1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47
48 #include "internal.h"
49
50 /*
51 * Lock order:
52 * 1. slab_mutex (Global Mutex)
53 * 2. node->list_lock (Spinlock)
54 * 3. kmem_cache->cpu_slab->lock (Local lock)
55 * 4. slab_lock(slab) (Only on some arches)
56 * 5. object_map_lock (Only for debugging)
57 *
58 * slab_mutex
59 *
60 * The role of the slab_mutex is to protect the list of all the slabs
61 * and to synchronize major metadata changes to slab cache structures.
62 * Also synchronizes memory hotplug callbacks.
63 *
64 * slab_lock
65 *
66 * The slab_lock is a wrapper around the page lock, thus it is a bit
67 * spinlock.
68 *
69 * The slab_lock is only used on arches that do not have the ability
70 * to do a cmpxchg_double. It only protects:
71 *
72 * A. slab->freelist -> List of free objects in a slab
73 * B. slab->inuse -> Number of objects in use
74 * C. slab->objects -> Number of objects in slab
75 * D. slab->frozen -> frozen state
76 *
77 * Frozen slabs
78 *
79 * If a slab is frozen then it is exempt from list management. It is not
80 * on any list except per cpu partial list. The processor that froze the
81 * slab is the one who can perform list operations on the slab. Other
82 * processors may put objects onto the freelist but the processor that
83 * froze the slab is the only one that can retrieve the objects from the
84 * slab's freelist.
85 *
86 * list_lock
87 *
88 * The list_lock protects the partial and full list on each node and
89 * the partial slab counter. If taken then no new slabs may be added or
90 * removed from the lists nor make the number of partial slabs be modified.
91 * (Note that the total number of slabs is an atomic value that may be
92 * modified without taking the list lock).
93 *
94 * The list_lock is a centralized lock and thus we avoid taking it as
95 * much as possible. As long as SLUB does not have to handle partial
96 * slabs, operations can continue without any centralized lock. F.e.
97 * allocating a long series of objects that fill up slabs does not require
98 * the list lock.
99 *
100 * For debug caches, all allocations are forced to go through a list_lock
101 * protected region to serialize against concurrent validation.
102 *
103 * cpu_slab->lock local lock
104 *
105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
106 * except the stat counters. This is a percpu structure manipulated only by
107 * the local cpu, so the lock protects against being preempted or interrupted
108 * by an irq. Fast path operations rely on lockless operations instead.
109 *
110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111 * which means the lockless fastpath cannot be used as it might interfere with
112 * an in-progress slow path operations. In this case the local lock is always
113 * taken but it still utilizes the freelist for the common operations.
114 *
115 * lockless fastpaths
116 *
117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118 * are fully lockless when satisfied from the percpu slab (and when
119 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
120 * They also don't disable preemption or migration or irqs. They rely on
121 * the transaction id (tid) field to detect being preempted or moved to
122 * another cpu.
123 *
124 * irq, preemption, migration considerations
125 *
126 * Interrupts are disabled as part of list_lock or local_lock operations, or
127 * around the slab_lock operation, in order to make the slab allocator safe
128 * to use in the context of an irq.
129 *
130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133 * doesn't have to be revalidated in each section protected by the local lock.
134 *
135 * SLUB assigns one slab for allocation to each processor.
136 * Allocations only occur from these slabs called cpu slabs.
137 *
138 * Slabs with free elements are kept on a partial list and during regular
139 * operations no list for full slabs is used. If an object in a full slab is
140 * freed then the slab will show up again on the partial lists.
141 * We track full slabs for debugging purposes though because otherwise we
142 * cannot scan all objects.
143 *
144 * Slabs are freed when they become empty. Teardown and setup is
145 * minimal so we rely on the page allocators per cpu caches for
146 * fast frees and allocs.
147 *
148 * slab->frozen The slab is frozen and exempt from list processing.
149 * This means that the slab is dedicated to a purpose
150 * such as satisfying allocations for a specific
151 * processor. Objects may be freed in the slab while
152 * it is frozen but slab_free will then skip the usual
153 * list operations. It is up to the processor holding
154 * the slab to integrate the slab into the slab lists
155 * when the slab is no longer needed.
156 *
157 * One use of this flag is to mark slabs that are
158 * used for allocations. Then such a slab becomes a cpu
159 * slab. The cpu slab may be equipped with an additional
160 * freelist that allows lockless access to
161 * free objects in addition to the regular freelist
162 * that requires the slab lock.
163 *
164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
165 * options set. This moves slab handling out of
166 * the fast path and disables lockless freelists.
167 */
168
169 /*
170 * We could simply use migrate_disable()/enable() but as long as it's a
171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172 */
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH() (true)
177 #else
178 #define slub_get_cpu_ptr(var) \
179 ({ \
180 migrate_disable(); \
181 this_cpu_ptr(var); \
182 })
183 #define slub_put_cpu_ptr(var) \
184 do { \
185 (void)(var); \
186 migrate_enable(); \
187 } while (0)
188 #define USE_LOCKLESS_FAST_PATH() (false)
189 #endif
190
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
193 #else
194 #define __fastpath_inline
195 #endif
196
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200 #else
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202 #endif
203 #endif /* CONFIG_SLUB_DEBUG */
204
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
207 struct slab **slab;
208 gfp_t flags;
209 unsigned int orig_size;
210 };
211
kmem_cache_debug(struct kmem_cache * s)212 static inline bool kmem_cache_debug(struct kmem_cache *s)
213 {
214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215 }
216
slub_debug_orig_size(struct kmem_cache * s)217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
218 {
219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 (s->flags & SLAB_KMALLOC));
221 }
222
fixup_red_left(struct kmem_cache * s,void * p)223 void *fixup_red_left(struct kmem_cache *s, void *p)
224 {
225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 p += s->red_left_pad;
227
228 return p;
229 }
230
kmem_cache_has_cpu_partial(struct kmem_cache * s)231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232 {
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 return !kmem_cache_debug(s);
235 #else
236 return false;
237 #endif
238 }
239
240 /*
241 * Issues still to be resolved:
242 *
243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244 *
245 * - Variable sizing of the per node arrays
246 */
247
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
250
251 #ifndef CONFIG_SLUB_TINY
252 /*
253 * Minimum number of partial slabs. These will be left on the partial
254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
255 */
256 #define MIN_PARTIAL 5
257
258 /*
259 * Maximum number of desirable partial slabs.
260 * The existence of more partial slabs makes kmem_cache_shrink
261 * sort the partial list by the number of objects in use.
262 */
263 #define MAX_PARTIAL 10
264 #else
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
267 #endif
268
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 SLAB_POISON | SLAB_STORE_USER)
271
272 /*
273 * These debug flags cannot use CMPXCHG because there might be consistency
274 * issues when checking or reading debug information
275 */
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 SLAB_TRACE)
278
279
280 /*
281 * Debugging flags that require metadata to be stored in the slab. These get
282 * disabled when slub_debug=O is used and a cache's min order increases with
283 * metadata.
284 */
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286
287 #define OO_SHIFT 16
288 #define OO_MASK ((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
290
291 /* Internal SLUB flags */
292 /* Poison object */
293 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
295
296 #ifdef system_has_freelist_aba
297 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
298 #else
299 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U)
300 #endif
301
302 /*
303 * Tracking user of a slab.
304 */
305 #define TRACK_ADDRS_COUNT 16
306 struct track {
307 unsigned long addr; /* Called from address */
308 #ifdef CONFIG_STACKDEPOT
309 depot_stack_handle_t handle;
310 #endif
311 int cpu; /* Was running on cpu */
312 int pid; /* Pid context */
313 unsigned long when; /* When did the operation occur */
314 };
315
316 enum track_item { TRACK_ALLOC, TRACK_FREE };
317
318 #ifdef SLAB_SUPPORTS_SYSFS
319 static int sysfs_slab_add(struct kmem_cache *);
320 static int sysfs_slab_alias(struct kmem_cache *, const char *);
321 #else
sysfs_slab_add(struct kmem_cache * s)322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
324 { return 0; }
325 #endif
326
327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328 static void debugfs_slab_add(struct kmem_cache *);
329 #else
debugfs_slab_add(struct kmem_cache * s)330 static inline void debugfs_slab_add(struct kmem_cache *s) { }
331 #endif
332
stat(const struct kmem_cache * s,enum stat_item si)333 static inline void stat(const struct kmem_cache *s, enum stat_item si)
334 {
335 #ifdef CONFIG_SLUB_STATS
336 /*
337 * The rmw is racy on a preemptible kernel but this is acceptable, so
338 * avoid this_cpu_add()'s irq-disable overhead.
339 */
340 raw_cpu_inc(s->cpu_slab->stat[si]);
341 #endif
342 }
343
344 /*
345 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347 * differ during memory hotplug/hotremove operations.
348 * Protected by slab_mutex.
349 */
350 static nodemask_t slab_nodes;
351
352 #ifndef CONFIG_SLUB_TINY
353 /*
354 * Workqueue used for flush_cpu_slab().
355 */
356 static struct workqueue_struct *flushwq;
357 #endif
358
359 /********************************************************************
360 * Core slab cache functions
361 *******************************************************************/
362
363 /*
364 * freeptr_t represents a SLUB freelist pointer, which might be encoded
365 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
366 */
367 typedef struct { unsigned long v; } freeptr_t;
368
369 /*
370 * Returns freelist pointer (ptr). With hardening, this is obfuscated
371 * with an XOR of the address where the pointer is held and a per-cache
372 * random number.
373 */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)374 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
375 void *ptr, unsigned long ptr_addr)
376 {
377 unsigned long encoded;
378
379 #ifdef CONFIG_SLAB_FREELIST_HARDENED
380 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
381 #else
382 encoded = (unsigned long)ptr;
383 #endif
384 return (freeptr_t){.v = encoded};
385 }
386
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)387 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
388 freeptr_t ptr, unsigned long ptr_addr)
389 {
390 void *decoded;
391
392 #ifdef CONFIG_SLAB_FREELIST_HARDENED
393 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
394 #else
395 decoded = (void *)ptr.v;
396 #endif
397 return decoded;
398 }
399
get_freepointer(struct kmem_cache * s,void * object)400 static inline void *get_freepointer(struct kmem_cache *s, void *object)
401 {
402 unsigned long ptr_addr;
403 freeptr_t p;
404
405 object = kasan_reset_tag(object);
406 ptr_addr = (unsigned long)object + s->offset;
407 p = *(freeptr_t *)(ptr_addr);
408 return freelist_ptr_decode(s, p, ptr_addr);
409 }
410
411 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)412 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
413 {
414 prefetchw(object + s->offset);
415 }
416 #endif
417
418 /*
419 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
420 * pointer value in the case the current thread loses the race for the next
421 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
422 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
423 * KMSAN will still check all arguments of cmpxchg because of imperfect
424 * handling of inline assembly.
425 * To work around this problem, we apply __no_kmsan_checks to ensure that
426 * get_freepointer_safe() returns initialized memory.
427 */
428 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)429 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
430 {
431 unsigned long freepointer_addr;
432 freeptr_t p;
433
434 if (!debug_pagealloc_enabled_static())
435 return get_freepointer(s, object);
436
437 object = kasan_reset_tag(object);
438 freepointer_addr = (unsigned long)object + s->offset;
439 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
440 return freelist_ptr_decode(s, p, freepointer_addr);
441 }
442
set_freepointer(struct kmem_cache * s,void * object,void * fp)443 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
444 {
445 unsigned long freeptr_addr = (unsigned long)object + s->offset;
446
447 #ifdef CONFIG_SLAB_FREELIST_HARDENED
448 BUG_ON(object == fp); /* naive detection of double free or corruption */
449 #endif
450
451 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
452 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
453 }
454
455 /* Loop over all objects in a slab */
456 #define for_each_object(__p, __s, __addr, __objects) \
457 for (__p = fixup_red_left(__s, __addr); \
458 __p < (__addr) + (__objects) * (__s)->size; \
459 __p += (__s)->size)
460
order_objects(unsigned int order,unsigned int size)461 static inline unsigned int order_objects(unsigned int order, unsigned int size)
462 {
463 return ((unsigned int)PAGE_SIZE << order) / size;
464 }
465
oo_make(unsigned int order,unsigned int size)466 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
467 unsigned int size)
468 {
469 struct kmem_cache_order_objects x = {
470 (order << OO_SHIFT) + order_objects(order, size)
471 };
472
473 return x;
474 }
475
oo_order(struct kmem_cache_order_objects x)476 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
477 {
478 return x.x >> OO_SHIFT;
479 }
480
oo_objects(struct kmem_cache_order_objects x)481 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
482 {
483 return x.x & OO_MASK;
484 }
485
486 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)487 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
488 {
489 unsigned int nr_slabs;
490
491 s->cpu_partial = nr_objects;
492
493 /*
494 * We take the number of objects but actually limit the number of
495 * slabs on the per cpu partial list, in order to limit excessive
496 * growth of the list. For simplicity we assume that the slabs will
497 * be half-full.
498 */
499 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
500 s->cpu_partial_slabs = nr_slabs;
501 }
502 #else
503 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)504 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
505 {
506 }
507 #endif /* CONFIG_SLUB_CPU_PARTIAL */
508
509 /*
510 * Per slab locking using the pagelock
511 */
slab_lock(struct slab * slab)512 static __always_inline void slab_lock(struct slab *slab)
513 {
514 struct page *page = slab_page(slab);
515
516 VM_BUG_ON_PAGE(PageTail(page), page);
517 bit_spin_lock(PG_locked, &page->flags);
518 }
519
slab_unlock(struct slab * slab)520 static __always_inline void slab_unlock(struct slab *slab)
521 {
522 struct page *page = slab_page(slab);
523
524 VM_BUG_ON_PAGE(PageTail(page), page);
525 __bit_spin_unlock(PG_locked, &page->flags);
526 }
527
528 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)529 __update_freelist_fast(struct slab *slab,
530 void *freelist_old, unsigned long counters_old,
531 void *freelist_new, unsigned long counters_new)
532 {
533 #ifdef system_has_freelist_aba
534 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
535 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
536
537 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
538 #else
539 return false;
540 #endif
541 }
542
543 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)544 __update_freelist_slow(struct slab *slab,
545 void *freelist_old, unsigned long counters_old,
546 void *freelist_new, unsigned long counters_new)
547 {
548 bool ret = false;
549
550 slab_lock(slab);
551 if (slab->freelist == freelist_old &&
552 slab->counters == counters_old) {
553 slab->freelist = freelist_new;
554 slab->counters = counters_new;
555 ret = true;
556 }
557 slab_unlock(slab);
558
559 return ret;
560 }
561
562 /*
563 * Interrupts must be disabled (for the fallback code to work right), typically
564 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
565 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
566 * allocation/ free operation in hardirq context. Therefore nothing can
567 * interrupt the operation.
568 */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)569 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
570 void *freelist_old, unsigned long counters_old,
571 void *freelist_new, unsigned long counters_new,
572 const char *n)
573 {
574 bool ret;
575
576 if (USE_LOCKLESS_FAST_PATH())
577 lockdep_assert_irqs_disabled();
578
579 if (s->flags & __CMPXCHG_DOUBLE) {
580 ret = __update_freelist_fast(slab, freelist_old, counters_old,
581 freelist_new, counters_new);
582 } else {
583 ret = __update_freelist_slow(slab, freelist_old, counters_old,
584 freelist_new, counters_new);
585 }
586 if (likely(ret))
587 return true;
588
589 cpu_relax();
590 stat(s, CMPXCHG_DOUBLE_FAIL);
591
592 #ifdef SLUB_DEBUG_CMPXCHG
593 pr_info("%s %s: cmpxchg double redo ", n, s->name);
594 #endif
595
596 return false;
597 }
598
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)599 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
600 void *freelist_old, unsigned long counters_old,
601 void *freelist_new, unsigned long counters_new,
602 const char *n)
603 {
604 bool ret;
605
606 if (s->flags & __CMPXCHG_DOUBLE) {
607 ret = __update_freelist_fast(slab, freelist_old, counters_old,
608 freelist_new, counters_new);
609 } else {
610 unsigned long flags;
611
612 local_irq_save(flags);
613 ret = __update_freelist_slow(slab, freelist_old, counters_old,
614 freelist_new, counters_new);
615 local_irq_restore(flags);
616 }
617 if (likely(ret))
618 return true;
619
620 cpu_relax();
621 stat(s, CMPXCHG_DOUBLE_FAIL);
622
623 #ifdef SLUB_DEBUG_CMPXCHG
624 pr_info("%s %s: cmpxchg double redo ", n, s->name);
625 #endif
626
627 return false;
628 }
629
630 #ifdef CONFIG_SLUB_DEBUG
631 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
632 static DEFINE_SPINLOCK(object_map_lock);
633
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)634 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
635 struct slab *slab)
636 {
637 void *addr = slab_address(slab);
638 void *p;
639
640 bitmap_zero(obj_map, slab->objects);
641
642 for (p = slab->freelist; p; p = get_freepointer(s, p))
643 set_bit(__obj_to_index(s, addr, p), obj_map);
644 }
645
646 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)647 static bool slab_add_kunit_errors(void)
648 {
649 struct kunit_resource *resource;
650
651 if (!kunit_get_current_test())
652 return false;
653
654 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
655 if (!resource)
656 return false;
657
658 (*(int *)resource->data)++;
659 kunit_put_resource(resource);
660 return true;
661 }
662 #else
slab_add_kunit_errors(void)663 static inline bool slab_add_kunit_errors(void) { return false; }
664 #endif
665
size_from_object(struct kmem_cache * s)666 static inline unsigned int size_from_object(struct kmem_cache *s)
667 {
668 if (s->flags & SLAB_RED_ZONE)
669 return s->size - s->red_left_pad;
670
671 return s->size;
672 }
673
restore_red_left(struct kmem_cache * s,void * p)674 static inline void *restore_red_left(struct kmem_cache *s, void *p)
675 {
676 if (s->flags & SLAB_RED_ZONE)
677 p -= s->red_left_pad;
678
679 return p;
680 }
681
682 /*
683 * Debug settings:
684 */
685 #if defined(CONFIG_SLUB_DEBUG_ON)
686 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
687 #else
688 static slab_flags_t slub_debug;
689 #endif
690
691 static char *slub_debug_string;
692 static int disable_higher_order_debug;
693
694 /*
695 * slub is about to manipulate internal object metadata. This memory lies
696 * outside the range of the allocated object, so accessing it would normally
697 * be reported by kasan as a bounds error. metadata_access_enable() is used
698 * to tell kasan that these accesses are OK.
699 */
metadata_access_enable(void)700 static inline void metadata_access_enable(void)
701 {
702 kasan_disable_current();
703 }
704
metadata_access_disable(void)705 static inline void metadata_access_disable(void)
706 {
707 kasan_enable_current();
708 }
709
710 /*
711 * Object debugging
712 */
713
714 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)715 static inline int check_valid_pointer(struct kmem_cache *s,
716 struct slab *slab, void *object)
717 {
718 void *base;
719
720 if (!object)
721 return 1;
722
723 base = slab_address(slab);
724 object = kasan_reset_tag(object);
725 object = restore_red_left(s, object);
726 if (object < base || object >= base + slab->objects * s->size ||
727 (object - base) % s->size) {
728 return 0;
729 }
730
731 return 1;
732 }
733
print_section(char * level,char * text,u8 * addr,unsigned int length)734 static void print_section(char *level, char *text, u8 *addr,
735 unsigned int length)
736 {
737 metadata_access_enable();
738 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
739 16, 1, kasan_reset_tag((void *)addr), length, 1);
740 metadata_access_disable();
741 }
742
743 /*
744 * See comment in calculate_sizes().
745 */
freeptr_outside_object(struct kmem_cache * s)746 static inline bool freeptr_outside_object(struct kmem_cache *s)
747 {
748 return s->offset >= s->inuse;
749 }
750
751 /*
752 * Return offset of the end of info block which is inuse + free pointer if
753 * not overlapping with object.
