xref: /openbmc/linux/mm/slub.c (revision 051f923d)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32 #include <linux/prefetch.h>
33 
34 #include <trace/events/kmem.h>
35 
36 /*
37  * Lock order:
38  *   1. slub_lock (Global Semaphore)
39  *   2. node->list_lock
40  *   3. slab_lock(page) (Only on some arches and for debugging)
41  *
42  *   slub_lock
43  *
44  *   The role of the slub_lock is to protect the list of all the slabs
45  *   and to synchronize major metadata changes to slab cache structures.
46  *
47  *   The slab_lock is only used for debugging and on arches that do not
48  *   have the ability to do a cmpxchg_double. It only protects the second
49  *   double word in the page struct. Meaning
50  *	A. page->freelist	-> List of object free in a page
51  *	B. page->counters	-> Counters of objects
52  *	C. page->frozen		-> frozen state
53  *
54  *   If a slab is frozen then it is exempt from list management. It is not
55  *   on any list. The processor that froze the slab is the one who can
56  *   perform list operations on the page. Other processors may put objects
57  *   onto the freelist but the processor that froze the slab is the only
58  *   one that can retrieve the objects from the page's freelist.
59  *
60  *   The list_lock protects the partial and full list on each node and
61  *   the partial slab counter. If taken then no new slabs may be added or
62  *   removed from the lists nor make the number of partial slabs be modified.
63  *   (Note that the total number of slabs is an atomic value that may be
64  *   modified without taking the list lock).
65  *
66  *   The list_lock is a centralized lock and thus we avoid taking it as
67  *   much as possible. As long as SLUB does not have to handle partial
68  *   slabs, operations can continue without any centralized lock. F.e.
69  *   allocating a long series of objects that fill up slabs does not require
70  *   the list lock.
71  *   Interrupts are disabled during allocation and deallocation in order to
72  *   make the slab allocator safe to use in the context of an irq. In addition
73  *   interrupts are disabled to ensure that the processor does not change
74  *   while handling per_cpu slabs, due to kernel preemption.
75  *
76  * SLUB assigns one slab for allocation to each processor.
77  * Allocations only occur from these slabs called cpu slabs.
78  *
79  * Slabs with free elements are kept on a partial list and during regular
80  * operations no list for full slabs is used. If an object in a full slab is
81  * freed then the slab will show up again on the partial lists.
82  * We track full slabs for debugging purposes though because otherwise we
83  * cannot scan all objects.
84  *
85  * Slabs are freed when they become empty. Teardown and setup is
86  * minimal so we rely on the page allocators per cpu caches for
87  * fast frees and allocs.
88  *
89  * Overloading of page flags that are otherwise used for LRU management.
90  *
91  * PageActive 		The slab is frozen and exempt from list processing.
92  * 			This means that the slab is dedicated to a purpose
93  * 			such as satisfying allocations for a specific
94  * 			processor. Objects may be freed in the slab while
95  * 			it is frozen but slab_free will then skip the usual
96  * 			list operations. It is up to the processor holding
97  * 			the slab to integrate the slab into the slab lists
98  * 			when the slab is no longer needed.
99  *
100  * 			One use of this flag is to mark slabs that are
101  * 			used for allocations. Then such a slab becomes a cpu
102  * 			slab. The cpu slab may be equipped with an additional
103  * 			freelist that allows lockless access to
104  * 			free objects in addition to the regular freelist
105  * 			that requires the slab lock.
106  *
107  * PageError		Slab requires special handling due to debug
108  * 			options set. This moves	slab handling out of
109  * 			the fast path and disables lockless freelists.
110  */
111 
112 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 		SLAB_TRACE | SLAB_DEBUG_FREE)
114 
115 static inline int kmem_cache_debug(struct kmem_cache *s)
116 {
117 #ifdef CONFIG_SLUB_DEBUG
118 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
119 #else
120 	return 0;
121 #endif
122 }
123 
124 /*
125  * Issues still to be resolved:
126  *
127  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128  *
129  * - Variable sizing of the per node arrays
130  */
131 
132 /* Enable to test recovery from slab corruption on boot */
133 #undef SLUB_RESILIENCY_TEST
134 
135 /* Enable to log cmpxchg failures */
136 #undef SLUB_DEBUG_CMPXCHG
137 
138 /*
139  * Mininum number of partial slabs. These will be left on the partial
140  * lists even if they are empty. kmem_cache_shrink may reclaim them.
141  */
142 #define MIN_PARTIAL 5
143 
144 /*
145  * Maximum number of desirable partial slabs.
146  * The existence of more partial slabs makes kmem_cache_shrink
147  * sort the partial list by the number of objects in the.
148  */
149 #define MAX_PARTIAL 10
150 
151 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 				SLAB_POISON | SLAB_STORE_USER)
153 
154 /*
155  * Debugging flags that require metadata to be stored in the slab.  These get
156  * disabled when slub_debug=O is used and a cache's min order increases with
157  * metadata.
158  */
159 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
160 
161 /*
162  * Set of flags that will prevent slab merging
163  */
164 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
165 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 		SLAB_FAILSLAB)
167 
168 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
169 		SLAB_CACHE_DMA | SLAB_NOTRACK)
170 
171 #define OO_SHIFT	16
172 #define OO_MASK		((1 << OO_SHIFT) - 1)
173 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
174 
175 /* Internal SLUB flags */
176 #define __OBJECT_POISON		0x80000000UL /* Poison object */
177 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
178 
179 static int kmem_size = sizeof(struct kmem_cache);
180 
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184 
185 static enum {
186 	DOWN,		/* No slab functionality available */
187 	PARTIAL,	/* Kmem_cache_node works */
188 	UP,		/* Everything works but does not show up in sysfs */
189 	SYSFS		/* Sysfs up */
190 } slab_state = DOWN;
191 
192 /* A list of all slab caches on the system */
193 static DECLARE_RWSEM(slub_lock);
194 static LIST_HEAD(slab_caches);
195 
196 /*
197  * Tracking user of a slab.
198  */
199 #define TRACK_ADDRS_COUNT 16
200 struct track {
201 	unsigned long addr;	/* Called from address */
202 #ifdef CONFIG_STACKTRACE
203 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
204 #endif
205 	int cpu;		/* Was running on cpu */
206 	int pid;		/* Pid context */
207 	unsigned long when;	/* When did the operation occur */
208 };
209 
210 enum track_item { TRACK_ALLOC, TRACK_FREE };
211 
212 #ifdef CONFIG_SYSFS
213 static int sysfs_slab_add(struct kmem_cache *);
214 static int sysfs_slab_alias(struct kmem_cache *, const char *);
215 static void sysfs_slab_remove(struct kmem_cache *);
216 
217 #else
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 							{ return 0; }
221 static inline void sysfs_slab_remove(struct kmem_cache *s)
222 {
223 	kfree(s->name);
224 	kfree(s);
225 }
226 
227 #endif
228 
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 	__this_cpu_inc(s->cpu_slab->stat[si]);
233 #endif
234 }
235 
236 /********************************************************************
237  * 			Core slab cache functions
238  *******************************************************************/
239 
240 int slab_is_available(void)
241 {
242 	return slab_state >= UP;
243 }
244 
245 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246 {
247 	return s->node[node];
248 }
249 
250 /* Verify that a pointer has an address that is valid within a slab page */
251 static inline int check_valid_pointer(struct kmem_cache *s,
252 				struct page *page, const void *object)
253 {
254 	void *base;
255 
256 	if (!object)
257 		return 1;
258 
259 	base = page_address(page);
260 	if (object < base || object >= base + page->objects * s->size ||
261 		(object - base) % s->size) {
262 		return 0;
263 	}
264 
265 	return 1;
266 }
267 
268 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 {
270 	return *(void **)(object + s->offset);
271 }
272 
273 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274 {
275 	prefetch(object + s->offset);
276 }
277 
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 	void *p;
281 
282 #ifdef CONFIG_DEBUG_PAGEALLOC
283 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284 #else
285 	p = get_freepointer(s, object);
286 #endif
287 	return p;
288 }
289 
290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291 {
292 	*(void **)(object + s->offset) = fp;
293 }
294 
295 /* Loop over all objects in a slab */
296 #define for_each_object(__p, __s, __addr, __objects) \
297 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
298 			__p += (__s)->size)
299 
300 /* Determine object index from a given position */
301 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302 {
303 	return (p - addr) / s->size;
304 }
305 
306 static inline size_t slab_ksize(const struct kmem_cache *s)
307 {
308 #ifdef CONFIG_SLUB_DEBUG
309 	/*
310 	 * Debugging requires use of the padding between object
311 	 * and whatever may come after it.
312 	 */
313 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314 		return s->objsize;
315 
316 #endif
317 	/*
318 	 * If we have the need to store the freelist pointer
319 	 * back there or track user information then we can
320 	 * only use the space before that information.
321 	 */
322 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 		return s->inuse;
324 	/*
325 	 * Else we can use all the padding etc for the allocation
326 	 */
327 	return s->size;
328 }
329 
330 static inline int order_objects(int order, unsigned long size, int reserved)
331 {
332 	return ((PAGE_SIZE << order) - reserved) / size;
333 }
334 
335 static inline struct kmem_cache_order_objects oo_make(int order,
336 		unsigned long size, int reserved)
337 {
338 	struct kmem_cache_order_objects x = {
339 		(order << OO_SHIFT) + order_objects(order, size, reserved)
340 	};
341 
342 	return x;
343 }
344 
345 static inline int oo_order(struct kmem_cache_order_objects x)
346 {
347 	return x.x >> OO_SHIFT;
348 }
349 
350 static inline int oo_objects(struct kmem_cache_order_objects x)
351 {
352 	return x.x & OO_MASK;
353 }
354 
355 /*
356  * Per slab locking using the pagelock
357  */
358 static __always_inline void slab_lock(struct page *page)
359 {
360 	bit_spin_lock(PG_locked, &page->flags);
361 }
362 
363 static __always_inline void slab_unlock(struct page *page)
364 {
365 	__bit_spin_unlock(PG_locked, &page->flags);
366 }
367 
368 /* Interrupts must be disabled (for the fallback code to work right) */
369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 		void *freelist_old, unsigned long counters_old,
371 		void *freelist_new, unsigned long counters_new,
372 		const char *n)
373 {
374 	VM_BUG_ON(!irqs_disabled());
375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377 	if (s->flags & __CMPXCHG_DOUBLE) {
378 		if (cmpxchg_double(&page->freelist, &page->counters,
379 			freelist_old, counters_old,
380 			freelist_new, counters_new))
381 		return 1;
382 	} else
383 #endif
384 	{
385 		slab_lock(page);
386 		if (page->freelist == freelist_old && page->counters == counters_old) {
387 			page->freelist = freelist_new;
388 			page->counters = counters_new;
389 			slab_unlock(page);
390 			return 1;
391 		}
392 		slab_unlock(page);
393 	}
394 
395 	cpu_relax();
396 	stat(s, CMPXCHG_DOUBLE_FAIL);
397 
398 #ifdef SLUB_DEBUG_CMPXCHG
399 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400 #endif
401 
402 	return 0;
403 }
404 
405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 		void *freelist_old, unsigned long counters_old,
407 		void *freelist_new, unsigned long counters_new,
408 		const char *n)
409 {
410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
412 	if (s->flags & __CMPXCHG_DOUBLE) {
413 		if (cmpxchg_double(&page->freelist, &page->counters,
414 			freelist_old, counters_old,
415 			freelist_new, counters_new))
416 		return 1;
417 	} else
418 #endif
419 	{
420 		unsigned long flags;
421 
422 		local_irq_save(flags);
423 		slab_lock(page);
424 		if (page->freelist == freelist_old && page->counters == counters_old) {
425 			page->freelist = freelist_new;
426 			page->counters = counters_new;
427 			slab_unlock(page);
428 			local_irq_restore(flags);
429 			return 1;
430 		}
431 		slab_unlock(page);
432 		local_irq_restore(flags);
433 	}
434 
435 	cpu_relax();
436 	stat(s, CMPXCHG_DOUBLE_FAIL);
437 
438 #ifdef SLUB_DEBUG_CMPXCHG
439 	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440 #endif
441 
442 	return 0;
443 }
444 
445 #ifdef CONFIG_SLUB_DEBUG
446 /*
447  * Determine a map of object in use on a page.
448  *
449  * Node listlock must be held to guarantee that the page does
450  * not vanish from under us.
451  */
452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453 {
454 	void *p;
455 	void *addr = page_address(page);
456 
457 	for (p = page->freelist; p; p = get_freepointer(s, p))
458 		set_bit(slab_index(p, s, addr), map);
459 }
460 
461 /*
462  * Debug settings:
463  */
464 #ifdef CONFIG_SLUB_DEBUG_ON
465 static int slub_debug = DEBUG_DEFAULT_FLAGS;
466 #else
467 static int slub_debug;
468 #endif
469 
470 static char *slub_debug_slabs;
471 static int disable_higher_order_debug;
472 
473 /*
474  * Object debugging
475  */
476 static void print_section(char *text, u8 *addr, unsigned int length)
477 {
478 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 			length, 1);
480 }
481 
482 static struct track *get_track(struct kmem_cache *s, void *object,
483 	enum track_item alloc)
484 {
485 	struct track *p;
486 
487 	if (s->offset)
488 		p = object + s->offset + sizeof(void *);
489 	else
490 		p = object + s->inuse;
491 
492 	return p + alloc;
493 }
494 
495 static void set_track(struct kmem_cache *s, void *object,
496 			enum track_item alloc, unsigned long addr)
497 {
498 	struct track *p = get_track(s, object, alloc);
499 
500 	if (addr) {
501 #ifdef CONFIG_STACKTRACE
502 		struct stack_trace trace;
503 		int i;
504 
505 		trace.nr_entries = 0;
506 		trace.max_entries = TRACK_ADDRS_COUNT;
507 		trace.entries = p->addrs;
508 		trace.skip = 3;
509 		save_stack_trace(&trace);
510 
511 		/* See rant in lockdep.c */
512 		if (trace.nr_entries != 0 &&
513 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 			trace.nr_entries--;
515 
516 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 			p->addrs[i] = 0;
518 #endif
519 		p->addr = addr;
520 		p->cpu = smp_processor_id();
521 		p->pid = current->pid;
522 		p->when = jiffies;
523 	} else
524 		memset(p, 0, sizeof(struct track));
525 }
526 
527 static void init_tracking(struct kmem_cache *s, void *object)
528 {
529 	if (!(s->flags & SLAB_STORE_USER))
530 		return;
531 
532 	set_track(s, object, TRACK_FREE, 0UL);
533 	set_track(s, object, TRACK_ALLOC, 0UL);
534 }
535 
536 static void print_track(const char *s, struct track *t)
537 {
538 	if (!t->addr)
539 		return;
540 
541 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
542 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
543 #ifdef CONFIG_STACKTRACE
544 	{
545 		int i;
546 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 			if (t->addrs[i])
548 				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 			else
550 				break;
551 	}
552 #endif
553 }
554 
555 static void print_tracking(struct kmem_cache *s, void *object)
556 {
557 	if (!(s->flags & SLAB_STORE_USER))
558 		return;
559 
560 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 	print_track("Freed", get_track(s, object, TRACK_FREE));
562 }
563 
564 static void print_page_info(struct page *page)
565 {
566 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 		page, page->objects, page->inuse, page->freelist, page->flags);
568 
569 }
570 
571 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572 {
573 	va_list args;
574 	char buf[100];
575 
576 	va_start(args, fmt);
577 	vsnprintf(buf, sizeof(buf), fmt, args);
578 	va_end(args);
579 	printk(KERN_ERR "========================================"
580 			"=====================================\n");
581 	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
582 	printk(KERN_ERR "----------------------------------------"
583 			"-------------------------------------\n\n");
584 }
585 
586 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587 {
588 	va_list args;
589 	char buf[100];
590 
591 	va_start(args, fmt);
592 	vsnprintf(buf, sizeof(buf), fmt, args);
593 	va_end(args);
594 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595 }
596 
597 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
598 {
599 	unsigned int off;	/* Offset of last byte */
600 	u8 *addr = page_address(page);
601 
602 	print_tracking(s, p);
603 
604 	print_page_info(page);
605 
606 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 			p, p - addr, get_freepointer(s, p));
608 
609 	if (p > addr + 16)
610 		print_section("Bytes b4 ", p - 16, 16);
611 
612 	print_section("Object ", p, min_t(unsigned long, s->objsize,
613 				PAGE_SIZE));
614 	if (s->flags & SLAB_RED_ZONE)
615 		print_section("Redzone ", p + s->objsize,
616 			s->inuse - s->objsize);
617 
618 	if (s->offset)
619 		off = s->offset + sizeof(void *);
620 	else
621 		off = s->inuse;
622 
623 	if (s->flags & SLAB_STORE_USER)
624 		off += 2 * sizeof(struct track);
625 
626 	if (off != s->size)
627 		/* Beginning of the filler is the free pointer */
628 		print_section("Padding ", p + off, s->size - off);
629 
630 	dump_stack();
631 }
632 
633 static void object_err(struct kmem_cache *s, struct page *page,
634 			u8 *object, char *reason)
635 {
636 	slab_bug(s, "%s", reason);
637 	print_trailer(s, page, object);
638 }
639 
640 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
641 {
642 	va_list args;
643 	char buf[100];
644 
645 	va_start(args, fmt);
646 	vsnprintf(buf, sizeof(buf), fmt, args);
647 	va_end(args);
648 	slab_bug(s, "%s", buf);
649 	print_page_info(page);
650 	dump_stack();
651 }
652 
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
654 {
655 	u8 *p = object;
656 
657 	if (s->flags & __OBJECT_POISON) {
658 		memset(p, POISON_FREE, s->objsize - 1);
659 		p[s->objsize - 1] = POISON_END;
660 	}
661 
662 	if (s->flags & SLAB_RED_ZONE)
663 		memset(p + s->objsize, val, s->inuse - s->objsize);
664 }
665 
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 						void *from, void *to)
668 {
669 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 	memset(from, data, to - from);
671 }
672 
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 			u8 *object, char *what,
675 			u8 *start, unsigned int value, unsigned int bytes)
676 {
677 	u8 *fault;
678 	u8 *end;
679 
680 	fault = memchr_inv(start, value, bytes);
681 	if (!fault)
682 		return 1;
683 
684 	end = start + bytes;
685 	while (end > fault && end[-1] == value)
686 		end--;
687 
688 	slab_bug(s, "%s overwritten", what);
689 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 					fault, end - 1, fault[0], value);
691 	print_trailer(s, page, object);
692 
693 	restore_bytes(s, what, value, fault, end);
694 	return 0;
695 }
696 
697 /*
698  * Object layout:
699  *
700  * object address
701  * 	Bytes of the object to be managed.
702  * 	If the freepointer may overlay the object then the free
703  * 	pointer is the first word of the object.
704  *
705  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
706  * 	0xa5 (POISON_END)
707  *
708  * object + s->objsize
709  * 	Padding to reach word boundary. This is also used for Redzoning.
710  * 	Padding is extended by another word if Redzoning is enabled and
711  * 	objsize == inuse.
712  *
713  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714  * 	0xcc (RED_ACTIVE) for objects in use.
715  *
716  * object + s->inuse
717  * 	Meta data starts here.
718  *
719  * 	A. Free pointer (if we cannot overwrite object on free)
720  * 	B. Tracking data for SLAB_STORE_USER
721  * 	C. Padding to reach required alignment boundary or at mininum
722  * 		one word if debugging is on to be able to detect writes
723  * 		before the word boundary.
724  *
725  *	Padding is done using 0x5a (POISON_INUSE)
726  *
727  * object + s->size
728  * 	Nothing is used beyond s->size.
729  *
730  * If slabcaches are merged then the objsize and inuse boundaries are mostly
731  * ignored. And therefore no slab options that rely on these boundaries
732  * may be used with merged slabcaches.
