 3086 * 3087 * Per cpu partial lists mainly contain slabs that just have one 3088 * object freed. If they are used for allocation then they can be 3089 * filled up again with minimal effort. The slab will never hit the 3090 * per node partial lists and therefore no locking will be required. 3091 * 3092 * This setting also determines 3093 * 3094 * A) The number of objects from per cpu partial slabs dumped to the 3095 * per node list when we reach the limit. 3096 * B) The number of objects in cpu partial slabs to extract from the 3097 * per node list when we run out of per cpu objects. We only fetch 50% 3098 * to keep some capacity around for frees. 3099 */ 3100 if (kmem_cache_debug(s)) 3101 s->cpu_partial = 0; 3102 else if (s->size >= PAGE_SIZE) 3103 s->cpu_partial = 2; 3104 else if (s->size >= 1024) 3105 s->cpu_partial = 6; 3106 else if (s->size >= 256) 3107 s->cpu_partial = 13; 3108 else 3109 s->cpu_partial = 30; 3110 3111 #ifdef CONFIG_NUMA 3112 s->remote_node_defrag_ratio = 1000; 3113 #endif 3114 if (!init_kmem_cache_nodes(s)) 3115 goto error; 3116 3117 if (alloc_kmem_cache_cpus(s)) 3118 return 0; 3119 3120 free_kmem_cache_nodes(s); 3121 error: 3122 if (flags & SLAB_PANIC) 3123 panic("Cannot create slab %s size=%lu realsize=%u " 3124 "order=%u offset=%u flags=%lx\n", 3125 s->name, (unsigned long)s->size, s->size, oo_order(s->oo), 3126 s->offset, flags); 3127 return -EINVAL; 3128 } 3129 3130 /* 3131 * Determine the size of a slab object 3132 */ 3133 unsigned int kmem_cache_size(struct kmem_cache *s) 3134 { 3135 return s->object_size; 3136 } 3137 EXPORT_SYMBOL(kmem_cache_size); 3138 3139 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3140 const char *text) 3141 { 3142 #ifdef CONFIG_SLUB_DEBUG 3143 void *addr = page_address(page); 3144 void *p; 3145 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3146 sizeof(long), GFP_ATOMIC); 3147 if (!map) 3148 return; 3149 slab_err(s, page, text, s->name); 3150 slab_lock(page); 3151 3152 get_map(s, page, map); 3153 for_each_object(p, s, addr, page->objects) { 3154 3155 if (!test_bit(slab_index(p, s, addr), map)) { 3156 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3157 p, p - addr); 3158 print_tracking(s, p); 3159 } 3160 } 3161 slab_unlock(page); 3162 kfree(map); 3163 #endif 3164 } 3165 3166 /* 3167 * Attempt to free all partial slabs on a node. 3168 * This is called from kmem_cache_close(). We must be the last thread 3169 * using the cache and therefore we do not need to lock anymore. 3170 */ 3171 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3172 { 3173 struct page *page, *h; 3174 3175 list_for_each_entry_safe(page, h, &n->partial, lru) { 3176 if (!page->inuse) { 3177 remove_partial(n, page); 3178 discard_slab(s, page); 3179 } else { 3180 list_slab_objects(s, page, 3181 "Objects remaining in %s on kmem_cache_close()"); 3182 } 3183 } 3184 } 3185 3186 /* 3187 * Release all resources used by a slab cache. 3188 */ 3189 static inline int kmem_cache_close(struct kmem_cache *s) 3190 { 3191 int node; 3192 3193 flush_all(s); 3194 /* Attempt to free all objects */ 3195 for_each_node_state(node, N_NORMAL_MEMORY) { 3196 struct kmem_cache_node *n = get_node(s, node); 3197 3198 free_partial(s, n); 3199 if (n->nr_partial || slabs_node(s, node)) 3200 return 1; 3201 } 3202 free_percpu(s->cpu_slab); 3203 free_kmem_cache_nodes(s); 3204 return 0; 3205 } 3206 3207 int __kmem_cache_shutdown(struct kmem_cache *s) 3208 { 3209 int rc = kmem_cache_close(s); 3210 3211 if (!rc) 3212 sysfs_slab_remove(s); 3213 3214 return rc; 3215 } 3216 3217 /******************************************************************** 3218 * Kmalloc subsystem 3219 *******************************************************************/ 3220 3221 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 3222 EXPORT_SYMBOL(kmalloc_caches); 3223 3224 #ifdef CONFIG_ZONE_DMA 3225 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; 3226 #endif 3227 3228 static int __init setup_slub_min_order(char *str) 3229 { 3230 get_option(&str, &slub_min_order); 3231 3232 return 1; 3233 } 3234 3235 __setup("slub_min_order=", setup_slub_min_order); 3236 3237 static int __init setup_slub_max_order(char *str) 3238 { 3239 get_option(&str, &slub_max_order); 3240 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3241 3242 return 1; 3243 } 3244 3245 __setup("slub_max_order=", setup_slub_max_order); 3246 3247 static int __init setup_slub_min_objects(char *str) 3248 { 3249 get_option(&str, &slub_min_objects); 3250 3251 return 1; 3252 } 3253 3254 __setup("slub_min_objects=", setup_slub_min_objects); 3255 3256 static int __init setup_slub_nomerge(char *str) 3257 { 3258 slub_nomerge = 1; 3259 return 1; 3260 } 3261 3262 __setup("slub_nomerge", setup_slub_nomerge); 3263 3264 static struct kmem_cache *__init create_kmalloc_cache(const char *name, 3265 int size, unsigned int flags) 3266 { 3267 struct kmem_cache *s; 3268 3269 s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3270 3271 s->name = name; 3272 s->size = s->object_size = size; 3273 s->align = ARCH_KMALLOC_MINALIGN; 3274 3275 /* 3276 * This function is called with IRQs disabled during early-boot on 3277 * single CPU so there's no need to take slab_mutex here. 3278 */ 3279 if (kmem_cache_open(s, flags)) 3280 goto panic; 3281 3282 list_add(&s->list, &slab_caches); 3283 return s; 3284 3285 panic: 3286 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 3287 return NULL; 3288 } 3289 3290 /* 3291 * Conversion table for small slabs sizes / 8 to the index in the 3292 * kmalloc array. This is necessary for slabs < 192 since we have non power 3293 * of two cache sizes there. The size of larger slabs can be determined using 3294 * fls. 3295 */ 3296 static s8 size_index[24] = { 3297 3, /* 8 */ 3298 4, /* 16 */ 3299 5, /* 24 */ 3300 5, /* 32 */ 3301 6, /* 40 */ 3302 6, /* 48 */ 3303 6, /* 56 */ 3304 6, /* 64 */ 3305 1, /* 72 */ 3306 1, /* 80 */ 3307 1, /* 88 */ 3308 1, /* 96 */ 3309 7, /* 104 */ 3310 7, /* 112 */ 3311 7, /* 120 */ 3312 7, /* 128 */ 3313 2, /* 136 */ 3314 2, /* 144 */ 3315 2, /* 152 */ 3316 2, /* 160 */ 3317 2, /* 168 */ 3318 2, /* 176 */ 3319 2, /* 184 */ 3320 2 /* 192 */ 3321 }; 3322 3323 static inline int size_index_elem(size_t bytes) 3324 { 3325 return (bytes - 1) / 8; 3326 } 3327 3328 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 3329 { 3330 int index; 3331 3332 if (size <= 192) { 3333 if (!size) 3334 return ZERO_SIZE_PTR; 3335 3336 index = size_index[size_index_elem(size)]; 3337 } else 3338 index = fls(size - 1); 3339 3340 #ifdef CONFIG_ZONE_DMA 3341 if (unlikely((flags & SLUB_DMA))) 3342 return kmalloc_dma_caches[index]; 3343 3344 #endif 3345 return kmalloc_caches[index]; 3346 } 3347 3348 void *__kmalloc(size_t size, gfp_t flags) 3349 { 3350 struct kmem_cache *s; 3351 void *ret; 3352 3353 if (unlikely(size > SLUB_MAX_SIZE)) 3354 return kmalloc_large(size, flags); 3355 3356 s = get_slab(size, flags); 3357 3358 if (unlikely(ZERO_OR_NULL_PTR(s))) 3359 return s; 3360 3361 ret = slab_alloc(s, flags, _RET_IP_); 3362 3363 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3364 3365 return ret; 3366 } 3367 EXPORT_SYMBOL(__kmalloc); 3368 3369 #ifdef CONFIG_NUMA 3370 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3371 { 3372 struct page *page; 3373 void *ptr = NULL; 3374 3375 flags |= __GFP_COMP | __GFP_NOTRACK; 3376 page = alloc_pages_node(node, flags, get_order(size)); 3377 if (page) 3378 ptr = page_address(page); 3379 3380 kmemleak_alloc(ptr, size, 1, flags); 3381 return ptr; 3382 } 3383 3384 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3385 { 3386 struct kmem_cache *s; 3387 void *ret; 3388 3389 if (unlikely(size > SLUB_MAX_SIZE)) { 3390 ret = kmalloc_large_node(size, flags, node); 3391 3392 trace_kmalloc_node(_RET_IP_, ret, 3393 size, PAGE_SIZE << get_order(size), 3394 