754 */
get_info_end(struct kmem_cache * s)755 static inline unsigned int get_info_end(struct kmem_cache *s)
756 {
757 if (freeptr_outside_object(s))
758 return s->inuse + sizeof(void *);
759 else
760 return s->inuse;
761 }
762
get_track(struct kmem_cache * s,void * object,enum track_item alloc)763 static struct track *get_track(struct kmem_cache *s, void *object,
764 enum track_item alloc)
765 {
766 struct track *p;
767
768 p = object + get_info_end(s);
769
770 return kasan_reset_tag(p + alloc);
771 }
772
773 #ifdef CONFIG_STACKDEPOT
set_track_prepare(void)774 static noinline depot_stack_handle_t set_track_prepare(void)
775 {
776 depot_stack_handle_t handle;
777 unsigned long entries[TRACK_ADDRS_COUNT];
778 unsigned int nr_entries;
779
780 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
781 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
782
783 return handle;
784 }
785 #else
set_track_prepare(void)786 static inline depot_stack_handle_t set_track_prepare(void)
787 {
788 return 0;
789 }
790 #endif
791
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)792 static void set_track_update(struct kmem_cache *s, void *object,
793 enum track_item alloc, unsigned long addr,
794 depot_stack_handle_t handle)
795 {
796 struct track *p = get_track(s, object, alloc);
797
798 #ifdef CONFIG_STACKDEPOT
799 p->handle = handle;
800 #endif
801 p->addr = addr;
802 p->cpu = smp_processor_id();
803 p->pid = current->pid;
804 p->when = jiffies;
805 }
806
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)807 static __always_inline void set_track(struct kmem_cache *s, void *object,
808 enum track_item alloc, unsigned long addr)
809 {
810 depot_stack_handle_t handle = set_track_prepare();
811
812 set_track_update(s, object, alloc, addr, handle);
813 }
814
init_tracking(struct kmem_cache * s,void * object)815 static void init_tracking(struct kmem_cache *s, void *object)
816 {
817 struct track *p;
818
819 if (!(s->flags & SLAB_STORE_USER))
820 return;
821
822 p = get_track(s, object, TRACK_ALLOC);
823 memset(p, 0, 2*sizeof(struct track));
824 }
825
print_track(const char * s,struct track * t,unsigned long pr_time)826 static void print_track(const char *s, struct track *t, unsigned long pr_time)
827 {
828 depot_stack_handle_t handle __maybe_unused;
829
830 if (!t->addr)
831 return;
832
833 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
834 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
835 #ifdef CONFIG_STACKDEPOT
836 handle = READ_ONCE(t->handle);
837 if (handle)
838 stack_depot_print(handle);
839 else
840 pr_err("object allocation/free stack trace missing\n");
841 #endif
842 }
843
print_tracking(struct kmem_cache * s,void * object)844 void print_tracking(struct kmem_cache *s, void *object)
845 {
846 unsigned long pr_time = jiffies;
847 if (!(s->flags & SLAB_STORE_USER))
848 return;
849
850 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
851 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
852 }
853
print_slab_info(const struct slab * slab)854 static void print_slab_info(const struct slab *slab)
855 {
856 struct folio *folio = (struct folio *)slab_folio(slab);
857
858 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
859 slab, slab->objects, slab->inuse, slab->freelist,
860 folio_flags(folio, 0));
861 }
862
863 /*
864 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
865 * family will round up the real request size to these fixed ones, so
866 * there could be an extra area than what is requested. Save the original
867 * request size in the meta data area, for better debug and sanity check.
868 */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)869 static inline void set_orig_size(struct kmem_cache *s,
870 void *object, unsigned int orig_size)
871 {
872 void *p = kasan_reset_tag(object);
873
874 if (!slub_debug_orig_size(s))
875 return;
876
877 #ifdef CONFIG_KASAN_GENERIC
878 /*
879 * KASAN could save its free meta data in object's data area at
880 * offset 0, if the size is larger than 'orig_size', it will
881 * overlap the data redzone in [orig_size+1, object_size], and
882 * the check should be skipped.
883 */
884 if (kasan_metadata_size(s, true) > orig_size)
885 orig_size = s->object_size;
886 #endif
887
888 p += get_info_end(s);
889 p += sizeof(struct track) * 2;
890
891 *(unsigned int *)p = orig_size;
892 }
893
get_orig_size(struct kmem_cache * s,void * object)894 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
895 {
896 void *p = kasan_reset_tag(object);
897
898 if (!slub_debug_orig_size(s))
899 return s->object_size;
900
901 p += get_info_end(s);
902 p += sizeof(struct track) * 2;
903
904 return *(unsigned int *)p;
905 }
906
skip_orig_size_check(struct kmem_cache * s,const void * object)907 void skip_orig_size_check(struct kmem_cache *s, const void *object)
908 {
909 set_orig_size(s, (void *)object, s->object_size);
910 }
911
slab_bug(struct kmem_cache * s,char * fmt,...)912 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
913 {
914 struct va_format vaf;
915 va_list args;
916
917 va_start(args, fmt);
918 vaf.fmt = fmt;
919 vaf.va = &args;
920 pr_err("=============================================================================\n");
921 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
922 pr_err("-----------------------------------------------------------------------------\n\n");
923 va_end(args);
924 }
925
926 __printf(2, 3)
slab_fix(struct kmem_cache * s,char * fmt,...)927 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
928 {
929 struct va_format vaf;
930 va_list args;
931
932 if (slab_add_kunit_errors())
933 return;
934
935 va_start(args, fmt);
936 vaf.fmt = fmt;
937 vaf.va = &args;
938 pr_err("FIX %s: %pV\n", s->name, &vaf);
939 va_end(args);
940 }
941
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)942 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
943 {
944 unsigned int off; /* Offset of last byte */
945 u8 *addr = slab_address(slab);
946
947 print_tracking(s, p);
948
949 print_slab_info(slab);
950
951 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
952 p, p - addr, get_freepointer(s, p));
953
954 if (s->flags & SLAB_RED_ZONE)
955 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
956 s->red_left_pad);
957 else if (p > addr + 16)
958 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
959
960 print_section(KERN_ERR, "Object ", p,
961 min_t(unsigned int, s->object_size, PAGE_SIZE));
962 if (s->flags & SLAB_RED_ZONE)
963 print_section(KERN_ERR, "Redzone ", p + s->object_size,
964 s->inuse - s->object_size);
965
966 off = get_info_end(s);
967
968 if (s->flags & SLAB_STORE_USER)
969 off += 2 * sizeof(struct track);
970
971 if (slub_debug_orig_size(s))
972 off += sizeof(unsigned int);
973
974 off += kasan_metadata_size(s, false);
975
976 if (off != size_from_object(s))
977 /* Beginning of the filler is the free pointer */
978 print_section(KERN_ERR, "Padding ", p + off,
979 size_from_object(s) - off);
980
981 dump_stack();
982 }
983
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,char * reason)984 static void object_err(struct kmem_cache *s, struct slab *slab,
985 u8 *object, char *reason)
986 {
987 if (slab_add_kunit_errors())
988 return;
989
990 slab_bug(s, "%s", reason);
991 print_trailer(s, slab, object);
992 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
993 }
994
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)995 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
996 void **freelist, void *nextfree)
997 {
998 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
999 !check_valid_pointer(s, slab, nextfree) && freelist) {
1000 object_err(s, slab, *freelist, "Freechain corrupt");
1001 *freelist = NULL;
1002 slab_fix(s, "Isolate corrupted freechain");
1003 return true;
1004 }
1005
1006 return false;
1007 }
1008
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1009 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1010 const char *fmt, ...)
1011 {
1012 va_list args;
1013 char buf[100];
1014
1015 if (slab_add_kunit_errors())
1016 return;
1017
1018 va_start(args, fmt);
1019 vsnprintf(buf, sizeof(buf), fmt, args);
1020 va_end(args);
1021 slab_bug(s, "%s", buf);
1022 print_slab_info(slab);
1023 dump_stack();
1024 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1025 }
1026
init_object(struct kmem_cache * s,void * object,u8 val)1027 static void init_object(struct kmem_cache *s, void *object, u8 val)
1028 {
1029 u8 *p = kasan_reset_tag(object);
1030 unsigned int poison_size = s->object_size;
1031
1032 if (s->flags & SLAB_RED_ZONE) {
1033 memset(p - s->red_left_pad, val, s->red_left_pad);
1034
1035 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1036 /*
1037 * Redzone the extra allocated space by kmalloc than
1038 * requested, and the poison size will be limited to
1039 * the original request size accordingly.
1040 */
1041 poison_size = get_orig_size(s, object);
1042 }
1043 }
1044
1045 if (s->flags & __OBJECT_POISON) {
1046 memset(p, POISON_FREE, poison_size - 1);
1047 p[poison_size - 1] = POISON_END;
1048 }
1049
1050 if (s->flags & SLAB_RED_ZONE)
1051 memset(p + poison_size, val, s->inuse - poison_size);
1052 }
1053
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)1054 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1055 void *from, void *to)
1056 {
1057 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1058 memset(from, data, to - from);
1059 }
1060
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)1061 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1062 u8 *object, char *what,
1063 u8 *start, unsigned int value, unsigned int bytes)
1064 {
1065 u8 *fault;
1066 u8 *end;
1067 u8 *addr = slab_address(slab);
1068
1069 metadata_access_enable();
1070 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1071 metadata_access_disable();
1072 if (!fault)
1073 return 1;
1074
1075 end = start + bytes;
1076 while (end > fault && end[-1] == value)
1077 end--;
1078
1079 if (slab_add_kunit_errors())
1080 goto skip_bug_print;
1081
1082 slab_bug(s, "%s overwritten", what);
1083 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1084 fault, end - 1, fault - addr,
1085 fault[0], value);
1086 print_trailer(s, slab, object);
1087 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1088
1089 skip_bug_print:
1090 restore_bytes(s, what, value, fault, end);
1091 return 0;
1092 }
1093
1094 /*
1095 * Object layout:
1096 *
1097 * object address
1098 * Bytes of the object to be managed.
1099 * If the freepointer may overlay the object then the free
1100 * pointer is at the middle of the object.
1101 *
1102 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1103 * 0xa5 (POISON_END)
1104 *
1105 * object + s->object_size
1106 * Padding to reach word boundary. This is also used for Redzoning.
1107 * Padding is extended by another word if Redzoning is enabled and
1108 * object_size == inuse.
1109 *
1110 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1111 * 0xcc (RED_ACTIVE) for objects in use.
1112 *
1113 * object + s->inuse
1114 * Meta data starts here.
1115 *
1116 * A. Free pointer (if we cannot overwrite object on free)
1117 * B. Tracking data for SLAB_STORE_USER
1118 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1119 * D. Padding to reach required alignment boundary or at minimum
1120 * one word if debugging is on to be able to detect writes
1121 * before the word boundary.
1122 *
1123 * Padding is done using 0x5a (POISON_INUSE)
1124 *
1125 * object + s->size
1126 * Nothing is used beyond s->size.
1127 *
1128 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1129 * ignored. And therefore no slab options that rely on these boundaries
1130 * may be used with merged slabcaches.
1131 */
1132
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1133 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1134 {
1135 unsigned long off = get_info_end(s); /* The end of info */
1136
1137 if (s->flags & SLAB_STORE_USER) {
1138 /* We also have user information there */
1139 off += 2 * sizeof(struct track);
1140
1141 if (s->flags & SLAB_KMALLOC)
1142 off += sizeof(unsigned int);
1143 }
1144
1145 off += kasan_metadata_size(s, false);
1146
1147 if (size_from_object(s) == off)
1148 return 1;
1149
1150 return check_bytes_and_report(s, slab, p, "Object padding",
1151 p + off, POISON_INUSE, size_from_object(s) - off);
1152 }
1153
1154 /* Check the pad bytes at the end of a slab page */
slab_pad_check(struct kmem_cache * s,struct slab * slab)1155 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1156 {
1157 u8 *start;
1158 u8 *fault;
1159 u8 *end;
1160 u8 *pad;
1161 int length;
1162 int remainder;
1163
1164 if (!(s->flags & SLAB_POISON))
1165 return;
1166
1167 start = slab_address(slab);
1168 length = slab_size(slab);
1169 end = start + length;
1170 remainder = length % s->size;
1171 if (!remainder)
1172 return;
1173
1174 pad = end - remainder;
1175 metadata_access_enable();
1176 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1177 metadata_access_disable();
1178 if (!fault)
1179 return;
1180 while (end > fault && end[-1] == POISON_INUSE)
1181 end--;
1182
1183 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1184 fault, end - 1, fault - start);
1185 print_section(KERN_ERR, "Padding ", pad, remainder);
1186
1187 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1188 }
1189
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1190 static int check_object(struct kmem_cache *s, struct slab *slab,
1191 void *object, u8 val)
1192 {
1193 u8 *p = object;
1194 u8 *endobject = object + s->object_size;
1195 unsigned int orig_size;
1196
1197 if (s->flags & SLAB_RED_ZONE) {
1198 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1199 object - s->red_left_pad, val, s->red_left_pad))
1200 return 0;
1201
1202 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1203 endobject, val, s->inuse - s->object_size))
1204 return 0;
1205
1206 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1207 orig_size = get_orig_size(s, object);
1208
1209 if (s->object_size > orig_size &&
1210 !check_bytes_and_report(s, slab, object,
1211 "kmalloc Redzone", p + orig_size,
1212 val, s->object_size - orig_size)) {
1213 return 0;
1214 }
1215 }
1216 } else {
1217 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1218 check_bytes_and_report(s, slab, p, "Alignment padding",
1219 endobject, POISON_INUSE,
1220 s->inuse - s->object_size);
1221 }
1222 }
1223
1224 if (s->flags & SLAB_POISON) {
1225 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1226 (!check_bytes_and_report(s, slab, p, "Poison", p,
1227 POISON_FREE, s->object_size - 1) ||
1228 !check_bytes_and_report(s, slab, p, "End Poison",
1229 p + s->object_size - 1, POISON_END, 1)))
1230 return 0;
1231 /*
1232 * check_pad_bytes cleans up on its own.
1233 */
1234 check_pad_bytes(s, slab, p);
1235 }
1236
1237 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1238 /*
1239 * Object and freepointer overlap. Cannot check
1240 * freepointer while object is allocated.
1241 */
1242 return 1;
1243
1244 /* Check free pointer validity */
1245 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1246 object_err(s, slab, p, "Freepointer corrupt");
1247 /*
1248 * No choice but to zap it and thus lose the remainder
1249 * of the free objects in this slab. May cause
1250 * another error because the object count is now wrong.
1251 */
1252 set_freepointer(s, p, NULL);
1253 return 0;
1254 }
1255 return 1;
1256 }
1257
check_slab(struct kmem_cache * s,struct slab * slab)1258 static int check_slab(struct kmem_cache *s, struct slab *slab)
1259 {
1260 int maxobj;
1261
1262 if (!folio_test_slab(slab_folio(slab))) {
1263 slab_err(s, slab, "Not a valid slab page");
1264 return 0;
1265 }
1266
1267 maxobj = order_objects(slab_order(slab), s->size);
1268 if (slab->objects > maxobj) {
1269 slab_err(s, slab, "objects %u > max %u",
1270 slab->objects, maxobj);
1271 return 0;
1272 }
1273 if (slab->inuse > slab->objects) {
1274 slab_err(s, slab, "inuse %u > max %u",
1275 slab->inuse, slab->objects);
1276 return 0;
1277 }
1278 /* Slab_pad_check fixes things up after itself */
1279 slab_pad_check(s, slab);
1280 return 1;
1281 }
1282
1283 /*
1284 * Determine if a certain object in a slab is on the freelist. Must hold the
1285 * slab lock to guarantee that the chains are in a consistent state.
1286 */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1287 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1288 {
1289 int nr = 0;
1290 void *fp;
1291 void *object = NULL;
1292 int max_objects;
1293
1294 fp = slab->freelist;
1295 while (fp && nr <= slab->objects) {
1296 if (fp == search)
1297 return 1;
1298 if (!check_valid_pointer(s, slab, fp)) {
1299 if (object) {
1300 object_err(s, slab, object,
1301 "Freechain corrupt");
1302 set_freepointer(s, object, NULL);
1303 } else {
1304 slab_err(s, slab, "Freepointer corrupt");
1305 slab->freelist = NULL;
1306 slab->inuse = slab->objects;
1307 slab_fix(s, "Freelist cleared");
1308 return 0;
1309 }
1310 break;
1311 }
1312 object = fp;
1313 fp = get_freepointer(s, object);
1314 nr++;
1315 }
1316
1317 max_objects = order_objects(slab_order(slab), s->size);
1318 if (max_objects > MAX_OBJS_PER_PAGE)
1319 max_objects = MAX_OBJS_PER_PAGE;
1320
1321 if (slab->objects != max_objects) {
1322 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1323 slab->objects, max_objects);
1324 slab->objects = max_objects;
1325 slab_fix(s, "Number of objects adjusted");
1326 }
1327 if (slab->inuse != slab->objects - nr) {
1328 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1329 slab->inuse, slab->objects - nr);
1330 slab->inuse = slab->objects - nr;
1331 slab_fix(s, "Object count adjusted");
1332 }
1333 return search == NULL;
1334 }
1335
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1336 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1337 int alloc)
1338 {
1339 if (s->flags & SLAB_TRACE) {
1340 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1341 s->name,
1342 alloc ? "alloc" : "free",
1343 object, slab->inuse,
1344 slab->freelist);
1345
1346 if (!alloc)
1347 print_section(KERN_INFO, "Object ", (void *)object,
1348 s->object_size);
1349
1350 dump_stack();
1351 }
1352 }
1353
1354 /*
1355 * Tracking of fully allocated slabs for debugging purposes.
1356 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1357 static void add_full(struct kmem_cache *s,
1358 struct kmem_cache_node *n, struct slab *slab)
1359 {
1360 if (!(s->flags & SLAB_STORE_USER))
1361 return;
1362
1363 lockdep_assert_held(&n->list_lock);
1364 list_add(&slab->slab_list, &n->full);
1365 }
1366
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1367 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1368 {
1369 if (!(s->flags & SLAB_STORE_USER))
1370 return;
1371
1372 lockdep_assert_held(&n->list_lock);
1373 list_del(&slab->slab_list);
1374 }
1375
node_nr_slabs(struct kmem_cache_node * n)1376 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1377 {
1378 return atomic_long_read(&n->nr_slabs);
1379 }
1380
inc_slabs_node(struct kmem_cache * s,int node,int objects)1381 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1382 {
1383 struct kmem_cache_node *n = get_node(s, node);
1384
1385 /*
1386 * May be called early in order to allocate a slab for the
1387 * kmem_cache_node structure. Solve the chicken-egg
1388 * dilemma by deferring the increment of the count during
1389 * bootstrap (see early_kmem_cache_node_alloc).
1390 */
1391 if (likely(n)) {
1392 atomic_long_inc(&n->nr_slabs);
1393 atomic_long_add(objects, &n->total_objects);
1394 }
1395 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1396 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1397 {
1398 struct kmem_cache_node *n = get_node(s, node);
1399
1400 atomic_long_dec(&n->nr_slabs);
1401 atomic_long_sub(objects, &n->total_objects);
1402 }
1403
1404 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1405 static void setup_object_debug(struct kmem_cache *s, void *object)
1406 {
1407 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1408 return;
1409
1410 init_object(s, object, SLUB_RED_INACTIVE);
1411 init_tracking(s, object);
1412 }
1413
1414 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1415 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1416 {
1417 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1418 return;
1419
1420 metadata_access_enable();
1421 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1422 metadata_access_disable();
1423 }
1424
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1425 static inline int alloc_consistency_checks(struct kmem_cache *s,
1426 struct slab *slab, void *object)
1427 {
1428 if (!check_slab(s, slab))
1429 return 0;
1430
1431 if (!check_valid_pointer(s, slab, object)) {
1432 object_err(s, slab, object, "Freelist Pointer check fails");
1433 return 0;
1434 }
1435
1436 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1437 return 0;
1438
1439 return 1;
1440 }
1441
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1442 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1443 struct slab *slab, void *object, int orig_size)
1444 {
1445 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1446 if (!alloc_consistency_checks(s, slab, object))
1447 goto bad;
1448 }
1449
1450 /* Success. Perform special debug activities for allocs */
1451 trace(s, slab, object, 1);
1452 set_orig_size(s, object, orig_size);
1453 init_object(s, object, SLUB_RED_ACTIVE);
1454 return true;
1455
1456 bad:
1457 if (folio_test_slab(slab_folio(slab))) {
1458 /*
1459 * If this is a slab page then lets do the best we can
1460 * to avoid issues in the future. Marking all objects
1461 * as used avoids touching the remaining objects.