733  */
734 
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736 {
737 	unsigned long off = s->inuse;	/* The end of info */
738 
739 	if (s->offset)
740 		/* Freepointer is placed after the object. */
741 		off += sizeof(void *);
742 
743 	if (s->flags & SLAB_STORE_USER)
744 		/* We also have user information there */
745 		off += 2 * sizeof(struct track);
746 
747 	if (s->size == off)
748 		return 1;
749 
750 	return check_bytes_and_report(s, page, p, "Object padding",
751 				p + off, POISON_INUSE, s->size - off);
752 }
753 
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
756 {
757 	u8 *start;
758 	u8 *fault;
759 	u8 *end;
760 	int length;
761 	int remainder;
762 
763 	if (!(s->flags & SLAB_POISON))
764 		return 1;
765 
766 	start = page_address(page);
767 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 	end = start + length;
769 	remainder = length % s->size;
770 	if (!remainder)
771 		return 1;
772 
773 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 	if (!fault)
775 		return 1;
776 	while (end > fault && end[-1] == POISON_INUSE)
777 		end--;
778 
779 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 	print_section("Padding ", end - remainder, remainder);
781 
782 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 	return 0;
784 }
785 
786 static int check_object(struct kmem_cache *s, struct page *page,
787 					void *object, u8 val)
788 {
789 	u8 *p = object;
790 	u8 *endobject = object + s->objsize;
791 
792 	if (s->flags & SLAB_RED_ZONE) {
793 		if (!check_bytes_and_report(s, page, object, "Redzone",
794 			endobject, val, s->inuse - s->objsize))
795 			return 0;
796 	} else {
797 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
798 			check_bytes_and_report(s, page, p, "Alignment padding",
799 				endobject, POISON_INUSE, s->inuse - s->objsize);
800 		}
801 	}
802 
803 	if (s->flags & SLAB_POISON) {
804 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
805 			(!check_bytes_and_report(s, page, p, "Poison", p,
806 					POISON_FREE, s->objsize - 1) ||
807 			 !check_bytes_and_report(s, page, p, "Poison",
808 				p + s->objsize - 1, POISON_END, 1)))
809 			return 0;
810 		/*
811 		 * check_pad_bytes cleans up on its own.
812 		 */
813 		check_pad_bytes(s, page, p);
814 	}
815 
816 	if (!s->offset && val == SLUB_RED_ACTIVE)
817 		/*
818 		 * Object and freepointer overlap. Cannot check
819 		 * freepointer while object is allocated.
820 		 */
821 		return 1;
822 
823 	/* Check free pointer validity */
824 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 		object_err(s, page, p, "Freepointer corrupt");
826 		/*
827 		 * No choice but to zap it and thus lose the remainder
828 		 * of the free objects in this slab. May cause
829 		 * another error because the object count is now wrong.
830 		 */
831 		set_freepointer(s, p, NULL);
832 		return 0;
833 	}
834 	return 1;
835 }
836 
837 static int check_slab(struct kmem_cache *s, struct page *page)
838 {
839 	int maxobj;
840 
841 	VM_BUG_ON(!irqs_disabled());
842 
843 	if (!PageSlab(page)) {
844 		slab_err(s, page, "Not a valid slab page");
845 		return 0;
846 	}
847 
848 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
849 	if (page->objects > maxobj) {
850 		slab_err(s, page, "objects %u > max %u",
851 			s->name, page->objects, maxobj);
852 		return 0;
853 	}
854 	if (page->inuse > page->objects) {
855 		slab_err(s, page, "inuse %u > max %u",
856 			s->name, page->inuse, page->objects);
857 		return 0;
858 	}
859 	/* Slab_pad_check fixes things up after itself */
860 	slab_pad_check(s, page);
861 	return 1;
862 }
863 
864 /*
865  * Determine if a certain object on a page is on the freelist. Must hold the
866  * slab lock to guarantee that the chains are in a consistent state.
867  */
868 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869 {
870 	int nr = 0;
871 	void *fp;
872 	void *object = NULL;
873 	unsigned long max_objects;
874 
875 	fp = page->freelist;
876 	while (fp && nr <= page->objects) {
877 		if (fp == search)
878 			return 1;
879 		if (!check_valid_pointer(s, page, fp)) {
880 			if (object) {
881 				object_err(s, page, object,
882 					"Freechain corrupt");
883 				set_freepointer(s, object, NULL);
884 				break;
885 			} else {
886 				slab_err(s, page, "Freepointer corrupt");
887 				page->freelist = NULL;
888 				page->inuse = page->objects;
889 				slab_fix(s, "Freelist cleared");
890 				return 0;
891 			}
892 			break;
893 		}
894 		object = fp;
895 		fp = get_freepointer(s, object);
896 		nr++;
897 	}
898 
899 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 	if (max_objects > MAX_OBJS_PER_PAGE)
901 		max_objects = MAX_OBJS_PER_PAGE;
902 
903 	if (page->objects != max_objects) {
904 		slab_err(s, page, "Wrong number of objects. Found %d but "
905 			"should be %d", page->objects, max_objects);
906 		page->objects = max_objects;
907 		slab_fix(s, "Number of objects adjusted.");
908 	}
909 	if (page->inuse != page->objects - nr) {
910 		slab_err(s, page, "Wrong object count. Counter is %d but "
911 			"counted were %d", page->inuse, page->objects - nr);
912 		page->inuse = page->objects - nr;
913 		slab_fix(s, "Object count adjusted.");
914 	}
915 	return search == NULL;
916 }
917 
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 								int alloc)
920 {
921 	if (s->flags & SLAB_TRACE) {
922 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 			s->name,
924 			alloc ? "alloc" : "free",
925 			object, page->inuse,
926 			page->freelist);
927 
928 		if (!alloc)
929 			print_section("Object ", (void *)object, s->objsize);
930 
931 		dump_stack();
932 	}
933 }
934 
935 /*
936  * Hooks for other subsystems that check memory allocations. In a typical
937  * production configuration these hooks all should produce no code at all.
938  */
939 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940 {
941 	flags &= gfp_allowed_mask;
942 	lockdep_trace_alloc(flags);
943 	might_sleep_if(flags & __GFP_WAIT);
944 
945 	return should_failslab(s->objsize, flags, s->flags);
946 }
947 
948 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949 {
950 	flags &= gfp_allowed_mask;
951 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
952 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
953 }
954 
955 static inline void slab_free_hook(struct kmem_cache *s, void *x)
956 {
957 	kmemleak_free_recursive(x, s->flags);
958 
959 	/*
960 	 * Trouble is that we may no longer disable interupts in the fast path
961 	 * So in order to make the debug calls that expect irqs to be
962 	 * disabled we need to disable interrupts temporarily.
963 	 */
964 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 	{
966 		unsigned long flags;
967 
968 		local_irq_save(flags);
969 		kmemcheck_slab_free(s, x, s->objsize);
970 		debug_check_no_locks_freed(x, s->objsize);
971 		local_irq_restore(flags);
972 	}
973 #endif
974 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
975 		debug_check_no_obj_freed(x, s->objsize);
976 }
977 
978 /*
979  * Tracking of fully allocated slabs for debugging purposes.
980  *
981  * list_lock must be held.
982  */
983 static void add_full(struct kmem_cache *s,
984 	struct kmem_cache_node *n, struct page *page)
985 {
986 	if (!(s->flags & SLAB_STORE_USER))
987 		return;
988 
989 	list_add(&page->lru, &n->full);
990 }
991 
992 /*
993  * list_lock must be held.
994  */
995 static void remove_full(struct kmem_cache *s, struct page *page)
996 {
997 	if (!(s->flags & SLAB_STORE_USER))
998 		return;
999 
1000 	list_del(&page->lru);
1001 }
1002 
1003 /* Tracking of the number of slabs for debugging purposes */
1004 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005 {
1006 	struct kmem_cache_node *n = get_node(s, node);
1007 
1008 	return atomic_long_read(&n->nr_slabs);
1009 }
1010 
1011 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012 {
1013 	return atomic_long_read(&n->nr_slabs);
1014 }
1015 
1016 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1017 {
1018 	struct kmem_cache_node *n = get_node(s, node);
1019 
1020 	/*
1021 	 * May be called early in order to allocate a slab for the
1022 	 * kmem_cache_node structure. Solve the chicken-egg
1023 	 * dilemma by deferring the increment of the count during
1024 	 * bootstrap (see early_kmem_cache_node_alloc).
1025 	 */
1026 	if (n) {
1027 		atomic_long_inc(&n->nr_slabs);
1028 		atomic_long_add(objects, &n->total_objects);
1029 	}
1030 }
1031 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1032 {
1033 	struct kmem_cache_node *n = get_node(s, node);
1034 
1035 	atomic_long_dec(&n->nr_slabs);
1036 	atomic_long_sub(objects, &n->total_objects);
1037 }
1038 
1039 /* Object debug checks for alloc/free paths */
1040 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 								void *object)
1042 {
1043 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 		return;
1045 
1046 	init_object(s, object, SLUB_RED_INACTIVE);
1047 	init_tracking(s, object);
1048 }
1049 
1050 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1051 					void *object, unsigned long addr)
1052 {
1053 	if (!check_slab(s, page))
1054 		goto bad;
1055 
1056 	if (!check_valid_pointer(s, page, object)) {
1057 		object_err(s, page, object, "Freelist Pointer check fails");
1058 		goto bad;
1059 	}
1060 
1061 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1062 		goto bad;
1063 
1064 	/* Success perform special debug activities for allocs */
1065 	if (s->flags & SLAB_STORE_USER)
1066 		set_track(s, object, TRACK_ALLOC, addr);
1067 	trace(s, page, object, 1);
1068 	init_object(s, object, SLUB_RED_ACTIVE);
1069 	return 1;
1070 
1071 bad:
1072 	if (PageSlab(page)) {
1073 		/*
1074 		 * If this is a slab page then lets do the best we can
1075 		 * to avoid issues in the future. Marking all objects
1076 		 * as used avoids touching the remaining objects.
1077 		 */
1078 		slab_fix(s, "Marking all objects used");
1079 		page->inuse = page->objects;
1080 		page->freelist = NULL;
1081 	}
1082 	return 0;
1083 }
1084 
1085 static noinline int free_debug_processing(struct kmem_cache *s,
1086 		 struct page *page, void *object, unsigned long addr)
1087 {
1088 	unsigned long flags;
1089 	int rc = 0;
1090 
1091 	local_irq_save(flags);
1092 	slab_lock(page);
1093 
1094 	if (!check_slab(s, page))
1095 		goto fail;
1096 
1097 	if (!check_valid_pointer(s, page, object)) {
1098 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1099 		goto fail;
1100 	}
1101 
1102 	if (on_freelist(s, page, object)) {
1103 		object_err(s, page, object, "Object already free");
1104 		goto fail;
1105 	}
1106 
1107 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1108 		goto out;
1109 
1110 	if (unlikely(s != page->slab)) {
1111 		if (!PageSlab(page)) {
1112 			slab_err(s, page, "Attempt to free object(0x%p) "
1113 				"outside of slab", object);
1114 		} else if (!page->slab) {
1115 			printk(KERN_ERR
1116 				"SLUB <none>: no slab for object 0x%p.\n",
1117 						object);
1118 			dump_stack();
1119 		} else
1120 			object_err(s, page, object,
1121 					"page slab pointer corrupt.");
1122 		goto fail;
1123 	}
1124 
1125 	if (s->flags & SLAB_STORE_USER)
1126 		set_track(s, object, TRACK_FREE, addr);
1127 	trace(s, page, object, 0);
1128 	init_object(s, object, SLUB_RED_INACTIVE);
1129 	rc = 1;
1130 out:
1131 	slab_unlock(page);
1132 	local_irq_restore(flags);
1133 	return rc;
1134 
1135 fail:
1136 	slab_fix(s, "Object at 0x%p not freed", object);
1137 	goto out;
1138 }
1139 
1140 static int __init setup_slub_debug(char *str)
1141 {
1142 	slub_debug = DEBUG_DEFAULT_FLAGS;
1143 	if (*str++ != '=' || !*str)
1144 		/*
1145 		 * No options specified. Switch on full debugging.
1146 		 */
1147 		goto out;
1148 
1149 	if (*str == ',')
1150 		/*
1151 		 * No options but restriction on slabs. This means full
1152 		 * debugging for slabs matching a pattern.
1153 		 */
1154 		goto check_slabs;
1155 
1156 	if (tolower(*str) == 'o') {
1157 		/*
1158 		 * Avoid enabling debugging on caches if its minimum order
1159 		 * would increase as a result.
1160 		 */
1161 		disable_higher_order_debug = 1;
1162 		goto out;
1163 	}
1164 
1165 	slub_debug = 0;
1166 	if (*str == '-')
1167 		/*
1168 		 * Switch off all debugging measures.
1169 		 */
1170 		goto out;
1171 
1172 	/*
1173 	 * Determine which debug features should be switched on
1174 	 */
1175 	for (; *str && *str != ','; str++) {
1176 		switch (tolower(*str)) {
1177 		case 'f':
1178 			slub_debug |= SLAB_DEBUG_FREE;
1179 			break;
1180 		case 'z':
1181 			slub_debug |= SLAB_RED_ZONE;
1182 			break;
1183 		case 'p':
1184 			slub_debug |= SLAB_POISON;
1185 			break;
1186 		case 'u':
1187 			slub_debug |= SLAB_STORE_USER;
1188 			break;
1189 		case 't':
1190 			slub_debug |= SLAB_TRACE;
1191 			break;
1192 		case 'a':
1193 			slub_debug |= SLAB_FAILSLAB;
1194 			break;
1195 		default:
1196 			printk(KERN_ERR "slub_debug option '%c' "
1197 				"unknown. skipped\n", *str);
1198 		}
1199 	}
1200 
1201 check_slabs:
1202 	if (*str == ',')
1203 		slub_debug_slabs = str + 1;
1204 out:
1205 	return 1;
1206 }
1207 
1208 __setup("slub_debug", setup_slub_debug);
1209 
1210 static unsigned long kmem_cache_flags(unsigned long objsize,
1211 	unsigned long flags, const char *name,
1212 	void (*ctor)(void *))
1213 {
1214 	/*
1215 	 * Enable debugging if selected on the kernel commandline.
1216 	 */
1217 	if (slub_debug && (!slub_debug_slabs ||
1218 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 		flags |= slub_debug;
1220 
1221 	return flags;
1222 }
1223 #else
1224 static inline void setup_object_debug(struct kmem_cache *s,
1225 			struct page *page, void *object) {}
1226 
1227 static inline int alloc_debug_processing(struct kmem_cache *s,
1228 	struct page *page, void *object, unsigned long addr) { return 0; }
1229 
1230 static inline int free_debug_processing(struct kmem_cache *s,
1231 	struct page *page, void *object, unsigned long addr) { return 0; }
1232 
1233 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 			{ return 1; }
1235 static inline int check_object(struct kmem_cache *s, struct page *page,
1236 			void *object, u8 val) { return 1; }
1237 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 					struct page *page) {}
1239 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1240 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241 	unsigned long flags, const char *name,
1242 	void (*ctor)(void *))
1243 {
1244 	return flags;
1245 }
1246 #define slub_debug 0
1247 
1248 #define disable_higher_order_debug 0
1249 
1250 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 							{ return 0; }
1252 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 							{ return 0; }
1254 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 							int objects) {}
1256 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 							int objects) {}
1258 
1259 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 							{ return 0; }
1261 
1262 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 		void *object) {}
1264 
1265 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266 
1267 #endif /* CONFIG_SLUB_DEBUG */
1268 
1269 /*
1270  * Slab allocation and freeing
1271  */
1272 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 					struct kmem_cache_order_objects oo)
1274 {
1275 	int order = oo_order(oo);
1276 
1277 	flags |= __GFP_NOTRACK;
1278 
1279 	if (node == NUMA_NO_NODE)
1280 		return alloc_pages(flags, order);
1281 	else
1282 		return alloc_pages_exact_node(node, flags, order);
1283 }
1284 
1285 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286 {
1287 	struct page *page;
1288 	struct kmem_cache_order_objects oo = s->oo;
1289 	gfp_t alloc_gfp;
1290 
1291 	flags &= gfp_allowed_mask;
1292 
1293 	if (flags & __GFP_WAIT)
1294 		local_irq_enable();
1295 
1296 	flags |= s->allocflags;
1297 
1298 	/*
1299 	 * Let the initial higher-order allocation fail under memory pressure
1300 	 * so we fall-back to the minimum order allocation.
1301 	 */
1302 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303 
1304 	page = alloc_slab_page(alloc_gfp, node, oo);
1305 	if (unlikely(!page)) {
1306 		oo = s->min;
1307 		/*
1308 		 * Allocation may have failed due to fragmentation.
1309 		 * Try a lower order alloc if possible
1310 		 */
1311 		page = alloc_slab_page(flags, node, oo);
1312 
1313 		if (page)
1314 			stat(s, ORDER_FALLBACK);
1315 	}
1316 
1317 	if (flags & __GFP_WAIT)
1318 		local_irq_disable();
1319 
1320 	if (!page)
1321 		return NULL;
1322 
1323 	if (kmemcheck_enabled
1324 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1325 		int pages = 1 << oo_order(oo);
1326 
1327 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328 
1329 		/*
1330 		 * Objects from caches that have a constructor don't get
1331 		 * cleared when they're allocated, so we need to do it here.
1332 		 */
1333 		if (s->ctor)
1334 			kmemcheck_mark_uninitialized_pages(page, pages);
1335 		else
1336 			kmemcheck_mark_unallocated_pages(page, pages);
1337 	}
1338 
1339 	page->objects = oo_objects(oo);
1340 	mod_zone_page_state(page_zone(page),
1341 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1343 		1 << oo_order(oo));
1344 
1345 	return page;
1346 }
1347 
1348 static void setup_object(struct kmem_cache *s, struct page *page,
1349 				void *object)
1350 {
1351 	setup_object_debug(s, page, object);
1352 	if (unlikely(s->ctor))
1353 		s->ctor(object);
1354 }
1355 
1356 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357 {
1358 	struct page *page;
1359 	void *start;
1360 	void *last;
1361 	void *p;
1362 
1363 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1364 
1365 	page = allocate_slab(s,
1366 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1367 	if (!page)
1368 		goto out;
1369 
1370 	inc_slabs_node(s, page_to_nid(page), page->objects);
1371 	page->slab = s;
1372 	page->flags |= 1 << PG_slab;
1373 
1374 	start = page_address(page);
1375 
1376 	if (unlikely(s->flags & SLAB_POISON))
1377 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1378 
1379 	last = start;
1380 	for_each_object(p, s, start, page->objects) {
1381 		setup_object(s, page, last);
1382 		set_freepointer(s, last, p);
1383 		last = p;
1384 	}
1385 	setup_object(s, page, last);
1386 	set_freepointer(s, last, NULL);
1387 
1388 	page->freelist = start;
1389 	page->inuse = page->objects;
1390 	page->frozen = 1;
1391 out:
1392 	return page;
1393 }
1394 
1395 static void __free_slab(struct kmem_cache *s, struct page *page)
1396 {
1397 	int order = compound_order(page);
1398 	int pages = 1 << order;
1399 
1400 	if (kmem_cache_debug(s)) {
1401 		void *p;
1402 
1403 		slab_pad_check(s, page);
1404 		for_each_object(p, s, page_address(page),
1405 						page->objects)
1406 			check_object(s, page, p, SLUB_RED_INACTIVE);
1407 	}
1408 
1409 	kmemcheck_free_shadow(page, compound_order(page));
1410 
1411 	mod_zone_page_state(page_zone(page),
1412 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1414 		-pages);
1415 
1416 	__ClearPageSlab(page);
1417 	reset_page_mapcount(page);
1418 	if (current->reclaim_state)
1419 		current->reclaim_state->reclaimed_slab += pages;
1420 	__free_pages(page, order);
1421 }
1422 
1423 #define need_reserve_slab_rcu						\
1424 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425 
1426 static void rcu_free_slab(struct rcu_head *h)
1427 {
1428 	struct page *page;
1429 
1430 	if (need_reserve_slab_rcu)
1431 		page = virt_to_head_page(h);
1432 	else
1433 		page = container_of((struct list_head *)h, struct page, lru);
1434 
1435 	__free_slab(page->slab, page);
1436 }
1437 
1438 static void free_slab(struct kmem_cache *s, struct page *page)
1439 {
1440 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1441 		struct rcu_head *head;
1442 
1443 		if (need_reserve_slab_rcu) {
1444 			int order = compound_order(page);
1445 			int offset = (PAGE_SIZE << order) - s->reserved;
1446 
1447 			VM_BUG_ON(s->reserved != sizeof(*head));
1448 			head = page_address(page) + offset;
1449 		} else {
1450 			/*
1451 			 * RCU free overloads the RCU head over the LRU
1452 			 */
1453 			head = (void *)&page->lru;
1454 		}
1455 
1456 		call_rcu(head, rcu_free_slab);
1457 	} else
1458 		__free_slab(s, page);
1459 }
1460 
1461 static void discard_slab(struct kmem_cache *s, struct page *page)
1462 {
1463 	dec_slabs_node(s, page_to_nid(page), page->objects);
1464 	free_slab(s, page);
1465 }
1466 
1467 /*
1468  * Management of partially allocated slabs.