flags, node); 3395 3396 return ret; 3397 } 3398 3399 s = get_slab(size, flags); 3400 3401 if (unlikely(ZERO_OR_NULL_PTR(s))) 3402 return s; 3403 3404 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3405 3406 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3407 3408 return ret; 3409 } 3410 EXPORT_SYMBOL(__kmalloc_node); 3411 #endif 3412 3413 size_t ksize(const void *object) 3414 { 3415 struct page *page; 3416 3417 if (unlikely(object == ZERO_SIZE_PTR)) 3418 return 0; 3419 3420 page = virt_to_head_page(object); 3421 3422 if (unlikely(!PageSlab(page))) { 3423 WARN_ON(!PageCompound(page)); 3424 return PAGE_SIZE << compound_order(page); 3425 } 3426 3427 return slab_ksize(page->slab); 3428 } 3429 EXPORT_SYMBOL(ksize); 3430 3431 #ifdef CONFIG_SLUB_DEBUG 3432 bool verify_mem_not_deleted(const void *x) 3433 { 3434 struct page *page; 3435 void *object = (void *)x; 3436 unsigned long flags; 3437 bool rv; 3438 3439 if (unlikely(ZERO_OR_NULL_PTR(x))) 3440 return false; 3441 3442 local_irq_save(flags); 3443 3444 page = virt_to_head_page(x); 3445 if (unlikely(!PageSlab(page))) { 3446 /* maybe it was from stack? */ 3447 rv = true; 3448 goto out_unlock; 3449 } 3450 3451 slab_lock(page); 3452 if (on_freelist(page->slab, page, object)) { 3453 object_err(page->slab, page, object, "Object is on free-list"); 3454 rv = false; 3455 } else { 3456 rv = true; 3457 } 3458 slab_unlock(page); 3459 3460 out_unlock: 3461 local_irq_restore(flags); 3462 return rv; 3463 } 3464 EXPORT_SYMBOL(verify_mem_not_deleted); 3465 #endif 3466 3467 void kfree(const void *x) 3468 { 3469 struct page *page; 3470 void *object = (void *)x; 3471 3472 trace_kfree(_RET_IP_, x); 3473 3474 if (unlikely(ZERO_OR_NULL_PTR(x))) 3475 return; 3476 3477 page = virt_to_head_page(x); 3478 if (unlikely(!PageSlab(page))) { 3479 BUG_ON(!PageCompound(page)); 3480 kmemleak_free(x); 3481 __free_pages(page, compound_order(page)); 3482 return; 3483 } 3484 slab_free(page->slab, page, object, _RET_IP_); 3485 } 3486 EXPORT_SYMBOL(kfree); 3487 3488 /* 3489 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3490 * the remaining slabs by the number of items in use. The slabs with the 3491 * most items in use come first. New allocations will then fill those up 3492 * and thus they can be removed from the partial lists. 3493 * 3494 * The slabs with the least items are placed last. This results in them 3495 * being allocated from last increasing the chance that the last objects 3496 * are freed in them. 3497 */ 3498 int kmem_cache_shrink(struct kmem_cache *s) 3499 { 3500 int node; 3501 int i; 3502 struct kmem_cache_node *n; 3503 struct page *page; 3504 struct page *t; 3505 int objects = oo_objects(s->max); 3506 struct list_head *slabs_by_inuse = 3507 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3508 unsigned long flags; 3509 3510 if (!slabs_by_inuse) 3511 return -ENOMEM; 3512 3513 flush_all(s); 3514 for_each_node_state(node, N_NORMAL_MEMORY) { 3515 n = get_node(s, node); 3516 3517 if (!n->nr_partial) 3518 continue; 3519 3520 for (i = 0; i < objects; i++) 3521 INIT_LIST_HEAD(slabs_by_inuse + i); 3522 3523 spin_lock_irqsave(&n->list_lock, flags); 3524 3525 /* 3526 * Build lists indexed by the items in use in each slab. 3527 * 3528 * Note that concurrent frees may occur while we hold the 3529 * list_lock. page->inuse here is the upper limit. 3530 */ 3531 list_for_each_entry_safe(page, t, &n->partial, lru) { 3532 list_move(&page->lru, slabs_by_inuse + page->inuse); 3533 if (!page->inuse) 3534 n->nr_partial--; 3535 } 3536 3537 /* 3538 * Rebuild the partial list with the slabs filled up most 3539 * first and the least used slabs at the end. 3540 */ 3541 for (i = objects - 1; i > 0; i--) 3542 list_splice(slabs_by_inuse + i, n->partial.prev); 3543 3544 spin_unlock_irqrestore(&n->list_lock, flags); 3545 3546 /* Release empty slabs */ 3547 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3548 discard_slab(s, page); 3549 } 3550 3551 kfree(slabs_by_inuse); 3552 return 0; 3553 } 3554 EXPORT_SYMBOL(kmem_cache_shrink); 3555 3556 #if defined(CONFIG_MEMORY_HOTPLUG) 3557 static int slab_mem_going_offline_callback(void *arg) 3558 { 3559 struct kmem_cache *s; 3560 3561 mutex_lock(&slab_mutex); 3562 list_for_each_entry(s, &slab_caches, list) 3563 kmem_cache_shrink(s); 3564 mutex_unlock(&slab_mutex); 3565 3566 return 0; 3567 } 3568 3569 static void slab_mem_offline_callback(void *arg) 3570 { 3571 struct kmem_cache_node *n; 3572 struct kmem_cache *s; 3573 struct memory_notify *marg = arg; 3574 int offline_node; 3575 3576 offline_node = marg->status_change_nid; 3577 3578 /* 3579 * If the node still has available memory. we need kmem_cache_node 3580 * for it yet. 3581 */ 3582 if (offline_node < 0) 3583 return; 3584 3585 mutex_lock(&slab_mutex); 3586 list_for_each_entry(s, &slab_caches, list) { 3587 n = get_node(s, offline_node); 3588 if (n) { 3589 /* 3590 * if n->nr_slabs > 0, slabs still exist on the node 3591 * that is going down. We were unable to free them, 3592 * and offline_pages() function shouldn't call this 3593 * callback. So, we must fail. 3594 */ 3595 BUG_ON(slabs_node(s, offline_node)); 3596 3597 s->node[offline_node] = NULL; 3598 kmem_cache_free(kmem_cache_node, n); 3599 } 3600 } 3601 mutex_unlock(&slab_mutex); 3602 } 3603 3604 static int slab_mem_going_online_callback(void *arg) 3605 { 3606 struct kmem_cache_node *n; 3607 struct kmem_cache *s; 3608 struct memory_notify *marg = arg; 3609 int nid = marg->status_change_nid; 3610 int ret = 0; 3611 3612 /* 3613 * If the node's memory is already available, then kmem_cache_node is 3614 * already created. Nothing to do. 3615 */ 3616 if (nid < 0) 3617 return 0; 3618 3619 /* 3620 * We are bringing a node online. No memory is available yet. We must 3621 * allocate a kmem_cache_node structure in order to bring the node 3622 * online. 3623 */ 3624 mutex_lock(&slab_mutex); 3625 list_for_each_entry(s, &slab_caches, list) { 3626 /* 3627 * XXX: kmem_cache_alloc_node will fallback to other nodes 3628 * since memory is not yet available from the node that 3629 * is brought up. 3630 */ 3631 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3632 if (!n) { 3633 ret = -ENOMEM; 3634 goto out; 3635 } 3636 init_kmem_cache_node(n); 3637 s->node[nid] = n; 3638 } 3639 out: 3640 mutex_unlock(&slab_mutex); 3641 return ret; 3642 } 3643 3644 static int slab_memory_callback(struct notifier_block *self, 3645 unsigned long action, void *arg) 3646 { 3647 int ret = 0; 3648 3649 switch (action) { 3650 case MEM_GOING_ONLINE: 3651 ret = slab_mem_going_online_callback(arg); 3652 break; 3653 case MEM_GOING_OFFLINE: 3654 ret = slab_mem_going_offline_callback(arg); 3655 break; 3656 case MEM_OFFLINE: 3657 case MEM_CANCEL_ONLINE: 3658 slab_mem_offline_callback(arg); 3659 break; 3660 case MEM_ONLINE: 3661 case MEM_CANCEL_OFFLINE: 3662 break; 3663 } 3664 if (ret) 3665 ret = notifier_from_errno(ret); 3666 else 3667 ret = NOTIFY_OK; 3668 return ret; 3669 } 3670 3671 #endif /* CONFIG_MEMORY_HOTPLUG */ 3672 3673 /******************************************************************** 3674 * Basic setup of slabs 3675 *******************************************************************/ 3676 3677 /* 3678 * Used for early kmem_cache structures that were allocated using 3679 * the page allocator 3680 */ 3681 3682 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s) 3683 { 3684 int node; 3685 3686 list_add(&s->list, &slab_caches); 3687 s->refcount = -1; 3688 3689 for_each_node_state(node, N_NORMAL_MEMORY) { 3690 struct kmem_cache_node *n = get_node(s, node); 3691 struct page *p; 3692 3693 if (n) { 3694 list_for_each_entry(p, &n->partial, lru) 3695 p->slab = s; 3696 3697 #ifdef CONFIG_SLUB_DEBUG 3698 list_for_each_entry(p, &n->full, lru) 3699 p->slab = s; 3700 #endif 3701 } 3702 } 3703 } 3704 3705 void __init