1462 */
1463 slab_fix(s, "Marking all objects used");
1464 slab->inuse = slab->objects;
1465 slab->freelist = NULL;
1466 }
1467 return false;
1468 }
1469
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1470 static inline int free_consistency_checks(struct kmem_cache *s,
1471 struct slab *slab, void *object, unsigned long addr)
1472 {
1473 if (!check_valid_pointer(s, slab, object)) {
1474 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1475 return 0;
1476 }
1477
1478 if (on_freelist(s, slab, object)) {
1479 object_err(s, slab, object, "Object already free");
1480 return 0;
1481 }
1482
1483 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1484 return 0;
1485
1486 if (unlikely(s != slab->slab_cache)) {
1487 if (!folio_test_slab(slab_folio(slab))) {
1488 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1489 object);
1490 } else if (!slab->slab_cache) {
1491 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1492 object);
1493 dump_stack();
1494 } else
1495 object_err(s, slab, object,
1496 "page slab pointer corrupt.");
1497 return 0;
1498 }
1499 return 1;
1500 }
1501
1502 /*
1503 * Parse a block of slub_debug options. Blocks are delimited by ';'
1504 *
1505 * @str: start of block
1506 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1507 * @slabs: return start of list of slabs, or NULL when there's no list
1508 * @init: assume this is initial parsing and not per-kmem-create parsing
1509 *
1510 * returns the start of next block if there's any, or NULL
1511 */
1512 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1513 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1514 {
1515 bool higher_order_disable = false;
1516
1517 /* Skip any completely empty blocks */
1518 while (*str && *str == ';')
1519 str++;
1520
1521 if (*str == ',') {
1522 /*
1523 * No options but restriction on slabs. This means full
1524 * debugging for slabs matching a pattern.
1525 */
1526 *flags = DEBUG_DEFAULT_FLAGS;
1527 goto check_slabs;
1528 }
1529 *flags = 0;
1530
1531 /* Determine which debug features should be switched on */
1532 for (; *str && *str != ',' && *str != ';'; str++) {
1533 switch (tolower(*str)) {
1534 case '-':
1535 *flags = 0;
1536 break;
1537 case 'f':
1538 *flags |= SLAB_CONSISTENCY_CHECKS;
1539 break;
1540 case 'z':
1541 *flags |= SLAB_RED_ZONE;
1542 break;
1543 case 'p':
1544 *flags |= SLAB_POISON;
1545 break;
1546 case 'u':
1547 *flags |= SLAB_STORE_USER;
1548 break;
1549 case 't':
1550 *flags |= SLAB_TRACE;
1551 break;
1552 case 'a':
1553 *flags |= SLAB_FAILSLAB;
1554 break;
1555 case 'o':
1556 /*
1557 * Avoid enabling debugging on caches if its minimum
1558 * order would increase as a result.
1559 */
1560 higher_order_disable = true;
1561 break;
1562 default:
1563 if (init)
1564 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1565 }
1566 }
1567 check_slabs:
1568 if (*str == ',')
1569 *slabs = ++str;
1570 else
1571 *slabs = NULL;
1572
1573 /* Skip over the slab list */
1574 while (*str && *str != ';')
1575 str++;
1576
1577 /* Skip any completely empty blocks */
1578 while (*str && *str == ';')
1579 str++;
1580
1581 if (init && higher_order_disable)
1582 disable_higher_order_debug = 1;
1583
1584 if (*str)
1585 return str;
1586 else
1587 return NULL;
1588 }
1589
setup_slub_debug(char * str)1590 static int __init setup_slub_debug(char *str)
1591 {
1592 slab_flags_t flags;
1593 slab_flags_t global_flags;
1594 char *saved_str;
1595 char *slab_list;
1596 bool global_slub_debug_changed = false;
1597 bool slab_list_specified = false;
1598
1599 global_flags = DEBUG_DEFAULT_FLAGS;
1600 if (*str++ != '=' || !*str)
1601 /*
1602 * No options specified. Switch on full debugging.
1603 */
1604 goto out;
1605
1606 saved_str = str;
1607 while (str) {
1608 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1609
1610 if (!slab_list) {
1611 global_flags = flags;
1612 global_slub_debug_changed = true;
1613 } else {
1614 slab_list_specified = true;
1615 if (flags & SLAB_STORE_USER)
1616 stack_depot_request_early_init();
1617 }
1618 }
1619
1620 /*
1621 * For backwards compatibility, a single list of flags with list of
1622 * slabs means debugging is only changed for those slabs, so the global
1623 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1624 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1625 * long as there is no option specifying flags without a slab list.
1626 */
1627 if (slab_list_specified) {
1628 if (!global_slub_debug_changed)
1629 global_flags = slub_debug;
1630 slub_debug_string = saved_str;
1631 }
1632 out:
1633 slub_debug = global_flags;
1634 if (slub_debug & SLAB_STORE_USER)
1635 stack_depot_request_early_init();
1636 if (slub_debug != 0 || slub_debug_string)
1637 static_branch_enable(&slub_debug_enabled);
1638 else
1639 static_branch_disable(&slub_debug_enabled);
1640 if ((static_branch_unlikely(&init_on_alloc) ||
1641 static_branch_unlikely(&init_on_free)) &&
1642 (slub_debug & SLAB_POISON))
1643 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1644 return 1;
1645 }
1646
1647 __setup("slub_debug", setup_slub_debug);
1648
1649 /*
1650 * kmem_cache_flags - apply debugging options to the cache
1651 * @object_size: the size of an object without meta data
1652 * @flags: flags to set
1653 * @name: name of the cache
1654 *
1655 * Debug option(s) are applied to @flags. In addition to the debug
1656 * option(s), if a slab name (or multiple) is specified i.e.
1657 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1658 * then only the select slabs will receive the debug option(s).
1659 */
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1660 slab_flags_t kmem_cache_flags(unsigned int object_size,
1661 slab_flags_t flags, const char *name)
1662 {
1663 char *iter;
1664 size_t len;
1665 char *next_block;
1666 slab_flags_t block_flags;
1667 slab_flags_t slub_debug_local = slub_debug;
1668
1669 if (flags & SLAB_NO_USER_FLAGS)
1670 return flags;
1671
1672 /*
1673 * If the slab cache is for debugging (e.g. kmemleak) then
1674 * don't store user (stack trace) information by default,
1675 * but let the user enable it via the command line below.
1676 */
1677 if (flags & SLAB_NOLEAKTRACE)
1678 slub_debug_local &= ~SLAB_STORE_USER;
1679
1680 len = strlen(name);
1681 next_block = slub_debug_string;
1682 /* Go through all blocks of debug options, see if any matches our slab's name */
1683 while (next_block) {
1684 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1685 if (!iter)
1686 continue;
1687 /* Found a block that has a slab list, search it */
1688 while (*iter) {
1689 char *end, *glob;
1690 size_t cmplen;
1691
1692 end = strchrnul(iter, ',');
1693 if (next_block && next_block < end)
1694 end = next_block - 1;
1695
1696 glob = strnchr(iter, end - iter, '*');
1697 if (glob)
1698 cmplen = glob - iter;
1699 else
1700 cmplen = max_t(size_t, len, (end - iter));
1701
1702 if (!strncmp(name, iter, cmplen)) {
1703 flags |= block_flags;
1704 return flags;
1705 }
1706
1707 if (!*end || *end == ';')
1708 break;
1709 iter = end + 1;
1710 }
1711 }
1712
1713 return flags | slub_debug_local;
1714 }
1715 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1716 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1717 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1718 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1719
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1720 static inline bool alloc_debug_processing(struct kmem_cache *s,
1721 struct slab *slab, void *object, int orig_size) { return true; }
1722
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1723 static inline bool free_debug_processing(struct kmem_cache *s,
1724 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1725 unsigned long addr, depot_stack_handle_t handle) { return true; }
1726
slab_pad_check(struct kmem_cache * s,struct slab * slab)1727 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1728 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1729 void *object, u8 val) { return 1; }
set_track_prepare(void)1730 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)1731 static inline void set_track(struct kmem_cache *s, void *object,
1732 enum track_item alloc, unsigned long addr) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1733 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1734 struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1735 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1736 struct slab *slab) {}
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1737 slab_flags_t kmem_cache_flags(unsigned int object_size,
1738 slab_flags_t flags, const char *name)
1739 {
1740 return flags;
1741 }
1742 #define slub_debug 0
1743
1744 #define disable_higher_order_debug 0
1745
node_nr_slabs(struct kmem_cache_node * n)1746 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1747 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1748 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1749 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1750 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1751 int objects) {}
1752
1753 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1754 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1755 void **freelist, void *nextfree)
1756 {
1757 return false;
1758 }
1759 #endif
1760 #endif /* CONFIG_SLUB_DEBUG */
1761
1762 /*
1763 * Hooks for other subsystems that check memory allocations. In a typical
1764 * production configuration these hooks all should produce no code at all.
1765 */
slab_free_hook(struct kmem_cache * s,void * x,bool init)1766 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1767 void *x, bool init)
1768 {
1769 kmemleak_free_recursive(x, s->flags);
1770 kmsan_slab_free(s, x);
1771
1772 debug_check_no_locks_freed(x, s->object_size);
1773
1774 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1775 debug_check_no_obj_freed(x, s->object_size);
1776
1777 /* Use KCSAN to help debug racy use-after-free. */
1778 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1779 __kcsan_check_access(x, s->object_size,
1780 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1781
1782 /*
1783 * As memory initialization might be integrated into KASAN,
1784 * kasan_slab_free and initialization memset's must be
1785 * kept together to avoid discrepancies in behavior.
1786 *
1787 * The initialization memset's clear the object and the metadata,
1788 * but don't touch the SLAB redzone.
1789 */
1790 if (init) {
1791 int rsize;
1792
1793 if (!kasan_has_integrated_init())
1794 memset(kasan_reset_tag(x), 0, s->object_size);
1795 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1796 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1797 s->size - s->inuse - rsize);
1798 }
1799 /* KASAN might put x into memory quarantine, delaying its reuse. */
1800 return kasan_slab_free(s, x, init);
1801 }
1802
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)1803 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1804 void **head, void **tail,
1805 int *cnt)
1806 {
1807
1808 void *object;
1809 void *next = *head;
1810 void *old_tail = *tail ? *tail : *head;
1811
1812 if (is_kfence_address(next)) {
1813 slab_free_hook(s, next, false);
1814 return true;
1815 }
1816
1817 /* Head and tail of the reconstructed freelist */
1818 *head = NULL;
1819 *tail = NULL;
1820
1821 do {
1822 object = next;
1823 next = get_freepointer(s, object);
1824
1825 /* If object's reuse doesn't have to be delayed */
1826 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1827 /* Move object to the new freelist */
1828 set_freepointer(s, object, *head);
1829 *head = object;
1830 if (!*tail)
1831 *tail = object;
1832 } else {
1833 /*
1834 * Adjust the reconstructed freelist depth
1835 * accordingly if object's reuse is delayed.
1836 */
1837 --(*cnt);
1838 }
1839 } while (object != old_tail);
1840
1841 if (*head == *tail)
1842 *tail = NULL;
1843
1844 return *head != NULL;
1845 }
1846
setup_object(struct kmem_cache * s,void * object)1847 static void *setup_object(struct kmem_cache *s, void *object)
1848 {
1849 setup_object_debug(s, object);
1850 object = kasan_init_slab_obj(s, object);
1851 if (unlikely(s->ctor)) {
1852 kasan_unpoison_object_data(s, object);
1853 s->ctor(object);
1854 kasan_poison_object_data(s, object);
1855 }
1856 return object;
1857 }
1858
1859 /*
1860 * Slab allocation and freeing
1861 */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)1862 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1863 struct kmem_cache_order_objects oo)
1864 {
1865 struct folio *folio;
1866 struct slab *slab;
1867 unsigned int order = oo_order(oo);
1868
1869 if (node == NUMA_NO_NODE)
1870 folio = (struct folio *)alloc_pages(flags, order);
1871 else
1872 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1873
1874 if (!folio)
1875 return NULL;
1876
1877 slab = folio_slab(folio);
1878 __folio_set_slab(folio);
1879 /* Make the flag visible before any changes to folio->mapping */
1880 smp_wmb();
1881 if (folio_is_pfmemalloc(folio))
1882 slab_set_pfmemalloc(slab);
1883
1884 return slab;
1885 }
1886
1887 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1888 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)1889 static int init_cache_random_seq(struct kmem_cache *s)
1890 {
1891 unsigned int count = oo_objects(s->oo);
1892 int err;
1893
1894 /* Bailout if already initialised */
1895 if (s->random_seq)
1896 return 0;
1897
1898 err = cache_random_seq_create(s, count, GFP_KERNEL);
1899 if (err) {
1900 pr_err("SLUB: Unable to initialize free list for %s\n",
1901 s->name);
1902 return err;
1903 }
1904
1905 /* Transform to an offset on the set of pages */
1906 if (s->random_seq) {
1907 unsigned int i;
1908
1909 for (i = 0; i < count; i++)
1910 s->random_seq[i] *= s->size;
1911 }
1912 return 0;
1913 }
1914
1915 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)1916 static void __init init_freelist_randomization(void)
1917 {
1918 struct kmem_cache *s;
1919
1920 mutex_lock(&slab_mutex);
1921
1922 list_for_each_entry(s, &slab_caches, list)
1923 init_cache_random_seq(s);
1924
1925 mutex_unlock(&slab_mutex);
1926 }
1927
1928 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,struct slab * slab,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)1929 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1930 unsigned long *pos, void *start,
1931 unsigned long page_limit,
1932 unsigned long freelist_count)
1933 {
1934 unsigned int idx;
1935
1936 /*
1937 * If the target page allocation failed, the number of objects on the
1938 * page might be smaller than the usual size defined by the cache.
1939 */
1940 do {
1941 idx = s->random_seq[*pos];
1942 *pos += 1;
1943 if (*pos >= freelist_count)
1944 *pos = 0;
1945 } while (unlikely(idx >= page_limit));
1946
1947 return (char *)start + idx;
1948 }
1949
1950 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)1951 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1952 {
1953 void *start;
1954 void *cur;
1955 void *next;
1956 unsigned long idx, pos, page_limit, freelist_count;
1957
1958 if (slab->objects < 2 || !s->random_seq)
1959 return false;
1960
1961 freelist_count = oo_objects(s->oo);
1962 pos = get_random_u32_below(freelist_count);
1963
1964 page_limit = slab->objects * s->size;
1965 start = fixup_red_left(s, slab_address(slab));
1966
1967 /* First entry is used as the base of the freelist */
1968 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1969 freelist_count);
1970 cur = setup_object(s, cur);
1971 slab->freelist = cur;
1972
1973 for (idx = 1; idx < slab->objects; idx++) {
1974 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1975 freelist_count);
1976 next = setup_object(s, next);
1977 set_freepointer(s, cur, next);
1978 cur = next;
1979 }
1980 set_freepointer(s, cur, NULL);
1981
1982 return true;
1983 }
1984 #else
init_cache_random_seq(struct kmem_cache * s)1985 static inline int init_cache_random_seq(struct kmem_cache *s)
1986 {
1987 return 0;
1988 }
init_freelist_randomization(void)1989 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)1990 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1991 {
1992 return false;
1993 }
1994 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1995
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)1996 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1997 {
1998 struct slab *slab;
1999 struct kmem_cache_order_objects oo = s->oo;
2000 gfp_t alloc_gfp;
2001 void *start, *p, *next;
2002 int idx;
2003 bool shuffle;
2004
2005 flags &= gfp_allowed_mask;
2006
2007 flags |= s->allocflags;
2008
2009 /*
2010 * Let the initial higher-order allocation fail under memory pressure
2011 * so we fall-back to the minimum order allocation.
2012 */
2013 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2014 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2015 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2016
2017 slab = alloc_slab_page(alloc_gfp, node, oo);
2018 if (unlikely(!slab)) {
2019 oo = s->min;
2020 alloc_gfp = flags;
2021 /*
2022 * Allocation may have failed due to fragmentation.
2023 * Try a lower order alloc if possible
2024 */
2025 slab = alloc_slab_page(alloc_gfp, node, oo);
2026 if (unlikely(!slab))
2027 return NULL;
2028 stat(s, ORDER_FALLBACK);
2029 }
2030
2031 slab->objects = oo_objects(oo);
2032 slab->inuse = 0;
2033 slab->frozen = 0;
2034
2035 account_slab(slab, oo_order(oo), s, flags);
2036
2037 slab->slab_cache = s;
2038
2039 kasan_poison_slab(slab);
2040
2041 start = slab_address(slab);
2042
2043 setup_slab_debug(s, slab, start);
2044
2045 shuffle = shuffle_freelist(s, slab);
2046
2047 if (!shuffle) {
2048 start = fixup_red_left(s, start);
2049 start = setup_object(s, start);
2050 slab->freelist = start;
2051 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2052 next = p + s->size;
2053 next = setup_object(s, next);
2054 set_freepointer(s, p, next);
2055 p = next;
2056 }
2057 set_freepointer(s, p, NULL);
2058 }
2059
2060 return slab;
2061 }
2062
new_slab(struct kmem_cache * s,gfp_t flags,int node)2063 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2064 {
2065 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2066 flags = kmalloc_fix_flags(flags);
2067
2068 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2069
2070 return allocate_slab(s,
2071 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2072 }
2073
__free_slab(struct kmem_cache * s,struct slab * slab)2074 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2075 {
2076 struct folio *folio = slab_folio(slab);
2077 int order = folio_order(folio);
2078 int pages = 1 << order;
2079
2080 __slab_clear_pfmemalloc(slab);
2081 folio->mapping = NULL;
2082 /* Make the mapping reset visible before clearing the flag */
2083 smp_wmb();
2084 __folio_clear_slab(folio);
2085 mm_account_reclaimed_pages(pages);
2086 unaccount_slab(slab, order, s);
2087 __free_pages(&folio->page, order);
2088 }
2089
rcu_free_slab(struct rcu_head * h)2090 static void rcu_free_slab(struct rcu_head *h)
2091 {
2092 struct slab *slab = container_of(h, struct slab, rcu_head);
2093
2094 __free_slab(slab->slab_cache, slab);
2095 }
2096
free_slab(struct kmem_cache * s,struct slab * slab)2097 static void free_slab(struct kmem_cache *s, struct slab *slab)
2098 {
2099 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2100 void *p;
2101
2102 slab_pad_check(s, slab);
2103 for_each_object(p, s, slab_address(slab), slab->objects)
2104 check_object(s, slab, p, SLUB_RED_INACTIVE);
2105 }
2106
2107 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2108 call_rcu(&slab->rcu_head, rcu_free_slab);
2109 else
2110 __free_slab(s, slab);
2111 }
2112
discard_slab(struct kmem_cache * s,struct slab * slab)2113 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2114 {
2115 dec_slabs_node(s, slab_nid(slab), slab->objects);
2116 free_slab(s, slab);
2117 }
2118
2119 /*
2120 * Management of partially allocated slabs.
2121 */
2122 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2123 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2124 {
2125 n->nr_partial++;
2126 if (tail == DEACTIVATE_TO_TAIL)
2127 list_add_tail(&slab->slab_list, &n->partial);
2128 else
2129 list_add(&slab->slab_list, &n->partial);
2130 }
2131
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2132 static inline void add_partial(struct kmem_cache_node *n,
2133 struct slab *slab, int tail)
2134 {
2135 lockdep_assert_held(&n->list_lock);
2136 __add_partial(n, slab, tail);
2137 }
2138
remove_partial(struct kmem_cache_node * n,struct slab * slab)2139 static inline void remove_partial(struct kmem_cache_node *n,
2140 struct slab *slab)
2141 {
2142 lockdep_assert_held(&n->list_lock);
2143 list_del(&slab->slab_list);
2144 n->nr_partial--;
2145 }
2146
2147 /*
2148 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2149 * slab from the n->partial list. Remove only a single object from the slab, do
2150 * the alloc_debug_processing() checks and leave the slab on the list, or move
2151 * it to full list if it was the last free object.