1469  *
1470  * list_lock must be held.
1471  */
1472 static inline void add_partial(struct kmem_cache_node *n,
1473 				struct page *page, int tail)
1474 {
1475 	n->nr_partial++;
1476 	if (tail == DEACTIVATE_TO_TAIL)
1477 		list_add_tail(&page->lru, &n->partial);
1478 	else
1479 		list_add(&page->lru, &n->partial);
1480 }
1481 
1482 /*
1483  * list_lock must be held.
1484  */
1485 static inline void remove_partial(struct kmem_cache_node *n,
1486 					struct page *page)
1487 {
1488 	list_del(&page->lru);
1489 	n->nr_partial--;
1490 }
1491 
1492 /*
1493  * Lock slab, remove from the partial list and put the object into the
1494  * per cpu freelist.
1495  *
1496  * Returns a list of objects or NULL if it fails.
1497  *
1498  * Must hold list_lock.
1499  */
1500 static inline void *acquire_slab(struct kmem_cache *s,
1501 		struct kmem_cache_node *n, struct page *page,
1502 		int mode)
1503 {
1504 	void *freelist;
1505 	unsigned long counters;
1506 	struct page new;
1507 
1508 	/*
1509 	 * Zap the freelist and set the frozen bit.
1510 	 * The old freelist is the list of objects for the
1511 	 * per cpu allocation list.
1512 	 */
1513 	do {
1514 		freelist = page->freelist;
1515 		counters = page->counters;
1516 		new.counters = counters;
1517 		if (mode)
1518 			new.inuse = page->objects;
1519 
1520 		VM_BUG_ON(new.frozen);
1521 		new.frozen = 1;
1522 
1523 	} while (!__cmpxchg_double_slab(s, page,
1524 			freelist, counters,
1525 			NULL, new.counters,
1526 			"lock and freeze"));
1527 
1528 	remove_partial(n, page);
1529 	return freelist;
1530 }
1531 
1532 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1533 
1534 /*
1535  * Try to allocate a partial slab from a specific node.
1536  */
1537 static void *get_partial_node(struct kmem_cache *s,
1538 		struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1539 {
1540 	struct page *page, *page2;
1541 	void *object = NULL;
1542 
1543 	/*
1544 	 * Racy check. If we mistakenly see no partial slabs then we
1545 	 * just allocate an empty slab. If we mistakenly try to get a
1546 	 * partial slab and there is none available then get_partials()
1547 	 * will return NULL.
1548 	 */
1549 	if (!n || !n->nr_partial)
1550 		return NULL;
1551 
1552 	spin_lock(&n->list_lock);
1553 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1554 		void *t = acquire_slab(s, n, page, object == NULL);
1555 		int available;
1556 
1557 		if (!t)
1558 			break;
1559 
1560 		if (!object) {
1561 			c->page = page;
1562 			c->node = page_to_nid(page);
1563 			stat(s, ALLOC_FROM_PARTIAL);
1564 			object = t;
1565 			available =  page->objects - page->inuse;
1566 		} else {
1567 			page->freelist = t;
1568 			available = put_cpu_partial(s, page, 0);
1569 			stat(s, CPU_PARTIAL_NODE);
1570 		}
1571 		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1572 			break;
1573 
1574 	}
1575 	spin_unlock(&n->list_lock);
1576 	return object;
1577 }
1578 
1579 /*
1580  * Get a page from somewhere. Search in increasing NUMA distances.
1581  */
1582 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1583 		struct kmem_cache_cpu *c)
1584 {
1585 #ifdef CONFIG_NUMA
1586 	struct zonelist *zonelist;
1587 	struct zoneref *z;
1588 	struct zone *zone;
1589 	enum zone_type high_zoneidx = gfp_zone(flags);
1590 	void *object;
1591 	unsigned int cpuset_mems_cookie;
1592 
1593 	/*
1594 	 * The defrag ratio allows a configuration of the tradeoffs between
1595 	 * inter node defragmentation and node local allocations. A lower
1596 	 * defrag_ratio increases the tendency to do local allocations
1597 	 * instead of attempting to obtain partial slabs from other nodes.
1598 	 *
1599 	 * If the defrag_ratio is set to 0 then kmalloc() always
1600 	 * returns node local objects. If the ratio is higher then kmalloc()
1601 	 * may return off node objects because partial slabs are obtained
1602 	 * from other nodes and filled up.
1603 	 *
1604 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1605 	 * defrag_ratio = 1000) then every (well almost) allocation will
1606 	 * first attempt to defrag slab caches on other nodes. This means
1607 	 * scanning over all nodes to look for partial slabs which may be
1608 	 * expensive if we do it every time we are trying to find a slab
1609 	 * with available objects.
1610 	 */
1611 	if (!s->remote_node_defrag_ratio ||
1612 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1613 		return NULL;
1614 
1615 	do {
1616 		cpuset_mems_cookie = get_mems_allowed();
1617 		zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1618 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1619 			struct kmem_cache_node *n;
1620 
1621 			n = get_node(s, zone_to_nid(zone));
1622 
1623 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1624 					n->nr_partial > s->min_partial) {
1625 				object = get_partial_node(s, n, c);
1626 				if (object) {
1627 					/*
1628 					 * Return the object even if
1629 					 * put_mems_allowed indicated that
1630 					 * the cpuset mems_allowed was
1631 					 * updated in parallel. It's a
1632 					 * harmless race between the alloc
1633 					 * and the cpuset update.
1634 					 */
1635 					put_mems_allowed(cpuset_mems_cookie);
1636 					return object;
1637 				}
1638 			}
1639 		}
1640 	} while (!put_mems_allowed(cpuset_mems_cookie));
1641 #endif
1642 	return NULL;
1643 }
1644 
1645 /*
1646  * Get a partial page, lock it and return it.
1647  */
1648 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1649 		struct kmem_cache_cpu *c)
1650 {
1651 	void *object;
1652 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1653 
1654 	object = get_partial_node(s, get_node(s, searchnode), c);
1655 	if (object || node != NUMA_NO_NODE)
1656 		return object;
1657 
1658 	return get_any_partial(s, flags, c);
1659 }
1660 
1661 #ifdef CONFIG_PREEMPT
1662 /*
1663  * Calculate the next globally unique transaction for disambiguiation
1664  * during cmpxchg. The transactions start with the cpu number and are then
1665  * incremented by CONFIG_NR_CPUS.
1666  */
1667 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1668 #else
1669 /*
1670  * No preemption supported therefore also no need to check for
1671  * different cpus.
1672  */
1673 #define TID_STEP 1
1674 #endif
1675 
1676 static inline unsigned long next_tid(unsigned long tid)
1677 {
1678 	return tid + TID_STEP;
1679 }
1680 
1681 static inline unsigned int tid_to_cpu(unsigned long tid)
1682 {
1683 	return tid % TID_STEP;
1684 }
1685 
1686 static inline unsigned long tid_to_event(unsigned long tid)
1687 {
1688 	return tid / TID_STEP;
1689 }
1690 
1691 static inline unsigned int init_tid(int cpu)
1692 {
1693 	return cpu;
1694 }
1695 
1696 static inline void note_cmpxchg_failure(const char *n,
1697 		const struct kmem_cache *s, unsigned long tid)
1698 {
1699 #ifdef SLUB_DEBUG_CMPXCHG
1700 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1701 
1702 	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1703 
1704 #ifdef CONFIG_PREEMPT
1705 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1706 		printk("due to cpu change %d -> %d\n",
1707 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1708 	else
1709 #endif
1710 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1711 		printk("due to cpu running other code. Event %ld->%ld\n",
1712 			tid_to_event(tid), tid_to_event(actual_tid));
1713 	else
1714 		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1715 			actual_tid, tid, next_tid(tid));
1716 #endif
1717 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1718 }
1719 
1720 void init_kmem_cache_cpus(struct kmem_cache *s)
1721 {
1722 	int cpu;
1723 
1724 	for_each_possible_cpu(cpu)
1725 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1726 }
1727 
1728 /*
1729  * Remove the cpu slab
1730  */
1731 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1732 {
1733 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1734 	struct page *page = c->page;
1735 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1736 	int lock = 0;
1737 	enum slab_modes l = M_NONE, m = M_NONE;
1738 	void *freelist;
1739 	void *nextfree;
1740 	int tail = DEACTIVATE_TO_HEAD;
1741 	struct page new;
1742 	struct page old;
1743 
1744 	if (page->freelist) {
1745 		stat(s, DEACTIVATE_REMOTE_FREES);
1746 		tail = DEACTIVATE_TO_TAIL;
1747 	}
1748 
1749 	c->tid = next_tid(c->tid);
1750 	c->page = NULL;
1751 	freelist = c->freelist;
1752 	c->freelist = NULL;
1753 
1754 	/*
1755 	 * Stage one: Free all available per cpu objects back
1756 	 * to the page freelist while it is still frozen. Leave the
1757 	 * last one.
1758 	 *
1759 	 * There is no need to take the list->lock because the page
1760 	 * is still frozen.
1761 	 */
1762 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1763 		void *prior;
1764 		unsigned long counters;
1765 
1766 		do {
1767 			prior = page->freelist;
1768 			counters = page->counters;
1769 			set_freepointer(s, freelist, prior);
1770 			new.counters = counters;
1771 			new.inuse--;
1772 			VM_BUG_ON(!new.frozen);
1773 
1774 		} while (!__cmpxchg_double_slab(s, page,
1775 			prior, counters,
1776 			freelist, new.counters,
1777 			"drain percpu freelist"));
1778 
1779 		freelist = nextfree;
1780 	}
1781 
1782 	/*
1783 	 * Stage two: Ensure that the page is unfrozen while the
1784 	 * list presence reflects the actual number of objects
1785 	 * during unfreeze.
1786 	 *
1787 	 * We setup the list membership and then perform a cmpxchg
1788 	 * with the count. If there is a mismatch then the page
1789 	 * is not unfrozen but the page is on the wrong list.
1790 	 *
1791 	 * Then we restart the process which may have to remove
1792 	 * the page from the list that we just put it on again
1793 	 * because the number of objects in the slab may have
1794 	 * changed.
1795 	 */
1796 redo:
1797 
1798 	old.freelist = page->freelist;
1799 	old.counters = page->counters;
1800 	VM_BUG_ON(!old.frozen);
1801 
1802 	/* Determine target state of the slab */
1803 	new.counters = old.counters;
1804 	if (freelist) {
1805 		new.inuse--;
1806 		set_freepointer(s, freelist, old.freelist);
1807 		new.freelist = freelist;
1808 	} else
1809 		new.freelist = old.freelist;
1810 
1811 	new.frozen = 0;
1812 
1813 	if (!new.inuse && n->nr_partial > s->min_partial)
1814 		m = M_FREE;
1815 	else if (new.freelist) {
1816 		m = M_PARTIAL;
1817 		if (!lock) {
1818 			lock = 1;
1819 			/*
1820 			 * Taking the spinlock removes the possiblity
1821 			 * that acquire_slab() will see a slab page that
1822 			 * is frozen
1823 			 */
1824 			spin_lock(&n->list_lock);
1825 		}
1826 	} else {
1827 		m = M_FULL;
1828 		if (kmem_cache_debug(s) && !lock) {
1829 			lock = 1;
1830 			/*
1831 			 * This also ensures that the scanning of full
1832 			 * slabs from diagnostic functions will not see
1833 			 * any frozen slabs.
1834 			 */
1835 			spin_lock(&n->list_lock);
1836 		}
1837 	}
1838 
1839 	if (l != m) {
1840 
1841 		if (l == M_PARTIAL)
1842 
1843 			remove_partial(n, page);
1844 
1845 		else if (l == M_FULL)
1846 
1847 			remove_full(s, page);
1848 
1849 		if (m == M_PARTIAL) {
1850 
1851 			add_partial(n, page, tail);
1852 			stat(s, tail);
1853 
1854 		} else if (m == M_FULL) {
1855 
1856 			stat(s, DEACTIVATE_FULL);
1857 			add_full(s, n, page);
1858 
1859 		}
1860 	}
1861 
1862 	l = m;
1863 	if (!__cmpxchg_double_slab(s, page,
1864 				old.freelist, old.counters,
1865 				new.freelist, new.counters,
1866 				"unfreezing slab"))
1867 		goto redo;
1868 
1869 	if (lock)
1870 		spin_unlock(&n->list_lock);
1871 
1872 	if (m == M_FREE) {
1873 		stat(s, DEACTIVATE_EMPTY);
1874 		discard_slab(s, page);
1875 		stat(s, FREE_SLAB);
1876 	}
1877 }
1878 
1879 /* Unfreeze all the cpu partial slabs */
1880 static void unfreeze_partials(struct kmem_cache *s)
1881 {
1882 	struct kmem_cache_node *n = NULL;
1883 	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1884 	struct page *page, *discard_page = NULL;
1885 
1886 	while ((page = c->partial)) {
1887 		enum slab_modes { M_PARTIAL, M_FREE };
1888 		enum slab_modes l, m;
1889 		struct page new;
1890 		struct page old;
1891 
1892 		c->partial = page->next;
1893 		l = M_FREE;
1894 
1895 		do {
1896 
1897 			old.freelist = page->freelist;
1898 			old.counters = page->counters;
1899 			VM_BUG_ON(!old.frozen);
1900 
1901 			new.counters = old.counters;
1902 			new.freelist = old.freelist;
1903 
1904 			new.frozen = 0;
1905 
1906 			if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1907 				m = M_FREE;
1908 			else {
1909 				struct kmem_cache_node *n2 = get_node(s,
1910 							page_to_nid(page));
1911 
1912 				m = M_PARTIAL;
1913 				if (n != n2) {
1914 					if (n)
1915 						spin_unlock(&n->list_lock);
1916 
1917 					n = n2;
1918 					spin_lock(&n->list_lock);
1919 				}
1920 			}
1921 
1922 			if (l != m) {
1923 				if (l == M_PARTIAL) {
1924 					remove_partial(n, page);
1925 					stat(s, FREE_REMOVE_PARTIAL);
1926 				} else {
1927 					add_partial(n, page,
1928 						DEACTIVATE_TO_TAIL);
1929 					stat(s, FREE_ADD_PARTIAL);
1930 				}
1931 
1932 				l = m;
1933 			}
1934 
1935 		} while (!cmpxchg_double_slab(s, page,
1936 				old.freelist, old.counters,
1937 				new.freelist, new.counters,
1938 				"unfreezing slab"));
1939 
1940 		if (m == M_FREE) {
1941 			page->next = discard_page;
1942 			discard_page = page;
1943 		}
1944 	}
1945 
1946 	if (n)
1947 		spin_unlock(&n->list_lock);
1948 
1949 	while (discard_page) {
1950 		page = discard_page;
1951 		discard_page = discard_page->next;
1952 
1953 		stat(s, DEACTIVATE_EMPTY);
1954 		discard_slab(s, page);
1955 		stat(s, FREE_SLAB);
1956 	}
1957 }
1958 
1959 /*
1960  * Put a page that was just frozen (in __slab_free) into a partial page
1961  * slot if available. This is done without interrupts disabled and without
1962  * preemption disabled. The cmpxchg is racy and may put the partial page
1963  * onto a random cpus partial slot.
1964  *
1965  * If we did not find a slot then simply move all the partials to the
1966  * per node partial list.
1967  */
1968 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1969 {
1970 	struct page *oldpage;
1971 	int pages;
1972 	int pobjects;
1973 
1974 	do {
1975 		pages = 0;
1976 		pobjects = 0;
1977 		oldpage = this_cpu_read(s->cpu_slab->partial);
1978 
1979 		if (oldpage) {
1980 			pobjects = oldpage->pobjects;
1981 			pages = oldpage->pages;
1982 			if (drain && pobjects > s->cpu_partial) {
1983 				unsigned long flags;
1984 				/*
1985 				 * partial array is full. Move the existing
1986 				 * set to the per node partial list.
1987 				 */
1988 				local_irq_save(flags);
1989 				unfreeze_partials(s);
1990 				local_irq_restore(flags);
1991 				pobjects = 0;
1992 				pages = 0;
1993 				stat(s, CPU_PARTIAL_DRAIN);
1994 			}
1995 		}
1996 
1997 		pages++;
1998 		pobjects += page->objects - page->inuse;
1999 
2000 		page->pages = pages;
2001 		page->pobjects = pobjects;
2002 		page->next = oldpage;
2003 
2004 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2005 	return pobjects;
2006 }
2007 
2008 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2009 {
2010 	stat(s, CPUSLAB_FLUSH);
2011 	deactivate_slab(s, c);
2012 }
2013 
2014 /*
2015  * Flush cpu slab.
2016  *
2017  * Called from IPI handler with interrupts disabled.
2018  */
2019 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2020 {
2021 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2022 
2023 	if (likely(c)) {
2024 		if (c->page)
2025 			flush_slab(s, c);
2026 
2027 		unfreeze_partials(s);
2028 	}
2029 }
2030 
2031 static void flush_cpu_slab(void *d)
2032 {
2033 	struct kmem_cache *s = d;
2034 
2035 	__flush_cpu_slab(s, smp_processor_id());
2036 }
2037 
2038 static bool has_cpu_slab(int cpu, void *info)
2039 {
2040 	struct kmem_cache *s = info;
2041 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2042 
2043 	return !!(c->page);
2044 }
2045 
2046 static void flush_all(struct kmem_cache *s)
2047 {
2048 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2049 }
2050 
2051 /*
2052  * Check if the objects in a per cpu structure fit numa
2053  * locality expectations.
2054  */
2055 static inline int node_match(struct kmem_cache_cpu *c, int node)
2056 {
2057 #ifdef CONFIG_NUMA
2058 	if (node != NUMA_NO_NODE && c->node != node)
2059 		return 0;
2060 #endif
2061 	return 1;
2062 }
2063 
2064 static int count_free(struct page *page)
2065 {
2066 	return page->objects - page->inuse;
2067 }
2068 
2069 static unsigned long count_partial(struct kmem_cache_node *n,
2070 					int (*get_count)(struct page *))
2071 {
2072 	unsigned long flags;
2073 	unsigned long x = 0;
2074 	struct page *page;
2075 
2076 	spin_lock_irqsave(&n->list_lock, flags);
2077 	list_for_each_entry(page, &n->partial, lru)
2078 		x += get_count(page);
2079 	spin_unlock_irqrestore(&n->list_lock, flags);
2080 	return x;
2081 }
2082 
2083 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2084 {
2085 #ifdef CONFIG_SLUB_DEBUG
2086 	return atomic_long_read(&n->total_objects);
2087 #else
2088 	return 0;
2089 #endif
2090 }
2091 
2092 static noinline void
2093 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2094 {
2095 	int node;
2096 
2097 	printk(KERN_WARNING
2098 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2099 		nid, gfpflags);
2100 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2101 		"default order: %d, min order: %d\n", s->name, s->objsize,
2102 		s->size, oo_order(s->oo), oo_order(s->min));
2103 
2104 	if (oo_order(s->min) > get_order(s->objsize))
2105 		printk(KERN_WARNING "  %s debugging increased min order, use "
2106 		       "slub_debug=O to disable.\n", s->name);
2107 
2108 	for_each_online_node(node) {
2109 		struct kmem_cache_node *n = get_node(s, node);
2110 		unsigned long nr_slabs;
2111 		unsigned long nr_objs;
2112 		unsigned long nr_free;
2113 
2114 		if (!n)
2115 			continue;
2116 
2117 		nr_free  = count_partial(n, count_free);
2118 		nr_slabs = node_nr_slabs(n);
2119 		nr_objs  = node_nr_objs(n);
2120 
2121 		printk(KERN_WARNING
2122 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2123 			node, nr_slabs, nr_objs, nr_free);
2124 	}
2125 }
2126 
2127 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2128 			int node, struct kmem_cache_cpu **pc)
2129 {
2130 	void *object;
2131 	struct kmem_cache_cpu *c;
2132 	struct page *page = new_slab(s, flags, node);
2133 
2134 	if (page) {
2135 		c = __this_cpu_ptr(s->cpu_slab);
2136 		if (c->page)
2137 			flush_slab(s, c);
2138 
2139 		/*
2140 		 * No other reference to the page yet so we can
2141 		 * muck around with it freely without cmpxchg
2142 		 */
2143 		object = page->freelist;
2144 		page->freelist = NULL;
2145 
2146 		stat(s, ALLOC_SLAB);
2147 		c->node = page_to_nid(page);
2148 		c->page = page;
2149 		*pc = c;
2150 	} else
2151 		object = NULL;
2152 
2153 	return object;
2154 }
2155 
2156 /*
2157  * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2158  * or deactivate the page.