kmem_cache_init(void) 3706 { 3707 int i; 3708 int caches = 0; 3709 struct kmem_cache *temp_kmem_cache; 3710 int order; 3711 struct kmem_cache *temp_kmem_cache_node; 3712 unsigned long kmalloc_size; 3713 3714 if (debug_guardpage_minorder()) 3715 slub_max_order = 0; 3716 3717 kmem_size = offsetof(struct kmem_cache, node) + 3718 nr_node_ids * sizeof(struct kmem_cache_node *); 3719 3720 /* Allocate two kmem_caches from the page allocator */ 3721 kmalloc_size = ALIGN(kmem_size, cache_line_size()); 3722 order = get_order(2 * kmalloc_size); 3723 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT | __GFP_ZERO, order); 3724 3725 /* 3726 * Must first have the slab cache available for the allocations of the 3727 * struct kmem_cache_node's. There is special bootstrap code in 3728 * kmem_cache_open for slab_state == DOWN. 3729 */ 3730 kmem_cache_node = (void *)kmem_cache + kmalloc_size; 3731 3732 kmem_cache_node->name = "kmem_cache_node"; 3733 kmem_cache_node->size = kmem_cache_node->object_size = 3734 sizeof(struct kmem_cache_node); 3735 kmem_cache_open(kmem_cache_node, SLAB_HWCACHE_ALIGN | SLAB_PANIC); 3736 3737 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3738 3739 /* Able to allocate the per node structures */ 3740 slab_state = PARTIAL; 3741 3742 temp_kmem_cache = kmem_cache; 3743 kmem_cache->name = "kmem_cache"; 3744 kmem_cache->size = kmem_cache->object_size = kmem_size; 3745 kmem_cache_open(kmem_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC); 3746 3747 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3748 memcpy(kmem_cache, temp_kmem_cache, kmem_size); 3749 3750 /* 3751 * Allocate kmem_cache_node properly from the kmem_cache slab. 3752 * kmem_cache_node is separately allocated so no need to 3753 * update any list pointers. 3754 */ 3755 temp_kmem_cache_node = kmem_cache_node; 3756 3757 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3758 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size); 3759 3760 kmem_cache_bootstrap_fixup(kmem_cache_node); 3761 3762 caches++; 3763 kmem_cache_bootstrap_fixup(kmem_cache); 3764 caches++; 3765 /* Free temporary boot structure */ 3766 free_pages((unsigned long)temp_kmem_cache, order); 3767 3768 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3769 3770 /* 3771 * Patch up the size_index table if we have strange large alignment 3772 * requirements for the kmalloc array. This is only the case for 3773 * MIPS it seems. The standard arches will not generate any code here. 3774 * 3775 * Largest permitted alignment is 256 bytes due to the way we 3776 * handle the index determination for the smaller caches. 3777 * 3778 * Make sure that nothing crazy happens if someone starts tinkering 3779 * around with ARCH_KMALLOC_MINALIGN 3780 */ 3781 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3782 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3783 3784 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3785 int elem = size_index_elem(i); 3786 if (elem >= ARRAY_SIZE(size_index)) 3787 break; 3788 size_index[elem] = KMALLOC_SHIFT_LOW; 3789 } 3790 3791 if (KMALLOC_MIN_SIZE == 64) { 3792 /* 3793 * The 96 byte size cache is not used if the alignment 3794 * is 64 byte. 3795 */ 3796 for (i = 64 + 8; i <= 96; i += 8) 3797 size_index[size_index_elem(i)] = 7; 3798 } else if (KMALLOC_MIN_SIZE == 128) { 3799 /* 3800 * The 192 byte sized cache is not used if the alignment 3801 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3802 * instead. 3803 */ 3804 for (i = 128 + 8; i <= 192; i += 8) 3805 size_index[size_index_elem(i)] = 8; 3806 } 3807 3808 /* Caches that are not of the two-to-the-power-of size */ 3809 if (KMALLOC_MIN_SIZE <= 32) { 3810 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); 3811 caches++; 3812 } 3813 3814 if (KMALLOC_MIN_SIZE <= 64) { 3815 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); 3816 caches++; 3817 } 3818 3819 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3820 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); 3821 caches++; 3822 } 3823 3824 slab_state = UP; 3825 3826 /* Provide the correct kmalloc names now that the caches are up */ 3827 if (KMALLOC_MIN_SIZE <= 32) { 3828 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); 3829 BUG_ON(!kmalloc_caches[1]->name); 3830 } 3831 3832 if (KMALLOC_MIN_SIZE <= 64) { 3833 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); 3834 BUG_ON(!kmalloc_caches[2]->name); 3835 } 3836 3837 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3838 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3839 3840 BUG_ON(!s); 3841 kmalloc_caches[i]->name = s; 3842 } 3843 3844 #ifdef CONFIG_SMP 3845 register_cpu_notifier(&slab_notifier); 3846 #endif 3847 3848 #ifdef CONFIG_ZONE_DMA 3849 for (i = 0; i < SLUB_PAGE_SHIFT; i++) { 3850 struct kmem_cache *s = kmalloc_caches[i]; 3851 3852 if (s && s->size) { 3853 char *name = kasprintf(GFP_NOWAIT, 3854 "dma-kmalloc-%d", s->object_size); 3855 3856 BUG_ON(!name); 3857 kmalloc_dma_caches[i] = create_kmalloc_cache(name, 3858 s->object_size, SLAB_CACHE_DMA); 3859 } 3860 } 3861 #endif 3862 printk(KERN_INFO 3863 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3864 " CPUs=%d, Nodes=%d\n", 3865 caches, cache_line_size(), 3866 slub_min_order, slub_max_order, slub_min_objects, 3867 nr_cpu_ids, nr_node_ids); 3868 } 3869 3870 void __init kmem_cache_init_late(void) 3871 { 3872 } 3873 3874 /* 3875 * Find a mergeable slab cache 3876 */ 3877 static int slab_unmergeable(struct kmem_cache *s) 3878 { 3879 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3880 return 1; 3881 3882 if (s->ctor) 3883 return 1; 3884 3885 /* 3886 * We may have set a slab to be unmergeable during bootstrap. 3887 */ 3888 if (s->refcount < 0) 3889 return 1; 3890 3891 return 0; 3892 } 3893 3894 static struct kmem_cache *find_mergeable(size_t size, 3895 size_t align, unsigned long flags, const char *name, 3896 void (*ctor)(void *)) 3897 { 3898 struct kmem_cache *s; 3899 3900 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3901 return NULL; 3902 3903 if (ctor) 3904 return NULL; 3905 3906 size = ALIGN(size, sizeof(void *)); 3907 align = calculate_alignment(flags, align, size); 3908 size = ALIGN(size, align); 3909 flags = kmem_cache_flags(size, flags, name, NULL); 3910 3911 list_for_each_entry(s, &slab_caches, list) { 3912 if (slab_unmergeable(s)) 3913 continue; 3914 3915 if (size > s->size) 3916 continue; 3917 3918 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3919 continue; 3920 /* 3921 * Check if alignment is compatible. 3922 * Courtesy of Adrian Drzewiecki 3923 */ 3924 if ((s->size & ~(align - 1)) != s->size) 3925 continue; 3926 3927 if (s->size - size >= sizeof(void *)) 3928 continue; 3929 3930 return s; 3931 } 3932 return NULL; 3933 } 3934 3935 struct kmem_cache *__kmem_cache_alias(const char *name, size_t size, 3936 size_t align, unsigned long flags, void (*ctor)(void *)) 3937 { 3938 struct kmem_cache *s; 3939 3940 s = find_mergeable(size, align, flags, name, ctor); 3941 if (s) { 3942 s->refcount++; 3943 /* 3944 * Adjust the object sizes so that we clear 3945 * the complete object on kzalloc. 3946 */ 3947 s->object_size = max(s->object_size, (int)size); 3948 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3949 3950 if (sysfs_slab_alias(s, name)) { 3951 s->refcount--; 3952 s = NULL; 3953 } 3954 } 3955 3956 return s; 3957 } 3958 3959 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3960 { 3961 int err; 3962 3963 err = kmem_cache_open(s, flags); 3964 if (err) 3965 return err; 3966 3967 mutex_unlock(&slab_mutex); 3968 err = sysfs_slab_add(s); 3969 mutex_lock(&slab_mutex); 3970 3971 if (err) 3972 kmem_cache_close(s); 3973 3974 return err; 3975 } 3976 3977 #ifdef CONFIG_SMP 3978 /* 3979 * Use the cpu notifier to insure that the cpu slabs are flushed when 3980 * necessary. 