2152 */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)2153 static void *alloc_single_from_partial(struct kmem_cache *s,
2154 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2155 {
2156 void *object;
2157
2158 lockdep_assert_held(&n->list_lock);
2159
2160 object = slab->freelist;
2161 slab->freelist = get_freepointer(s, object);
2162 slab->inuse++;
2163
2164 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2165 remove_partial(n, slab);
2166 return NULL;
2167 }
2168
2169 if (slab->inuse == slab->objects) {
2170 remove_partial(n, slab);
2171 add_full(s, n, slab);
2172 }
2173
2174 return object;
2175 }
2176
2177 /*
2178 * Called only for kmem_cache_debug() caches to allocate from a freshly
2179 * allocated slab. Allocate a single object instead of whole freelist
2180 * and put the slab to the partial (or full) list.
2181 */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size)2182 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2183 struct slab *slab, int orig_size)
2184 {
2185 int nid = slab_nid(slab);
2186 struct kmem_cache_node *n = get_node(s, nid);
2187 unsigned long flags;
2188 void *object;
2189
2190
2191 object = slab->freelist;
2192 slab->freelist = get_freepointer(s, object);
2193 slab->inuse = 1;
2194
2195 if (!alloc_debug_processing(s, slab, object, orig_size))
2196 /*
2197 * It's not really expected that this would fail on a
2198 * freshly allocated slab, but a concurrent memory
2199 * corruption in theory could cause that.
2200 */
2201 return NULL;
2202
2203 spin_lock_irqsave(&n->list_lock, flags);
2204
2205 if (slab->inuse == slab->objects)
2206 add_full(s, n, slab);
2207 else
2208 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2209
2210 inc_slabs_node(s, nid, slab->objects);
2211 spin_unlock_irqrestore(&n->list_lock, flags);
2212
2213 return object;
2214 }
2215
2216 /*
2217 * Remove slab from the partial list, freeze it and
2218 * return the pointer to the freelist.
2219 *
2220 * Returns a list of objects or NULL if it fails.
2221 */
acquire_slab(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int mode)2222 static inline void *acquire_slab(struct kmem_cache *s,
2223 struct kmem_cache_node *n, struct slab *slab,
2224 int mode)
2225 {
2226 void *freelist;
2227 unsigned long counters;
2228 struct slab new;
2229
2230 lockdep_assert_held(&n->list_lock);
2231
2232 /*
2233 * Zap the freelist and set the frozen bit.
2234 * The old freelist is the list of objects for the
2235 * per cpu allocation list.
2236 */
2237 freelist = slab->freelist;
2238 counters = slab->counters;
2239 new.counters = counters;
2240 if (mode) {
2241 new.inuse = slab->objects;
2242 new.freelist = NULL;
2243 } else {
2244 new.freelist = freelist;
2245 }
2246
2247 VM_BUG_ON(new.frozen);
2248 new.frozen = 1;
2249
2250 if (!__slab_update_freelist(s, slab,
2251 freelist, counters,
2252 new.freelist, new.counters,
2253 "acquire_slab"))
2254 return NULL;
2255
2256 remove_partial(n, slab);
2257 WARN_ON(!freelist);
2258 return freelist;
2259 }
2260
2261 #ifdef CONFIG_SLUB_CPU_PARTIAL
2262 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2263 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2264 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2265 int drain) { }
2266 #endif
2267 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2268
2269 /*
2270 * Try to allocate a partial slab from a specific node.
2271 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)2272 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2273 struct partial_context *pc)
2274 {
2275 struct slab *slab, *slab2;
2276 void *object = NULL;
2277 unsigned long flags;
2278 unsigned int partial_slabs = 0;
2279
2280 /*
2281 * Racy check. If we mistakenly see no partial slabs then we
2282 * just allocate an empty slab. If we mistakenly try to get a
2283 * partial slab and there is none available then get_partial()
2284 * will return NULL.
2285 */
2286 if (!n || !n->nr_partial)
2287 return NULL;
2288
2289 spin_lock_irqsave(&n->list_lock, flags);
2290 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2291 void *t;
2292
2293 if (!pfmemalloc_match(slab, pc->flags))
2294 continue;
2295
2296 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2297 object = alloc_single_from_partial(s, n, slab,
2298 pc->orig_size);
2299 if (object)
2300 break;
2301 continue;
2302 }
2303
2304 t = acquire_slab(s, n, slab, object == NULL);
2305 if (!t)
2306 break;
2307
2308 if (!object) {
2309 *pc->slab = slab;
2310 stat(s, ALLOC_FROM_PARTIAL);
2311 object = t;
2312 } else {
2313 put_cpu_partial(s, slab, 0);
2314 stat(s, CPU_PARTIAL_NODE);
2315 partial_slabs++;
2316 }
2317 #ifdef CONFIG_SLUB_CPU_PARTIAL
2318 if (!kmem_cache_has_cpu_partial(s)
2319 || partial_slabs > s->cpu_partial_slabs / 2)
2320 break;
2321 #else
2322 break;
2323 #endif
2324
2325 }
2326 spin_unlock_irqrestore(&n->list_lock, flags);
2327 return object;
2328 }
2329
2330 /*
2331 * Get a slab from somewhere. Search in increasing NUMA distances.
2332 */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)2333 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2334 {
2335 #ifdef CONFIG_NUMA
2336 struct zonelist *zonelist;
2337 struct zoneref *z;
2338 struct zone *zone;
2339 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2340 void *object;
2341 unsigned int cpuset_mems_cookie;
2342
2343 /*
2344 * The defrag ratio allows a configuration of the tradeoffs between
2345 * inter node defragmentation and node local allocations. A lower
2346 * defrag_ratio increases the tendency to do local allocations
2347 * instead of attempting to obtain partial slabs from other nodes.
2348 *
2349 * If the defrag_ratio is set to 0 then kmalloc() always
2350 * returns node local objects. If the ratio is higher then kmalloc()
2351 * may return off node objects because partial slabs are obtained
2352 * from other nodes and filled up.
2353 *
2354 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2355 * (which makes defrag_ratio = 1000) then every (well almost)
2356 * allocation will first attempt to defrag slab caches on other nodes.
2357 * This means scanning over all nodes to look for partial slabs which
2358 * may be expensive if we do it every time we are trying to find a slab
2359 * with available objects.
2360 */
2361 if (!s->remote_node_defrag_ratio ||
2362 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2363 return NULL;
2364
2365 do {
2366 cpuset_mems_cookie = read_mems_allowed_begin();
2367 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2368 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2369 struct kmem_cache_node *n;
2370
2371 n = get_node(s, zone_to_nid(zone));
2372
2373 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2374 n->nr_partial > s->min_partial) {
2375 object = get_partial_node(s, n, pc);
2376 if (object) {
2377 /*
2378 * Don't check read_mems_allowed_retry()
2379 * here - if mems_allowed was updated in
2380 * parallel, that was a harmless race
2381 * between allocation and the cpuset
2382 * update
2383 */
2384 return object;
2385 }
2386 }
2387 }
2388 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2389 #endif /* CONFIG_NUMA */
2390 return NULL;
2391 }
2392
2393 /*
2394 * Get a partial slab, lock it and return it.
2395 */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)2396 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2397 {
2398 void *object;
2399 int searchnode = node;
2400
2401 if (node == NUMA_NO_NODE)
2402 searchnode = numa_mem_id();
2403
2404 object = get_partial_node(s, get_node(s, searchnode), pc);
2405 if (object || node != NUMA_NO_NODE)
2406 return object;
2407
2408 return get_any_partial(s, pc);
2409 }
2410
2411 #ifndef CONFIG_SLUB_TINY
2412
2413 #ifdef CONFIG_PREEMPTION
2414 /*
2415 * Calculate the next globally unique transaction for disambiguation
2416 * during cmpxchg. The transactions start with the cpu number and are then
2417 * incremented by CONFIG_NR_CPUS.
2418 */
2419 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2420 #else
2421 /*
2422 * No preemption supported therefore also no need to check for
2423 * different cpus.
2424 */
2425 #define TID_STEP 1
2426 #endif /* CONFIG_PREEMPTION */
2427
next_tid(unsigned long tid)2428 static inline unsigned long next_tid(unsigned long tid)
2429 {
2430 return tid + TID_STEP;
2431 }
2432
2433 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2434 static inline unsigned int tid_to_cpu(unsigned long tid)
2435 {
2436 return tid % TID_STEP;
2437 }
2438
tid_to_event(unsigned long tid)2439 static inline unsigned long tid_to_event(unsigned long tid)
2440 {
2441 return tid / TID_STEP;
2442 }
2443 #endif
2444
init_tid(int cpu)2445 static inline unsigned int init_tid(int cpu)
2446 {
2447 return cpu;
2448 }
2449
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)2450 static inline void note_cmpxchg_failure(const char *n,
2451 const struct kmem_cache *s, unsigned long tid)
2452 {
2453 #ifdef SLUB_DEBUG_CMPXCHG
2454 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2455
2456 pr_info("%s %s: cmpxchg redo ", n, s->name);
2457
2458 #ifdef CONFIG_PREEMPTION
2459 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2460 pr_warn("due to cpu change %d -> %d\n",
2461 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2462 else
2463 #endif
2464 if (tid_to_event(tid) != tid_to_event(actual_tid))
2465 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2466 tid_to_event(tid), tid_to_event(actual_tid));
2467 else
2468 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2469 actual_tid, tid, next_tid(tid));
2470 #endif
2471 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2472 }
2473
init_kmem_cache_cpus(struct kmem_cache * s)2474 static void init_kmem_cache_cpus(struct kmem_cache *s)
2475 {
2476 int cpu;
2477 struct kmem_cache_cpu *c;
2478
2479 for_each_possible_cpu(cpu) {
2480 c = per_cpu_ptr(s->cpu_slab, cpu);
2481 local_lock_init(&c->lock);
2482 c->tid = init_tid(cpu);
2483 }
2484 }
2485
2486 /*
2487 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2488 * unfreezes the slabs and puts it on the proper list.
2489 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2490 * by the caller.
2491 */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)2492 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2493 void *freelist)
2494 {
2495 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2496 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2497 int free_delta = 0;
2498 enum slab_modes mode = M_NONE;
2499 void *nextfree, *freelist_iter, *freelist_tail;
2500 int tail = DEACTIVATE_TO_HEAD;
2501 unsigned long flags = 0;
2502 struct slab new;
2503 struct slab old;
2504
2505 if (slab->freelist) {
2506 stat(s, DEACTIVATE_REMOTE_FREES);
2507 tail = DEACTIVATE_TO_TAIL;
2508 }
2509
2510 /*
2511 * Stage one: Count the objects on cpu's freelist as free_delta and
2512 * remember the last object in freelist_tail for later splicing.
2513 */
2514 freelist_tail = NULL;
2515 freelist_iter = freelist;
2516 while (freelist_iter) {
2517 nextfree = get_freepointer(s, freelist_iter);
2518
2519 /*
2520 * If 'nextfree' is invalid, it is possible that the object at
2521 * 'freelist_iter' is already corrupted. So isolate all objects
2522 * starting at 'freelist_iter' by skipping them.
2523 */
2524 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2525 break;
2526
2527 freelist_tail = freelist_iter;
2528 free_delta++;
2529
2530 freelist_iter = nextfree;
2531 }
2532
2533 /*
2534 * Stage two: Unfreeze the slab while splicing the per-cpu
2535 * freelist to the head of slab's freelist.
2536 *
2537 * Ensure that the slab is unfrozen while the list presence
2538 * reflects the actual number of objects during unfreeze.
2539 *
2540 * We first perform cmpxchg holding lock and insert to list
2541 * when it succeed. If there is mismatch then the slab is not
2542 * unfrozen and number of objects in the slab may have changed.
2543 * Then release lock and retry cmpxchg again.
2544 */
2545 redo:
2546
2547 old.freelist = READ_ONCE(slab->freelist);
2548 old.counters = READ_ONCE(slab->counters);
2549 VM_BUG_ON(!old.frozen);
2550
2551 /* Determine target state of the slab */
2552 new.counters = old.counters;
2553 if (freelist_tail) {
2554 new.inuse -= free_delta;
2555 set_freepointer(s, freelist_tail, old.freelist);
2556 new.freelist = freelist;
2557 } else
2558 new.freelist = old.freelist;
2559
2560 new.frozen = 0;
2561
2562 if (!new.inuse && n->nr_partial >= s->min_partial) {
2563 mode = M_FREE;
2564 } else if (new.freelist) {
2565 mode = M_PARTIAL;
2566 /*
2567 * Taking the spinlock removes the possibility that
2568 * acquire_slab() will see a slab that is frozen
2569 */
2570 spin_lock_irqsave(&n->list_lock, flags);
2571 } else {
2572 mode = M_FULL_NOLIST;
2573 }
2574
2575
2576 if (!slab_update_freelist(s, slab,
2577 old.freelist, old.counters,
2578 new.freelist, new.counters,
2579 "unfreezing slab")) {
2580 if (mode == M_PARTIAL)
2581 spin_unlock_irqrestore(&n->list_lock, flags);
2582 goto redo;
2583 }
2584
2585
2586 if (mode == M_PARTIAL) {
2587 add_partial(n, slab, tail);
2588 spin_unlock_irqrestore(&n->list_lock, flags);
2589 stat(s, tail);
2590 } else if (mode == M_FREE) {
2591 stat(s, DEACTIVATE_EMPTY);
2592 discard_slab(s, slab);
2593 stat(s, FREE_SLAB);
2594 } else if (mode == M_FULL_NOLIST) {
2595 stat(s, DEACTIVATE_FULL);
2596 }
2597 }
2598
2599 #ifdef CONFIG_SLUB_CPU_PARTIAL
__unfreeze_partials(struct kmem_cache * s,struct slab * partial_slab)2600 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2601 {
2602 struct kmem_cache_node *n = NULL, *n2 = NULL;
2603 struct slab *slab, *slab_to_discard = NULL;
2604 unsigned long flags = 0;
2605
2606 while (partial_slab) {
2607 struct slab new;
2608 struct slab old;
2609
2610 slab = partial_slab;
2611 partial_slab = slab->next;
2612
2613 n2 = get_node(s, slab_nid(slab));
2614 if (n != n2) {
2615 if (n)
2616 spin_unlock_irqrestore(&n->list_lock, flags);
2617
2618 n = n2;
2619 spin_lock_irqsave(&n->list_lock, flags);
2620 }
2621
2622 do {
2623
2624 old.freelist = slab->freelist;
2625 old.counters = slab->counters;
2626 VM_BUG_ON(!old.frozen);
2627
2628 new.counters = old.counters;
2629 new.freelist = old.freelist;
2630
2631 new.frozen = 0;
2632
2633 } while (!__slab_update_freelist(s, slab,
2634 old.freelist, old.counters,
2635 new.freelist, new.counters,
2636 "unfreezing slab"));
2637
2638 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2639 slab->next = slab_to_discard;
2640 slab_to_discard = slab;
2641 } else {
2642 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2643 stat(s, FREE_ADD_PARTIAL);
2644 }
2645 }
2646
2647 if (n)
2648 spin_unlock_irqrestore(&n->list_lock, flags);
2649
2650 while (slab_to_discard) {
2651 slab = slab_to_discard;
2652 slab_to_discard = slab_to_discard->next;
2653
2654 stat(s, DEACTIVATE_EMPTY);
2655 discard_slab(s, slab);
2656 stat(s, FREE_SLAB);
2657 }
2658 }
2659
2660 /*
2661 * Unfreeze all the cpu partial slabs.
2662 */
unfreeze_partials(struct kmem_cache * s)2663 static void unfreeze_partials(struct kmem_cache *s)
2664 {
2665 struct slab *partial_slab;
2666 unsigned long flags;
2667
2668 local_lock_irqsave(&s->cpu_slab->lock, flags);
2669 partial_slab = this_cpu_read(s->cpu_slab->partial);
2670 this_cpu_write(s->cpu_slab->partial, NULL);
2671 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2672
2673 if (partial_slab)
2674 __unfreeze_partials(s, partial_slab);
2675 }
2676
unfreeze_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)2677 static void unfreeze_partials_cpu(struct kmem_cache *s,
2678 struct kmem_cache_cpu *c)
2679 {
2680 struct slab *partial_slab;
2681
2682 partial_slab = slub_percpu_partial(c);
2683 c->partial = NULL;
2684
2685 if (partial_slab)
2686 __unfreeze_partials(s, partial_slab);
2687 }
2688
2689 /*
2690 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2691 * partial slab slot if available.
2692 *
2693 * If we did not find a slot then simply move all the partials to the
2694 * per node partial list.
2695 */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2696 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2697 {
2698 struct slab *oldslab;
2699 struct slab *slab_to_unfreeze = NULL;
2700 unsigned long flags;
2701 int slabs = 0;
2702
2703 local_lock_irqsave(&s->cpu_slab->lock, flags);
2704
2705 oldslab = this_cpu_read(s->cpu_slab->partial);
2706
2707 if (oldslab) {
2708 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2709 /*
2710 * Partial array is full. Move the existing set to the
2711 * per node partial list. Postpone the actual unfreezing
2712 * outside of the critical section.
2713 */
2714 slab_to_unfreeze = oldslab;
2715 oldslab = NULL;
2716 } else {
2717 slabs = oldslab->slabs;
2718 }
2719 }
2720
2721 slabs++;
2722
2723 slab->slabs = slabs;
2724 slab->next = oldslab;
2725
2726 this_cpu_write(s->cpu_slab->partial, slab);
2727
2728 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2729
2730 if (slab_to_unfreeze) {
2731 __unfreeze_partials(s, slab_to_unfreeze);
2732 stat(s, CPU_PARTIAL_DRAIN);
2733 }
2734 }
2735
2736 #else /* CONFIG_SLUB_CPU_PARTIAL */
2737
unfreeze_partials(struct kmem_cache * s)2738 static inline void unfreeze_partials(struct kmem_cache *s) { }
unfreeze_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)2739 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2740 struct kmem_cache_cpu *c) { }
2741
2742 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2743
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)2744 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2745 {
2746 unsigned long flags;
2747 struct slab *slab;
2748 void *freelist;
2749
2750 local_lock_irqsave(&s->cpu_slab->lock, flags);
2751
2752 slab = c->slab;
2753 freelist = c->freelist;
2754
2755 c->slab = NULL;
2756 c->freelist = NULL;
2757 c->tid = next_tid(c->tid);
2758
2759 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2760
2761 if (slab) {
2762 deactivate_slab(s, slab, freelist);
2763 stat(s, CPUSLAB_FLUSH);
2764 }
2765 }
2766
__flush_cpu_slab(struct kmem_cache * s,int cpu)2767 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2768 {
2769 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2770 void *freelist = c->freelist;
2771 struct slab *slab = c->slab;
2772
2773 c->slab = NULL;
2774 c->freelist = NULL;
2775 c->tid = next_tid(c->tid);
2776
2777 if (slab) {
2778 deactivate_slab(s, slab, freelist);
2779 stat(s, CPUSLAB_FLUSH);
2780 }
2781
2782 unfreeze_partials_cpu(s, c);
2783 }
2784
2785 struct slub_flush_work {
2786 struct work_struct work;
2787 struct kmem_cache *s;
2788 bool skip;
2789 };
2790
2791 /*
2792 * Flush cpu slab.
2793 *
2794 * Called from CPU work handler with migration disabled.