2159  *
2160  * The page is still frozen if the return value is not NULL.
2161  *
2162  * If this function returns NULL then the page has been unfrozen.
2163  */
2164 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2165 {
2166 	struct page new;
2167 	unsigned long counters;
2168 	void *freelist;
2169 
2170 	do {
2171 		freelist = page->freelist;
2172 		counters = page->counters;
2173 		new.counters = counters;
2174 		VM_BUG_ON(!new.frozen);
2175 
2176 		new.inuse = page->objects;
2177 		new.frozen = freelist != NULL;
2178 
2179 	} while (!cmpxchg_double_slab(s, page,
2180 		freelist, counters,
2181 		NULL, new.counters,
2182 		"get_freelist"));
2183 
2184 	return freelist;
2185 }
2186 
2187 /*
2188  * Slow path. The lockless freelist is empty or we need to perform
2189  * debugging duties.
2190  *
2191  * Processing is still very fast if new objects have been freed to the
2192  * regular freelist. In that case we simply take over the regular freelist
2193  * as the lockless freelist and zap the regular freelist.
2194  *
2195  * If that is not working then we fall back to the partial lists. We take the
2196  * first element of the freelist as the object to allocate now and move the
2197  * rest of the freelist to the lockless freelist.
2198  *
2199  * And if we were unable to get a new slab from the partial slab lists then
2200  * we need to allocate a new slab. This is the slowest path since it involves
2201  * a call to the page allocator and the setup of a new slab.
2202  */
2203 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2204 			  unsigned long addr, struct kmem_cache_cpu *c)
2205 {
2206 	void **object;
2207 	unsigned long flags;
2208 
2209 	local_irq_save(flags);
2210 #ifdef CONFIG_PREEMPT
2211 	/*
2212 	 * We may have been preempted and rescheduled on a different
2213 	 * cpu before disabling interrupts. Need to reload cpu area
2214 	 * pointer.
2215 	 */
2216 	c = this_cpu_ptr(s->cpu_slab);
2217 #endif
2218 
2219 	if (!c->page)
2220 		goto new_slab;
2221 redo:
2222 	if (unlikely(!node_match(c, node))) {
2223 		stat(s, ALLOC_NODE_MISMATCH);
2224 		deactivate_slab(s, c);
2225 		goto new_slab;
2226 	}
2227 
2228 	/* must check again c->freelist in case of cpu migration or IRQ */
2229 	object = c->freelist;
2230 	if (object)
2231 		goto load_freelist;
2232 
2233 	stat(s, ALLOC_SLOWPATH);
2234 
2235 	object = get_freelist(s, c->page);
2236 
2237 	if (!object) {
2238 		c->page = NULL;
2239 		stat(s, DEACTIVATE_BYPASS);
2240 		goto new_slab;
2241 	}
2242 
2243 	stat(s, ALLOC_REFILL);
2244 
2245 load_freelist:
2246 	c->freelist = get_freepointer(s, object);
2247 	c->tid = next_tid(c->tid);
2248 	local_irq_restore(flags);
2249 	return object;
2250 
2251 new_slab:
2252 
2253 	if (c->partial) {
2254 		c->page = c->partial;
2255 		c->partial = c->page->next;
2256 		c->node = page_to_nid(c->page);
2257 		stat(s, CPU_PARTIAL_ALLOC);
2258 		c->freelist = NULL;
2259 		goto redo;
2260 	}
2261 
2262 	/* Then do expensive stuff like retrieving pages from the partial lists */
2263 	object = get_partial(s, gfpflags, node, c);
2264 
2265 	if (unlikely(!object)) {
2266 
2267 		object = new_slab_objects(s, gfpflags, node, &c);
2268 
2269 		if (unlikely(!object)) {
2270 			if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2271 				slab_out_of_memory(s, gfpflags, node);
2272 
2273 			local_irq_restore(flags);
2274 			return NULL;
2275 		}
2276 	}
2277 
2278 	if (likely(!kmem_cache_debug(s)))
2279 		goto load_freelist;
2280 
2281 	/* Only entered in the debug case */
2282 	if (!alloc_debug_processing(s, c->page, object, addr))
2283 		goto new_slab;	/* Slab failed checks. Next slab needed */
2284 
2285 	c->freelist = get_freepointer(s, object);
2286 	deactivate_slab(s, c);
2287 	c->node = NUMA_NO_NODE;
2288 	local_irq_restore(flags);
2289 	return object;
2290 }
2291 
2292 /*
2293  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2294  * have the fastpath folded into their functions. So no function call
2295  * overhead for requests that can be satisfied on the fastpath.
2296  *
2297  * The fastpath works by first checking if the lockless freelist can be used.
2298  * If not then __slab_alloc is called for slow processing.
2299  *
2300  * Otherwise we can simply pick the next object from the lockless free list.
2301  */
2302 static __always_inline void *slab_alloc(struct kmem_cache *s,
2303 		gfp_t gfpflags, int node, unsigned long addr)
2304 {
2305 	void **object;
2306 	struct kmem_cache_cpu *c;
2307 	unsigned long tid;
2308 
2309 	if (slab_pre_alloc_hook(s, gfpflags))
2310 		return NULL;
2311 
2312 redo:
2313 
2314 	/*
2315 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2316 	 * enabled. We may switch back and forth between cpus while
2317 	 * reading from one cpu area. That does not matter as long
2318 	 * as we end up on the original cpu again when doing the cmpxchg.
2319 	 */
2320 	c = __this_cpu_ptr(s->cpu_slab);
2321 
2322 	/*
2323 	 * The transaction ids are globally unique per cpu and per operation on
2324 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2325 	 * occurs on the right processor and that there was no operation on the
2326 	 * linked list in between.
2327 	 */
2328 	tid = c->tid;
2329 	barrier();
2330 
2331 	object = c->freelist;
2332 	if (unlikely(!object || !node_match(c, node)))
2333 
2334 		object = __slab_alloc(s, gfpflags, node, addr, c);
2335 
2336 	else {
2337 		void *next_object = get_freepointer_safe(s, object);
2338 
2339 		/*
2340 		 * The cmpxchg will only match if there was no additional
2341 		 * operation and if we are on the right processor.
2342 		 *
2343 		 * The cmpxchg does the following atomically (without lock semantics!)
2344 		 * 1. Relocate first pointer to the current per cpu area.
2345 		 * 2. Verify that tid and freelist have not been changed
2346 		 * 3. If they were not changed replace tid and freelist
2347 		 *
2348 		 * Since this is without lock semantics the protection is only against
2349 		 * code executing on this cpu *not* from access by other cpus.
2350 		 */
2351 		if (unlikely(!this_cpu_cmpxchg_double(
2352 				s->cpu_slab->freelist, s->cpu_slab->tid,
2353 				object, tid,
2354 				next_object, next_tid(tid)))) {
2355 
2356 			note_cmpxchg_failure("slab_alloc", s, tid);
2357 			goto redo;
2358 		}
2359 		prefetch_freepointer(s, next_object);
2360 		stat(s, ALLOC_FASTPATH);
2361 	}
2362 
2363 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2364 		memset(object, 0, s->objsize);
2365 
2366 	slab_post_alloc_hook(s, gfpflags, object);
2367 
2368 	return object;
2369 }
2370 
2371 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2372 {
2373 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2374 
2375 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2376 
2377 	return ret;
2378 }
2379 EXPORT_SYMBOL(kmem_cache_alloc);
2380 
2381 #ifdef CONFIG_TRACING
2382 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2383 {
2384 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2385 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2386 	return ret;
2387 }
2388 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2389 
2390 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2391 {
2392 	void *ret = kmalloc_order(size, flags, order);
2393 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2394 	return ret;
2395 }
2396 EXPORT_SYMBOL(kmalloc_order_trace);
2397 #endif
2398 
2399 #ifdef CONFIG_NUMA
2400 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2401 {
2402 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2403 
2404 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2405 				    s->objsize, s->size, gfpflags, node);
2406 
2407 	return ret;
2408 }
2409 EXPORT_SYMBOL(kmem_cache_alloc_node);
2410 
2411 #ifdef CONFIG_TRACING
2412 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2413 				    gfp_t gfpflags,
2414 				    int node, size_t size)
2415 {
2416 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2417 
2418 	trace_kmalloc_node(_RET_IP_, ret,
2419 			   size, s->size, gfpflags, node);
2420 	return ret;
2421 }
2422 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2423 #endif
2424 #endif
2425 
2426 /*
2427  * Slow patch handling. This may still be called frequently since objects
2428  * have a longer lifetime than the cpu slabs in most processing loads.
2429  *
2430  * So we still attempt to reduce cache line usage. Just take the slab
2431  * lock and free the item. If there is no additional partial page
2432  * handling required then we can return immediately.
2433  */
2434 static void __slab_free(struct kmem_cache *s, struct page *page,
2435 			void *x, unsigned long addr)
2436 {
2437 	void *prior;
2438 	void **object = (void *)x;
2439 	int was_frozen;
2440 	int inuse;
2441 	struct page new;
2442 	unsigned long counters;
2443 	struct kmem_cache_node *n = NULL;
2444 	unsigned long uninitialized_var(flags);
2445 
2446 	stat(s, FREE_SLOWPATH);
2447 
2448 	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2449 		return;
2450 
2451 	do {
2452 		prior = page->freelist;
2453 		counters = page->counters;
2454 		set_freepointer(s, object, prior);
2455 		new.counters = counters;
2456 		was_frozen = new.frozen;
2457 		new.inuse--;
2458 		if ((!new.inuse || !prior) && !was_frozen && !n) {
2459 
2460 			if (!kmem_cache_debug(s) && !prior)
2461 
2462 				/*
2463 				 * Slab was on no list before and will be partially empty
2464 				 * We can defer the list move and instead freeze it.
2465 				 */
2466 				new.frozen = 1;
2467 
2468 			else { /* Needs to be taken off a list */
2469 
2470 	                        n = get_node(s, page_to_nid(page));
2471 				/*
2472 				 * Speculatively acquire the list_lock.
2473 				 * If the cmpxchg does not succeed then we may
2474 				 * drop the list_lock without any processing.
2475 				 *
2476 				 * Otherwise the list_lock will synchronize with
2477 				 * other processors updating the list of slabs.
2478 				 */
2479 				spin_lock_irqsave(&n->list_lock, flags);
2480 
2481 			}
2482 		}
2483 		inuse = new.inuse;
2484 
2485 	} while (!cmpxchg_double_slab(s, page,
2486 		prior, counters,
2487 		object, new.counters,
2488 		"__slab_free"));
2489 
2490 	if (likely(!n)) {
2491 
2492 		/*
2493 		 * If we just froze the page then put it onto the
2494 		 * per cpu partial list.
2495 		 */
2496 		if (new.frozen && !was_frozen) {
2497 			put_cpu_partial(s, page, 1);
2498 			stat(s, CPU_PARTIAL_FREE);
2499 		}
2500 		/*
2501 		 * The list lock was not taken therefore no list
2502 		 * activity can be necessary.
2503 		 */
2504                 if (was_frozen)
2505                         stat(s, FREE_FROZEN);
2506                 return;
2507         }
2508 
2509 	/*
2510 	 * was_frozen may have been set after we acquired the list_lock in
2511 	 * an earlier loop. So we need to check it here again.
2512 	 */
2513 	if (was_frozen)
2514 		stat(s, FREE_FROZEN);
2515 	else {
2516 		if (unlikely(!inuse && n->nr_partial > s->min_partial))
2517                         goto slab_empty;
2518 
2519 		/*
2520 		 * Objects left in the slab. If it was not on the partial list before
2521 		 * then add it.
2522 		 */
2523 		if (unlikely(!prior)) {
2524 			remove_full(s, page);
2525 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2526 			stat(s, FREE_ADD_PARTIAL);
2527 		}
2528 	}
2529 	spin_unlock_irqrestore(&n->list_lock, flags);
2530 	return;
2531 
2532 slab_empty:
2533 	if (prior) {
2534 		/*
2535 		 * Slab on the partial list.
2536 		 */
2537 		remove_partial(n, page);
2538 		stat(s, FREE_REMOVE_PARTIAL);
2539 	} else
2540 		/* Slab must be on the full list */
2541 		remove_full(s, page);
2542 
2543 	spin_unlock_irqrestore(&n->list_lock, flags);
2544 	stat(s, FREE_SLAB);
2545 	discard_slab(s, page);
2546 }
2547 
2548 /*
2549  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2550  * can perform fastpath freeing without additional function calls.
2551  *
2552  * The fastpath is only possible if we are freeing to the current cpu slab
2553  * of this processor. This typically the case if we have just allocated
2554  * the item before.
2555  *
2556  * If fastpath is not possible then fall back to __slab_free where we deal
2557  * with all sorts of special processing.
2558  */
2559 static __always_inline void slab_free(struct kmem_cache *s,
2560 			struct page *page, void *x, unsigned long addr)
2561 {
2562 	void **object = (void *)x;
2563 	struct kmem_cache_cpu *c;
2564 	unsigned long tid;
2565 
2566 	slab_free_hook(s, x);
2567 
2568 redo:
2569 	/*
2570 	 * Determine the currently cpus per cpu slab.
2571 	 * The cpu may change afterward. However that does not matter since
2572 	 * data is retrieved via this pointer. If we are on the same cpu
2573 	 * during the cmpxchg then the free will succedd.
2574 	 */
2575 	c = __this_cpu_ptr(s->cpu_slab);
2576 
2577 	tid = c->tid;
2578 	barrier();
2579 
2580 	if (likely(page == c->page)) {
2581 		set_freepointer(s, object, c->freelist);
2582 
2583 		if (unlikely(!this_cpu_cmpxchg_double(
2584 				s->cpu_slab->freelist, s->cpu_slab->tid,
2585 				c->freelist, tid,
2586 				object, next_tid(tid)))) {
2587 
2588 			note_cmpxchg_failure("slab_free", s, tid);
2589 			goto redo;
2590 		}
2591 		stat(s, FREE_FASTPATH);
2592 	} else
2593 		__slab_free(s, page, x, addr);
2594 
2595 }
2596 
2597 void kmem_cache_free(struct kmem_cache *s, void *x)
2598 {
2599 	struct page *page;
2600 
2601 	page = virt_to_head_page(x);
2602 
2603 	slab_free(s, page, x, _RET_IP_);
2604 
2605 	trace_kmem_cache_free(_RET_IP_, x);
2606 }
2607 EXPORT_SYMBOL(kmem_cache_free);
2608 
2609 /*
2610  * Object placement in a slab is made very easy because we always start at
2611  * offset 0. If we tune the size of the object to the alignment then we can
2612  * get the required alignment by putting one properly sized object after
2613  * another.
2614  *
2615  * Notice that the allocation order determines the sizes of the per cpu
2616  * caches. Each processor has always one slab available for allocations.
2617  * Increasing the allocation order reduces the number of times that slabs
2618  * must be moved on and off the partial lists and is therefore a factor in
2619  * locking overhead.
2620  */
2621 
2622 /*
2623  * Mininum / Maximum order of slab pages. This influences locking overhead
2624  * and slab fragmentation. A higher order reduces the number of partial slabs
2625  * and increases the number of allocations possible without having to
2626  * take the list_lock.
2627  */
2628 static int slub_min_order;
2629 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2630 static int slub_min_objects;
2631 
2632 /*
2633  * Merge control. If this is set then no merging of slab caches will occur.
2634  * (Could be removed. This was introduced to pacify the merge skeptics.)
2635  */
2636 static int slub_nomerge;
2637 
2638 /*
2639  * Calculate the order of allocation given an slab object size.
2640  *
2641  * The order of allocation has significant impact on performance and other
2642  * system components. Generally order 0 allocations should be preferred since
2643  * order 0 does not cause fragmentation in the page allocator. Larger objects
2644  * be problematic to put into order 0 slabs because there may be too much
2645  * unused space left. We go to a higher order if more than 1/16th of the slab
2646  * would be wasted.
2647  *
2648  * In order to reach satisfactory performance we must ensure that a minimum
2649  * number of objects is in one slab. Otherwise we may generate too much
2650  * activity on the partial lists which requires taking the list_lock. This is
2651  * less a concern for large slabs though which are rarely used.
2652  *
2653  * slub_max_order specifies the order where we begin to stop considering the
2654  * number of objects in a slab as critical. If we reach slub_max_order then
2655  * we try to keep the page order as low as possible. So we accept more waste
2656  * of space in favor of a small page order.
2657  *
2658  * Higher order allocations also allow the placement of more objects in a
2659  * slab and thereby reduce object handling overhead. If the user has
2660  * requested a higher mininum order then we start with that one instead of
2661  * the smallest order which will fit the object.
2662  */
2663 static inline int slab_order(int size, int min_objects,
2664 				int max_order, int fract_leftover, int reserved)
2665 {
2666 	int order;
2667 	int rem;
2668 	int min_order = slub_min_order;
2669 
2670 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2671 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2672 
2673 	for (order = max(min_order,
2674 				fls(min_objects * size - 1) - PAGE_SHIFT);
2675 			order <= max_order; order++) {
2676 
2677 		unsigned long slab_size = PAGE_SIZE << order;
2678 
2679 		if (slab_size < min_objects * size + reserved)
2680 			continue;
2681 
2682 		rem = (slab_size - reserved) % size;
2683 
2684 		if (rem <= slab_size / fract_leftover)
2685 			break;
2686 
2687 	}
2688 
2689 	return order;
2690 }
2691 
2692 static inline int calculate_order(int size, int reserved)
2693 {
2694 	int order;
2695 	int min_objects;
2696 	int fraction;
2697 	int max_objects;
2698 
2699 	/*
2700 	 * Attempt to find best configuration for a slab. This
2701 	 * works by first attempting to generate a layout with
2702 	 * the best configuration and backing off gradually.
2703 	 *
2704 	 * First we reduce the acceptable waste in a slab. Then
2705 	 * we reduce the minimum objects required in a slab.
2706 	 */
2707 	min_objects = slub_min_objects;
2708 	if (!min_objects)
2709 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2710 	max_objects = order_objects(slub_max_order, size, reserved);
2711 	min_objects = min(min_objects, max_objects);
2712 
2713 	while (min_objects > 1) {
2714 		fraction = 16;
2715 		while (fraction >= 4) {
2716 			order = slab_order(size, min_objects,
2717 					slub_max_order, fraction, reserved);
2718 			if (order <= slub_max_order)
2719 				return order;
2720 			fraction /= 2;
2721 		}
2722 		min_objects--;
2723 	}
2724 
2725 	/*
2726 	 * We were unable to place multiple objects in a slab. Now
2727 	 * lets see if we can place a single object there.
2728 	 */
2729 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2730 	if (order <= slub_max_order)
2731 		return order;
2732 
2733 	/*
2734 	 * Doh this slab cannot be placed using slub_max_order.
2735 	 */
2736 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2737 	if (order < MAX_ORDER)
2738 		return order;
2739 	return -ENOSYS;
2740 }
2741 
2742 /*
2743  * Figure out what the alignment of the objects will be.
2744  */
2745 static unsigned long calculate_alignment(unsigned long flags,
2746 		unsigned long align, unsigned long size)
2747 {
2748 	/*
2749 	 * If the user wants hardware cache aligned objects then follow that
2750 	 * suggestion if the object is sufficiently large.
2751 	 *
2752 	 * The hardware cache alignment cannot override the specified
2753 	 * alignment though. If that is greater then use it.
2754 	 */
2755 	if (flags & SLAB_HWCACHE_ALIGN) {
2756 		unsigned long ralign = cache_line_size();
2757 		while (size <= ralign / 2)
2758 			ralign /= 2;
2759 		align = max(align, ralign);
2760 	}
2761 
2762 	if (align < ARCH_SLAB_MINALIGN)
2763 		align = ARCH_SLAB_MINALIGN;
2764 
2765 	return ALIGN(align, sizeof(void *));
2766 }
2767 
2768 static void
2769 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2770 {
2771 	n->nr_partial = 0;
2772 	spin_lock_init(&n->list_lock);
2773 	INIT_LIST_HEAD(&n->partial);
2774 #ifdef CONFIG_SLUB_DEBUG
2775 	atomic_long_set(&n->nr_slabs, 0);
2776 	atomic_long_set(&n->total_objects, 0);
2777 	INIT_LIST_HEAD(&n->full);
2778 #endif
2779 }
2780 
2781 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2782 {
2783 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2784 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2785 
2786 	/*
2787 	 * Must align to double word boundary for the double cmpxchg
2788 	 * instructions to work; see __pcpu_double_call_return_bool().