3981 */ 3982 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3983 unsigned long action, void *hcpu) 3984 { 3985 long cpu = (long)hcpu; 3986 struct kmem_cache *s; 3987 unsigned long flags; 3988 3989 switch (action) { 3990 case CPU_UP_CANCELED: 3991 case CPU_UP_CANCELED_FROZEN: 3992 case CPU_DEAD: 3993 case CPU_DEAD_FROZEN: 3994 mutex_lock(&slab_mutex); 3995 list_for_each_entry(s, &slab_caches, list) { 3996 local_irq_save(flags); 3997 __flush_cpu_slab(s, cpu); 3998 local_irq_restore(flags); 3999 } 4000 mutex_unlock(&slab_mutex); 4001 break; 4002 default: 4003 break; 4004 } 4005 return NOTIFY_OK; 4006 } 4007 4008 static struct notifier_block __cpuinitdata slab_notifier = { 4009 .notifier_call = slab_cpuup_callback 4010 }; 4011 4012 #endif 4013 4014 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4015 { 4016 struct kmem_cache *s; 4017 void *ret; 4018 4019 if (unlikely(size > SLUB_MAX_SIZE)) 4020 return kmalloc_large(size, gfpflags); 4021 4022 s = get_slab(size, gfpflags); 4023 4024 if (unlikely(ZERO_OR_NULL_PTR(s))) 4025 return s; 4026 4027 ret = slab_alloc(s, gfpflags, caller); 4028 4029 /* Honor the call site pointer we received. */ 4030 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4031 4032 return ret; 4033 } 4034 4035 #ifdef CONFIG_NUMA 4036 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4037 int node, unsigned long caller) 4038 { 4039 struct kmem_cache *s; 4040 void *ret; 4041 4042 if (unlikely(size > SLUB_MAX_SIZE)) { 4043 ret = kmalloc_large_node(size, gfpflags, node); 4044 4045 trace_kmalloc_node(caller, ret, 4046 size, PAGE_SIZE << get_order(size), 4047 gfpflags, node); 4048 4049 return ret; 4050 } 4051 4052 s = get_slab(size, gfpflags); 4053 4054 if (unlikely(ZERO_OR_NULL_PTR(s))) 4055 return s; 4056 4057 ret = slab_alloc_node(s, gfpflags, node, caller); 4058 4059 /* Honor the call site pointer we received. */ 4060 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4061 4062 return ret; 4063 } 4064 #endif 4065 4066 #ifdef CONFIG_SYSFS 4067 static int count_inuse(struct page *page) 4068 { 4069 return page->inuse; 4070 } 4071 4072 static int count_total(struct page *page) 4073 { 4074 return page->objects; 4075 } 4076 #endif 4077 4078 #ifdef CONFIG_SLUB_DEBUG 4079 static int validate_slab(struct kmem_cache *s, struct page *page, 4080 unsigned long *map) 4081 { 4082 void *p; 4083 void *addr = page_address(page); 4084 4085 if (!check_slab(s, page) || 4086 !on_freelist(s, page, NULL)) 4087 return 0; 4088 4089 /* Now we know that a valid freelist exists */ 4090 bitmap_zero(map, page->objects); 4091 4092 get_map(s, page, map); 4093 for_each_object(p, s, addr, page->objects) { 4094 if (test_bit(slab_index(p, s, addr), map)) 4095 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4096 return 0; 4097 } 4098 4099 for_each_object(p, s, addr, page->objects) 4100 if (!test_bit(slab_index(p, s, addr), map)) 4101 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4102 return 0; 4103 return 1; 4104 } 4105 4106 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4107 unsigned long *map) 4108 { 4109 slab_lock(page); 4110 validate_slab(s, page, map); 4111 slab_unlock(page); 4112 } 4113 4114 static int validate_slab_node(struct kmem_cache *s, 4115 struct kmem_cache_node *n, unsigned long *map) 4116 { 4117 unsigned long count = 0; 4118 struct page *page; 4119 unsigned long flags; 4120 4121 spin_lock_irqsave(&n->list_lock, flags); 4122 4123 list_for_each_entry(page, &n->partial, lru) { 4124 validate_slab_slab(s, page, map); 4125 count++; 4126 } 4127 if (count != n->nr_partial) 4128 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 4129 "counter=%ld\n", s->name, count, n->nr_partial); 4130 4131 if (!(s->flags & SLAB_STORE_USER)) 4132 goto out; 4133 4134 list_for_each_entry(page, &n->full, lru) { 4135 validate_slab_slab(s, page, map); 4136 count++; 4137 } 4138 if (count != atomic_long_read(&n->nr_slabs)) 4139 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 4140 "counter=%ld\n", s->name, count, 4141 atomic_long_read(&n->nr_slabs)); 4142 4143 out: 4144 spin_unlock_irqrestore(&n->list_lock, flags); 4145 return count; 4146 } 4147 4148 static long validate_slab_cache(struct kmem_cache *s) 4149 { 4150 int node; 4151 unsigned long count = 0; 4152 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4153 sizeof(unsigned long), GFP_KERNEL); 4154 4155 if (!map) 4156 return -ENOMEM; 4157 4158 flush_all(s); 4159 for_each_node_state(node, N_NORMAL_MEMORY) { 4160 struct kmem_cache_node *n = get_node(s, node); 4161 4162 count += validate_slab_node(s, n, map); 4163 } 4164 kfree(map); 4165 return count; 4166 } 4167 /* 4168 * Generate lists of code addresses where slabcache objects are allocated 4169 * and freed. 4170 */ 4171 4172 struct location { 4173 unsigned long count; 4174 unsigned long addr; 4175 long long sum_time; 4176 long min_time; 4177 long max_time; 4178 long min_pid; 4179 long max_pid; 4180 DECLARE_BITMAP(cpus, NR_CPUS); 4181 nodemask_t nodes; 4182 }; 4183 4184 struct loc_track { 4185 unsigned long max; 4186 unsigned long count; 4187 struct location *loc; 4188 }; 4189 4190 static void free_loc_track(struct loc_track *t) 4191 { 4192 if (t->max) 4193 free_pages((unsigned long)t->loc, 4194 get_order(sizeof(struct location) * t->max)); 4195 } 4196 4197 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4198 { 4199 struct location *l; 4200 int order; 4201 4202 order = get_order(sizeof(struct location) * max); 4203 4204 l = (void *)__get_free_pages(flags, order); 4205 if (!l) 4206 return 0; 4207 4208 if (t->count) { 4209 memcpy(l, t->loc, sizeof(struct location) * t->count); 4210 free_loc_track(t); 4211 } 4212 t->max = max; 4213 t->loc = l; 4214 return 1; 4215 } 4216 4217 static int add_location(struct loc_track *t, struct kmem_cache *s, 4218 const struct track *track) 4219 { 4220 long start, end, pos; 4221 struct location *l; 4222 unsigned long caddr; 4223 unsigned long age = jiffies - track->when; 4224 4225 start = -1; 4226 end = t->count; 4227 4228 for ( ; ; ) { 4229 pos = start + (end - start + 1) / 2; 4230 4231 /* 4232 * There is nothing at "end". If we end up there 4233 * we need to add something to before end. 4234 */ 4235 if (pos == end) 4236 break; 4237 4238 caddr = t->loc[pos].addr; 4239 if (track->addr == caddr) { 4240 4241 l = &t->loc[pos]; 4242 l->count++; 4243 if (track->when) { 4244 l->sum_time += age; 4245 if (age < l->min_time) 4246 l->min_time = age; 4247 if (age > l->max_time) 4248 l->max_time = age; 4249 4250 if (track->pid < l->min_pid) 4251 l->min_pid = track->pid; 4252 if (track->pid > l->max_pid) 4253 l->max_pid = track->pid; 4254 4255 cpumask_set_cpu(track->cpu, 4256 to_cpumask(l->cpus)); 4257 } 4258 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4259 return 1; 4260 } 4261 4262 if (track->addr < caddr) 4263 end = pos; 4264 else 4265 start = pos; 4266 } 4267 4268 /* 4269 * Not found. Insert new tracking element. 