2795 */
flush_cpu_slab(struct work_struct * w)2796 static void flush_cpu_slab(struct work_struct *w)
2797 {
2798 struct kmem_cache *s;
2799 struct kmem_cache_cpu *c;
2800 struct slub_flush_work *sfw;
2801
2802 sfw = container_of(w, struct slub_flush_work, work);
2803
2804 s = sfw->s;
2805 c = this_cpu_ptr(s->cpu_slab);
2806
2807 if (c->slab)
2808 flush_slab(s, c);
2809
2810 unfreeze_partials(s);
2811 }
2812
has_cpu_slab(int cpu,struct kmem_cache * s)2813 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2814 {
2815 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2816
2817 return c->slab || slub_percpu_partial(c);
2818 }
2819
2820 static DEFINE_MUTEX(flush_lock);
2821 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2822
flush_all_cpus_locked(struct kmem_cache * s)2823 static void flush_all_cpus_locked(struct kmem_cache *s)
2824 {
2825 struct slub_flush_work *sfw;
2826 unsigned int cpu;
2827
2828 lockdep_assert_cpus_held();
2829 mutex_lock(&flush_lock);
2830
2831 for_each_online_cpu(cpu) {
2832 sfw = &per_cpu(slub_flush, cpu);
2833 if (!has_cpu_slab(cpu, s)) {
2834 sfw->skip = true;
2835 continue;
2836 }
2837 INIT_WORK(&sfw->work, flush_cpu_slab);
2838 sfw->skip = false;
2839 sfw->s = s;
2840 queue_work_on(cpu, flushwq, &sfw->work);
2841 }
2842
2843 for_each_online_cpu(cpu) {
2844 sfw = &per_cpu(slub_flush, cpu);
2845 if (sfw->skip)
2846 continue;
2847 flush_work(&sfw->work);
2848 }
2849
2850 mutex_unlock(&flush_lock);
2851 }
2852
flush_all(struct kmem_cache * s)2853 static void flush_all(struct kmem_cache *s)
2854 {
2855 cpus_read_lock();
2856 flush_all_cpus_locked(s);
2857 cpus_read_unlock();
2858 }
2859
2860 /*
2861 * Use the cpu notifier to insure that the cpu slabs are flushed when
2862 * necessary.
2863 */
slub_cpu_dead(unsigned int cpu)2864 static int slub_cpu_dead(unsigned int cpu)
2865 {
2866 struct kmem_cache *s;
2867
2868 mutex_lock(&slab_mutex);
2869 list_for_each_entry(s, &slab_caches, list)
2870 __flush_cpu_slab(s, cpu);
2871 mutex_unlock(&slab_mutex);
2872 return 0;
2873 }
2874
2875 #else /* CONFIG_SLUB_TINY */
flush_all_cpus_locked(struct kmem_cache * s)2876 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
flush_all(struct kmem_cache * s)2877 static inline void flush_all(struct kmem_cache *s) { }
__flush_cpu_slab(struct kmem_cache * s,int cpu)2878 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
slub_cpu_dead(unsigned int cpu)2879 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2880 #endif /* CONFIG_SLUB_TINY */
2881
2882 /*
2883 * Check if the objects in a per cpu structure fit numa
2884 * locality expectations.
2885 */
node_match(struct slab * slab,int node)2886 static inline int node_match(struct slab *slab, int node)
2887 {
2888 #ifdef CONFIG_NUMA
2889 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2890 return 0;
2891 #endif
2892 return 1;
2893 }
2894
2895 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)2896 static int count_free(struct slab *slab)
2897 {
2898 return slab->objects - slab->inuse;
2899 }
2900
node_nr_objs(struct kmem_cache_node * n)2901 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2902 {
2903 return atomic_long_read(&n->total_objects);
2904 }
2905
2906 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)2907 static inline bool free_debug_processing(struct kmem_cache *s,
2908 struct slab *slab, void *head, void *tail, int *bulk_cnt,
2909 unsigned long addr, depot_stack_handle_t handle)
2910 {
2911 bool checks_ok = false;
2912 void *object = head;
2913 int cnt = 0;
2914
2915 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2916 if (!check_slab(s, slab))
2917 goto out;
2918 }
2919
2920 if (slab->inuse < *bulk_cnt) {
2921 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2922 slab->inuse, *bulk_cnt);
2923 goto out;
2924 }
2925
2926 next_object:
2927
2928 if (++cnt > *bulk_cnt)
2929 goto out_cnt;
2930
2931 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2932 if (!free_consistency_checks(s, slab, object, addr))
2933 goto out;
2934 }
2935
2936 if (s->flags & SLAB_STORE_USER)
2937 set_track_update(s, object, TRACK_FREE, addr, handle);
2938 trace(s, slab, object, 0);
2939 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2940 init_object(s, object, SLUB_RED_INACTIVE);
2941
2942 /* Reached end of constructed freelist yet? */
2943 if (object != tail) {
2944 object = get_freepointer(s, object);
2945 goto next_object;
2946 }
2947 checks_ok = true;
2948
2949 out_cnt:
2950 if (cnt != *bulk_cnt) {
2951 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2952 *bulk_cnt, cnt);
2953 *bulk_cnt = cnt;
2954 }
2955
2956 out:
2957
2958 if (!checks_ok)
2959 slab_fix(s, "Object at 0x%p not freed", object);
2960
2961 return checks_ok;
2962 }
2963 #endif /* CONFIG_SLUB_DEBUG */
2964
2965 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))2966 static unsigned long count_partial(struct kmem_cache_node *n,
2967 int (*get_count)(struct slab *))
2968 {
2969 unsigned long flags;
2970 unsigned long x = 0;
2971 struct slab *slab;
2972
2973 spin_lock_irqsave(&n->list_lock, flags);
2974 list_for_each_entry(slab, &n->partial, slab_list)
2975 x += get_count(slab);
2976 spin_unlock_irqrestore(&n->list_lock, flags);
2977 return x;
2978 }
2979 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2980
2981 #ifdef CONFIG_SLUB_DEBUG
2982 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)2983 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2984 {
2985 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2986 DEFAULT_RATELIMIT_BURST);
2987 int node;
2988 struct kmem_cache_node *n;
2989
2990 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2991 return;
2992
2993 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2994 nid, gfpflags, &gfpflags);
2995 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2996 s->name, s->object_size, s->size, oo_order(s->oo),
2997 oo_order(s->min));
2998
2999 if (oo_order(s->min) > get_order(s->object_size))
3000 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
3001 s->name);
3002
3003 for_each_kmem_cache_node(s, node, n) {
3004 unsigned long nr_slabs;
3005 unsigned long nr_objs;
3006 unsigned long nr_free;
3007
3008 nr_free = count_partial(n, count_free);
3009 nr_slabs = node_nr_slabs(n);
3010 nr_objs = node_nr_objs(n);
3011
3012 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3013 node, nr_slabs, nr_objs, nr_free);
3014 }
3015 }
3016 #else /* CONFIG_SLUB_DEBUG */
3017 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3018 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3019 #endif
3020
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)3021 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3022 {
3023 if (unlikely(slab_test_pfmemalloc(slab)))
3024 return gfp_pfmemalloc_allowed(gfpflags);
3025
3026 return true;
3027 }
3028
3029 #ifndef CONFIG_SLUB_TINY
3030 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)3031 __update_cpu_freelist_fast(struct kmem_cache *s,
3032 void *freelist_old, void *freelist_new,
3033 unsigned long tid)
3034 {
3035 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3036 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3037
3038 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3039 &old.full, new.full);
3040 }
3041
3042 /*
3043 * Check the slab->freelist and either transfer the freelist to the
3044 * per cpu freelist or deactivate the slab.
3045 *
3046 * The slab is still frozen if the return value is not NULL.
3047 *
3048 * If this function returns NULL then the slab has been unfrozen.
3049 */
get_freelist(struct kmem_cache * s,struct slab * slab)3050 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3051 {
3052 struct slab new;
3053 unsigned long counters;
3054 void *freelist;
3055
3056 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3057
3058 do {
3059 freelist = slab->freelist;
3060 counters = slab->counters;
3061
3062 new.counters = counters;
3063 VM_BUG_ON(!new.frozen);
3064
3065 new.inuse = slab->objects;
3066 new.frozen = freelist != NULL;
3067
3068 } while (!__slab_update_freelist(s, slab,
3069 freelist, counters,
3070 NULL, new.counters,
3071 "get_freelist"));
3072
3073 return freelist;
3074 }
3075
3076 /*
3077 * Slow path. The lockless freelist is empty or we need to perform
3078 * debugging duties.
3079 *
3080 * Processing is still very fast if new objects have been freed to the
3081 * regular freelist. In that case we simply take over the regular freelist
3082 * as the lockless freelist and zap the regular freelist.
3083 *
3084 * If that is not working then we fall back to the partial lists. We take the
3085 * first element of the freelist as the object to allocate now and move the
3086 * rest of the freelist to the lockless freelist.
3087 *
3088 * And if we were unable to get a new slab from the partial slab lists then
3089 * we need to allocate a new slab. This is the slowest path since it involves
3090 * a call to the page allocator and the setup of a new slab.
3091 *
3092 * Version of __slab_alloc to use when we know that preemption is
3093 * already disabled (which is the case for bulk allocation).
3094 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3095 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3096 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3097 {
3098 void *freelist;
3099 struct slab *slab;
3100 unsigned long flags;
3101 struct partial_context pc;
3102
3103 stat(s, ALLOC_SLOWPATH);
3104
3105 reread_slab:
3106
3107 slab = READ_ONCE(c->slab);
3108 if (!slab) {
3109 /*
3110 * if the node is not online or has no normal memory, just
3111 * ignore the node constraint
3112 */
3113 if (unlikely(node != NUMA_NO_NODE &&
3114 !node_isset(node, slab_nodes)))
3115 node = NUMA_NO_NODE;
3116 goto new_slab;
3117 }
3118 redo:
3119
3120 if (unlikely(!node_match(slab, node))) {
3121 /*
3122 * same as above but node_match() being false already
3123 * implies node != NUMA_NO_NODE
3124 */
3125 if (!node_isset(node, slab_nodes)) {
3126 node = NUMA_NO_NODE;
3127 } else {
3128 stat(s, ALLOC_NODE_MISMATCH);
3129 goto deactivate_slab;
3130 }
3131 }
3132
3133 /*
3134 * By rights, we should be searching for a slab page that was
3135 * PFMEMALLOC but right now, we are losing the pfmemalloc
3136 * information when the page leaves the per-cpu allocator
3137 */
3138 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3139 goto deactivate_slab;
3140
3141 /* must check again c->slab in case we got preempted and it changed */
3142 local_lock_irqsave(&s->cpu_slab->lock, flags);
3143 if (unlikely(slab != c->slab)) {
3144 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3145 goto reread_slab;
3146 }
3147 freelist = c->freelist;
3148 if (freelist)
3149 goto load_freelist;
3150
3151 freelist = get_freelist(s, slab);
3152
3153 if (!freelist) {
3154 c->slab = NULL;
3155 c->tid = next_tid(c->tid);
3156 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3157 stat(s, DEACTIVATE_BYPASS);
3158 goto new_slab;
3159 }
3160
3161 stat(s, ALLOC_REFILL);
3162
3163 load_freelist:
3164
3165 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3166
3167 /*
3168 * freelist is pointing to the list of objects to be used.
3169 * slab is pointing to the slab from which the objects are obtained.
3170 * That slab must be frozen for per cpu allocations to work.
3171 */
3172 VM_BUG_ON(!c->slab->frozen);
3173 c->freelist = get_freepointer(s, freelist);
3174 c->tid = next_tid(c->tid);
3175 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3176 return freelist;
3177
3178 deactivate_slab:
3179
3180 local_lock_irqsave(&s->cpu_slab->lock, flags);
3181 if (slab != c->slab) {
3182 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3183 goto reread_slab;
3184 }
3185 freelist = c->freelist;
3186 c->slab = NULL;
3187 c->freelist = NULL;
3188 c->tid = next_tid(c->tid);
3189 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3190 deactivate_slab(s, slab, freelist);
3191
3192 new_slab:
3193
3194 if (slub_percpu_partial(c)) {
3195 local_lock_irqsave(&s->cpu_slab->lock, flags);
3196 if (unlikely(c->slab)) {
3197 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3198 goto reread_slab;
3199 }
3200 if (unlikely(!slub_percpu_partial(c))) {
3201 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3202 /* we were preempted and partial list got empty */
3203 goto new_objects;
3204 }
3205
3206 slab = c->slab = slub_percpu_partial(c);
3207 slub_set_percpu_partial(c, slab);
3208 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3209 stat(s, CPU_PARTIAL_ALLOC);
3210 goto redo;
3211 }
3212
3213 new_objects:
3214
3215 pc.flags = gfpflags;
3216 pc.slab = &slab;
3217 pc.orig_size = orig_size;
3218 freelist = get_partial(s, node, &pc);
3219 if (freelist)
3220 goto check_new_slab;
3221
3222 slub_put_cpu_ptr(s->cpu_slab);
3223 slab = new_slab(s, gfpflags, node);
3224 c = slub_get_cpu_ptr(s->cpu_slab);
3225
3226 if (unlikely(!slab)) {
3227 slab_out_of_memory(s, gfpflags, node);
3228 return NULL;
3229 }
3230
3231 stat(s, ALLOC_SLAB);
3232
3233 if (kmem_cache_debug(s)) {
3234 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3235
3236 if (unlikely(!freelist))
3237 goto new_objects;
3238
3239 if (s->flags & SLAB_STORE_USER)
3240 set_track(s, freelist, TRACK_ALLOC, addr);
3241
3242 return freelist;
3243 }
3244
3245 /*
3246 * No other reference to the slab yet so we can
3247 * muck around with it freely without cmpxchg
3248 */
3249 freelist = slab->freelist;
3250 slab->freelist = NULL;
3251 slab->inuse = slab->objects;
3252 slab->frozen = 1;
3253
3254 inc_slabs_node(s, slab_nid(slab), slab->objects);
3255
3256 check_new_slab:
3257
3258 if (kmem_cache_debug(s)) {
3259 /*
3260 * For debug caches here we had to go through
3261 * alloc_single_from_partial() so just store the tracking info
3262 * and return the object
3263 */
3264 if (s->flags & SLAB_STORE_USER)
3265 set_track(s, freelist, TRACK_ALLOC, addr);
3266
3267 return freelist;
3268 }
3269
3270 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3271 /*
3272 * For !pfmemalloc_match() case we don't load freelist so that
3273 * we don't make further mismatched allocations easier.
3274 */
3275 deactivate_slab(s, slab, get_freepointer(s, freelist));
3276 return freelist;
3277 }
3278
3279 retry_load_slab:
3280
3281 local_lock_irqsave(&s->cpu_slab->lock, flags);
3282 if (unlikely(c->slab)) {
3283 void *flush_freelist = c->freelist;
3284 struct slab *flush_slab = c->slab;
3285
3286 c->slab = NULL;
3287 c->freelist = NULL;
3288 c->tid = next_tid(c->tid);
3289
3290 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3291
3292 deactivate_slab(s, flush_slab, flush_freelist);
3293
3294 stat(s, CPUSLAB_FLUSH);
3295
3296 goto retry_load_slab;
3297 }
3298 c->slab = slab;
3299
3300 goto load_freelist;
3301 }
3302
3303 /*
3304 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3305 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3306 * pointer.
3307 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3308 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3309 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3310 {
3311 void *p;
3312
3313 #ifdef CONFIG_PREEMPT_COUNT
3314 /*
3315 * We may have been preempted and rescheduled on a different
3316 * cpu before disabling preemption. Need to reload cpu area
3317 * pointer.
3318 */
3319 c = slub_get_cpu_ptr(s->cpu_slab);
3320 #endif
3321
3322 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3323 #ifdef CONFIG_PREEMPT_COUNT
3324 slub_put_cpu_ptr(s->cpu_slab);
3325 #endif
3326 return p;
3327 }
3328
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3329 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3330 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3331 {
3332 struct kmem_cache_cpu *c;
3333 struct slab *slab;
3334 unsigned long tid;
3335 void *object;
3336
3337 redo:
3338 /*
3339 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3340 * enabled. We may switch back and forth between cpus while
3341 * reading from one cpu area. That does not matter as long
3342 * as we end up on the original cpu again when doing the cmpxchg.
3343 *
3344 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3345 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3346 * the tid. If we are preempted and switched to another cpu between the
3347 * two reads, it's OK as the two are still associated with the same cpu
3348 * and cmpxchg later will validate the cpu.
3349 */
3350 c = raw_cpu_ptr(s->cpu_slab);
3351 tid = READ_ONCE(c->tid);
3352
3353 /*
3354 * Irqless object alloc/free algorithm used here depends on sequence
3355 * of fetching cpu_slab's data. tid should be fetched before anything
3356 * on c to guarantee that object and slab associated with previous tid
3357 * won't be used with current tid. If we fetch tid first, object and
3358 * slab could be one associated with next tid and our alloc/free
3359 * request will be failed. In this case, we will retry. So, no problem.
3360 */
3361 barrier();
3362
3363 /*
3364 * The transaction ids are globally unique per cpu and per operation on
3365 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3366 * occurs on the right processor and that there was no operation on the
3367 * linked list in between.
3368 */
3369
3370 object = c->freelist;
3371 slab = c->slab;
3372
3373 if (!USE_LOCKLESS_FAST_PATH() ||
3374 unlikely(!object || !slab || !node_match(slab, node))) {
3375 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3376 } else {
3377 void *next_object = get_freepointer_safe(s, object);
3378
3379 /*
3380 * The cmpxchg will only match if there was no additional
3381 * operation and if we are on the right processor.
3382 *
3383 * The cmpxchg does the following atomically (without lock
3384 * semantics!)
3385 * 1. Relocate first pointer to the current per cpu area.
3386 * 2. Verify that tid and freelist have not been changed
3387 * 3. If they were not changed replace tid and freelist
3388 *
3389 * Since this is without lock semantics the protection is only
3390 * against code executing on this cpu *not* from access by
3391 * other cpus.
3392 */
3393 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3394 note_cmpxchg_failure("slab_alloc", s, tid);
3395 goto redo;
3396 }
3397 prefetch_freepointer(s, next_object);
3398 stat(s, ALLOC_FASTPATH);
3399 }
3400
3401 return object;
3402 }
3403 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3404 static void *__slab_alloc_node(struct kmem_cache *s,
3405 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3406 {
3407 struct partial_context pc;
3408 struct slab *slab;
3409 void *object;
3410
3411 pc.flags = gfpflags;
3412 pc.slab = &slab;
3413 pc.orig_size = orig_size;
3414 object = get_partial(s, node, &pc);
3415
3416 if (object)
3417 return object;
3418
3419 slab = new_slab(s, gfpflags, node);
3420 if (unlikely(!slab)) {
3421 slab_out_of_memory(s, gfpflags, node);
3422 return NULL;
3423 }
3424
3425 object = alloc_single_from_new_slab(s, slab, orig_size);
3426
3427 return object;
3428 }
3429 #endif /* CONFIG_SLUB_TINY */
3430
3431 /*
3432 * If the object has been wiped upon free, make sure it's fully initialized by
3433 * zeroing out freelist pointer.
3434 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)3435 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3436 void *obj)
3437 {
3438 if (unlikely(slab_want_init_on_free(s)) && obj)
3439 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3440 0, sizeof(void *));
3441 }
3442
3443 /*
3444 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3445 * have the fastpath folded into their functions. So no function call
3446 * overhead for requests that can be satisfied on the fastpath.
3447 *
3448 * The fastpath works by first checking if the lockless freelist can be used.
3449 * If not then __slab_alloc is called for slow processing.
3450 *
3451 * Otherwise we can simply pick the next object from the lockless free list.