2789 	 */
2790 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2791 				     2 * sizeof(void *));
2792 
2793 	if (!s->cpu_slab)
2794 		return 0;
2795 
2796 	init_kmem_cache_cpus(s);
2797 
2798 	return 1;
2799 }
2800 
2801 static struct kmem_cache *kmem_cache_node;
2802 
2803 /*
2804  * No kmalloc_node yet so do it by hand. We know that this is the first
2805  * slab on the node for this slabcache. There are no concurrent accesses
2806  * possible.
2807  *
2808  * Note that this function only works on the kmalloc_node_cache
2809  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2810  * memory on a fresh node that has no slab structures yet.
2811  */
2812 static void early_kmem_cache_node_alloc(int node)
2813 {
2814 	struct page *page;
2815 	struct kmem_cache_node *n;
2816 
2817 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2818 
2819 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2820 
2821 	BUG_ON(!page);
2822 	if (page_to_nid(page) != node) {
2823 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2824 				"node %d\n", node);
2825 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2826 				"in order to be able to continue\n");
2827 	}
2828 
2829 	n = page->freelist;
2830 	BUG_ON(!n);
2831 	page->freelist = get_freepointer(kmem_cache_node, n);
2832 	page->inuse = 1;
2833 	page->frozen = 0;
2834 	kmem_cache_node->node[node] = n;
2835 #ifdef CONFIG_SLUB_DEBUG
2836 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2837 	init_tracking(kmem_cache_node, n);
2838 #endif
2839 	init_kmem_cache_node(n, kmem_cache_node);
2840 	inc_slabs_node(kmem_cache_node, node, page->objects);
2841 
2842 	add_partial(n, page, DEACTIVATE_TO_HEAD);
2843 }
2844 
2845 static void free_kmem_cache_nodes(struct kmem_cache *s)
2846 {
2847 	int node;
2848 
2849 	for_each_node_state(node, N_NORMAL_MEMORY) {
2850 		struct kmem_cache_node *n = s->node[node];
2851 
2852 		if (n)
2853 			kmem_cache_free(kmem_cache_node, n);
2854 
2855 		s->node[node] = NULL;
2856 	}
2857 }
2858 
2859 static int init_kmem_cache_nodes(struct kmem_cache *s)
2860 {
2861 	int node;
2862 
2863 	for_each_node_state(node, N_NORMAL_MEMORY) {
2864 		struct kmem_cache_node *n;
2865 
2866 		if (slab_state == DOWN) {
2867 			early_kmem_cache_node_alloc(node);
2868 			continue;
2869 		}
2870 		n = kmem_cache_alloc_node(kmem_cache_node,
2871 						GFP_KERNEL, node);
2872 
2873 		if (!n) {
2874 			free_kmem_cache_nodes(s);
2875 			return 0;
2876 		}
2877 
2878 		s->node[node] = n;
2879 		init_kmem_cache_node(n, s);
2880 	}
2881 	return 1;
2882 }
2883 
2884 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2885 {
2886 	if (min < MIN_PARTIAL)
2887 		min = MIN_PARTIAL;
2888 	else if (min > MAX_PARTIAL)
2889 		min = MAX_PARTIAL;
2890 	s->min_partial = min;
2891 }
2892 
2893 /*
2894  * calculate_sizes() determines the order and the distribution of data within
2895  * a slab object.
2896  */
2897 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2898 {
2899 	unsigned long flags = s->flags;
2900 	unsigned long size = s->objsize;
2901 	unsigned long align = s->align;
2902 	int order;
2903 
2904 	/*
2905 	 * Round up object size to the next word boundary. We can only
2906 	 * place the free pointer at word boundaries and this determines
2907 	 * the possible location of the free pointer.
2908 	 */
2909 	size = ALIGN(size, sizeof(void *));
2910 
2911 #ifdef CONFIG_SLUB_DEBUG
2912 	/*
2913 	 * Determine if we can poison the object itself. If the user of
2914 	 * the slab may touch the object after free or before allocation
2915 	 * then we should never poison the object itself.
2916 	 */
2917 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2918 			!s->ctor)
2919 		s->flags |= __OBJECT_POISON;
2920 	else
2921 		s->flags &= ~__OBJECT_POISON;
2922 
2923 
2924 	/*
2925 	 * If we are Redzoning then check if there is some space between the
2926 	 * end of the object and the free pointer. If not then add an
2927 	 * additional word to have some bytes to store Redzone information.
2928 	 */
2929 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2930 		size += sizeof(void *);
2931 #endif
2932 
2933 	/*
2934 	 * With that we have determined the number of bytes in actual use
2935 	 * by the object. This is the potential offset to the free pointer.
2936 	 */
2937 	s->inuse = size;
2938 
2939 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2940 		s->ctor)) {
2941 		/*
2942 		 * Relocate free pointer after the object if it is not
2943 		 * permitted to overwrite the first word of the object on
2944 		 * kmem_cache_free.
2945 		 *
2946 		 * This is the case if we do RCU, have a constructor or
2947 		 * destructor or are poisoning the objects.
2948 		 */
2949 		s->offset = size;
2950 		size += sizeof(void *);
2951 	}
2952 
2953 #ifdef CONFIG_SLUB_DEBUG
2954 	if (flags & SLAB_STORE_USER)
2955 		/*
2956 		 * Need to store information about allocs and frees after
2957 		 * the object.
2958 		 */
2959 		size += 2 * sizeof(struct track);
2960 
2961 	if (flags & SLAB_RED_ZONE)
2962 		/*
2963 		 * Add some empty padding so that we can catch
2964 		 * overwrites from earlier objects rather than let
2965 		 * tracking information or the free pointer be
2966 		 * corrupted if a user writes before the start
2967 		 * of the object.
2968 		 */
2969 		size += sizeof(void *);
2970 #endif
2971 
2972 	/*
2973 	 * Determine the alignment based on various parameters that the
2974 	 * user specified and the dynamic determination of cache line size
2975 	 * on bootup.
2976 	 */
2977 	align = calculate_alignment(flags, align, s->objsize);
2978 	s->align = align;
2979 
2980 	/*
2981 	 * SLUB stores one object immediately after another beginning from
2982 	 * offset 0. In order to align the objects we have to simply size
2983 	 * each object to conform to the alignment.
2984 	 */
2985 	size = ALIGN(size, align);
2986 	s->size = size;
2987 	if (forced_order >= 0)
2988 		order = forced_order;
2989 	else
2990 		order = calculate_order(size, s->reserved);
2991 
2992 	if (order < 0)
2993 		return 0;
2994 
2995 	s->allocflags = 0;
2996 	if (order)
2997 		s->allocflags |= __GFP_COMP;
2998 
2999 	if (s->flags & SLAB_CACHE_DMA)
3000 		s->allocflags |= SLUB_DMA;
3001 
3002 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3003 		s->allocflags |= __GFP_RECLAIMABLE;
3004 
3005 	/*
3006 	 * Determine the number of objects per slab
3007 	 */
3008 	s->oo = oo_make(order, size, s->reserved);
3009 	s->min = oo_make(get_order(size), size, s->reserved);
3010 	if (oo_objects(s->oo) > oo_objects(s->max))
3011 		s->max = s->oo;
3012 
3013 	return !!oo_objects(s->oo);
3014 
3015 }
3016 
3017 static int kmem_cache_open(struct kmem_cache *s,
3018 		const char *name, size_t size,
3019 		size_t align, unsigned long flags,
3020 		void (*ctor)(void *))
3021 {
3022 	memset(s, 0, kmem_size);
3023 	s->name = name;
3024 	s->ctor = ctor;
3025 	s->objsize = size;
3026 	s->align = align;
3027 	s->flags = kmem_cache_flags(size, flags, name, ctor);
3028 	s->reserved = 0;
3029 
3030 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3031 		s->reserved = sizeof(struct rcu_head);
3032 
3033 	if (!calculate_sizes(s, -1))
3034 		goto error;
3035 	if (disable_higher_order_debug) {
3036 		/*
3037 		 * Disable debugging flags that store metadata if the min slab
3038 		 * order increased.
3039 		 */
3040 		if (get_order(s->size) > get_order(s->objsize)) {
3041 			s->flags &= ~DEBUG_METADATA_FLAGS;
3042 			s->offset = 0;
3043 			if (!calculate_sizes(s, -1))
3044 				goto error;
3045 		}
3046 	}
3047 
3048 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3049     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3050 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3051 		/* Enable fast mode */
3052 		s->flags |= __CMPXCHG_DOUBLE;
3053 #endif
3054 
3055 	/*
3056 	 * The larger the object size is, the more pages we want on the partial
3057 	 * list to avoid pounding the page allocator excessively.
3058 	 */
3059 	set_min_partial(s, ilog2(s->size) / 2);
3060 
3061 	/*
3062 	 * cpu_partial determined the maximum number of objects kept in the
3063 	 * per cpu partial lists of a processor.
3064 	 *
3065 	 * Per cpu partial lists mainly contain slabs that just have one
3066 	 * object freed. If they are used for allocation then they can be
3067 	 * filled up again with minimal effort. The slab will never hit the
3068 	 * per node partial lists and therefore no locking will be required.
3069 	 *
3070 	 * This setting also determines
3071 	 *
3072 	 * A) The number of objects from per cpu partial slabs dumped to the
3073 	 *    per node list when we reach the limit.
3074 	 * B) The number of objects in cpu partial slabs to extract from the
3075 	 *    per node list when we run out of per cpu objects. We only fetch 50%
3076 	 *    to keep some capacity around for frees.
3077 	 */
3078 	if (kmem_cache_debug(s))
3079 		s->cpu_partial = 0;
3080 	else if (s->size >= PAGE_SIZE)
3081 		s->cpu_partial = 2;
3082 	else if (s->size >= 1024)
3083 		s->cpu_partial = 6;
3084 	else if (s->size >= 256)
3085 		s->cpu_partial = 13;
3086 	else
3087 		s->cpu_partial = 30;
3088 
3089 	s->refcount = 1;
3090 #ifdef CONFIG_NUMA
3091 	s->remote_node_defrag_ratio = 1000;
3092 #endif
3093 	if (!init_kmem_cache_nodes(s))
3094 		goto error;
3095 
3096 	if (alloc_kmem_cache_cpus(s))
3097 		return 1;
3098 
3099 	free_kmem_cache_nodes(s);
3100 error:
3101 	if (flags & SLAB_PANIC)
3102 		panic("Cannot create slab %s size=%lu realsize=%u "
3103 			"order=%u offset=%u flags=%lx\n",
3104 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
3105 			s->offset, flags);
3106 	return 0;
3107 }
3108 
3109 /*
3110  * Determine the size of a slab object
3111  */
3112 unsigned int kmem_cache_size(struct kmem_cache *s)
3113 {
3114 	return s->objsize;
3115 }
3116 EXPORT_SYMBOL(kmem_cache_size);
3117 
3118 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3119 							const char *text)
3120 {
3121 #ifdef CONFIG_SLUB_DEBUG
3122 	void *addr = page_address(page);
3123 	void *p;
3124 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3125 				     sizeof(long), GFP_ATOMIC);
3126 	if (!map)
3127 		return;
3128 	slab_err(s, page, "%s", text);
3129 	slab_lock(page);
3130 
3131 	get_map(s, page, map);
3132 	for_each_object(p, s, addr, page->objects) {
3133 
3134 		if (!test_bit(slab_index(p, s, addr), map)) {
3135 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3136 							p, p - addr);
3137 			print_tracking(s, p);
3138 		}
3139 	}
3140 	slab_unlock(page);
3141 	kfree(map);
3142 #endif
3143 }
3144 
3145 /*
3146  * Attempt to free all partial slabs on a node.
3147  * This is called from kmem_cache_close(). We must be the last thread
3148  * using the cache and therefore we do not need to lock anymore.
3149  */
3150 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3151 {
3152 	struct page *page, *h;
3153 
3154 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3155 		if (!page->inuse) {
3156 			remove_partial(n, page);
3157 			discard_slab(s, page);
3158 		} else {
3159 			list_slab_objects(s, page,
3160 				"Objects remaining on kmem_cache_close()");
3161 		}
3162 	}
3163 }
3164 
3165 /*
3166  * Release all resources used by a slab cache.
3167  */
3168 static inline int kmem_cache_close(struct kmem_cache *s)
3169 {
3170 	int node;
3171 
3172 	flush_all(s);
3173 	free_percpu(s->cpu_slab);
3174 	/* Attempt to free all objects */
3175 	for_each_node_state(node, N_NORMAL_MEMORY) {
3176 		struct kmem_cache_node *n = get_node(s, node);
3177 
3178 		free_partial(s, n);
3179 		if (n->nr_partial || slabs_node(s, node))
3180 			return 1;
3181 	}
3182 	free_kmem_cache_nodes(s);
3183 	return 0;
3184 }
3185 
3186 /*
3187  * Close a cache and release the kmem_cache structure
3188  * (must be used for caches created using kmem_cache_create)
3189  */
3190 void kmem_cache_destroy(struct kmem_cache *s)
3191 {
3192 	down_write(&slub_lock);
3193 	s->refcount--;
3194 	if (!s->refcount) {
3195 		list_del(&s->list);
3196 		up_write(&slub_lock);
3197 		if (kmem_cache_close(s)) {
3198 			printk(KERN_ERR "SLUB %s: %s called for cache that "
3199 				"still has objects.\n", s->name, __func__);
3200 			dump_stack();
3201 		}
3202 		if (s->flags & SLAB_DESTROY_BY_RCU)
3203 			rcu_barrier();
3204 		sysfs_slab_remove(s);
3205 	} else
3206 		up_write(&slub_lock);
3207 }
3208 EXPORT_SYMBOL(kmem_cache_destroy);
3209 
3210 /********************************************************************
3211  *		Kmalloc subsystem
3212  *******************************************************************/
3213 
3214 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3215 EXPORT_SYMBOL(kmalloc_caches);
3216 
3217 static struct kmem_cache *kmem_cache;
3218 
3219 #ifdef CONFIG_ZONE_DMA
3220 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3221 #endif
3222 
3223 static int __init setup_slub_min_order(char *str)
3224 {
3225 	get_option(&str, &slub_min_order);
3226 
3227 	return 1;
3228 }
3229 
3230 __setup("slub_min_order=", setup_slub_min_order);
3231 
3232 static int __init setup_slub_max_order(char *str)
3233 {
3234 	get_option(&str, &slub_max_order);
3235 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3236 
3237 	return 1;
3238 }
3239 
3240 __setup("slub_max_order=", setup_slub_max_order);
3241 
3242 static int __init setup_slub_min_objects(char *str)
3243 {
3244 	get_option(&str, &slub_min_objects);
3245 
3246 	return 1;
3247 }
3248 
3249 __setup("slub_min_objects=", setup_slub_min_objects);
3250 
3251 static int __init setup_slub_nomerge(char *str)
3252 {
3253 	slub_nomerge = 1;
3254 	return 1;
3255 }
3256 
3257 __setup("slub_nomerge", setup_slub_nomerge);
3258 
3259 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3260 						int size, unsigned int flags)
3261 {
3262 	struct kmem_cache *s;
3263 
3264 	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3265 
3266 	/*
3267 	 * This function is called with IRQs disabled during early-boot on
3268 	 * single CPU so there's no need to take slub_lock here.
3269 	 */
3270 	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3271 								flags, NULL))
3272 		goto panic;
3273 
3274 	list_add(&s->list, &slab_caches);
3275 	return s;
3276 
3277 panic:
3278 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3279 	return NULL;
3280 }
3281 
3282 /*
3283  * Conversion table for small slabs sizes / 8 to the index in the
3284  * kmalloc array. This is necessary for slabs < 192 since we have non power
3285  * of two cache sizes there. The size of larger slabs can be determined using
3286  * fls.
3287  */
3288 static s8 size_index[24] = {
3289 	3,	/* 8 */
3290 	4,	/* 16 */
3291 	5,	/* 24 */
3292 	5,	/* 32 */
3293 	6,	/* 40 */
3294 	6,	/* 48 */
3295 	6,	/* 56 */
3296 	6,	/* 64 */
3297 	1,	/* 72 */
3298 	1,	/* 80 */
3299 	1,	/* 88 */
3300 	1,	/* 96 */
3301 	7,	/* 104 */
3302 	7,	/* 112 */
3303 	7,	/* 120 */
3304 	7,	/* 128 */
3305 	2,	/* 136 */
3306 	2,	/* 144 */
3307 	2,	/* 152 */
3308 	2,	/* 160 */
3309 	2,	/* 168 */
3310 	2,	/* 176 */
3311 	2,	/* 184 */
3312 	2	/* 192 */
3313 };
3314 
3315 static inline int size_index_elem(size_t bytes)
3316 {
3317 	return (bytes - 1) / 8;
3318 }
3319 
3320 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3321 {
3322 	int index;
3323 
3324 	if (size <= 192) {
3325 		if (!size)
3326 			return ZERO_SIZE_PTR;
3327 
3328 		index = size_index[size_index_elem(size)];
3329 	} else
3330 		index = fls(size - 1);
3331 
3332 #ifdef CONFIG_ZONE_DMA
3333 	if (unlikely((flags & SLUB_DMA)))
3334 		return kmalloc_dma_caches[index];
3335 
3336 #endif
3337 	return kmalloc_caches[index];
3338 }
3339 
3340 void *__kmalloc(size_t size, gfp_t flags)
3341 {
3342 	struct kmem_cache *s;
3343 	void *ret;
3344 
3345 	if (unlikely(size > SLUB_MAX_SIZE))
3346 		return kmalloc_large(size, flags);
3347 
3348 	s = get_slab(size, flags);
3349 
3350 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3351 		return s;
3352 
3353 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3354 
3355 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3356 
3357 	return ret;
3358 }
3359 EXPORT_SYMBOL(__kmalloc);
3360 
3361 #ifdef CONFIG_NUMA
3362 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3363 {
3364 	struct page *page;
3365 	void *ptr = NULL;
3366 
3367 	flags |= __GFP_COMP | __GFP_NOTRACK;
3368 	page = alloc_pages_node(node, flags, get_order(size));
3369 	if (page)
3370 		ptr = page_address(page);
3371 
3372 	kmemleak_alloc(ptr, size, 1, flags);
3373 	return ptr;
3374 }
3375 
3376 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3377 {
3378 	struct kmem_cache *s;
3379 	void *ret;
3380 
3381 	if (unlikely(size > SLUB_MAX_SIZE)) {
3382 		ret = kmalloc_large_node(size, flags, node);
3383 
3384 		trace_kmalloc_node(_RET_IP_, ret,
3385 				   size, PAGE_SIZE << get_order(size),
3386 				   flags, node);
3387 
3388 		return ret;
3389 	}
3390 
3391 	s = get_slab(size, flags);
3392 
3393 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3394 		return s;
3395 
3396 	ret = slab_alloc(s, flags, node, _RET_IP_);
3397 
3398 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3399 
3400 	return ret;
3401 }
3402 EXPORT_SYMBOL(__kmalloc_node);
3403 #endif
3404 
3405 size_t ksize(const void *object)
3406 {
3407 	struct page *page;
3408 
3409 	if (unlikely(object == ZERO_SIZE_PTR))
3410 		return 0;
3411 
3412 	page = virt_to_head_page(object);
3413 
3414 	if (unlikely(!PageSlab(page))) {
3415 		WARN_ON(!PageCompound(page));
3416 		return PAGE_SIZE << compound_order(page);
3417 	}
3418 
3419 	return slab_ksize(page->slab);
3420 }
3421 EXPORT_SYMBOL(ksize);
3422 
3423 #ifdef CONFIG_SLUB_DEBUG
3424 bool verify_mem_not_deleted(const void *x)
3425 {
3426 	struct page *page;
3427 	void *object = (void *)x;
3428 	unsigned long flags;
3429 	bool rv;
3430 
3431 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3432 		return false;
3433 
3434 	local_irq_save(flags);
3435 
3436 	page = virt_to_head_page(x);
3437 	if (unlikely(!PageSlab(page))) {
3438 		/* maybe it was from stack? */
3439 		rv = true;
3440 		goto out_unlock;
3441 	}
3442 
3443 	slab_lock(page);
3444 	if (on_freelist(page->slab, page, object)) {
3445 		object_err(page->slab, page, object, "Object is on free-list");
3446 		rv = false;
3447 	} else {
3448 		rv = true;
3449 	}
3450 	slab_unlock(page);
3451 
3452 out_unlock:
3453 	local_irq_restore(flags);
3454 	return rv;
3455 }
3456 EXPORT_SYMBOL(verify_mem_not_deleted);
3457 #endif
3458 
3459 void kfree(const void *x)
3460 {
3461 	struct page *page;
3462 	void *object = (void *)x;
3463 
3464 	trace_kfree(_RET_IP_, x);
3465 
3466 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3467 		return;
3468 
3469 	page = virt_to_head_page(x);
3470 	if (unlikely(!PageSlab(page))) {
3471 		BUG_ON(!PageCompound(page));
3472 		kmemleak_free(x);
3473 		put_page(page);
3474 		return;
3475 	}
3476 	slab_free(page->slab, page, object, _RET_IP_);
3477 }
3478 EXPORT_SYMBOL(kfree);
3479 
3480 /*
3481  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3482  * the remaining slabs by the number of items in use. The slabs with the
3483  * most items in use come first. New allocations will then fill those up
3484  * and thus they can be removed from the partial lists.