4270 */ 4271 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4272 return 0; 4273 4274 l = t->loc + pos; 4275 if (pos < t->count) 4276 memmove(l + 1, l, 4277 (t->count - pos) * sizeof(struct location)); 4278 t->count++; 4279 l->count = 1; 4280 l->addr = track->addr; 4281 l->sum_time = age; 4282 l->min_time = age; 4283 l->max_time = age; 4284 l->min_pid = track->pid; 4285 l->max_pid = track->pid; 4286 cpumask_clear(to_cpumask(l->cpus)); 4287 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4288 nodes_clear(l->nodes); 4289 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4290 return 1; 4291 } 4292 4293 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4294 struct page *page, enum track_item alloc, 4295 unsigned long *map) 4296 { 4297 void *addr = page_address(page); 4298 void *p; 4299 4300 bitmap_zero(map, page->objects); 4301 get_map(s, page, map); 4302 4303 for_each_object(p, s, addr, page->objects) 4304 if (!test_bit(slab_index(p, s, addr), map)) 4305 add_location(t, s, get_track(s, p, alloc)); 4306 } 4307 4308 static int list_locations(struct kmem_cache *s, char *buf, 4309 enum track_item alloc) 4310 { 4311 int len = 0; 4312 unsigned long i; 4313 struct loc_track t = { 0, 0, NULL }; 4314 int node; 4315 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4316 sizeof(unsigned long), GFP_KERNEL); 4317 4318 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4319 GFP_TEMPORARY)) { 4320 kfree(map); 4321 return sprintf(buf, "Out of memory\n"); 4322 } 4323 /* Push back cpu slabs */ 4324 flush_all(s); 4325 4326 for_each_node_state(node, N_NORMAL_MEMORY) { 4327 struct kmem_cache_node *n = get_node(s, node); 4328 unsigned long flags; 4329 struct page *page; 4330 4331 if (!atomic_long_read(&n->nr_slabs)) 4332 continue; 4333 4334 spin_lock_irqsave(&n->list_lock, flags); 4335 list_for_each_entry(page, &n->partial, lru) 4336 process_slab(&t, s, page, alloc, map); 4337 list_for_each_entry(page, &n->full, lru) 4338 process_slab(&t, s, page, alloc, map); 4339 spin_unlock_irqrestore(&n->list_lock, flags); 4340 } 4341 4342 for (i = 0; i < t.count; i++) { 4343 struct location *l = &t.loc[i]; 4344 4345 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4346 break; 4347 len += sprintf(buf + len, "%7ld ", l->count); 4348 4349 if (l->addr) 4350 len += sprintf(buf + len, "%pS", (void *)l->addr); 4351 else 4352 len += sprintf(buf + len, "<not-available>"); 4353 4354 if (l->sum_time != l->min_time) { 4355 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4356 l->min_time, 4357 (long)div_u64(l->sum_time, l->count), 4358 l->max_time); 4359 } else 4360 len += sprintf(buf + len, " age=%ld", 4361 l->min_time); 4362 4363 if (l->min_pid != l->max_pid) 4364 len += sprintf(buf + len, " pid=%ld-%ld", 4365 l->min_pid, l->max_pid); 4366 else 4367 len += sprintf(buf + len, " pid=%ld", 4368 l->min_pid); 4369 4370 if (num_online_cpus() > 1 && 4371 !cpumask_empty(to_cpumask(l->cpus)) && 4372 len < PAGE_SIZE - 60) { 4373 len += sprintf(buf + len, " cpus="); 4374 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4375 to_cpumask(l->cpus)); 4376 } 4377 4378 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4379 len < PAGE_SIZE - 60) { 4380 len += sprintf(buf + len, " nodes="); 4381 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4382 l->nodes); 4383 } 4384 4385 len += sprintf(buf + len, "\n"); 4386 } 4387 4388 free_loc_track(&t); 4389 kfree(map); 4390 if (!t.count) 4391 len += sprintf(buf, "No data\n"); 4392 return len; 4393 } 4394 #endif 4395 4396 #ifdef SLUB_RESILIENCY_TEST 4397 static void resiliency_test(void) 4398 { 4399 u8 *p; 4400 4401 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); 4402 4403 printk(KERN_ERR "SLUB resiliency testing\n"); 4404 printk(KERN_ERR "-----------------------\n"); 4405 printk(KERN_ERR "A. Corruption after allocation\n"); 4406 4407 p = kzalloc(16, GFP_KERNEL); 4408 p[16] = 0x12; 4409 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4410 " 0x12->0x%p\n\n", p + 16); 4411 4412 validate_slab_cache(kmalloc_caches[4]); 4413 4414 /* Hmmm... The next two are dangerous */ 4415 p = kzalloc(32, GFP_KERNEL); 4416 p[32 + sizeof(void *)] = 0x34; 4417 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4418 " 0x34 -> -0x%p\n", p); 4419 printk(KERN_ERR 4420 "If allocated object is overwritten then not detectable\n\n"); 4421 4422 validate_slab_cache(kmalloc_caches[5]); 4423 p = kzalloc(64, GFP_KERNEL); 4424 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4425 *p = 0x56; 4426 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4427 p); 4428 printk(KERN_ERR 4429 "If allocated object is overwritten then not detectable\n\n"); 4430 validate_slab_cache(kmalloc_caches[6]); 4431 4432 printk(KERN_ERR "\nB. Corruption after free\n"); 4433 p = kzalloc(128, GFP_KERNEL); 4434 kfree(p); 4435 *p = 0x78; 4436 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4437 validate_slab_cache(kmalloc_caches[7]); 4438 4439 p = kzalloc(256, GFP_KERNEL); 4440 kfree(p); 4441 p[50] = 0x9a; 4442 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4443 p); 4444 validate_slab_cache(kmalloc_caches[8]); 4445 4446 p = kzalloc(512, GFP_KERNEL); 4447 kfree(p); 4448 p[512] = 0xab; 4449 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4450 validate_slab_cache(kmalloc_caches[9]); 4451 } 4452 #else 4453 #ifdef CONFIG_SYSFS 4454 static void resiliency_test(void) {}; 4455 #endif 4456 #endif 4457 4458 #ifdef CONFIG_SYSFS 4459 enum slab_stat_type { 4460 SL_ALL, /* All slabs */ 4461 SL_PARTIAL, /* Only partially allocated slabs */ 4462 SL_CPU, /* Only slabs used for cpu caches */ 4463 SL_OBJECTS, /* Determine allocated objects not slabs */ 4464 SL_TOTAL /* Determine object capacity not slabs */ 4465 }; 4466 4467 #define SO_ALL (1 << SL_ALL) 4468 #define SO_PARTIAL (1 << SL_PARTIAL) 4469 #define SO_CPU (1 << SL_CPU) 4470 #define SO_OBJECTS (1 << SL_OBJECTS) 4471 #define SO_TOTAL (1 << SL_TOTAL) 4472 4473 static ssize_t show_slab_objects(struct kmem_cache *s, 4474 char *buf, unsigned long flags) 4475 { 4476 unsigned long total = 0; 4477 int node; 4478 int x; 4479 unsigned long *nodes; 4480 unsigned long *per_cpu; 4481 4482 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4483 if (!nodes) 4484 return -ENOMEM; 4485 per_cpu = nodes + nr_node_ids; 4486 4487 if (flags & SO_CPU) { 4488 int cpu; 4489 4490 for_each_possible_cpu(cpu) { 4491 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 4492 int node; 4493 struct page *page; 4494 4495 page = ACCESS_ONCE(c->page); 4496 if (!page) 4497 continue; 4498 4499 node = page_to_nid(page); 4500 if (flags & SO_TOTAL) 4501 x = page->objects; 4502 else if (flags & SO_OBJECTS) 4503 x = page->inuse; 4504 else 4505 x = 1; 4506 4507 total += x; 4508 nodes[node] += x; 4509 4510 page = ACCESS_ONCE(c->partial); 4511 if (page) { 4512 x = page->pobjects; 4513 total += x; 4514 nodes[node] += x; 4515 } 4516 4517 per_cpu[node]++; 4518 } 4519 } 4520 4521 lock_memory_hotplug(); 4522 #ifdef CONFIG_SLUB_DEBUG 4523 if (flags & SO_ALL) { 4524 for_each_node_state(node, N_NORMAL_MEMORY) { 4525 struct kmem_cache_node *n = get_node(s, node); 4526 4527 if (flags & SO_TOTAL) 4528 x = atomic_long_read(&n->total_objects); 4529 else if (flags & SO_OBJECTS) 4530 x = atomic_long_read(&n->total_objects) - 4531 count_partial(n, count_free); 4532 4533 else 4534 x = atomic_long_read(&n->nr_slabs); 4535 total += x; 4536 nodes[node] += x; 4537 } 4538 4539 } else 4540 #endif 4541 if (flags & SO_PARTIAL) { 4542 for_each_node_state(node, N_NORMAL_MEMORY) { 4543 struct kmem_cache_node *n = get_node(s, node); 4544 4545 if (flags & SO_TOTAL) 4546 x = count_partial(n, count_total); 4547 else if (flags & SO_OBJECTS) 4548 x = count_partial(n, count_inuse); 4549 else 4550 x = n->nr_partial; 4551 total += x; 4552 nodes[node] += x; 4553 } 4554 } 4555 x = sprintf(buf, "%lu", total); 4556 #ifdef CONFIG_NUMA 4557 for_each_node_state(node, N_NORMAL_MEMORY) 4558 if (nodes[node]) 4559 x += sprintf(buf + x, " N%d=%lu", 4560 node, nodes[node]); 4561 #endif 4562 unlock_memory_hotplug(); 4563 kfree(nodes); 4564 return x + sprintf(buf + x, "\n"); 4565 } 4566 4567 #ifdef CONFIG_SLUB_DEBUG 4568 static int any_slab_objects(struct kmem_cache *s) 4569 { 4570 int node; 4571 4572 for_each_online_node(node) { 4573 struct kmem_cache_node *n = get_node(s, node); 4574 4575 if (!n) 4576 continue; 4577 4578 if (atomic_long_read(&n->total_objects)) 4579 return 1; 4580 } 4581 return 0; 4582 } 4583 #endif 4584 4585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4586 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4587 4588 struct slab_attribute { 4589 struct attribute attr; 4590 ssize_t (*show)(struct kmem_cache *s, char *buf); 4591 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4592 }; 4593 4594 #define SLAB_ATTR_RO(_name) \ 4595 static struct slab_attribute _name##_attr = \ 4596 __ATTR(_name, 0400, _name##_show, NULL) 4597 4598 #define SLAB_ATTR(_name) \ 4599 static struct slab_attribute _name##_attr = \ 4600 __ATTR(_name, 0600, _name##_show, _name##_store) 4601 4602 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4603 { 4604 return sprintf(buf, "%d\n", s->size); 4605 } 4606 SLAB_ATTR_RO(slab_size); 4607 4608 static ssize_t align_show(struct kmem_cache *s, char *buf) 4609 { 4610 return sprintf(buf, "%d\n", s->align); 4611 } 4612 SLAB_ATTR_RO(align); 4613 4614 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4615 { 4616 return sprintf(buf, "%d\n", s->object_size); 4617 } 4618 SLAB_ATTR_RO(object_size); 4619 4620 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4621 { 4622 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4623 } 4624 SLAB_ATTR_RO(objs_per_slab); 4625 4626 static ssize_t order_store(struct kmem_cache *s, 4627 const char *buf, size_t length) 4628 { 4629 unsigned long order; 4630 int err; 4631 4632 err = strict_strtoul(buf, 10, &order); 4633 if (err) 4634 return err; 4635 4636 if (order > slub_max_order || order < slub_min_order) 4637 return -EINVAL; 4638 4639 calculate_sizes(s, order); 4640 return length; 4641 } 4642 4643 static ssize_t order_show(struct kmem_cache *s, char *buf) 4644 { 4645 return sprintf(buf, "%d\n", oo_order(s->oo)); 4646 } 4647 SLAB_ATTR(order); 4648 4649 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4650 { 4651 return sprintf(buf, "%lu\n", s->min_partial); 4652 } 4653 4654 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4655 size_t length) 4656 { 4657 unsigned long min; 4658 int err; 4659 4660 err = strict_strtoul(buf, 10, &min); 4661 if (err) 4662 return err; 4663 4664 set_min_partial(s, min); 4665 return length; 4666 } 4667 SLAB_ATTR(min_partial); 4668 4669 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4670 { 4671 return sprintf(buf, "%u\n", s->cpu_partial); 4672 } 4673 4674 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4675 size_t length) 4676 { 4677 unsigned long objects; 4678 int err; 4679 4680 err = strict_strtoul(buf, 10, &objects); 4681 if (err) 4682 return err; 4683 if (objects && kmem_cache_debug(s)) 4684 return -EINVAL; 4685 4686 s->cpu_partial = objects; 4687 flush_all(s); 4688 return length; 4689 } 4690 SLAB_ATTR(cpu_partial); 4691 4692 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4693 { 4694 if (!s->ctor) 4695 return 0; 4696 return sprintf(buf, "%pS\n", s->ctor); 4697 } 4698 SLAB_ATTR_RO(ctor); 4699 4700 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4701 { 4702 return sprintf(buf, "%d\n", s->refcount - 1); 4703 } 4704 SLAB_ATTR_RO(aliases); 4705 4706 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4707 { 4708 return show_slab_objects(s, buf, SO_PARTIAL); 4709 } 4710 SLAB_ATTR_RO(partial); 4711 4712 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4713 { 4714 return show_slab_objects(s, buf, SO_CPU); 4715 } 4716 SLAB_ATTR_RO(cpu_slabs); 4717 4718 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4719 { 4720 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4721 } 4722 SLAB_ATTR_RO(objects); 4723 4724 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4725 { 4726 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4727 } 4728 SLAB_ATTR_RO(objects_partial); 4729 4730 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4731 { 4732 int objects = 0; 4733 int pages = 0; 4734 int cpu; 4735 int len; 4736 4737 for_each_online_cpu(cpu) { 4738 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4739 4740 if (page) { 4741 pages += page->pages; 4742 objects += page->pobjects; 4743 } 4744 } 4745 4746 len = sprintf(buf, "%d(%d)", objects, pages); 4747 4748 #ifdef CONFIG_SMP 4749 for_each_online_cpu(cpu) { 4750 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4751 4752 if (page && len < PAGE_SIZE - 20) 4753 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4754 page->pobjects, page->pages); 4755 } 4756 #endif 4757 return len + sprintf(buf + len, "\n"); 4758 } 4759 SLAB_ATTR_RO(slabs_cpu_partial); 4760 4761 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4762 { 4763 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4764 } 4765 4766 static ssize_t reclaim_account_store(struct kmem_cache *s, 4767 const char *buf, size_t length) 4768 { 4769 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4770 if (buf[0] == '1') 4771 s->flags |= SLAB_RECLAIM_ACCOUNT; 4772 return length; 4773 } 4774 SLAB_ATTR(reclaim_account); 4775 4776 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4777 { 4778 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4779 } 4780 SLAB_ATTR_RO(hwcache_align); 4781 4782 #ifdef CONFIG_ZONE_DMA 4783 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4784 { 4785 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4786 } 4787 SLAB_ATTR_RO(cache_dma); 4788 #endif 4789 4790 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4791 { 4792 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4793 } 4794 SLAB_ATTR_RO(destroy_by_rcu); 4795 4796 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4797 { 4798 return sprintf(buf, "%d\n", s->reserved); 4799 } 4800 SLAB_ATTR_RO(reserved); 4801 4802 #ifdef CONFIG_SLUB_DEBUG 4803 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4804 { 4805 return show_slab_objects(s, buf, SO_ALL); 4806 } 4807 SLAB_ATTR_RO(slabs); 4808 4809 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4810 { 4811 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4812 } 4813 SLAB_ATTR_RO(total_objects); 4814 4815 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4816 { 4817 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4818 } 4819 4820 static ssize_t sanity_checks_store(struct kmem_cache *s, 4821 const char *buf, size_t length) 4822 { 4823 s->flags &= ~SLAB_DEBUG_FREE; 4824 if (buf[0] == '1') { 4825 s->flags &= ~__CMPXCHG_DOUBLE; 4826 s->flags |= SLAB_DEBUG_FREE; 4827 } 4828 return length; 4829 } 4830 SLAB_ATTR(sanity_checks); 4831 4832 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4833 { 4834 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4835 } 4836 4837 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4838 size_t length) 4839 { 4840 s->flags &= ~SLAB_TRACE; 4841 if (buf[0] == '1') { 4842 s->flags &= ~__CMPXCHG_DOUBLE; 4843 s->flags |= SLAB_TRACE; 4844 } 4845 return length; 4846 } 4847 SLAB_ATTR(trace); 4848 4849 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4850 { 4851 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4852 } 4853 4854 static ssize_t red_zone_store(struct kmem_cache *s, 4855 const char *buf, size_t length) 4856 { 4857 if (any_slab_objects(s)) 4858 return -EBUSY; 4859 4860 s->flags &= ~SLAB_RED_ZONE; 4861 if (buf[0] == '1') { 4862 s->flags &= ~__CMPXCHG_DOUBLE; 4863 s->flags |= SLAB_RED_ZONE; 4864 } 4865 calculate_sizes(s, -1); 4866 return length; 4867 } 4868 SLAB_ATTR(red_zone); 4869 4870 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4871 { 4872 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4873 } 4874 4875 static ssize_t poison_store(struct kmem_cache *s, 4876 const char *buf, size_t length) 4877 { 4878 if (any_slab_objects(s)) 4879 return -EBUSY; 4880 4881 s->flags &= ~SLAB_POISON; 4882 if (buf[0] == '1') { 4883 s->flags &= ~__CMPXCHG_DOUBLE; 4884 s->flags |= SLAB_POISON; 4885 } 4886 calculate_sizes(s, -1); 4887 return length; 4888 } 4889 SLAB_ATTR(poison); 4890 4891 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4892 { 4893 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4894 } 4895 4896 static ssize_t store_user_store(struct kmem_cache *s, 4897 const char *buf, size_t length) 4898 { 4899 if (any_slab_objects(s)) 4900 return -EBUSY; 4901 4902 s->flags &= ~SLAB_STORE_USER; 4903 if (buf[0] == '1') { 4904 s->flags &= ~__CMPXCHG_DOUBLE; 4905 s->flags |= SLAB_STORE_USER; 4906 } 4907 calculate_sizes(s, -1); 4908 return length; 4909 } 4910 SLAB_ATTR(store_user); 4911 4912 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4913 { 4914 return 0; 4915 } 4916 4917 static ssize_t validate_store(struct kmem_cache *s, 4918 const char *buf, size_t length) 4919 { 4920 int ret = -EINVAL; 4921 4922 if (buf[0] == '1') { 4923 ret = validate_slab_cache(s); 4924 if (ret >= 0) 4925 ret = length; 4926 } 4927 return ret; 4928 } 4929 SLAB_ATTR(validate); 4930 4931 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4932 { 4933 if (!