3452 */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3453 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3454 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3455 {
3456 void *object;
3457 struct obj_cgroup *objcg = NULL;
3458 bool init = false;
3459
3460 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3461 if (!s)
3462 return NULL;
3463
3464 object = kfence_alloc(s, orig_size, gfpflags);
3465 if (unlikely(object))
3466 goto out;
3467
3468 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3469
3470 maybe_wipe_obj_freeptr(s, object);
3471 init = slab_want_init_on_alloc(gfpflags, s);
3472
3473 out:
3474 /*
3475 * When init equals 'true', like for kzalloc() family, only
3476 * @orig_size bytes might be zeroed instead of s->object_size
3477 */
3478 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3479
3480 return object;
3481 }
3482
slab_alloc(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,unsigned long addr,size_t orig_size)3483 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3484 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3485 {
3486 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3487 }
3488
3489 static __fastpath_inline
__kmem_cache_alloc_lru(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)3490 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3491 gfp_t gfpflags)
3492 {
3493 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3494
3495 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3496
3497 return ret;
3498 }
3499
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)3500 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3501 {
3502 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3503 }
3504 EXPORT_SYMBOL(kmem_cache_alloc);
3505
kmem_cache_alloc_lru(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)3506 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3507 gfp_t gfpflags)
3508 {
3509 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3510 }
3511 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3512
__kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,size_t orig_size,unsigned long caller)3513 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3514 int node, size_t orig_size,
3515 unsigned long caller)
3516 {
3517 return slab_alloc_node(s, NULL, gfpflags, node,
3518 caller, orig_size);
3519 }
3520
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node)3521 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3522 {
3523 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3524
3525 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3526
3527 return ret;
3528 }
3529 EXPORT_SYMBOL(kmem_cache_alloc_node);
3530
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)3531 static noinline void free_to_partial_list(
3532 struct kmem_cache *s, struct slab *slab,
3533 void *head, void *tail, int bulk_cnt,
3534 unsigned long addr)
3535 {
3536 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3537 struct slab *slab_free = NULL;
3538 int cnt = bulk_cnt;
3539 unsigned long flags;
3540 depot_stack_handle_t handle = 0;
3541
3542 if (s->flags & SLAB_STORE_USER)
3543 handle = set_track_prepare();
3544
3545 spin_lock_irqsave(&n->list_lock, flags);
3546
3547 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3548 void *prior = slab->freelist;
3549
3550 /* Perform the actual freeing while we still hold the locks */
3551 slab->inuse -= cnt;
3552 set_freepointer(s, tail, prior);
3553 slab->freelist = head;
3554
3555 /*
3556 * If the slab is empty, and node's partial list is full,
3557 * it should be discarded anyway no matter it's on full or
3558 * partial list.
3559 */
3560 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3561 slab_free = slab;
3562
3563 if (!prior) {
3564 /* was on full list */
3565 remove_full(s, n, slab);
3566 if (!slab_free) {
3567 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3568 stat(s, FREE_ADD_PARTIAL);
3569 }
3570 } else if (slab_free) {
3571 remove_partial(n, slab);
3572 stat(s, FREE_REMOVE_PARTIAL);
3573 }
3574 }
3575
3576 if (slab_free) {
3577 /*
3578 * Update the counters while still holding n->list_lock to
3579 * prevent spurious validation warnings
3580 */
3581 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3582 }
3583
3584 spin_unlock_irqrestore(&n->list_lock, flags);
3585
3586 if (slab_free) {
3587 stat(s, FREE_SLAB);
3588 free_slab(s, slab_free);
3589 }
3590 }
3591
3592 /*
3593 * Slow path handling. This may still be called frequently since objects
3594 * have a longer lifetime than the cpu slabs in most processing loads.
3595 *
3596 * So we still attempt to reduce cache line usage. Just take the slab
3597 * lock and free the item. If there is no additional partial slab
3598 * handling required then we can return immediately.
3599 */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)3600 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3601 void *head, void *tail, int cnt,
3602 unsigned long addr)
3603
3604 {
3605 void *prior;
3606 int was_frozen;
3607 struct slab new;
3608 unsigned long counters;
3609 struct kmem_cache_node *n = NULL;
3610 unsigned long flags;
3611
3612 stat(s, FREE_SLOWPATH);
3613
3614 if (kfence_free(head))
3615 return;
3616
3617 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3618 free_to_partial_list(s, slab, head, tail, cnt, addr);
3619 return;
3620 }
3621
3622 do {
3623 if (unlikely(n)) {
3624 spin_unlock_irqrestore(&n->list_lock, flags);
3625 n = NULL;
3626 }
3627 prior = slab->freelist;
3628 counters = slab->counters;
3629 set_freepointer(s, tail, prior);
3630 new.counters = counters;
3631 was_frozen = new.frozen;
3632 new.inuse -= cnt;
3633 if ((!new.inuse || !prior) && !was_frozen) {
3634
3635 if (kmem_cache_has_cpu_partial(s) && !prior) {
3636
3637 /*
3638 * Slab was on no list before and will be
3639 * partially empty
3640 * We can defer the list move and instead
3641 * freeze it.
3642 */
3643 new.frozen = 1;
3644
3645 } else { /* Needs to be taken off a list */
3646
3647 n = get_node(s, slab_nid(slab));
3648 /*
3649 * Speculatively acquire the list_lock.
3650 * If the cmpxchg does not succeed then we may
3651 * drop the list_lock without any processing.
3652 *
3653 * Otherwise the list_lock will synchronize with
3654 * other processors updating the list of slabs.
3655 */
3656 spin_lock_irqsave(&n->list_lock, flags);
3657
3658 }
3659 }
3660
3661 } while (!slab_update_freelist(s, slab,
3662 prior, counters,
3663 head, new.counters,
3664 "__slab_free"));
3665
3666 if (likely(!n)) {
3667
3668 if (likely(was_frozen)) {
3669 /*
3670 * The list lock was not taken therefore no list
3671 * activity can be necessary.
3672 */
3673 stat(s, FREE_FROZEN);
3674 } else if (new.frozen) {
3675 /*
3676 * If we just froze the slab then put it onto the
3677 * per cpu partial list.
3678 */
3679 put_cpu_partial(s, slab, 1);
3680 stat(s, CPU_PARTIAL_FREE);
3681 }
3682
3683 return;
3684 }
3685
3686 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3687 goto slab_empty;
3688
3689 /*
3690 * Objects left in the slab. If it was not on the partial list before
3691 * then add it.
3692 */
3693 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3694 remove_full(s, n, slab);
3695 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3696 stat(s, FREE_ADD_PARTIAL);
3697 }
3698 spin_unlock_irqrestore(&n->list_lock, flags);
3699 return;
3700
3701 slab_empty:
3702 if (prior) {
3703 /*
3704 * Slab on the partial list.
3705 */
3706 remove_partial(n, slab);
3707 stat(s, FREE_REMOVE_PARTIAL);
3708 } else {
3709 /* Slab must be on the full list */
3710 remove_full(s, n, slab);
3711 }
3712
3713 spin_unlock_irqrestore(&n->list_lock, flags);
3714 stat(s, FREE_SLAB);
3715 discard_slab(s, slab);
3716 }
3717
3718 #ifndef CONFIG_SLUB_TINY
3719 /*
3720 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3721 * can perform fastpath freeing without additional function calls.
3722 *
3723 * The fastpath is only possible if we are freeing to the current cpu slab
3724 * of this processor. This typically the case if we have just allocated
3725 * the item before.
3726 *
3727 * If fastpath is not possible then fall back to __slab_free where we deal
3728 * with all sorts of special processing.
3729 *
3730 * Bulk free of a freelist with several objects (all pointing to the
3731 * same slab) possible by specifying head and tail ptr, plus objects
3732 * count (cnt). Bulk free indicated by tail pointer being set.
3733 */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)3734 static __always_inline void do_slab_free(struct kmem_cache *s,
3735 struct slab *slab, void *head, void *tail,
3736 int cnt, unsigned long addr)
3737 {
3738 void *tail_obj = tail ? : head;
3739 struct kmem_cache_cpu *c;
3740 unsigned long tid;
3741 void **freelist;
3742
3743 redo:
3744 /*
3745 * Determine the currently cpus per cpu slab.
3746 * The cpu may change afterward. However that does not matter since
3747 * data is retrieved via this pointer. If we are on the same cpu
3748 * during the cmpxchg then the free will succeed.
3749 */
3750 c = raw_cpu_ptr(s->cpu_slab);
3751 tid = READ_ONCE(c->tid);
3752
3753 /* Same with comment on barrier() in slab_alloc_node() */
3754 barrier();
3755
3756 if (unlikely(slab != c->slab)) {
3757 __slab_free(s, slab, head, tail_obj, cnt, addr);
3758 return;
3759 }
3760
3761 if (USE_LOCKLESS_FAST_PATH()) {
3762 freelist = READ_ONCE(c->freelist);
3763
3764 set_freepointer(s, tail_obj, freelist);
3765
3766 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
3767 note_cmpxchg_failure("slab_free", s, tid);
3768 goto redo;
3769 }
3770 } else {
3771 /* Update the free list under the local lock */
3772 local_lock(&s->cpu_slab->lock);
3773 c = this_cpu_ptr(s->cpu_slab);
3774 if (unlikely(slab != c->slab)) {
3775 local_unlock(&s->cpu_slab->lock);
3776 goto redo;
3777 }
3778 tid = c->tid;
3779 freelist = c->freelist;
3780
3781 set_freepointer(s, tail_obj, freelist);
3782 c->freelist = head;
3783 c->tid = next_tid(tid);
3784
3785 local_unlock(&s->cpu_slab->lock);
3786 }
3787 stat(s, FREE_FASTPATH);
3788 }
3789 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)3790 static void do_slab_free(struct kmem_cache *s,
3791 struct slab *slab, void *head, void *tail,
3792 int cnt, unsigned long addr)
3793 {
3794 void *tail_obj = tail ? : head;
3795
3796 __slab_free(s, slab, head, tail_obj, cnt, addr);
3797 }
3798 #endif /* CONFIG_SLUB_TINY */
3799
slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)3800 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3801 void *head, void *tail, void **p, int cnt,
3802 unsigned long addr)
3803 {
3804 memcg_slab_free_hook(s, slab, p, cnt);
3805 /*
3806 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3807 * to remove objects, whose reuse must be delayed.
3808 */
3809 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3810 do_slab_free(s, slab, head, tail, cnt, addr);
3811 }
3812
3813 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)3814 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3815 {
3816 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3817 }
3818 #endif
3819
__kmem_cache_free(struct kmem_cache * s,void * x,unsigned long caller)3820 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3821 {
3822 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3823 }
3824
kmem_cache_free(struct kmem_cache * s,void * x)3825 void kmem_cache_free(struct kmem_cache *s, void *x)
3826 {
3827 s = cache_from_obj(s, x);
3828 if (!s)
3829 return;
3830 trace_kmem_cache_free(_RET_IP_, x, s);
3831 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3832 }
3833 EXPORT_SYMBOL(kmem_cache_free);
3834
3835 struct detached_freelist {
3836 struct slab *slab;
3837 void *tail;
3838 void *freelist;
3839 int cnt;
3840 struct kmem_cache *s;
3841 };
3842
3843 /*
3844 * This function progressively scans the array with free objects (with
3845 * a limited look ahead) and extract objects belonging to the same
3846 * slab. It builds a detached freelist directly within the given
3847 * slab/objects. This can happen without any need for
3848 * synchronization, because the objects are owned by running process.
3849 * The freelist is build up as a single linked list in the objects.
3850 * The idea is, that this detached freelist can then be bulk
3851 * transferred to the real freelist(s), but only requiring a single
3852 * synchronization primitive. Look ahead in the array is limited due
3853 * to performance reasons.
3854 */
3855 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)3856 int build_detached_freelist(struct kmem_cache *s, size_t size,
3857 void **p, struct detached_freelist *df)
3858 {
3859 int lookahead = 3;
3860 void *object;
3861 struct folio *folio;
3862 size_t same;
3863
3864 object = p[--size];
3865 folio = virt_to_folio(object);
3866 if (!s) {
3867 /* Handle kalloc'ed objects */
3868 if (unlikely(!folio_test_slab(folio))) {
3869 free_large_kmalloc(folio, object);
3870 df->slab = NULL;
3871 return size;
3872 }
3873 /* Derive kmem_cache from object */
3874 df->slab = folio_slab(folio);
3875 df->s = df->slab->slab_cache;
3876 } else {
3877 df->slab = folio_slab(folio);
3878 df->s = cache_from_obj(s, object); /* Support for memcg */
3879 }
3880
3881 /* Start new detached freelist */
3882 df->tail = object;
3883 df->freelist = object;
3884 df->cnt = 1;
3885
3886 if (is_kfence_address(object))
3887 return size;
3888
3889 set_freepointer(df->s, object, NULL);
3890
3891 same = size;
3892 while (size) {
3893 object = p[--size];
3894 /* df->slab is always set at this point */
3895 if (df->slab == virt_to_slab(object)) {
3896 /* Opportunity build freelist */
3897 set_freepointer(df->s, object, df->freelist);
3898 df->freelist = object;
3899 df->cnt++;
3900 same--;
3901 if (size != same)
3902 swap(p[size], p[same]);
3903 continue;
3904 }
3905
3906 /* Limit look ahead search */
3907 if (!--lookahead)
3908 break;
3909 }
3910
3911 return same;
3912 }
3913
3914 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)3915 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3916 {
3917 if (!size)
3918 return;
3919
3920 do {
3921 struct detached_freelist df;
3922
3923 size = build_detached_freelist(s, size, p, &df);
3924 if (!df.slab)
3925 continue;
3926
3927 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3928 _RET_IP_);
3929 } while (likely(size));
3930 }
3931 EXPORT_SYMBOL(kmem_cache_free_bulk);
3932
3933 #ifndef CONFIG_SLUB_TINY
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p,struct obj_cgroup * objcg)3934 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3935 size_t size, void **p, struct obj_cgroup *objcg)
3936 {
3937 struct kmem_cache_cpu *c;
3938 unsigned long irqflags;
3939 int i;
3940
3941 /*
3942 * Drain objects in the per cpu slab, while disabling local
3943 * IRQs, which protects against PREEMPT and interrupts
3944 * handlers invoking normal fastpath.
3945 */
3946 c = slub_get_cpu_ptr(s->cpu_slab);
3947 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3948
3949 for (i = 0; i < size; i++) {
3950 void *object = kfence_alloc(s, s->object_size, flags);
3951
3952 if (unlikely(object)) {
3953 p[i] = object;
3954 continue;
3955 }
3956
3957 object = c->freelist;
3958 if (unlikely(!object)) {
3959 /*
3960 * We may have removed an object from c->freelist using
3961 * the fastpath in the previous iteration; in that case,
3962 * c->tid has not been bumped yet.
3963 * Since ___slab_alloc() may reenable interrupts while
3964 * allocating memory, we should bump c->tid now.
3965 */
3966 c->tid = next_tid(c->tid);
3967
3968 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3969
3970 /*
3971 * Invoking slow path likely have side-effect
3972 * of re-populating per CPU c->freelist
3973 */
3974 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3975 _RET_IP_, c, s->object_size);
3976 if (unlikely(!p[i]))
3977 goto error;
3978
3979 c = this_cpu_ptr(s->cpu_slab);
3980 maybe_wipe_obj_freeptr(s, p[i]);
3981
3982 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3983
3984 continue; /* goto for-loop */
3985 }
3986 c->freelist = get_freepointer(s, object);
3987 p[i] = object;
3988 maybe_wipe_obj_freeptr(s, p[i]);
3989 }
3990 c->tid = next_tid(c->tid);
3991 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3992 slub_put_cpu_ptr(s->cpu_slab);
3993
3994 return i;
3995
3996 error:
3997 slub_put_cpu_ptr(s->cpu_slab);
3998 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3999 kmem_cache_free_bulk(s, i, p);
4000 return 0;
4001
4002 }
4003 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p,struct obj_cgroup * objcg)4004 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4005 size_t size, void **p, struct obj_cgroup *objcg)
4006 {
4007 int i;
4008
4009 for (i = 0; i < size; i++) {
4010 void *object = kfence_alloc(s, s->object_size, flags);
4011
4012 if (unlikely(object)) {
4013 p[i] = object;
4014 continue;
4015 }
4016
4017 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4018 _RET_IP_, s->object_size);
4019 if (unlikely(!p[i]))
4020 goto error;
4021
4022 maybe_wipe_obj_freeptr(s, p[i]);
4023 }
4024
4025 return i;
4026
4027 error:
4028 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4029 kmem_cache_free_bulk(s, i, p);
4030 return 0;
4031 }
4032 #endif /* CONFIG_SLUB_TINY */
4033
4034 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)4035 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4036 void **p)
4037 {
4038 int i;
4039 struct obj_cgroup *objcg = NULL;
4040
4041 if (!size)
4042 return 0;
4043
4044 /* memcg and kmem_cache debug support */
4045 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4046 if (unlikely(!s))
4047 return 0;
4048
4049 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4050
4051 /*
4052 * memcg and kmem_cache debug support and memory initialization.
4053 * Done outside of the IRQ disabled fastpath loop.
4054 */
4055 if (i != 0)
4056 slab_post_alloc_hook(s, objcg, flags, size, p,
4057 slab_want_init_on_alloc(flags, s), s->object_size);
4058 return i;
4059 }
4060 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4061
4062
4063 /*
4064 * Object placement in a slab is made very easy because we always start at
4065 * offset 0. If we tune the size of the object to the alignment then we can
4066 * get the required alignment by putting one properly sized object after
4067 * another.
4068 *
4069 * Notice that the allocation order determines the sizes of the per cpu
4070 * caches. Each processor has always one slab available for allocations.
4071 * Increasing the allocation order reduces the number of times that slabs
4072 * must be moved on and off the partial lists and is therefore a factor in
4073 * locking overhead.
4074 */
4075
4076 /*
4077 * Minimum / Maximum order of slab pages. This influences locking overhead
4078 * and slab fragmentation. A higher order reduces the number of partial slabs
4079 * and increases the number of allocations possible without having to
4080 * take the list_lock.
4081 */
4082 static unsigned int slub_min_order;
4083 static unsigned int slub_max_order =
4084 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4085 static unsigned int slub_min_objects;
4086
4087 /*
4088 * Calculate the order of allocation given an slab object size.
4089 *
4090 * The order of allocation has significant impact on performance and other
4091 * system components. Generally order 0 allocations should be preferred since
4092 * order 0 does not cause fragmentation in the page allocator. Larger objects
4093 * be problematic to put into order 0 slabs because there may be too much
4094 * unused space left. We go to a higher order if more than 1/16th of the slab
4095 * would be wasted.
4096 *
4097 * In order to reach satisfactory performance we must ensure that a minimum
4098 * number of objects is in one slab. Otherwise we may generate too much
4099 * activity on the partial lists which requires taking the list_lock. This is
4100 * less a concern for large slabs though which are rarely used.
4101 *
4102 * slub_max_order specifies the order where we begin to stop considering the
4103 * number of objects in a slab as critical. If we reach slub_max_order then
4104 * we try to keep the page order as low as possible. So we accept more waste
4105 * of space in favor of a small page order.
4106 *
4107 * Higher order allocations also allow the placement of more objects in a
4108 * slab and thereby reduce object handling overhead. If the user has
4109 * requested a higher minimum order then we start with that one instead of
4110 * the smallest order which will fit the object.
4111 */
calc_slab_order(unsigned int size,unsigned int min_objects,unsigned int max_order,unsigned int fract_leftover)4112 static inline unsigned int calc_slab_order(unsigned int size,
4113 unsigned int min_objects, unsigned int max_order,
4114 unsigned int fract_leftover)
4115 {
4116 unsigned int min_order = slub_min_order;
4117 unsigned int order;
4118
4119 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4120 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4121
4122 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4123 order <= max_order; order++) {
4124
4125 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4126 unsigned int rem;
4127
4128 rem = slab_size % size;
4129
4130 if (rem <= slab_size / fract_leftover)
4131 break;
4132 }
4133
4134 return order;
4135 }
4136
calculate_order(unsigned int size)4137 static inline int calculate_order(unsigned int size)
4138 {
4139 unsigned int order;
4140 unsigned int min_objects;
4141 unsigned int max_objects;
4142 unsigned int nr_cpus;
4143
4144 /*
4145 * Attempt to find best configuration for a slab. This
4146 * works by first attempting to generate a layout with
4147 * the best configuration and backing off gradually.
4148 *
4149 * First we increase the acceptable waste in a slab. Then
4150 * we reduce the minimum objects required in a slab.