3485  *
3486  * The slabs with the least items are placed last. This results in them
3487  * being allocated from last increasing the chance that the last objects
3488  * are freed in them.
3489  */
3490 int kmem_cache_shrink(struct kmem_cache *s)
3491 {
3492 	int node;
3493 	int i;
3494 	struct kmem_cache_node *n;
3495 	struct page *page;
3496 	struct page *t;
3497 	int objects = oo_objects(s->max);
3498 	struct list_head *slabs_by_inuse =
3499 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3500 	unsigned long flags;
3501 
3502 	if (!slabs_by_inuse)
3503 		return -ENOMEM;
3504 
3505 	flush_all(s);
3506 	for_each_node_state(node, N_NORMAL_MEMORY) {
3507 		n = get_node(s, node);
3508 
3509 		if (!n->nr_partial)
3510 			continue;
3511 
3512 		for (i = 0; i < objects; i++)
3513 			INIT_LIST_HEAD(slabs_by_inuse + i);
3514 
3515 		spin_lock_irqsave(&n->list_lock, flags);
3516 
3517 		/*
3518 		 * Build lists indexed by the items in use in each slab.
3519 		 *
3520 		 * Note that concurrent frees may occur while we hold the
3521 		 * list_lock. page->inuse here is the upper limit.
3522 		 */
3523 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3524 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3525 			if (!page->inuse)
3526 				n->nr_partial--;
3527 		}
3528 
3529 		/*
3530 		 * Rebuild the partial list with the slabs filled up most
3531 		 * first and the least used slabs at the end.
3532 		 */
3533 		for (i = objects - 1; i > 0; i--)
3534 			list_splice(slabs_by_inuse + i, n->partial.prev);
3535 
3536 		spin_unlock_irqrestore(&n->list_lock, flags);
3537 
3538 		/* Release empty slabs */
3539 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3540 			discard_slab(s, page);
3541 	}
3542 
3543 	kfree(slabs_by_inuse);
3544 	return 0;
3545 }
3546 EXPORT_SYMBOL(kmem_cache_shrink);
3547 
3548 #if defined(CONFIG_MEMORY_HOTPLUG)
3549 static int slab_mem_going_offline_callback(void *arg)
3550 {
3551 	struct kmem_cache *s;
3552 
3553 	down_read(&slub_lock);
3554 	list_for_each_entry(s, &slab_caches, list)
3555 		kmem_cache_shrink(s);
3556 	up_read(&slub_lock);
3557 
3558 	return 0;
3559 }
3560 
3561 static void slab_mem_offline_callback(void *arg)
3562 {
3563 	struct kmem_cache_node *n;
3564 	struct kmem_cache *s;
3565 	struct memory_notify *marg = arg;
3566 	int offline_node;
3567 
3568 	offline_node = marg->status_change_nid;
3569 
3570 	/*
3571 	 * If the node still has available memory. we need kmem_cache_node
3572 	 * for it yet.
3573 	 */
3574 	if (offline_node < 0)
3575 		return;
3576 
3577 	down_read(&slub_lock);
3578 	list_for_each_entry(s, &slab_caches, list) {
3579 		n = get_node(s, offline_node);
3580 		if (n) {
3581 			/*
3582 			 * if n->nr_slabs > 0, slabs still exist on the node
3583 			 * that is going down. We were unable to free them,
3584 			 * and offline_pages() function shouldn't call this
3585 			 * callback. So, we must fail.
3586 			 */
3587 			BUG_ON(slabs_node(s, offline_node));
3588 
3589 			s->node[offline_node] = NULL;
3590 			kmem_cache_free(kmem_cache_node, n);
3591 		}
3592 	}
3593 	up_read(&slub_lock);
3594 }
3595 
3596 static int slab_mem_going_online_callback(void *arg)
3597 {
3598 	struct kmem_cache_node *n;
3599 	struct kmem_cache *s;
3600 	struct memory_notify *marg = arg;
3601 	int nid = marg->status_change_nid;
3602 	int ret = 0;
3603 
3604 	/*
3605 	 * If the node's memory is already available, then kmem_cache_node is
3606 	 * already created. Nothing to do.
3607 	 */
3608 	if (nid < 0)
3609 		return 0;
3610 
3611 	/*
3612 	 * We are bringing a node online. No memory is available yet. We must
3613 	 * allocate a kmem_cache_node structure in order to bring the node
3614 	 * online.
3615 	 */
3616 	down_read(&slub_lock);
3617 	list_for_each_entry(s, &slab_caches, list) {
3618 		/*
3619 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3620 		 *      since memory is not yet available from the node that
3621 		 *      is brought up.
3622 		 */
3623 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3624 		if (!n) {
3625 			ret = -ENOMEM;
3626 			goto out;
3627 		}
3628 		init_kmem_cache_node(n, s);
3629 		s->node[nid] = n;
3630 	}
3631 out:
3632 	up_read(&slub_lock);
3633 	return ret;
3634 }
3635 
3636 static int slab_memory_callback(struct notifier_block *self,
3637 				unsigned long action, void *arg)
3638 {
3639 	int ret = 0;
3640 
3641 	switch (action) {
3642 	case MEM_GOING_ONLINE:
3643 		ret = slab_mem_going_online_callback(arg);
3644 		break;
3645 	case MEM_GOING_OFFLINE:
3646 		ret = slab_mem_going_offline_callback(arg);
3647 		break;
3648 	case MEM_OFFLINE:
3649 	case MEM_CANCEL_ONLINE:
3650 		slab_mem_offline_callback(arg);
3651 		break;
3652 	case MEM_ONLINE:
3653 	case MEM_CANCEL_OFFLINE:
3654 		break;
3655 	}
3656 	if (ret)
3657 		ret = notifier_from_errno(ret);
3658 	else
3659 		ret = NOTIFY_OK;
3660 	return ret;
3661 }
3662 
3663 #endif /* CONFIG_MEMORY_HOTPLUG */
3664 
3665 /********************************************************************
3666  *			Basic setup of slabs
3667  *******************************************************************/
3668 
3669 /*
3670  * Used for early kmem_cache structures that were allocated using
3671  * the page allocator
3672  */
3673 
3674 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3675 {
3676 	int node;
3677 
3678 	list_add(&s->list, &slab_caches);
3679 	s->refcount = -1;
3680 
3681 	for_each_node_state(node, N_NORMAL_MEMORY) {
3682 		struct kmem_cache_node *n = get_node(s, node);
3683 		struct page *p;
3684 
3685 		if (n) {
3686 			list_for_each_entry(p, &n->partial, lru)
3687 				p->slab = s;
3688 
3689 #ifdef CONFIG_SLUB_DEBUG
3690 			list_for_each_entry(p, &n->full, lru)
3691 				p->slab = s;
3692 #endif
3693 		}
3694 	}
3695 }
3696 
3697 void __init kmem_cache_init(void)
3698 {
3699 	int i;
3700 	int caches = 0;
3701 	struct kmem_cache *temp_kmem_cache;
3702 	int order;
3703 	struct kmem_cache *temp_kmem_cache_node;
3704 	unsigned long kmalloc_size;
3705 
3706 	if (debug_guardpage_minorder())
3707 		slub_max_order = 0;
3708 
3709 	kmem_size = offsetof(struct kmem_cache, node) +
3710 				nr_node_ids * sizeof(struct kmem_cache_node *);
3711 
3712 	/* Allocate two kmem_caches from the page allocator */
3713 	kmalloc_size = ALIGN(kmem_size, cache_line_size());
3714 	order = get_order(2 * kmalloc_size);
3715 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3716 
3717 	/*
3718 	 * Must first have the slab cache available for the allocations of the
3719 	 * struct kmem_cache_node's. There is special bootstrap code in
3720 	 * kmem_cache_open for slab_state == DOWN.
3721 	 */
3722 	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3723 
3724 	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3725 		sizeof(struct kmem_cache_node),
3726 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3727 
3728 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3729 
3730 	/* Able to allocate the per node structures */
3731 	slab_state = PARTIAL;
3732 
3733 	temp_kmem_cache = kmem_cache;
3734 	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3735 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3736 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3737 	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3738 
3739 	/*
3740 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3741 	 * kmem_cache_node is separately allocated so no need to
3742 	 * update any list pointers.
3743 	 */
3744 	temp_kmem_cache_node = kmem_cache_node;
3745 
3746 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3747 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3748 
3749 	kmem_cache_bootstrap_fixup(kmem_cache_node);
3750 
3751 	caches++;
3752 	kmem_cache_bootstrap_fixup(kmem_cache);
3753 	caches++;
3754 	/* Free temporary boot structure */
3755 	free_pages((unsigned long)temp_kmem_cache, order);
3756 
3757 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3758 
3759 	/*
3760 	 * Patch up the size_index table if we have strange large alignment
3761 	 * requirements for the kmalloc array. This is only the case for
3762 	 * MIPS it seems. The standard arches will not generate any code here.
3763 	 *
3764 	 * Largest permitted alignment is 256 bytes due to the way we
3765 	 * handle the index determination for the smaller caches.
3766 	 *
3767 	 * Make sure that nothing crazy happens if someone starts tinkering
3768 	 * around with ARCH_KMALLOC_MINALIGN
3769 	 */
3770 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3771 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3772 
3773 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3774 		int elem = size_index_elem(i);
3775 		if (elem >= ARRAY_SIZE(size_index))
3776 			break;
3777 		size_index[elem] = KMALLOC_SHIFT_LOW;
3778 	}
3779 
3780 	if (KMALLOC_MIN_SIZE == 64) {
3781 		/*
3782 		 * The 96 byte size cache is not used if the alignment
3783 		 * is 64 byte.
3784 		 */
3785 		for (i = 64 + 8; i <= 96; i += 8)
3786 			size_index[size_index_elem(i)] = 7;
3787 	} else if (KMALLOC_MIN_SIZE == 128) {
3788 		/*
3789 		 * The 192 byte sized cache is not used if the alignment
3790 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3791 		 * instead.
3792 		 */
3793 		for (i = 128 + 8; i <= 192; i += 8)
3794 			size_index[size_index_elem(i)] = 8;
3795 	}
3796 
3797 	/* Caches that are not of the two-to-the-power-of size */
3798 	if (KMALLOC_MIN_SIZE <= 32) {
3799 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3800 		caches++;
3801 	}
3802 
3803 	if (KMALLOC_MIN_SIZE <= 64) {
3804 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3805 		caches++;
3806 	}
3807 
3808 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3809 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3810 		caches++;
3811 	}
3812 
3813 	slab_state = UP;
3814 
3815 	/* Provide the correct kmalloc names now that the caches are up */
3816 	if (KMALLOC_MIN_SIZE <= 32) {
3817 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3818 		BUG_ON(!kmalloc_caches[1]->name);
3819 	}
3820 
3821 	if (KMALLOC_MIN_SIZE <= 64) {
3822 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3823 		BUG_ON(!kmalloc_caches[2]->name);
3824 	}
3825 
3826 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3827 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3828 
3829 		BUG_ON(!s);
3830 		kmalloc_caches[i]->name = s;
3831 	}
3832 
3833 #ifdef CONFIG_SMP
3834 	register_cpu_notifier(&slab_notifier);
3835 #endif
3836 
3837 #ifdef CONFIG_ZONE_DMA
3838 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3839 		struct kmem_cache *s = kmalloc_caches[i];
3840 
3841 		if (s && s->size) {
3842 			char *name = kasprintf(GFP_NOWAIT,
3843 				 "dma-kmalloc-%d", s->objsize);
3844 
3845 			BUG_ON(!name);
3846 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3847 				s->objsize, SLAB_CACHE_DMA);
3848 		}
3849 	}
3850 #endif
3851 	printk(KERN_INFO
3852 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3853 		" CPUs=%d, Nodes=%d\n",
3854 		caches, cache_line_size(),
3855 		slub_min_order, slub_max_order, slub_min_objects,
3856 		nr_cpu_ids, nr_node_ids);
3857 }
3858 
3859 void __init kmem_cache_init_late(void)
3860 {
3861 }
3862 
3863 /*
3864  * Find a mergeable slab cache
3865  */
3866 static int slab_unmergeable(struct kmem_cache *s)
3867 {
3868 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3869 		return 1;
3870 
3871 	if (s->ctor)
3872 		return 1;
3873 
3874 	/*
3875 	 * We may have set a slab to be unmergeable during bootstrap.
3876 	 */
3877 	if (s->refcount < 0)
3878 		return 1;
3879 
3880 	return 0;
3881 }
3882 
3883 static struct kmem_cache *find_mergeable(size_t size,
3884 		size_t align, unsigned long flags, const char *name,
3885 		void (*ctor)(void *))
3886 {
3887 	struct kmem_cache *s;
3888 
3889 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3890 		return NULL;
3891 
3892 	if (ctor)
3893 		return NULL;
3894 
3895 	size = ALIGN(size, sizeof(void *));
3896 	align = calculate_alignment(flags, align, size);
3897 	size = ALIGN(size, align);
3898 	flags = kmem_cache_flags(size, flags, name, NULL);
3899 
3900 	list_for_each_entry(s, &slab_caches, list) {
3901 		if (slab_unmergeable(s))
3902 			continue;
3903 
3904 		if (size > s->size)
3905 			continue;
3906 
3907 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3908 				continue;
3909 		/*
3910 		 * Check if alignment is compatible.
3911 		 * Courtesy of Adrian Drzewiecki
3912 		 */
3913 		if ((s->size & ~(align - 1)) != s->size)
3914 			continue;
3915 
3916 		if (s->size - size >= sizeof(void *))
3917 			continue;
3918 
3919 		return s;
3920 	}
3921 	return NULL;
3922 }
3923 
3924 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3925 		size_t align, unsigned long flags, void (*ctor)(void *))
3926 {
3927 	struct kmem_cache *s;
3928 	char *n;
3929 
3930 	if (WARN_ON(!name))
3931 		return NULL;
3932 
3933 	down_write(&slub_lock);
3934 	s = find_mergeable(size, align, flags, name, ctor);
3935 	if (s) {
3936 		s->refcount++;
3937 		/*
3938 		 * Adjust the object sizes so that we clear
3939 		 * the complete object on kzalloc.
3940 		 */
3941 		s->objsize = max(s->objsize, (int)size);
3942 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3943 
3944 		if (sysfs_slab_alias(s, name)) {
3945 			s->refcount--;
3946 			goto err;
3947 		}
3948 		up_write(&slub_lock);
3949 		return s;
3950 	}
3951 
3952 	n = kstrdup(name, GFP_KERNEL);
3953 	if (!n)
3954 		goto err;
3955 
3956 	s = kmalloc(kmem_size, GFP_KERNEL);
3957 	if (s) {
3958 		if (kmem_cache_open(s, n,
3959 				size, align, flags, ctor)) {
3960 			list_add(&s->list, &slab_caches);
3961 			up_write(&slub_lock);
3962 			if (sysfs_slab_add(s)) {
3963 				down_write(&slub_lock);
3964 				list_del(&s->list);
3965 				kfree(n);
3966 				kfree(s);
3967 				goto err;
3968 			}
3969 			return s;
3970 		}
3971 		kfree(n);
3972 		kfree(s);
3973 	}
3974 err:
3975 	up_write(&slub_lock);
3976 
3977 	if (flags & SLAB_PANIC)
3978 		panic("Cannot create slabcache %s\n", name);
3979 	else
3980 		s = NULL;
3981 	return s;
3982 }
3983 EXPORT_SYMBOL(kmem_cache_create);
3984 
3985 #ifdef CONFIG_SMP
3986 /*
3987  * Use the cpu notifier to insure that the cpu slabs are flushed when
3988  * necessary.
3989  */
3990 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3991 		unsigned long action, void *hcpu)
3992 {
3993 	long cpu = (long)hcpu;
3994 	struct kmem_cache *s;
3995 	unsigned long flags;
3996 
3997 	switch (action) {
3998 	case CPU_UP_CANCELED:
3999 	case CPU_UP_CANCELED_FROZEN:
4000 	case CPU_DEAD:
4001 	case CPU_DEAD_FROZEN:
4002 		down_read(&slub_lock);
4003 		list_for_each_entry(s, &slab_caches, list) {
4004 			local_irq_save(flags);
4005 			__flush_cpu_slab(s, cpu);
4006 			local_irq_restore(flags);
4007 		}
4008 		up_read(&slub_lock);
4009 		break;
4010 	default:
4011 		break;
4012 	}
4013 	return NOTIFY_OK;
4014 }
4015 
4016 static struct notifier_block __cpuinitdata slab_notifier = {
4017 	.notifier_call = slab_cpuup_callback
4018 };
4019 
4020 #endif
4021 
4022 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4023 {
4024 	struct kmem_cache *s;
4025 	void *ret;
4026 
4027 	if (unlikely(size > SLUB_MAX_SIZE))
4028 		return kmalloc_large(size, gfpflags);
4029 
4030 	s = get_slab(size, gfpflags);
4031 
4032 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4033 		return s;
4034 
4035 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4036 
4037 	/* Honor the call site pointer we received. */
4038 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4039 
4040 	return ret;
4041 }
4042 
4043 #ifdef CONFIG_NUMA
4044 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4045 					int node, unsigned long caller)
4046 {
4047 	struct kmem_cache *s;
4048 	void *ret;
4049 
4050 	if (unlikely(size > SLUB_MAX_SIZE)) {
4051 		ret = kmalloc_large_node(size, gfpflags, node);
4052 
4053 		trace_kmalloc_node(caller, ret,
4054 				   size, PAGE_SIZE << get_order(size),
4055 				   gfpflags, node);
4056 
4057 		return ret;
4058 	}
4059 
4060 	s = get_slab(size, gfpflags);
4061 
4062 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4063 		return s;
4064 
4065 	ret = slab_alloc(s, gfpflags, node, caller);
4066 
4067 	/* Honor the call site pointer we received. */
4068 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4069 
4070 	return ret;
4071 }
4072 #endif
4073 
4074 #ifdef CONFIG_SYSFS
4075 static int count_inuse(struct page *page)
4076 {
4077 	return page->inuse;
4078 }
4079 
4080 static int count_total(struct page *page)
4081 {
4082 	return page->objects;
4083 }
4084 #endif
4085 
4086 #ifdef CONFIG_SLUB_DEBUG
4087 static int validate_slab(struct kmem_cache *s, struct page *page,
4088 						unsigned long *map)
4089 {
4090 	void *p;
4091 	void *addr = page_address(page);
4092 
4093 	if (!check_slab(s, page) ||
4094 			!on_freelist(s, page, NULL))
4095 		return 0;
4096 
4097 	/* Now we know that a valid freelist exists */
4098 	bitmap_zero(map, page->objects);
4099 
4100 	get_map(s, page, map);
4101 	for_each_object(p, s, addr, page->objects) {
4102 		if (test_bit(slab_index(p, s, addr), map))
4103 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4104 				return 0;
4105 	}
4106 
4107 	for_each_object(p, s, addr, page->objects)
4108 		if (!test_bit(slab_index(p, s, addr), map))
4109 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4110 				return 0;
4111 	return 1;
4112 }
4113 
4114 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4115 						unsigned long *map)
4116 {
4117 	slab_lock(page);
4118 	validate_slab(s, page, map);
4119 	slab_unlock(page);
4120 }
4121 
4122 static int validate_slab_node(struct kmem_cache *s,
4123 		struct kmem_cache_node *n, unsigned long *map)
4124 {
4125 	unsigned long count = 0;
4126 	struct page *page;
4127 	unsigned long flags;
4128 
4129 	spin_lock_irqsave(&n->list_lock, flags);
4130 
4131 	list_for_each_entry(page, &n->partial, lru) {
4132 		validate_slab_slab(s, page, map);
4133 		count++;
4134 	}
4135 	if (count != n->nr_partial)
4136 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4137 			"counter=%ld\n", s->name, count, n->nr_partial);
4138 
4139 	if (!(s->flags & SLAB_STORE_USER))
4140 		goto out;
4141 
4142 	list_for_each_entry(page, &n->full, lru) {
4143 		validate_slab_slab(s, page, map);
4144 		count++;
4145 	}
4146 	if (count != atomic_long_read(&n->nr_slabs))
4147 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4148 			"counter=%ld\n", s->name, count,
4149 			atomic_long_read(&n->nr_slabs));
4150 
4151 out:
4152 	spin_unlock_irqrestore(&n->list_lock, flags);
4153 	return count;
4154 }
4155 
4156 static long validate_slab_cache(struct kmem_cache *s)
4157 {
4158 	int node;
4159 	unsigned long count = 0;
4160 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4161 				sizeof(unsigned long), GFP_KERNEL);
4162 
4163 	if (!map)
4164 		return -ENOMEM;
4165 
4166 	flush_all(s);
4167 	for_each_node_state(node, N_NORMAL_MEMORY) {
4168 		struct kmem_cache_node *n = get_node(s, node);
4169 
4170 		count += validate_slab_node(s, n, map);
4171 	}
4172 	kfree(map);
4173 	return count;
4174 }
4175 /*
4176  * Generate lists of code addresses where slabcache objects are allocated
4177  * and freed.