(s->flags & SLAB_STORE_USER)) 4934 return -ENOSYS; 4935 return list_locations(s, buf, TRACK_ALLOC); 4936 } 4937 SLAB_ATTR_RO(alloc_calls); 4938 4939 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4940 { 4941 if (!(s->flags & SLAB_STORE_USER)) 4942 return -ENOSYS; 4943 return list_locations(s, buf, TRACK_FREE); 4944 } 4945 SLAB_ATTR_RO(free_calls); 4946 #endif /* CONFIG_SLUB_DEBUG */ 4947 4948 #ifdef CONFIG_FAILSLAB 4949 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4950 { 4951 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4952 } 4953 4954 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4955 size_t length) 4956 { 4957 s->flags &= ~SLAB_FAILSLAB; 4958 if (buf[0] == '1') 4959 s->flags |= SLAB_FAILSLAB; 4960 return length; 4961 } 4962 SLAB_ATTR(failslab); 4963 #endif 4964 4965 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4966 { 4967 return 0; 4968 } 4969 4970 static ssize_t shrink_store(struct kmem_cache *s, 4971 const char *buf, size_t length) 4972 { 4973 if (buf[0] == '1') { 4974 int rc = kmem_cache_shrink(s); 4975 4976 if (rc) 4977 return rc; 4978 } else 4979 return -EINVAL; 4980 return length; 4981 } 4982 SLAB_ATTR(shrink); 4983 4984 #ifdef CONFIG_NUMA 4985 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4986 { 4987 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4988 } 4989 4990 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4991 const char *buf, size_t length) 4992 { 4993 unsigned long ratio; 4994 int err; 4995 4996 err = strict_strtoul(buf, 10, &ratio); 4997 if (err) 4998 return err; 4999 5000 if (ratio <= 100) 5001 s->remote_node_defrag_ratio = ratio * 10; 5002 5003 return length; 5004 } 5005 SLAB_ATTR(remote_node_defrag_ratio); 5006 #endif 5007 5008 #ifdef CONFIG_SLUB_STATS 5009 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5010 { 5011 unsigned long sum = 0; 5012 int cpu; 5013 int len; 5014 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5015 5016 if (!data) 5017 return -ENOMEM; 5018 5019 for_each_online_cpu(cpu) { 5020 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5021 5022 data[cpu] = x; 5023 sum += x; 5024 } 5025 5026 len = sprintf(buf, "%lu", sum); 5027 5028 #ifdef CONFIG_SMP 5029 for_each_online_cpu(cpu) { 5030 if (data[cpu] && len < PAGE_SIZE - 20) 5031 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5032 } 5033 #endif 5034 kfree(data); 5035 return len + sprintf(buf + len, "\n"); 5036 } 5037 5038 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5039 { 5040 int cpu; 5041 5042 for_each_online_cpu(cpu) 5043 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5044 } 5045 5046 #define STAT_ATTR(si, text) \ 5047 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5048 { \ 5049 return show_stat(s, buf, si); \ 5050 } \ 5051 static ssize_t text##_store(struct kmem_cache *s, \ 5052 const char *buf, size_t length) \ 5053 { \ 5054 if (buf[0] != '0') \ 5055 return -EINVAL; \ 5056 clear_stat(s, si); \ 5057 return length; \ 5058 } \ 5059 SLAB_ATTR(text); \ 5060 5061 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5062 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5063 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5064 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5065 STAT_ATTR(FREE_FROZEN, free_frozen); 5066 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5067 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5068 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5069 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5070 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5071 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5072 STAT_ATTR(FREE_SLAB, free_slab); 5073 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5074 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5075 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5076 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5077 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5078 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5079 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5080 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5081 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5082 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5083 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5084 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5085 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5086 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5087 #endif 5088 5089 static struct attribute *slab_attrs[] = { 5090 &slab_size_attr.attr, 5091 &object_size_attr.attr, 5092 &objs_per_slab_attr.attr, 5093 &order_attr.attr, 5094 &min_partial_attr.attr, 5095 &cpu_partial_attr.attr, 5096 &objects_attr.attr, 5097 &objects_partial_attr.attr, 5098 &partial_attr.attr, 5099 &cpu_slabs_attr.attr, 5100 &ctor_attr.attr, 5101 &aliases_attr.attr, 5102 &align_attr.attr, 5103 &hwcache_align_attr.attr, 5104 &reclaim_account_attr.attr, 5105 &destroy_by_rcu_attr.attr, 5106 &shrink_attr.attr, 5107 &reserved_attr.attr, 5108 &slabs_cpu_partial_attr.attr, 5109 #ifdef CONFIG_SLUB_DEBUG 5110 &total_objects_attr.attr, 5111 &slabs_attr.attr, 5112 &sanity_checks_attr.attr, 5113 &trace_attr.attr, 5114 &red_zone_attr.attr, 5115 &poison_attr.attr, 5116 &store_user_attr.attr, 5117 &validate_attr.attr, 5118 &alloc_calls_attr.attr, 5119 &free_calls_attr.attr, 5120 #endif 5121 #ifdef CONFIG_ZONE_DMA 5122 &cache_dma_attr.attr, 5123 #endif 5124 #ifdef CONFIG_NUMA 5125 &remote_node_defrag_ratio_attr.attr, 5126 #endif 5127 #ifdef CONFIG_SLUB_STATS 5128 &alloc_fastpath_attr.attr, 5129 &alloc_slowpath_attr.attr, 5130 &free_fastpath_attr.attr, 5131 &free_slowpath_attr.attr, 5132 &free_frozen_attr.attr, 5133 &free_add_partial_attr.attr, 5134 &free_remove_partial_attr.attr, 5135 &alloc_from_partial_attr.attr, 5136 &alloc_slab_attr.attr, 5137 &alloc_refill_attr.attr, 5138 &alloc_node_mismatch_attr.attr, 5139 &free_slab_attr.attr, 5140 &cpuslab_flush_attr.attr, 5141 &deactivate_full_attr.attr, 5142 &deactivate_empty_attr.attr, 5143 &deactivate_to_head_attr.attr, 5144 &deactivate_to_tail_attr.attr, 5145 &deactivate_remote_frees_attr.attr, 5146 &deactivate_bypass_attr.attr, 5147 &order_fallback_attr.attr, 5148 &cmpxchg_double_fail_attr.attr, 5149 &cmpxchg_double_cpu_fail_attr.attr, 5150 &cpu_partial_alloc_attr.attr, 5151 &cpu_partial_free_attr.attr, 5152 &cpu_partial_node_attr.attr, 5153 &cpu_partial_drain_attr.attr, 5154 #endif 5155 #ifdef CONFIG_FAILSLAB 5156 &failslab_attr.attr, 5157 #endif 5158 5159 NULL 5160 }; 5161 5162 static struct attribute_group slab_attr_group = { 5163 .attrs = slab_attrs, 5164 }; 5165 5166 static ssize_t slab_attr_show(struct kobject *kobj, 5167 struct attribute *attr, 5168 char *buf) 5169 { 5170 struct slab_attribute *attribute; 5171 struct kmem_cache *s; 5172 int err; 5173 5174 attribute = to_slab_attr(attr); 5175 s = to_slab(kobj); 5176 5177 if (!attribute->show) 5178 return -EIO; 5179 5180 err = attribute->show(s, buf); 5181 5182 return err; 5183 } 5184 5185 static ssize_t slab_attr_store(struct kobject *kobj, 5186 struct attribute *attr, 5187 const char *buf, size_t