4151 */
4152 min_objects = slub_min_objects;
4153 if (!min_objects) {
4154 /*
4155 * Some architectures will only update present cpus when
4156 * onlining them, so don't trust the number if it's just 1. But
4157 * we also don't want to use nr_cpu_ids always, as on some other
4158 * architectures, there can be many possible cpus, but never
4159 * onlined. Here we compromise between trying to avoid too high
4160 * order on systems that appear larger than they are, and too
4161 * low order on systems that appear smaller than they are.
4162 */
4163 nr_cpus = num_present_cpus();
4164 if (nr_cpus <= 1)
4165 nr_cpus = nr_cpu_ids;
4166 min_objects = 4 * (fls(nr_cpus) + 1);
4167 }
4168 max_objects = order_objects(slub_max_order, size);
4169 min_objects = min(min_objects, max_objects);
4170
4171 while (min_objects > 1) {
4172 unsigned int fraction;
4173
4174 fraction = 16;
4175 while (fraction >= 4) {
4176 order = calc_slab_order(size, min_objects,
4177 slub_max_order, fraction);
4178 if (order <= slub_max_order)
4179 return order;
4180 fraction /= 2;
4181 }
4182 min_objects--;
4183 }
4184
4185 /*
4186 * We were unable to place multiple objects in a slab. Now
4187 * lets see if we can place a single object there.
4188 */
4189 order = calc_slab_order(size, 1, slub_max_order, 1);
4190 if (order <= slub_max_order)
4191 return order;
4192
4193 /*
4194 * Doh this slab cannot be placed using slub_max_order.
4195 */
4196 order = calc_slab_order(size, 1, MAX_ORDER, 1);
4197 if (order <= MAX_ORDER)
4198 return order;
4199 return -ENOSYS;
4200 }
4201
4202 static void
init_kmem_cache_node(struct kmem_cache_node * n)4203 init_kmem_cache_node(struct kmem_cache_node *n)
4204 {
4205 n->nr_partial = 0;
4206 spin_lock_init(&n->list_lock);
4207 INIT_LIST_HEAD(&n->partial);
4208 #ifdef CONFIG_SLUB_DEBUG
4209 atomic_long_set(&n->nr_slabs, 0);
4210 atomic_long_set(&n->total_objects, 0);
4211 INIT_LIST_HEAD(&n->full);
4212 #endif
4213 }
4214
4215 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)4216 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4217 {
4218 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4219 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4220 sizeof(struct kmem_cache_cpu));
4221
4222 /*
4223 * Must align to double word boundary for the double cmpxchg
4224 * instructions to work; see __pcpu_double_call_return_bool().
4225 */
4226 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4227 2 * sizeof(void *));
4228
4229 if (!s->cpu_slab)
4230 return 0;
4231
4232 init_kmem_cache_cpus(s);
4233
4234 return 1;
4235 }
4236 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)4237 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4238 {
4239 return 1;
4240 }
4241 #endif /* CONFIG_SLUB_TINY */
4242
4243 static struct kmem_cache *kmem_cache_node;
4244
4245 /*
4246 * No kmalloc_node yet so do it by hand. We know that this is the first
4247 * slab on the node for this slabcache. There are no concurrent accesses
4248 * possible.
4249 *
4250 * Note that this function only works on the kmem_cache_node
4251 * when allocating for the kmem_cache_node. This is used for bootstrapping
4252 * memory on a fresh node that has no slab structures yet.
4253 */
early_kmem_cache_node_alloc(int node)4254 static void early_kmem_cache_node_alloc(int node)
4255 {
4256 struct slab *slab;
4257 struct kmem_cache_node *n;
4258
4259 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4260
4261 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4262
4263 BUG_ON(!slab);
4264 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4265 if (slab_nid(slab) != node) {
4266 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4267 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4268 }
4269
4270 n = slab->freelist;
4271 BUG_ON(!n);
4272 #ifdef CONFIG_SLUB_DEBUG
4273 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4274 init_tracking(kmem_cache_node, n);
4275 #endif
4276 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4277 slab->freelist = get_freepointer(kmem_cache_node, n);
4278 slab->inuse = 1;
4279 kmem_cache_node->node[node] = n;
4280 init_kmem_cache_node(n);
4281 inc_slabs_node(kmem_cache_node, node, slab->objects);
4282
4283 /*
4284 * No locks need to be taken here as it has just been
4285 * initialized and there is no concurrent access.
4286 */
4287 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
4288 }
4289
free_kmem_cache_nodes(struct kmem_cache * s)4290 static void free_kmem_cache_nodes(struct kmem_cache *s)
4291 {
4292 int node;
4293 struct kmem_cache_node *n;
4294
4295 for_each_kmem_cache_node(s, node, n) {
4296 s->node[node] = NULL;
4297 kmem_cache_free(kmem_cache_node, n);
4298 }
4299 }
4300
__kmem_cache_release(struct kmem_cache * s)4301 void __kmem_cache_release(struct kmem_cache *s)
4302 {
4303 cache_random_seq_destroy(s);
4304 #ifndef CONFIG_SLUB_TINY
4305 free_percpu(s->cpu_slab);
4306 #endif
4307 free_kmem_cache_nodes(s);
4308 }
4309
init_kmem_cache_nodes(struct kmem_cache * s)4310 static int init_kmem_cache_nodes(struct kmem_cache *s)
4311 {
4312 int node;
4313
4314 for_each_node_mask(node, slab_nodes) {
4315 struct kmem_cache_node *n;
4316
4317 if (slab_state == DOWN) {
4318 early_kmem_cache_node_alloc(node);
4319 continue;
4320 }
4321 n = kmem_cache_alloc_node(kmem_cache_node,
4322 GFP_KERNEL, node);
4323
4324 if (!n) {
4325 free_kmem_cache_nodes(s);
4326 return 0;
4327 }
4328
4329 init_kmem_cache_node(n);
4330 s->node[node] = n;
4331 }
4332 return 1;
4333 }
4334
set_cpu_partial(struct kmem_cache * s)4335 static void set_cpu_partial(struct kmem_cache *s)
4336 {
4337 #ifdef CONFIG_SLUB_CPU_PARTIAL
4338 unsigned int nr_objects;
4339
4340 /*
4341 * cpu_partial determined the maximum number of objects kept in the
4342 * per cpu partial lists of a processor.
4343 *
4344 * Per cpu partial lists mainly contain slabs that just have one
4345 * object freed. If they are used for allocation then they can be
4346 * filled up again with minimal effort. The slab will never hit the
4347 * per node partial lists and therefore no locking will be required.
4348 *
4349 * For backwards compatibility reasons, this is determined as number
4350 * of objects, even though we now limit maximum number of pages, see
4351 * slub_set_cpu_partial()
4352 */
4353 if (!kmem_cache_has_cpu_partial(s))
4354 nr_objects = 0;
4355 else if (s->size >= PAGE_SIZE)
4356 nr_objects = 6;
4357 else if (s->size >= 1024)
4358 nr_objects = 24;
4359 else if (s->size >= 256)
4360 nr_objects = 52;
4361 else
4362 nr_objects = 120;
4363
4364 slub_set_cpu_partial(s, nr_objects);
4365 #endif
4366 }
4367
4368 /*
4369 * calculate_sizes() determines the order and the distribution of data within
4370 * a slab object.
4371 */
calculate_sizes(struct kmem_cache * s)4372 static int calculate_sizes(struct kmem_cache *s)
4373 {
4374 slab_flags_t flags = s->flags;
4375 unsigned int size = s->object_size;
4376 unsigned int order;
4377
4378 /*
4379 * Round up object size to the next word boundary. We can only
4380 * place the free pointer at word boundaries and this determines
4381 * the possible location of the free pointer.
4382 */
4383 size = ALIGN(size, sizeof(void *));
4384
4385 #ifdef CONFIG_SLUB_DEBUG
4386 /*
4387 * Determine if we can poison the object itself. If the user of
4388 * the slab may touch the object after free or before allocation
4389 * then we should never poison the object itself.
4390 */
4391 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4392 !s->ctor)
4393 s->flags |= __OBJECT_POISON;
4394 else
4395 s->flags &= ~__OBJECT_POISON;
4396
4397
4398 /*
4399 * If we are Redzoning then check if there is some space between the
4400 * end of the object and the free pointer. If not then add an
4401 * additional word to have some bytes to store Redzone information.
4402 */
4403 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4404 size += sizeof(void *);
4405 #endif
4406
4407 /*
4408 * With that we have determined the number of bytes in actual use
4409 * by the object and redzoning.
4410 */
4411 s->inuse = size;
4412
4413 if (slub_debug_orig_size(s) ||
4414 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4415 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4416 s->ctor) {
4417 /*
4418 * Relocate free pointer after the object if it is not
4419 * permitted to overwrite the first word of the object on
4420 * kmem_cache_free.
4421 *
4422 * This is the case if we do RCU, have a constructor or
4423 * destructor, are poisoning the objects, or are
4424 * redzoning an object smaller than sizeof(void *).
4425 *
4426 * The assumption that s->offset >= s->inuse means free
4427 * pointer is outside of the object is used in the
4428 * freeptr_outside_object() function. If that is no
4429 * longer true, the function needs to be modified.
4430 */
4431 s->offset = size;
4432 size += sizeof(void *);
4433 } else {
4434 /*
4435 * Store freelist pointer near middle of object to keep
4436 * it away from the edges of the object to avoid small
4437 * sized over/underflows from neighboring allocations.
4438 */
4439 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4440 }
4441
4442 #ifdef CONFIG_SLUB_DEBUG
4443 if (flags & SLAB_STORE_USER) {
4444 /*
4445 * Need to store information about allocs and frees after
4446 * the object.
4447 */
4448 size += 2 * sizeof(struct track);
4449
4450 /* Save the original kmalloc request size */
4451 if (flags & SLAB_KMALLOC)
4452 size += sizeof(unsigned int);
4453 }
4454 #endif
4455
4456 kasan_cache_create(s, &size, &s->flags);
4457 #ifdef CONFIG_SLUB_DEBUG
4458 if (flags & SLAB_RED_ZONE) {
4459 /*
4460 * Add some empty padding so that we can catch
4461 * overwrites from earlier objects rather than let
4462 * tracking information or the free pointer be
4463 * corrupted if a user writes before the start
4464 * of the object.
4465 */
4466 size += sizeof(void *);
4467
4468 s->red_left_pad = sizeof(void *);
4469 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4470 size += s->red_left_pad;
4471 }
4472 #endif
4473
4474 /*
4475 * SLUB stores one object immediately after another beginning from
4476 * offset 0. In order to align the objects we have to simply size
4477 * each object to conform to the alignment.
4478 */
4479 size = ALIGN(size, s->align);
4480 s->size = size;
4481 s->reciprocal_size = reciprocal_value(size);
4482 order = calculate_order(size);
4483
4484 if ((int)order < 0)
4485 return 0;
4486
4487 s->allocflags = 0;
4488 if (order)
4489 s->allocflags |= __GFP_COMP;
4490
4491 if (s->flags & SLAB_CACHE_DMA)
4492 s->allocflags |= GFP_DMA;
4493
4494 if (s->flags & SLAB_CACHE_DMA32)
4495 s->allocflags |= GFP_DMA32;
4496
4497 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4498 s->allocflags |= __GFP_RECLAIMABLE;
4499
4500 /*
4501 * Determine the number of objects per slab
4502 */
4503 s->oo = oo_make(order, size);
4504 s->min = oo_make(get_order(size), size);
4505
4506 return !!oo_objects(s->oo);
4507 }
4508
kmem_cache_open(struct kmem_cache * s,slab_flags_t flags)4509 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4510 {
4511 s->flags = kmem_cache_flags(s->size, flags, s->name);
4512 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4513 s->random = get_random_long();
4514 #endif
4515
4516 if (!calculate_sizes(s))
4517 goto error;
4518 if (disable_higher_order_debug) {
4519 /*
4520 * Disable debugging flags that store metadata if the min slab
4521 * order increased.
4522 */
4523 if (get_order(s->size) > get_order(s->object_size)) {
4524 s->flags &= ~DEBUG_METADATA_FLAGS;
4525 s->offset = 0;
4526 if (!calculate_sizes(s))
4527 goto error;
4528 }
4529 }
4530
4531 #ifdef system_has_freelist_aba
4532 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
4533 /* Enable fast mode */
4534 s->flags |= __CMPXCHG_DOUBLE;
4535 }
4536 #endif
4537
4538 /*
4539 * The larger the object size is, the more slabs we want on the partial
4540 * list to avoid pounding the page allocator excessively.
4541 */
4542 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4543 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4544
4545 set_cpu_partial(s);
4546
4547 #ifdef CONFIG_NUMA
4548 s->remote_node_defrag_ratio = 1000;
4549 #endif
4550
4551 /* Initialize the pre-computed randomized freelist if slab is up */
4552 if (slab_state >= UP) {
4553 if (init_cache_random_seq(s))
4554 goto error;
4555 }
4556
4557 if (!init_kmem_cache_nodes(s))
4558 goto error;
4559
4560 if (alloc_kmem_cache_cpus(s))
4561 return 0;
4562
4563 error:
4564 __kmem_cache_release(s);
4565 return -EINVAL;
4566 }
4567
list_slab_objects(struct kmem_cache * s,struct slab * slab,const char * text)4568 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4569 const char *text)
4570 {
4571 #ifdef CONFIG_SLUB_DEBUG
4572 void *addr = slab_address(slab);
4573 void *p;
4574
4575 slab_err(s, slab, text, s->name);
4576
4577 spin_lock(&object_map_lock);
4578 __fill_map(object_map, s, slab);
4579
4580 for_each_object(p, s, addr, slab->objects) {
4581
4582 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4583 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4584 print_tracking(s, p);
4585 }
4586 }
4587 spin_unlock(&object_map_lock);
4588 #endif
4589 }
4590
4591 /*
4592 * Attempt to free all partial slabs on a node.
4593 * This is called from __kmem_cache_shutdown(). We must take list_lock
4594 * because sysfs file might still access partial list after the shutdowning.
4595 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)4596 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4597 {
4598 LIST_HEAD(discard);
4599 struct slab *slab, *h;
4600
4601 BUG_ON(irqs_disabled());
4602 spin_lock_irq(&n->list_lock);
4603 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4604 if (!slab->inuse) {
4605 remove_partial(n, slab);
4606 list_add(&slab->slab_list, &discard);
4607 } else {
4608 list_slab_objects(s, slab,
4609 "Objects remaining in %s on __kmem_cache_shutdown()");
4610 }
4611 }
4612 spin_unlock_irq(&n->list_lock);
4613
4614 list_for_each_entry_safe(slab, h, &discard, slab_list)
4615 discard_slab(s, slab);
4616 }
4617
__kmem_cache_empty(struct kmem_cache * s)4618 bool __kmem_cache_empty(struct kmem_cache *s)
4619 {
4620 int node;
4621 struct kmem_cache_node *n;
4622
4623 for_each_kmem_cache_node(s, node, n)
4624 if (n->nr_partial || node_nr_slabs(n))
4625 return false;
4626 return true;
4627 }
4628
4629 /*
4630 * Release all resources used by a slab cache.
4631 */
__kmem_cache_shutdown(struct kmem_cache * s)4632 int __kmem_cache_shutdown(struct kmem_cache *s)
4633 {
4634 int node;
4635 struct kmem_cache_node *n;
4636
4637 flush_all_cpus_locked(s);
4638 /* Attempt to free all objects */
4639 for_each_kmem_cache_node(s, node, n) {
4640 free_partial(s, n);
4641 if (n->nr_partial || node_nr_slabs(n))
4642 return 1;
4643 }
4644 return 0;
4645 }
4646
4647 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)4648 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4649 {
4650 void *base;
4651 int __maybe_unused i;
4652 unsigned int objnr;
4653 void *objp;
4654 void *objp0;
4655 struct kmem_cache *s = slab->slab_cache;
4656 struct track __maybe_unused *trackp;
4657
4658 kpp->kp_ptr = object;
4659 kpp->kp_slab = slab;
4660 kpp->kp_slab_cache = s;
4661 base = slab_address(slab);
4662 objp0 = kasan_reset_tag(object);
4663 #ifdef CONFIG_SLUB_DEBUG
4664 objp = restore_red_left(s, objp0);
4665 #else
4666 objp = objp0;
4667 #endif
4668 objnr = obj_to_index(s, slab, objp);
4669 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4670 objp = base + s->size * objnr;
4671 kpp->kp_objp = objp;
4672 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4673 || (objp - base) % s->size) ||
4674 !(s->flags & SLAB_STORE_USER))
4675 return;
4676 #ifdef CONFIG_SLUB_DEBUG
4677 objp = fixup_red_left(s, objp);
4678 trackp = get_track(s, objp, TRACK_ALLOC);
4679 kpp->kp_ret = (void *)trackp->addr;
4680 #ifdef CONFIG_STACKDEPOT
4681 {
4682 depot_stack_handle_t handle;
4683 unsigned long *entries;
4684 unsigned int nr_entries;
4685
4686 handle = READ_ONCE(trackp->handle);
4687 if (handle) {
4688 nr_entries = stack_depot_fetch(handle, &entries);
4689 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4690 kpp->kp_stack[i] = (void *)entries[i];
4691 }
4692
4693 trackp = get_track(s, objp, TRACK_FREE);
4694 handle = READ_ONCE(trackp->handle);
4695 if (handle) {
4696 nr_entries = stack_depot_fetch(handle, &entries);
4697 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4698 kpp->kp_free_stack[i] = (void *)entries[i];
4699 }
4700 }
4701 #endif
4702 #endif
4703 }
4704 #endif
4705
4706 /********************************************************************
4707 * Kmalloc subsystem
4708 *******************************************************************/
4709
setup_slub_min_order(char * str)4710 static int __init setup_slub_min_order(char *str)
4711 {
4712 get_option(&str, (int *)&slub_min_order);
4713
4714 return 1;
4715 }
4716
4717 __setup("slub_min_order=", setup_slub_min_order);
4718
setup_slub_max_order(char * str)4719 static int __init setup_slub_max_order(char *str)
4720 {
4721 get_option(&str, (int *)&slub_max_order);
4722 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4723
4724 return 1;
4725 }
4726
4727 __setup("slub_max_order=", setup_slub_max_order);
4728
setup_slub_min_objects(char * str)4729 static int __init setup_slub_min_objects(char *str)
4730 {
4731 get_option(&str, (int *)&slub_min_objects);
4732
4733 return 1;
4734 }
4735
4736 __setup("slub_min_objects=", setup_slub_min_objects);
4737
4738 #ifdef CONFIG_HARDENED_USERCOPY
4739 /*
4740 * Rejects incorrectly sized objects and objects that are to be copied
4741 * to/from userspace but do not fall entirely within the containing slab
4742 * cache's usercopy region.
4743 *
4744 * Returns NULL if check passes, otherwise const char * to name of cache
4745 * to indicate an error.
4746 */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)4747 void __check_heap_object(const void *ptr, unsigned long n,
4748 const struct slab *slab, bool to_user)
4749 {
4750 struct kmem_cache *s;
4751 unsigned int offset;
4752 bool is_kfence = is_kfence_address(ptr);
4753
4754 ptr = kasan_reset_tag(ptr);
4755
4756 /* Find object and usable object size. */
4757 s = slab->slab_cache;
4758
4759 /* Reject impossible pointers. */
4760 if (ptr < slab_address(slab))
4761 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4762 to_user, 0, n);
4763
4764 /* Find offset within object. */
4765 if (is_kfence)
4766 offset = ptr - kfence_object_start(ptr);
4767 else
4768 offset = (ptr - slab_address(slab)) % s->size;
4769
4770 /* Adjust for redzone and reject if within the redzone. */
4771 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4772 if (offset < s->red_left_pad)
4773 usercopy_abort("SLUB object in left red zone",
4774 s->name, to_user, offset, n);
4775 offset -= s->red_left_pad;
4776 }
4777
4778 /* Allow address range falling entirely within usercopy region. */
4779 if (offset >= s->useroffset &&
4780 offset - s->useroffset <= s->usersize &&
4781 n <= s->useroffset - offset + s->usersize)
4782 return;
4783
4784 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4785 }
4786 #endif /* CONFIG_HARDENED_USERCOPY */
4787
4788 #define SHRINK_PROMOTE_MAX 32
4789
4790 /*
4791 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4792 * up most to the head of the partial lists. New allocations will then
4793 * fill those up and thus they can be removed from the partial lists.