4178  */
4179 
4180 struct location {
4181 	unsigned long count;
4182 	unsigned long addr;
4183 	long long sum_time;
4184 	long min_time;
4185 	long max_time;
4186 	long min_pid;
4187 	long max_pid;
4188 	DECLARE_BITMAP(cpus, NR_CPUS);
4189 	nodemask_t nodes;
4190 };
4191 
4192 struct loc_track {
4193 	unsigned long max;
4194 	unsigned long count;
4195 	struct location *loc;
4196 };
4197 
4198 static void free_loc_track(struct loc_track *t)
4199 {
4200 	if (t->max)
4201 		free_pages((unsigned long)t->loc,
4202 			get_order(sizeof(struct location) * t->max));
4203 }
4204 
4205 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4206 {
4207 	struct location *l;
4208 	int order;
4209 
4210 	order = get_order(sizeof(struct location) * max);
4211 
4212 	l = (void *)__get_free_pages(flags, order);
4213 	if (!l)
4214 		return 0;
4215 
4216 	if (t->count) {
4217 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4218 		free_loc_track(t);
4219 	}
4220 	t->max = max;
4221 	t->loc = l;
4222 	return 1;
4223 }
4224 
4225 static int add_location(struct loc_track *t, struct kmem_cache *s,
4226 				const struct track *track)
4227 {
4228 	long start, end, pos;
4229 	struct location *l;
4230 	unsigned long caddr;
4231 	unsigned long age = jiffies - track->when;
4232 
4233 	start = -1;
4234 	end = t->count;
4235 
4236 	for ( ; ; ) {
4237 		pos = start + (end - start + 1) / 2;
4238 
4239 		/*
4240 		 * There is nothing at "end". If we end up there
4241 		 * we need to add something to before end.
4242 		 */
4243 		if (pos == end)
4244 			break;
4245 
4246 		caddr = t->loc[pos].addr;
4247 		if (track->addr == caddr) {
4248 
4249 			l = &t->loc[pos];
4250 			l->count++;
4251 			if (track->when) {
4252 				l->sum_time += age;
4253 				if (age < l->min_time)
4254 					l->min_time = age;
4255 				if (age > l->max_time)
4256 					l->max_time = age;
4257 
4258 				if (track->pid < l->min_pid)
4259 					l->min_pid = track->pid;
4260 				if (track->pid > l->max_pid)
4261 					l->max_pid = track->pid;
4262 
4263 				cpumask_set_cpu(track->cpu,
4264 						to_cpumask(l->cpus));
4265 			}
4266 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4267 			return 1;
4268 		}
4269 
4270 		if (track->addr < caddr)
4271 			end = pos;
4272 		else
4273 			start = pos;
4274 	}
4275 
4276 	/*
4277 	 * Not found. Insert new tracking element.
4278 	 */
4279 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4280 		return 0;
4281 
4282 	l = t->loc + pos;
4283 	if (pos < t->count)
4284 		memmove(l + 1, l,
4285 			(t->count - pos) * sizeof(struct location));
4286 	t->count++;
4287 	l->count = 1;
4288 	l->addr = track->addr;
4289 	l->sum_time = age;
4290 	l->min_time = age;
4291 	l->max_time = age;
4292 	l->min_pid = track->pid;
4293 	l->max_pid = track->pid;
4294 	cpumask_clear(to_cpumask(l->cpus));
4295 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4296 	nodes_clear(l->nodes);
4297 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4298 	return 1;
4299 }
4300 
4301 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4302 		struct page *page, enum track_item alloc,
4303 		unsigned long *map)
4304 {
4305 	void *addr = page_address(page);
4306 	void *p;
4307 
4308 	bitmap_zero(map, page->objects);
4309 	get_map(s, page, map);
4310 
4311 	for_each_object(p, s, addr, page->objects)
4312 		if (!test_bit(slab_index(p, s, addr), map))
4313 			add_location(t, s, get_track(s, p, alloc));
4314 }
4315 
4316 static int list_locations(struct kmem_cache *s, char *buf,
4317 					enum track_item alloc)
4318 {
4319 	int len = 0;
4320 	unsigned long i;
4321 	struct loc_track t = { 0, 0, NULL };
4322 	int node;
4323 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4324 				     sizeof(unsigned long), GFP_KERNEL);
4325 
4326 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4327 				     GFP_TEMPORARY)) {
4328 		kfree(map);
4329 		return sprintf(buf, "Out of memory\n");
4330 	}
4331 	/* Push back cpu slabs */
4332 	flush_all(s);
4333 
4334 	for_each_node_state(node, N_NORMAL_MEMORY) {
4335 		struct kmem_cache_node *n = get_node(s, node);
4336 		unsigned long flags;
4337 		struct page *page;
4338 
4339 		if (!atomic_long_read(&n->nr_slabs))
4340 			continue;
4341 
4342 		spin_lock_irqsave(&n->list_lock, flags);
4343 		list_for_each_entry(page, &n->partial, lru)
4344 			process_slab(&t, s, page, alloc, map);
4345 		list_for_each_entry(page, &n->full, lru)
4346 			process_slab(&t, s, page, alloc, map);
4347 		spin_unlock_irqrestore(&n->list_lock, flags);
4348 	}
4349 
4350 	for (i = 0; i < t.count; i++) {
4351 		struct location *l = &t.loc[i];
4352 
4353 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4354 			break;
4355 		len += sprintf(buf + len, "%7ld ", l->count);
4356 
4357 		if (l->addr)
4358 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4359 		else
4360 			len += sprintf(buf + len, "<not-available>");
4361 
4362 		if (l->sum_time != l->min_time) {
4363 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4364 				l->min_time,
4365 				(long)div_u64(l->sum_time, l->count),
4366 				l->max_time);
4367 		} else
4368 			len += sprintf(buf + len, " age=%ld",
4369 				l->min_time);
4370 
4371 		if (l->min_pid != l->max_pid)
4372 			len += sprintf(buf + len, " pid=%ld-%ld",
4373 				l->min_pid, l->max_pid);
4374 		else
4375 			len += sprintf(buf + len, " pid=%ld",
4376 				l->min_pid);
4377 
4378 		if (num_online_cpus() > 1 &&
4379 				!cpumask_empty(to_cpumask(l->cpus)) &&
4380 				len < PAGE_SIZE - 60) {
4381 			len += sprintf(buf + len, " cpus=");
4382 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4383 						 to_cpumask(l->cpus));
4384 		}
4385 
4386 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4387 				len < PAGE_SIZE - 60) {
4388 			len += sprintf(buf + len, " nodes=");
4389 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4390 					l->nodes);
4391 		}
4392 
4393 		len += sprintf(buf + len, "\n");
4394 	}
4395 
4396 	free_loc_track(&t);
4397 	kfree(map);
4398 	if (!t.count)
4399 		len += sprintf(buf, "No data\n");
4400 	return len;
4401 }
4402 #endif
4403 
4404 #ifdef SLUB_RESILIENCY_TEST
4405 static void resiliency_test(void)
4406 {
4407 	u8 *p;
4408 
4409 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4410 
4411 	printk(KERN_ERR "SLUB resiliency testing\n");
4412 	printk(KERN_ERR "-----------------------\n");
4413 	printk(KERN_ERR "A. Corruption after allocation\n");
4414 
4415 	p = kzalloc(16, GFP_KERNEL);
4416 	p[16] = 0x12;
4417 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4418 			" 0x12->0x%p\n\n", p + 16);
4419 
4420 	validate_slab_cache(kmalloc_caches[4]);
4421 
4422 	/* Hmmm... The next two are dangerous */
4423 	p = kzalloc(32, GFP_KERNEL);
4424 	p[32 + sizeof(void *)] = 0x34;
4425 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4426 			" 0x34 -> -0x%p\n", p);
4427 	printk(KERN_ERR
4428 		"If allocated object is overwritten then not detectable\n\n");
4429 
4430 	validate_slab_cache(kmalloc_caches[5]);
4431 	p = kzalloc(64, GFP_KERNEL);
4432 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4433 	*p = 0x56;
4434 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4435 									p);
4436 	printk(KERN_ERR
4437 		"If allocated object is overwritten then not detectable\n\n");
4438 	validate_slab_cache(kmalloc_caches[6]);
4439 
4440 	printk(KERN_ERR "\nB. Corruption after free\n");
4441 	p = kzalloc(128, GFP_KERNEL);
4442 	kfree(p);
4443 	*p = 0x78;
4444 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4445 	validate_slab_cache(kmalloc_caches[7]);
4446 
4447 	p = kzalloc(256, GFP_KERNEL);
4448 	kfree(p);
4449 	p[50] = 0x9a;
4450 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4451 			p);
4452 	validate_slab_cache(kmalloc_caches[8]);
4453 
4454 	p = kzalloc(512, GFP_KERNEL);
4455 	kfree(p);
4456 	p[512] = 0xab;
4457 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4458 	validate_slab_cache(kmalloc_caches[9]);
4459 }
4460 #else
4461 #ifdef CONFIG_SYSFS
4462 static void resiliency_test(void) {};
4463 #endif
4464 #endif
4465 
4466 #ifdef CONFIG_SYSFS
4467 enum slab_stat_type {
4468 	SL_ALL,			/* All slabs */
4469 	SL_PARTIAL,		/* Only partially allocated slabs */
4470 	SL_CPU,			/* Only slabs used for cpu caches */
4471 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4472 	SL_TOTAL		/* Determine object capacity not slabs */
4473 };
4474 
4475 #define SO_ALL		(1 << SL_ALL)
4476 #define SO_PARTIAL	(1 << SL_PARTIAL)
4477 #define SO_CPU		(1 << SL_CPU)
4478 #define SO_OBJECTS	(1 << SL_OBJECTS)
4479 #define SO_TOTAL	(1 << SL_TOTAL)
4480 
4481 static ssize_t show_slab_objects(struct kmem_cache *s,
4482 			    char *buf, unsigned long flags)
4483 {
4484 	unsigned long total = 0;
4485 	int node;
4486 	int x;
4487 	unsigned long *nodes;
4488 	unsigned long *per_cpu;
4489 
4490 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4491 	if (!nodes)
4492 		return -ENOMEM;
4493 	per_cpu = nodes + nr_node_ids;
4494 
4495 	if (flags & SO_CPU) {
4496 		int cpu;
4497 
4498 		for_each_possible_cpu(cpu) {
4499 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4500 			int node = ACCESS_ONCE(c->node);
4501 			struct page *page;
4502 
4503 			if (node < 0)
4504 				continue;
4505 			page = ACCESS_ONCE(c->page);
4506 			if (page) {
4507 				if (flags & SO_TOTAL)
4508 					x = page->objects;
4509 				else if (flags & SO_OBJECTS)
4510 					x = page->inuse;
4511 				else
4512 					x = 1;
4513 
4514 				total += x;
4515 				nodes[node] += x;
4516 			}
4517 			page = c->partial;
4518 
4519 			if (page) {
4520 				x = page->pobjects;
4521 				total += x;
4522 				nodes[node] += x;
4523 			}
4524 			per_cpu[node]++;
4525 		}
4526 	}
4527 
4528 	lock_memory_hotplug();
4529 #ifdef CONFIG_SLUB_DEBUG
4530 	if (flags & SO_ALL) {
4531 		for_each_node_state(node, N_NORMAL_MEMORY) {
4532 			struct kmem_cache_node *n = get_node(s, node);
4533 
4534 		if (flags & SO_TOTAL)
4535 			x = atomic_long_read(&n->total_objects);
4536 		else if (flags & SO_OBJECTS)
4537 			x = atomic_long_read(&n->total_objects) -
4538 				count_partial(n, count_free);
4539 
4540 			else
4541 				x = atomic_long_read(&n->nr_slabs);
4542 			total += x;
4543 			nodes[node] += x;
4544 		}
4545 
4546 	} else
4547 #endif
4548 	if (flags & SO_PARTIAL) {
4549 		for_each_node_state(node, N_NORMAL_MEMORY) {
4550 			struct kmem_cache_node *n = get_node(s, node);
4551 
4552 			if (flags & SO_TOTAL)
4553 				x = count_partial(n, count_total);
4554 			else if (flags & SO_OBJECTS)
4555 				x = count_partial(n, count_inuse);
4556 			else
4557 				x = n->nr_partial;
4558 			total += x;
4559 			nodes[node] += x;
4560 		}
4561 	}
4562 	x = sprintf(buf, "%lu", total);
4563 #ifdef CONFIG_NUMA
4564 	for_each_node_state(node, N_NORMAL_MEMORY)
4565 		if (nodes[node])
4566 			x += sprintf(buf + x, " N%d=%lu",
4567 					node, nodes[node]);
4568 #endif
4569 	unlock_memory_hotplug();
4570 	kfree(nodes);
4571 	return x + sprintf(buf + x, "\n");
4572 }
4573 
4574 #ifdef CONFIG_SLUB_DEBUG
4575 static int any_slab_objects(struct kmem_cache *s)
4576 {
4577 	int node;
4578 
4579 	for_each_online_node(node) {
4580 		struct kmem_cache_node *n = get_node(s, node);
4581 
4582 		if (!n)
4583 			continue;
4584 
4585 		if (atomic_long_read(&n->total_objects))
4586 			return 1;
4587 	}
4588 	return 0;
4589 }
4590 #endif
4591 
4592 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4593 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4594 
4595 struct slab_attribute {
4596 	struct attribute attr;
4597 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4598 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4599 };
4600 
4601 #define SLAB_ATTR_RO(_name) \
4602 	static struct slab_attribute _name##_attr = \
4603 	__ATTR(_name, 0400, _name##_show, NULL)
4604 
4605 #define SLAB_ATTR(_name) \
4606 	static struct slab_attribute _name##_attr =  \
4607 	__ATTR(_name, 0600, _name##_show, _name##_store)
4608 
4609 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4610 {
4611 	return sprintf(buf, "%d\n", s->size);
4612 }
4613 SLAB_ATTR_RO(slab_size);
4614 
4615 static ssize_t align_show(struct kmem_cache *s, char *buf)
4616 {
4617 	return sprintf(buf, "%d\n", s->align);
4618 }
4619 SLAB_ATTR_RO(align);
4620 
4621 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4622 {
4623 	return sprintf(buf, "%d\n", s->objsize);
4624 }
4625 SLAB_ATTR_RO(object_size);
4626 
4627 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4628 {
4629 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4630 }
4631 SLAB_ATTR_RO(objs_per_slab);
4632 
4633 static ssize_t order_store(struct kmem_cache *s,
4634 				const char *buf, size_t length)
4635 {
4636 	unsigned long order;
4637 	int err;
4638 
4639 	err = strict_strtoul(buf, 10, &order);
4640 	if (err)
4641 		return err;
4642 
4643 	if (order > slub_max_order || order < slub_min_order)
4644 		return -EINVAL;
4645 
4646 	calculate_sizes(s, order);
4647 	return length;
4648 }
4649 
4650 static ssize_t order_show(struct kmem_cache *s, char *buf)
4651 {
4652 	return sprintf(buf, "%d\n", oo_order(s->oo));
4653 }
4654 SLAB_ATTR(order);
4655 
4656 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4657 {
4658 	return sprintf(buf, "%lu\n", s->min_partial);
4659 }
4660 
4661 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4662 				 size_t length)
4663 {
4664 	unsigned long min;
4665 	int err;
4666 
4667 	err = strict_strtoul(buf, 10, &min);
4668 	if (err)
4669 		return err;
4670 
4671 	set_min_partial(s, min);
4672 	return length;
4673 }
4674 SLAB_ATTR(min_partial);
4675 
4676 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4677 {
4678 	return sprintf(buf, "%u\n", s->cpu_partial);
4679 }
4680 
4681 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4682 				 size_t length)
4683 {
4684 	unsigned long objects;
4685 	int err;
4686 
4687 	err = strict_strtoul(buf, 10, &objects);
4688 	if (err)
4689 		return err;
4690 	if (objects && kmem_cache_debug(s))
4691 		return -EINVAL;
4692 
4693 	s->cpu_partial = objects;
4694 	flush_all(s);
4695 	return length;
4696 }
4697 SLAB_ATTR(cpu_partial);
4698 
4699 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4700 {
4701 	if (!s->ctor)
4702 		return 0;
4703 	return sprintf(buf, "%pS\n", s->ctor);
4704 }
4705 SLAB_ATTR_RO(ctor);
4706 
4707 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4708 {
4709 	return sprintf(buf, "%d\n", s->refcount - 1);
4710 }
4711 SLAB_ATTR_RO(aliases);
4712 
4713 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4714 {
4715 	return show_slab_objects(s, buf, SO_PARTIAL);
4716 }
4717 SLAB_ATTR_RO(partial);
4718 
4719 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4720 {
4721 	return show_slab_objects(s, buf, SO_CPU);
4722 }
4723 SLAB_ATTR_RO(cpu_slabs);
4724 
4725 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4726 {
4727 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4728 }
4729 SLAB_ATTR_RO(objects);
4730 
4731 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4732 {
4733 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4734 }
4735 SLAB_ATTR_RO(objects_partial);
4736 
4737 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4738 {
4739 	int objects = 0;
4740 	int pages = 0;
4741 	int cpu;
4742 	int len;
4743 
4744 	for_each_online_cpu(cpu) {
4745 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4746 
4747 		if (page) {
4748 			pages += page->pages;
4749 			objects += page->pobjects;
4750 		}
4751 	}
4752 
4753 	len = sprintf(buf, "%d(%d)", objects, pages);
4754 
4755 #ifdef CONFIG_SMP
4756 	for_each_online_cpu(cpu) {
4757 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4758 
4759 		if (page && len < PAGE_SIZE - 20)
4760 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4761 				page->pobjects, page->pages);
4762 	}
4763 #endif
4764 	return len + sprintf(buf + len, "\n");
4765 }
4766 SLAB_ATTR_RO(slabs_cpu_partial);
4767 
4768 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4769 {
4770 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4771 }
4772 
4773 static ssize_t reclaim_account_store(struct kmem_cache *s,
4774 				const char *buf, size_t length)
4775 {
4776 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4777 	if (buf[0] == '1')
4778 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4779 	return length;
4780 }
4781 SLAB_ATTR(reclaim_account);
4782 
4783 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4784 {
4785 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4786 }
4787 SLAB_ATTR_RO(hwcache_align);
4788 
4789 #ifdef CONFIG_ZONE_DMA
4790 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4791 {
4792 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4793 }
4794 SLAB_ATTR_RO(cache_dma);
4795 #endif
4796 
4797 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4798 {
4799 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4800 }
4801 SLAB_ATTR_RO(destroy_by_rcu);
4802 
4803 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4804 {
4805 	return sprintf(buf, "%d\n", s->reserved);
4806 }
4807 SLAB_ATTR_RO(reserved);
4808 
4809 #ifdef CONFIG_SLUB_DEBUG
4810 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4811 {
4812 	return show_slab_objects(s, buf, SO_ALL);
4813 }
4814 SLAB_ATTR_RO(slabs);
4815 
4816 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4817 {
4818 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4819 }
4820 SLAB_ATTR_RO(total_objects);
4821 
4822 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4823 {
4824 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4825 }
4826 
4827 static ssize_t sanity_checks_store(struct kmem_cache *s,
4828 				const char *buf, size_t length)
4829 {
4830 	s->flags &= ~SLAB_DEBUG_FREE;
4831 	if (buf[0] == '1') {
4832 		s->flags &= ~__CMPXCHG_DOUBLE;
4833 		s->flags |= SLAB_DEBUG_FREE;
4834 	}
4835 	return length;
4836 }
4837 SLAB_ATTR(sanity_checks);
4838 
4839 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4840 {
4841 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4842 }
4843 
4844 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4845 							size_t length)