len) 5188 { 5189 struct slab_attribute *attribute; 5190 struct kmem_cache *s; 5191 int err; 5192 5193 attribute = to_slab_attr(attr); 5194 s = to_slab(kobj); 5195 5196 if (!attribute->store) 5197 return -EIO; 5198 5199 err = attribute->store(s, buf, len); 5200 5201 return err; 5202 } 5203 5204 static const struct sysfs_ops slab_sysfs_ops = { 5205 .show = slab_attr_show, 5206 .store = slab_attr_store, 5207 }; 5208 5209 static struct kobj_type slab_ktype = { 5210 .sysfs_ops = &slab_sysfs_ops, 5211 }; 5212 5213 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5214 { 5215 struct kobj_type *ktype = get_ktype(kobj); 5216 5217 if (ktype == &slab_ktype) 5218 return 1; 5219 return 0; 5220 } 5221 5222 static const struct kset_uevent_ops slab_uevent_ops = { 5223 .filter = uevent_filter, 5224 }; 5225 5226 static struct kset *slab_kset; 5227 5228 #define ID_STR_LENGTH 64 5229 5230 /* Create a unique string id for a slab cache: 5231 * 5232 * Format :[flags-]size 5233 */ 5234 static char *create_unique_id(struct kmem_cache *s) 5235 { 5236 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5237 char *p = name; 5238 5239 BUG_ON(!name); 5240 5241 *p++ = ':'; 5242 /* 5243 * First flags affecting slabcache operations. We will only 5244 * get here for aliasable slabs so we do not need to support 5245 * too many flags. The flags here must cover all flags that 5246 * are matched during merging to guarantee that the id is 5247 * unique. 5248 */ 5249 if (s->flags & SLAB_CACHE_DMA) 5250 *p++ = 'd'; 5251 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5252 *p++ = 'a'; 5253 if (s->flags & SLAB_DEBUG_FREE) 5254 *p++ = 'F'; 5255 if (!(s->flags & SLAB_NOTRACK)) 5256 *p++ = 't'; 5257 if (p != name + 1) 5258 *p++ = '-'; 5259 p += sprintf(p, "%07d", s->size); 5260 BUG_ON(p > name + ID_STR_LENGTH - 1); 5261 return name; 5262 } 5263 5264 static int sysfs_slab_add(struct kmem_cache *s) 5265 { 5266 int err; 5267 const char *name; 5268 int unmergeable; 5269 5270 if (slab_state < FULL) 5271 /* Defer until later */ 5272 return 0; 5273 5274 unmergeable = slab_unmergeable(s); 5275 if (unmergeable) { 5276 /* 5277 * Slabcache can never be merged so we can use the name proper. 5278 * This is typically the case for debug situations. In that 5279 * case we can catch duplicate names easily. 5280 */ 5281 sysfs_remove_link(&slab_kset->kobj, s->name); 5282 name = s->name; 5283 } else { 5284 /* 5285 * Create a unique name for the slab as a target 5286 * for the symlinks. 5287 */ 5288 name = create_unique_id(s); 5289 } 5290 5291 s->kobj.kset = slab_kset; 5292 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 5293 if (err) { 5294 kobject_put(&s->kobj); 5295 return err; 5296 } 5297 5298 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5299 if (err) { 5300 kobject_del(&s->kobj); 5301 kobject_put(&s->kobj); 5302 return err; 5303 } 5304 kobject_uevent(&s->kobj, KOBJ_ADD); 5305 if (!unmergeable) { 5306 /* Setup first alias */ 5307 sysfs_slab_alias(s, s->name); 5308 kfree(name); 5309 } 5310 return 0; 5311 } 5312 5313 static void sysfs_slab_remove(struct kmem_cache *s) 5314 { 5315 if (slab_state < FULL) 5316 /* 5317 * Sysfs has not been setup yet so no need to remove the 5318 * cache from sysfs. 5319 */ 5320 return; 5321 5322 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5323 kobject_del(&s->kobj); 5324 kobject_put(&s->kobj); 5325 } 5326 5327 /* 5328 * Need to buffer aliases during bootup until sysfs becomes 5329 * available lest we lose that information. 5330 */ 5331 struct saved_alias { 5332 struct kmem_cache *s; 5333 const char *name; 5334 struct saved_alias *next; 5335 }; 5336 5337 static struct saved_alias *alias_list; 5338 5339 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5340 { 5341 struct saved_alias *al; 5342 5343 if (slab_state == FULL) { 5344 /* 5345 * If we have a leftover link then remove it. 5346 */ 5347 sysfs_remove_link(&slab_kset->kobj, name); 5348 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5349 } 5350 5351 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5352 if (!al) 5353 return -ENOMEM; 5354 5355 al->s = s; 5356 al->name = name; 5357 al->next = alias_list; 5358 alias_list = al; 5359 return 0; 5360 } 5361 5362 static int __init slab_sysfs_init(void) 5363 { 5364 struct kmem_cache *s; 5365 int err; 5366 5367 mutex_lock(&slab_mutex); 5368 5369 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5370 if (!slab_kset) { 5371 mutex_unlock(&slab_mutex); 5372 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5373 return -ENOSYS; 5374 } 5375 5376 slab_state = FULL; 5377 5378 list_for_each_entry(s, &slab_caches, list) { 5379 err = sysfs_slab_add(s); 5380 if (err) 5381 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5382 " to sysfs\n", s->name); 5383 } 5384 5385 while (alias_list) { 5386 struct saved_alias *al = alias_list; 5387 5388 alias_list = alias_list->next; 5389 err = sysfs_slab_alias(al->s, al->name); 5390 if (err) 5391 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5392 " %s to sysfs\n", al->name); 5393 kfree(al); 5394 } 5395 5396 mutex_unlock(&slab_mutex); 5397 resiliency_test(); 5398 return 0; 5399 } 5400 5401 __initcall(slab_sysfs_init); 5402 #endif /* CONFIG_SYSFS */ 5403 5404 /* 5405 * The /proc/slabinfo ABI 5406 */ 5407 #ifdef CONFIG_SLABINFO 5408 static void print_slabinfo_header(struct seq_file *m) 5409 { 5410 seq_puts(m, "slabinfo - version: 2.1\n"); 5411 seq_puts(m, "# name <active_objs> <num_objs> <object_size> " 5412 "<objperslab> <pagesperslab>"); 5413 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 5414 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 5415 seq_putc(m, '\n'); 5416 } 5417 5418 static void *s_start(struct seq_file *m, loff_t *pos) 5419 { 5420 loff_t n = *pos; 5421 5422 mutex_lock(&slab_mutex); 5423 if (!n) 5424 print_slabinfo_header(m); 5425 5426 return seq_list_start(&slab_caches, *pos); 5427 } 5428 5429 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 5430 { 5431 return seq_list_next(p, &slab_caches, pos); 5432 } 5433 5434 static void s_stop(struct seq_file *m, void *p) 5435 { 5436 mutex_unlock(&slab_mutex); 5437 } 5438 5439 static int s_show(struct seq_file *m, void *p) 5440 { 5441 unsigned long nr_partials = 0; 5442 unsigned long nr_slabs = 0; 5443 unsigned long nr_inuse = 0; 5444 unsigned long nr_objs = 0; 5445 unsigned long nr_free = 0; 5446 struct kmem_cache *s; 5447 int node; 5448 5449 s = list_entry(p, struct kmem_cache, list); 5450 5451 for_each_online_node(node) { 5452 struct kmem_cache_node *n = get_node(s, node); 5453 5454 if (!n) 5455 continue; 5456 5457 nr_partials += n->nr_partial; 5458 nr_slabs += atomic_long_read(&n->nr_slabs); 5459 nr_objs += atomic_long_read(&n->total_objects); 5460 nr_free += count_partial(n, count_free); 5461 } 5462 5463 nr_inuse = nr_objs - nr_free; 5464 5465 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 5466 nr_objs, s->size, oo_objects(s->oo), 5467 (1 << oo_order(s->oo))); 5468 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 5469 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 5470 0UL); 5471 seq_putc(m, '\n'); 5472 return 0; 5473 } 5474 5475 static const struct seq_operations slabinfo_op = { 5476 .start = s_start, 5477 .next = s_next, 5478 .stop = s_stop, 5479 .show = s_show, 5480 }; 5481 5482 static int slabinfo_open(struct inode *inode, struct file *file) 5483 { 5484 return seq_open(file, &slabinfo_op); 5485 } 5486 5487 static const struct file_operations proc_slabinfo_operations = { 5488 .open = slabinfo_open, 5489 .read = seq_read, 5490 .llseek = seq_lseek, 5491 .release = seq_release, 5492 }; 5493 5494 static int __init slab_proc_init(void) 5495 { 5496 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations); 5497 return 0; 5498 } 5499 module_init(slab_proc_init); 5500 #endif /* CONFIG_SLABINFO */ 5501