4846 {
4847 	s->flags &= ~SLAB_TRACE;
4848 	if (buf[0] == '1') {
4849 		s->flags &= ~__CMPXCHG_DOUBLE;
4850 		s->flags |= SLAB_TRACE;
4851 	}
4852 	return length;
4853 }
4854 SLAB_ATTR(trace);
4855 
4856 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4857 {
4858 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4859 }
4860 
4861 static ssize_t red_zone_store(struct kmem_cache *s,
4862 				const char *buf, size_t length)
4863 {
4864 	if (any_slab_objects(s))
4865 		return -EBUSY;
4866 
4867 	s->flags &= ~SLAB_RED_ZONE;
4868 	if (buf[0] == '1') {
4869 		s->flags &= ~__CMPXCHG_DOUBLE;
4870 		s->flags |= SLAB_RED_ZONE;
4871 	}
4872 	calculate_sizes(s, -1);
4873 	return length;
4874 }
4875 SLAB_ATTR(red_zone);
4876 
4877 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4878 {
4879 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4880 }
4881 
4882 static ssize_t poison_store(struct kmem_cache *s,
4883 				const char *buf, size_t length)
4884 {
4885 	if (any_slab_objects(s))
4886 		return -EBUSY;
4887 
4888 	s->flags &= ~SLAB_POISON;
4889 	if (buf[0] == '1') {
4890 		s->flags &= ~__CMPXCHG_DOUBLE;
4891 		s->flags |= SLAB_POISON;
4892 	}
4893 	calculate_sizes(s, -1);
4894 	return length;
4895 }
4896 SLAB_ATTR(poison);
4897 
4898 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4899 {
4900 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4901 }
4902 
4903 static ssize_t store_user_store(struct kmem_cache *s,
4904 				const char *buf, size_t length)
4905 {
4906 	if (any_slab_objects(s))
4907 		return -EBUSY;
4908 
4909 	s->flags &= ~SLAB_STORE_USER;
4910 	if (buf[0] == '1') {
4911 		s->flags &= ~__CMPXCHG_DOUBLE;
4912 		s->flags |= SLAB_STORE_USER;
4913 	}
4914 	calculate_sizes(s, -1);
4915 	return length;
4916 }
4917 SLAB_ATTR(store_user);
4918 
4919 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4920 {
4921 	return 0;
4922 }
4923 
4924 static ssize_t validate_store(struct kmem_cache *s,
4925 			const char *buf, size_t length)
4926 {
4927 	int ret = -EINVAL;
4928 
4929 	if (buf[0] == '1') {
4930 		ret = validate_slab_cache(s);
4931 		if (ret >= 0)
4932 			ret = length;
4933 	}
4934 	return ret;
4935 }
4936 SLAB_ATTR(validate);
4937 
4938 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4939 {
4940 	if (!(s->flags & SLAB_STORE_USER))
4941 		return -ENOSYS;
4942 	return list_locations(s, buf, TRACK_ALLOC);
4943 }
4944 SLAB_ATTR_RO(alloc_calls);
4945 
4946 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4947 {
4948 	if (!(s->flags & SLAB_STORE_USER))
4949 		return -ENOSYS;
4950 	return list_locations(s, buf, TRACK_FREE);
4951 }
4952 SLAB_ATTR_RO(free_calls);
4953 #endif /* CONFIG_SLUB_DEBUG */
4954 
4955 #ifdef CONFIG_FAILSLAB
4956 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4957 {
4958 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4959 }
4960 
4961 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4962 							size_t length)
4963 {
4964 	s->flags &= ~SLAB_FAILSLAB;
4965 	if (buf[0] == '1')
4966 		s->flags |= SLAB_FAILSLAB;
4967 	return length;
4968 }
4969 SLAB_ATTR(failslab);
4970 #endif
4971 
4972 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4973 {
4974 	return 0;
4975 }
4976 
4977 static ssize_t shrink_store(struct kmem_cache *s,
4978 			const char *buf, size_t length)
4979 {
4980 	if (buf[0] == '1') {
4981 		int rc = kmem_cache_shrink(s);
4982 
4983 		if (rc)
4984 			return rc;
4985 	} else
4986 		return -EINVAL;
4987 	return length;
4988 }
4989 SLAB_ATTR(shrink);
4990 
4991 #ifdef CONFIG_NUMA
4992 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4993 {
4994 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4995 }
4996 
4997 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4998 				const char *buf, size_t length)
4999 {
5000 	unsigned long ratio;
5001 	int err;
5002 
5003 	err = strict_strtoul(buf, 10, &ratio);
5004 	if (err)
5005 		return err;
5006 
5007 	if (ratio <= 100)
5008 		s->remote_node_defrag_ratio = ratio * 10;
5009 
5010 	return length;
5011 }
5012 SLAB_ATTR(remote_node_defrag_ratio);
5013 #endif
5014 
5015 #ifdef CONFIG_SLUB_STATS
5016 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5017 {
5018 	unsigned long sum  = 0;
5019 	int cpu;
5020 	int len;
5021 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5022 
5023 	if (!data)
5024 		return -ENOMEM;
5025 
5026 	for_each_online_cpu(cpu) {
5027 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5028 
5029 		data[cpu] = x;
5030 		sum += x;
5031 	}
5032 
5033 	len = sprintf(buf, "%lu", sum);
5034 
5035 #ifdef CONFIG_SMP
5036 	for_each_online_cpu(cpu) {
5037 		if (data[cpu] && len < PAGE_SIZE - 20)
5038 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5039 	}
5040 #endif
5041 	kfree(data);
5042 	return len + sprintf(buf + len, "\n");
5043 }
5044 
5045 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5046 {
5047 	int cpu;
5048 
5049 	for_each_online_cpu(cpu)
5050 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5051 }
5052 
5053 #define STAT_ATTR(si, text) 					\
5054 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5055 {								\
5056 	return show_stat(s, buf, si);				\
5057 }								\
5058 static ssize_t text##_store(struct kmem_cache *s,		\
5059 				const char *buf, size_t length)	\
5060 {								\
5061 	if (buf[0] != '0')					\
5062 		return -EINVAL;					\
5063 	clear_stat(s, si);					\
5064 	return length;						\
5065 }								\
5066 SLAB_ATTR(text);						\
5067 
5068 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5069 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5070 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5071 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5072 STAT_ATTR(FREE_FROZEN, free_frozen);
5073 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5074 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5075 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5076 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5077 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5078 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5079 STAT_ATTR(FREE_SLAB, free_slab);
5080 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5081 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5082 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5083 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5084 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5085 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5086 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5087 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5088 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5089 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5090 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5091 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5092 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5093 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5094 #endif
5095 
5096 static struct attribute *slab_attrs[] = {
5097 	&slab_size_attr.attr,
5098 	&object_size_attr.attr,
5099 	&objs_per_slab_attr.attr,
5100 	&order_attr.attr,
5101 	&min_partial_attr.attr,
5102 	&cpu_partial_attr.attr,
5103 	&objects_attr.attr,
5104 	&objects_partial_attr.attr,
5105 	&partial_attr.attr,
5106 	&cpu_slabs_attr.attr,
5107 	&ctor_attr.attr,
5108 	&aliases_attr.attr,
5109 	&align_attr.attr,
5110 	&hwcache_align_attr.attr,
5111 	&reclaim_account_attr.attr,
5112 	&destroy_by_rcu_attr.attr,
5113 	&shrink_attr.attr,
5114 	&reserved_attr.attr,
5115 	&slabs_cpu_partial_attr.attr,
5116 #ifdef CONFIG_SLUB_DEBUG
5117 	&total_objects_attr.attr,
5118 	&slabs_attr.attr,
5119 	&sanity_checks_attr.attr,
5120 	&trace_attr.attr,
5121 	&red_zone_attr.attr,
5122 	&poison_attr.attr,
5123 	&store_user_attr.attr,
5124 	&validate_attr.attr,
5125 	&alloc_calls_attr.attr,
5126 	&free_calls_attr.attr,
5127 #endif
5128 #ifdef CONFIG_ZONE_DMA
5129 	&cache_dma_attr.attr,
5130 #endif
5131 #ifdef CONFIG_NUMA
5132 	&remote_node_defrag_ratio_attr.attr,
5133 #endif
5134 #ifdef CONFIG_SLUB_STATS
5135 	&alloc_fastpath_attr.attr,
5136 	&alloc_slowpath_attr.attr,
5137 	&free_fastpath_attr.attr,
5138 	&free_slowpath_attr.attr,
5139 	&free_frozen_attr.attr,
5140 	&free_add_partial_attr.attr,
5141 	&free_remove_partial_attr.attr,
5142 	&alloc_from_partial_attr.attr,
5143 	&alloc_slab_attr.attr,
5144 	&alloc_refill_attr.attr,
5145 	&alloc_node_mismatch_attr.attr,
5146 	&free_slab_attr.attr,
5147 	&cpuslab_flush_attr.attr,
5148 	&deactivate_full_attr.attr,
5149 	&deactivate_empty_attr.attr,
5150 	&deactivate_to_head_attr.attr,
5151 	&deactivate_to_tail_attr.attr,
5152 	&deactivate_remote_frees_attr.attr,
5153 	&deactivate_bypass_attr.attr,
5154 	&order_fallback_attr.attr,
5155 	&cmpxchg_double_fail_attr.attr,
5156 	&cmpxchg_double_cpu_fail_attr.attr,
5157 	&cpu_partial_alloc_attr.attr,
5158 	&cpu_partial_free_attr.attr,
5159 	&cpu_partial_node_attr.attr,
5160 	&cpu_partial_drain_attr.attr,
5161 #endif
5162 #ifdef CONFIG_FAILSLAB
5163 	&failslab_attr.attr,
5164 #endif
5165 
5166 	NULL
5167 };
5168 
5169 static struct attribute_group slab_attr_group = {
5170 	.attrs = slab_attrs,
5171 };
5172 
5173 static ssize_t slab_attr_show(struct kobject *kobj,
5174 				struct attribute *attr,
5175 				char *buf)
5176 {
5177 	struct slab_attribute *attribute;
5178 	struct kmem_cache *s;
5179 	int err;
5180 
5181 	attribute = to_slab_attr(attr);
5182 	s = to_slab(kobj);
5183 
5184 	if (!attribute->show)
5185 		return -EIO;
5186 
5187 	err = attribute->show(s, buf);
5188 
5189 	return err;
5190 }
5191 
5192 static ssize_t slab_attr_store(struct kobject *kobj,
5193 				struct attribute *attr,
5194 				const char *buf, size_t len)
5195 {
5196 	struct slab_attribute *attribute;
5197 	struct kmem_cache *s;
5198 	int err;
5199 
5200 	attribute = to_slab_attr(attr);
5201 	s = to_slab(kobj);
5202 
5203 	if (!attribute->store)
5204 		return -EIO;
5205 
5206 	err = attribute->store(s, buf, len);
5207 
5208 	return err;
5209 }
5210 
5211 static void kmem_cache_release(struct kobject *kobj)
5212 {
5213 	struct kmem_cache *s = to_slab(kobj);
5214 
5215 	kfree(s->name);
5216 	kfree(s);
5217 }
5218 
5219 static const struct sysfs_ops slab_sysfs_ops = {
5220 	.show = slab_attr_show,
5221 	.store = slab_attr_store,
5222 };
5223 
5224 static struct kobj_type slab_ktype = {
5225 	.sysfs_ops = &slab_sysfs_ops,
5226 	.release = kmem_cache_release
5227 };
5228 
5229 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5230 {
5231 	struct kobj_type *ktype = get_ktype(kobj);
5232 
5233 	if (ktype == &slab_ktype)
5234 		return 1;
5235 	return 0;
5236 }
5237 
5238 static const struct kset_uevent_ops slab_uevent_ops = {
5239 	.filter = uevent_filter,
5240 };
5241 
5242 static struct kset *slab_kset;
5243 
5244 #define ID_STR_LENGTH 64
5245 
5246 /* Create a unique string id for a slab cache:
5247  *
5248  * Format	:[flags-]size
5249  */
5250 static char *create_unique_id(struct kmem_cache *s)
5251 {
5252 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5253 	char *p = name;
5254 
5255 	BUG_ON(!name);
5256 
5257 	*p++ = ':';
5258 	/*
5259 	 * First flags affecting slabcache operations. We will only
5260 	 * get here for aliasable slabs so we do not need to support
5261 	 * too many flags. The flags here must cover all flags that
5262 	 * are matched during merging to guarantee that the id is
5263 	 * unique.
5264 	 */
5265 	if (s->flags & SLAB_CACHE_DMA)
5266 		*p++ = 'd';
5267 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5268 		*p++ = 'a';
5269 	if (s->flags & SLAB_DEBUG_FREE)
5270 		*p++ = 'F';
5271 	if (!(s->flags & SLAB_NOTRACK))
5272 		*p++ = 't';
5273 	if (p != name + 1)
5274 		*p++ = '-';
5275 	p += sprintf(p, "%07d", s->size);
5276 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5277 	return name;
5278 }
5279 
5280 static int sysfs_slab_add(struct kmem_cache *s)
5281 {
5282 	int err;
5283 	const char *name;
5284 	int unmergeable;
5285 
5286 	if (slab_state < SYSFS)
5287 		/* Defer until later */
5288 		return 0;
5289 
5290 	unmergeable = slab_unmergeable(s);
5291 	if (unmergeable) {
5292 		/*
5293 		 * Slabcache can never be merged so we can use the name proper.
5294 		 * This is typically the case for debug situations. In that
5295 		 * case we can catch duplicate names easily.
5296 		 */
5297 		sysfs_remove_link(&slab_kset->kobj, s->name);
5298 		name = s->name;
5299 	} else {
5300 		/*
5301 		 * Create a unique name for the slab as a target
5302 		 * for the symlinks.
5303 		 */
5304 		name = create_unique_id(s);
5305 	}
5306 
5307 	s->kobj.kset = slab_kset;
5308 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5309 	if (err) {
5310 		kobject_put(&s->kobj);
5311 		return err;
5312 	}
5313 
5314 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5315 	if (err) {
5316 		kobject_del(&s->kobj);
5317 		kobject_put(&s->kobj);
5318 		return err;
5319 	}
5320 	kobject_uevent(&s->kobj, KOBJ_ADD);
5321 	if (!unmergeable) {
5322 		/* Setup first alias */
5323 		sysfs_slab_alias(s, s->name);
5324 		kfree(name);
5325 	}
5326 	return 0;
5327 }
5328 
5329 static void sysfs_slab_remove(struct kmem_cache *s)
5330 {
5331 	if (slab_state < SYSFS)
5332 		/*
5333 		 * Sysfs has not been setup yet so no need to remove the
5334 		 * cache from sysfs.
5335 		 */
5336 		return;
5337 
5338 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5339 	kobject_del(&s->kobj);
5340 	kobject_put(&s->kobj);
5341 }
5342 
5343 /*
5344  * Need to buffer aliases during bootup until sysfs becomes
5345  * available lest we lose that information.
5346  */
5347 struct saved_alias {
5348 	struct kmem_cache *s;
5349 	const char *name;
5350 	struct saved_alias *next;
5351 };
5352 
5353 static struct saved_alias *alias_list;
5354 
5355 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5356 {
5357 	struct saved_alias *al;
5358 
5359 	if (slab_state == SYSFS) {
5360 		/*
5361 		 * If we have a leftover link then remove it.
5362 		 */
5363 		sysfs_remove_link(&slab_kset->kobj, name);
5364 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5365 	}
5366 
5367 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5368 	if (!al)
5369 		return -ENOMEM;
5370 
5371 	al->s = s;
5372 	al->name = name;
5373 	al->next = alias_list;
5374 	alias_list = al;
5375 	return 0;
5376 }
5377 
5378 static int __init slab_sysfs_init(void)
5379 {
5380 	struct kmem_cache *s;
5381 	int err;
5382 
5383 	down_write(&slub_lock);
5384 
5385 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5386 	if (!slab_kset) {
5387 		up_write(&slub_lock);
5388 		printk(KERN_ERR "Cannot register slab subsystem.\n");
5389 		return -ENOSYS;
5390 	}
5391 
5392 	slab_state = SYSFS;
5393 
5394 	list_for_each_entry(s, &slab_caches, list) {
5395 		err = sysfs_slab_add(s);
5396 		if (err)
5397 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5398 						" to sysfs\n", s->name);
5399 	}
5400 
5401 	while (alias_list) {
5402 		struct saved_alias *al = alias_list;
5403 
5404 		alias_list = alias_list->next;
5405 		err = sysfs_slab_alias(al->s, al->name);
5406 		if (err)
5407 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5408 					" %s to sysfs\n", s->name);
5409 		kfree(al);
5410 	}
5411 
5412 	up_write(&slub_lock);
5413 	resiliency_test();
5414 	return 0;
5415 }
5416 
5417 __initcall(slab_sysfs_init);
5418 #endif /* CONFIG_SYSFS */
5419 
5420 /*
5421  * The /proc/slabinfo ABI
5422  */
5423 #ifdef CONFIG_SLABINFO
5424 static void print_slabinfo_header(struct seq_file *m)
5425 {
5426 	seq_puts(m, "slabinfo - version: 2.1\n");
5427 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
5428 		 "<objperslab> <pagesperslab>");
5429 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5430 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5431 	seq_putc(m, '\n');
5432 }
5433 
5434 static void *s_start(struct seq_file *m, loff_t *pos)
5435 {
5436 	loff_t n = *pos;
5437 
5438 	down_read(&slub_lock);
5439 	if (!n)
5440 		print_slabinfo_header(m);
5441 
5442 	return seq_list_start(&slab_caches, *pos);
5443 }
5444 
5445 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5446 {
5447 	return seq_list_next(p, &slab_caches, pos);
5448 }
5449 
5450 static void s_stop(struct seq_file *m, void *p)
5451 {
5452 	up_read(&slub_lock);
5453 }
5454 
5455 static int s_show(struct seq_file *m, void *p)
5456 {
5457 	unsigned long nr_partials = 0;
5458 	unsigned long nr_slabs = 0;
5459 	unsigned long nr_inuse = 0;
5460 	unsigned long nr_objs = 0;
5461 	unsigned long nr_free = 0;
5462 	struct kmem_cache *s;
5463 	int node;
5464 
5465 	s = list_entry(p, struct kmem_cache, list);
5466 
5467 	for_each_online_node(node) {
5468 		struct kmem_cache_node *n = get_node(s, node);
5469 
5470 		if (!n)
5471 			continue;
5472 
5473 		nr_partials += n->nr_partial;
5474 		nr_slabs += atomic_long_read(&n->nr_slabs);
5475 		nr_objs += atomic_long_read(&n->total_objects);
5476 		nr_free += count_partial(n, count_free);
5477 	}
5478 
5479 	nr_inuse = nr_objs - nr_free;
5480 
5481 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5482 		   nr_objs, s->size, oo_objects(s->oo),
5483 		   (1 << oo_order(s->oo)));
5484 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5485 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5486 		   0UL);
5487 	seq_putc(m, '\n');
5488 	return 0;
5489 }
5490 
5491 static const struct seq_operations slabinfo_op = {
5492 	.start = s_start,
5493 	.next = s_next,
5494 	.stop = s_stop,
5495 	.show = s_show,
5496 };
5497 
5498 static int slabinfo_open(struct inode *inode, struct file *file)
5499 {
5500 	return seq_open(file, &slabinfo_op);
5501 }
5502 
5503 static const struct file_operations proc_slabinfo_operations = {
5504 	.open		= slabinfo_open,
5505 	.read		= seq_read,
5506 	.llseek		= seq_lseek,
5507 	.release	= seq_release,
5508 };
5509 
5510 static int __init slab_proc_init(void)
5511 {
5512 	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5513 	return 0;
5514 }
5515 module_init(slab_proc_init);
5516 #endif /* CONFIG_SLABINFO */
5517