4794 *
4795 * The slabs with the least items are placed last. This results in them
4796 * being allocated from last increasing the chance that the last objects
4797 * are freed in them.
4798 */
__kmem_cache_do_shrink(struct kmem_cache * s)4799 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4800 {
4801 int node;
4802 int i;
4803 struct kmem_cache_node *n;
4804 struct slab *slab;
4805 struct slab *t;
4806 struct list_head discard;
4807 struct list_head promote[SHRINK_PROMOTE_MAX];
4808 unsigned long flags;
4809 int ret = 0;
4810
4811 for_each_kmem_cache_node(s, node, n) {
4812 INIT_LIST_HEAD(&discard);
4813 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4814 INIT_LIST_HEAD(promote + i);
4815
4816 spin_lock_irqsave(&n->list_lock, flags);
4817
4818 /*
4819 * Build lists of slabs to discard or promote.
4820 *
4821 * Note that concurrent frees may occur while we hold the
4822 * list_lock. slab->inuse here is the upper limit.
4823 */
4824 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4825 int free = slab->objects - slab->inuse;
4826
4827 /* Do not reread slab->inuse */
4828 barrier();
4829
4830 /* We do not keep full slabs on the list */
4831 BUG_ON(free <= 0);
4832
4833 if (free == slab->objects) {
4834 list_move(&slab->slab_list, &discard);
4835 n->nr_partial--;
4836 dec_slabs_node(s, node, slab->objects);
4837 } else if (free <= SHRINK_PROMOTE_MAX)
4838 list_move(&slab->slab_list, promote + free - 1);
4839 }
4840
4841 /*
4842 * Promote the slabs filled up most to the head of the
4843 * partial list.
4844 */
4845 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4846 list_splice(promote + i, &n->partial);
4847
4848 spin_unlock_irqrestore(&n->list_lock, flags);
4849
4850 /* Release empty slabs */
4851 list_for_each_entry_safe(slab, t, &discard, slab_list)
4852 free_slab(s, slab);
4853
4854 if (node_nr_slabs(n))
4855 ret = 1;
4856 }
4857
4858 return ret;
4859 }
4860
__kmem_cache_shrink(struct kmem_cache * s)4861 int __kmem_cache_shrink(struct kmem_cache *s)
4862 {
4863 flush_all(s);
4864 return __kmem_cache_do_shrink(s);
4865 }
4866
slab_mem_going_offline_callback(void * arg)4867 static int slab_mem_going_offline_callback(void *arg)
4868 {
4869 struct kmem_cache *s;
4870
4871 mutex_lock(&slab_mutex);
4872 list_for_each_entry(s, &slab_caches, list) {
4873 flush_all_cpus_locked(s);
4874 __kmem_cache_do_shrink(s);
4875 }
4876 mutex_unlock(&slab_mutex);
4877
4878 return 0;
4879 }
4880
slab_mem_offline_callback(void * arg)4881 static void slab_mem_offline_callback(void *arg)
4882 {
4883 struct memory_notify *marg = arg;
4884 int offline_node;
4885
4886 offline_node = marg->status_change_nid_normal;
4887
4888 /*
4889 * If the node still has available memory. we need kmem_cache_node
4890 * for it yet.
4891 */
4892 if (offline_node < 0)
4893 return;
4894
4895 mutex_lock(&slab_mutex);
4896 node_clear(offline_node, slab_nodes);
4897 /*
4898 * We no longer free kmem_cache_node structures here, as it would be
4899 * racy with all get_node() users, and infeasible to protect them with
4900 * slab_mutex.
4901 */
4902 mutex_unlock(&slab_mutex);
4903 }
4904
slab_mem_going_online_callback(void * arg)4905 static int slab_mem_going_online_callback(void *arg)
4906 {
4907 struct kmem_cache_node *n;
4908 struct kmem_cache *s;
4909 struct memory_notify *marg = arg;
4910 int nid = marg->status_change_nid_normal;
4911 int ret = 0;
4912
4913 /*
4914 * If the node's memory is already available, then kmem_cache_node is
4915 * already created. Nothing to do.
4916 */
4917 if (nid < 0)
4918 return 0;
4919
4920 /*
4921 * We are bringing a node online. No memory is available yet. We must
4922 * allocate a kmem_cache_node structure in order to bring the node
4923 * online.
4924 */
4925 mutex_lock(&slab_mutex);
4926 list_for_each_entry(s, &slab_caches, list) {
4927 /*
4928 * The structure may already exist if the node was previously
4929 * onlined and offlined.
4930 */
4931 if (get_node(s, nid))
4932 continue;
4933 /*
4934 * XXX: kmem_cache_alloc_node will fallback to other nodes
4935 * since memory is not yet available from the node that
4936 * is brought up.
4937 */
4938 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4939 if (!n) {
4940 ret = -ENOMEM;
4941 goto out;
4942 }
4943 init_kmem_cache_node(n);
4944 s->node[nid] = n;
4945 }
4946 /*
4947 * Any cache created after this point will also have kmem_cache_node
4948 * initialized for the new node.
4949 */
4950 node_set(nid, slab_nodes);
4951 out:
4952 mutex_unlock(&slab_mutex);
4953 return ret;
4954 }
4955
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)4956 static int slab_memory_callback(struct notifier_block *self,
4957 unsigned long action, void *arg)
4958 {
4959 int ret = 0;
4960
4961 switch (action) {
4962 case MEM_GOING_ONLINE:
4963 ret = slab_mem_going_online_callback(arg);
4964 break;
4965 case MEM_GOING_OFFLINE:
4966 ret = slab_mem_going_offline_callback(arg);
4967 break;
4968 case MEM_OFFLINE:
4969 case MEM_CANCEL_ONLINE:
4970 slab_mem_offline_callback(arg);
4971 break;
4972 case MEM_ONLINE:
4973 case MEM_CANCEL_OFFLINE:
4974 break;
4975 }
4976 if (ret)
4977 ret = notifier_from_errno(ret);
4978 else
4979 ret = NOTIFY_OK;
4980 return ret;
4981 }
4982
4983 /********************************************************************
4984 * Basic setup of slabs
4985 *******************************************************************/
4986
4987 /*
4988 * Used for early kmem_cache structures that were allocated using
4989 * the page allocator. Allocate them properly then fix up the pointers
4990 * that may be pointing to the wrong kmem_cache structure.
4991 */
4992
bootstrap(struct kmem_cache * static_cache)4993 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4994 {
4995 int node;
4996 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4997 struct kmem_cache_node *n;
4998
4999 memcpy(s, static_cache, kmem_cache->object_size);
5000
5001 /*
5002 * This runs very early, and only the boot processor is supposed to be
5003 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5004 * IPIs around.
5005 */
5006 __flush_cpu_slab(s, smp_processor_id());
5007 for_each_kmem_cache_node(s, node, n) {
5008 struct slab *p;
5009
5010 list_for_each_entry(p, &n->partial, slab_list)
5011 p->slab_cache = s;
5012
5013 #ifdef CONFIG_SLUB_DEBUG
5014 list_for_each_entry(p, &n->full, slab_list)
5015 p->slab_cache = s;
5016 #endif
5017 }
5018 list_add(&s->list, &slab_caches);
5019 return s;
5020 }
5021
kmem_cache_init(void)5022 void __init kmem_cache_init(void)
5023 {
5024 static __initdata struct kmem_cache boot_kmem_cache,
5025 boot_kmem_cache_node;
5026 int node;
5027
5028 if (debug_guardpage_minorder())
5029 slub_max_order = 0;
5030
5031 /* Print slub debugging pointers without hashing */
5032 if (__slub_debug_enabled())
5033 no_hash_pointers_enable(NULL);
5034
5035 kmem_cache_node = &boot_kmem_cache_node;
5036 kmem_cache = &boot_kmem_cache;
5037
5038 /*
5039 * Initialize the nodemask for which we will allocate per node
5040 * structures. Here we don't need taking slab_mutex yet.
5041 */
5042 for_each_node_state(node, N_NORMAL_MEMORY)
5043 node_set(node, slab_nodes);
5044
5045 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5046 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5047
5048 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5049
5050 /* Able to allocate the per node structures */
5051 slab_state = PARTIAL;
5052
5053 create_boot_cache(kmem_cache, "kmem_cache",
5054 offsetof(struct kmem_cache, node) +
5055 nr_node_ids * sizeof(struct kmem_cache_node *),
5056 SLAB_HWCACHE_ALIGN, 0, 0);
5057
5058 kmem_cache = bootstrap(&boot_kmem_cache);
5059 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5060
5061 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5062 setup_kmalloc_cache_index_table();
5063 create_kmalloc_caches(0);
5064
5065 /* Setup random freelists for each cache */
5066 init_freelist_randomization();
5067
5068 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5069 slub_cpu_dead);
5070
5071 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5072 cache_line_size(),
5073 slub_min_order, slub_max_order, slub_min_objects,
5074 nr_cpu_ids, nr_node_ids);
5075 }
5076
kmem_cache_init_late(void)5077 void __init kmem_cache_init_late(void)
5078 {
5079 #ifndef CONFIG_SLUB_TINY
5080 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5081 WARN_ON(!flushwq);
5082 #endif
5083 }
5084
5085 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))5086 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5087 slab_flags_t flags, void (*ctor)(void *))
5088 {
5089 struct kmem_cache *s;
5090
5091 s = find_mergeable(size, align, flags, name, ctor);
5092 if (s) {
5093 if (sysfs_slab_alias(s, name))
5094 return NULL;
5095
5096 s->refcount++;
5097
5098 /*
5099 * Adjust the object sizes so that we clear
5100 * the complete object on kzalloc.
5101 */
5102 s->object_size = max(s->object_size, size);
5103 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5104 }
5105
5106 return s;
5107 }
5108
__kmem_cache_create(struct kmem_cache * s,slab_flags_t flags)5109 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5110 {
5111 int err;
5112
5113 err = kmem_cache_open(s, flags);
5114 if (err)
5115 return err;
5116
5117 /* Mutex is not taken during early boot */
5118 if (slab_state <= UP)
5119 return 0;
5120
5121 err = sysfs_slab_add(s);
5122 if (err) {
5123 __kmem_cache_release(s);
5124 return err;
5125 }
5126
5127 if (s->flags & SLAB_STORE_USER)
5128 debugfs_slab_add(s);
5129
5130 return 0;
5131 }
5132
5133 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)5134 static int count_inuse(struct slab *slab)
5135 {
5136 return slab->inuse;
5137 }
5138
count_total(struct slab * slab)5139 static int count_total(struct slab *slab)
5140 {
5141 return slab->objects;
5142 }
5143 #endif
5144
5145 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)5146 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5147 unsigned long *obj_map)
5148 {
5149 void *p;
5150 void *addr = slab_address(slab);
5151
5152 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5153 return;
5154
5155 /* Now we know that a valid freelist exists */
5156 __fill_map(obj_map, s, slab);
5157 for_each_object(p, s, addr, slab->objects) {
5158 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5159 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5160
5161 if (!check_object(s, slab, p, val))
5162 break;
5163 }
5164 }
5165
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)5166 static int validate_slab_node(struct kmem_cache *s,
5167 struct kmem_cache_node *n, unsigned long *obj_map)
5168 {
5169 unsigned long count = 0;
5170 struct slab *slab;
5171 unsigned long flags;
5172
5173 spin_lock_irqsave(&n->list_lock, flags);
5174
5175 list_for_each_entry(slab, &n->partial, slab_list) {
5176 validate_slab(s, slab, obj_map);
5177 count++;
5178 }
5179 if (count != n->nr_partial) {
5180 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5181 s->name, count, n->nr_partial);
5182 slab_add_kunit_errors();
5183 }
5184
5185 if (!(s->flags & SLAB_STORE_USER))
5186 goto out;
5187
5188 list_for_each_entry(slab, &n->full, slab_list) {
5189 validate_slab(s, slab, obj_map);
5190 count++;
5191 }
5192 if (count != node_nr_slabs(n)) {
5193 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5194 s->name, count, node_nr_slabs(n));
5195 slab_add_kunit_errors();
5196 }
5197
5198 out:
5199 spin_unlock_irqrestore(&n->list_lock, flags);
5200 return count;
5201 }
5202
validate_slab_cache(struct kmem_cache * s)5203 long validate_slab_cache(struct kmem_cache *s)
5204 {
5205 int node;
5206 unsigned long count = 0;
5207 struct kmem_cache_node *n;
5208 unsigned long *obj_map;
5209
5210 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5211 if (!obj_map)
5212 return -ENOMEM;
5213
5214 flush_all(s);
5215 for_each_kmem_cache_node(s, node, n)
5216 count += validate_slab_node(s, n, obj_map);
5217
5218 bitmap_free(obj_map);
5219
5220 return count;
5221 }
5222 EXPORT_SYMBOL(validate_slab_cache);
5223
5224 #ifdef CONFIG_DEBUG_FS
5225 /*
5226 * Generate lists of code addresses where slabcache objects are allocated
5227 * and freed.
5228 */
5229
5230 struct location {
5231 depot_stack_handle_t handle;
5232 unsigned long count;
5233 unsigned long addr;
5234 unsigned long waste;
5235 long long sum_time;
5236 long min_time;
5237 long max_time;
5238 long min_pid;
5239 long max_pid;
5240 DECLARE_BITMAP(cpus, NR_CPUS);
5241 nodemask_t nodes;
5242 };
5243
5244 struct loc_track {
5245 unsigned long max;
5246 unsigned long count;
5247 struct location *loc;
5248 loff_t idx;
5249 };
5250
5251 static struct dentry *slab_debugfs_root;
5252
free_loc_track(struct loc_track * t)5253 static void free_loc_track(struct loc_track *t)
5254 {
5255 if (t->max)
5256 free_pages((unsigned long)t->loc,
5257 get_order(sizeof(struct location) * t->max));
5258 }
5259
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)5260 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5261 {
5262 struct location *l;
5263 int order;
5264
5265 order = get_order(sizeof(struct location) * max);
5266
5267 l = (void *)__get_free_pages(flags, order);
5268 if (!l)
5269 return 0;
5270
5271 if (t->count) {
5272 memcpy(l, t->loc, sizeof(struct location) * t->count);
5273 free_loc_track(t);
5274 }
5275 t->max = max;
5276 t->loc = l;
5277 return 1;
5278 }
5279
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)5280 static int add_location(struct loc_track *t, struct kmem_cache *s,
5281 const struct track *track,
5282 unsigned int orig_size)
5283 {
5284 long start, end, pos;
5285 struct location *l;
5286 unsigned long caddr, chandle, cwaste;
5287 unsigned long age = jiffies - track->when;
5288 depot_stack_handle_t handle = 0;
5289 unsigned int waste = s->object_size - orig_size;
5290
5291 #ifdef CONFIG_STACKDEPOT
5292 handle = READ_ONCE(track->handle);
5293 #endif
5294 start = -1;
5295 end = t->count;
5296
5297 for ( ; ; ) {
5298 pos = start + (end - start + 1) / 2;
5299
5300 /*
5301 * There is nothing at "end". If we end up there
5302 * we need to add something to before end.
5303 */
5304 if (pos == end)
5305 break;
5306
5307 l = &t->loc[pos];
5308 caddr = l->addr;
5309 chandle = l->handle;
5310 cwaste = l->waste;
5311 if ((track->addr == caddr) && (handle == chandle) &&
5312 (waste == cwaste)) {
5313
5314 l->count++;
5315 if (track->when) {
5316 l->sum_time += age;
5317 if (age < l->min_time)
5318 l->min_time = age;
5319 if (age > l->max_time)
5320 l->max_time = age;
5321
5322 if (track->pid < l->min_pid)
5323 l->min_pid = track->pid;
5324 if (track->pid > l->max_pid)
5325 l->max_pid = track->pid;
5326
5327 cpumask_set_cpu(track->cpu,
5328 to_cpumask(l->cpus));
5329 }
5330 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5331 return 1;
5332 }
5333
5334 if (track->addr < caddr)
5335 end = pos;
5336 else if (track->addr == caddr && handle < chandle)
5337 end = pos;
5338 else if (track->addr == caddr && handle == chandle &&
5339 waste < cwaste)
5340 end = pos;
5341 else
5342 start = pos;
5343 }
5344
5345 /*
5346 * Not found. Insert new tracking element.
5347 */
5348 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5349 return 0;
5350
5351 l = t->loc + pos;
5352 if (pos < t->count)
5353 memmove(l + 1, l,
5354 (t->count - pos) * sizeof(struct location));
5355 t->count++;
5356 l->count = 1;
5357 l->addr = track->addr;
5358 l->sum_time = age;
5359 l->min_time = age;
5360 l->max_time = age;
5361 l->min_pid = track->pid;
5362 l->max_pid = track->pid;
5363 l->handle = handle;
5364 l->waste = waste;
5365 cpumask_clear(to_cpumask(l->cpus));
5366 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5367 nodes_clear(l->nodes);
5368 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5369 return 1;
5370 }
5371
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)5372 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5373 struct slab *slab, enum track_item alloc,
5374 unsigned long *obj_map)
5375 {
5376 void *addr = slab_address(slab);
5377 bool is_alloc = (alloc == TRACK_ALLOC);
5378 void *p;
5379
5380 __fill_map(obj_map, s, slab);
5381
5382 for_each_object(p, s, addr, slab->objects)
5383 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5384 add_location(t, s, get_track(s, p, alloc),
5385 is_alloc ? get_orig_size(s, p) :
5386 s->object_size);
5387 }
5388 #endif /* CONFIG_DEBUG_FS */
5389 #endif /* CONFIG_SLUB_DEBUG */
5390
5391 #ifdef SLAB_SUPPORTS_SYSFS
5392 enum slab_stat_type {
5393 SL_ALL, /* All slabs */
5394 SL_PARTIAL, /* Only partially allocated slabs */
5395 SL_CPU, /* Only slabs used for cpu caches */
5396 SL_OBJECTS, /* Determine allocated objects not slabs */
5397 SL_TOTAL /* Determine object capacity not slabs */
5398 };
5399
5400 #define SO_ALL (1 << SL_ALL)
5401 #define SO_PARTIAL (1 << SL_PARTIAL)
5402 #define SO_CPU (1 << SL_CPU)
5403 #define SO_OBJECTS (1 << SL_OBJECTS)
5404 #define SO_TOTAL (1 << SL_TOTAL)
5405
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)5406 static ssize_t show_slab_objects(struct kmem_cache *s,
5407 char *buf, unsigned long flags)
5408 {
5409 unsigned long total = 0;
5410 int node;
5411 int x;
5412 unsigned long *nodes;
5413 int len = 0;
5414
5415 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5416 if (!nodes)
5417 return -ENOMEM;
5418
5419 if (flags & SO_CPU) {
5420 int cpu;
5421
5422 for_each_possible_cpu(cpu) {
5423 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5424 cpu);
5425 int node;
5426 struct slab *slab;
5427
5428 slab = READ_ONCE(c->slab);
5429 if (!slab)
5430 continue;
5431
5432 node = slab_nid(slab);
5433 if (flags & SO_TOTAL)
5434 x = slab->objects;
5435 else if (flags & SO_OBJECTS)
5436 x = slab->inuse;
5437 else
5438 x = 1;
5439
5440 total += x;
5441 nodes[node] += x;
5442
5443 #ifdef CONFIG_SLUB_CPU_PARTIAL
5444 slab = slub_percpu_partial_read_once(c);
5445 if (slab) {
5446 node = slab_nid(slab);
5447 if (flags & SO_TOTAL)
5448 WARN_ON_ONCE(1);
5449 else if (flags & SO_OBJECTS)
5450 WARN_ON_ONCE(1);
5451 else
5452 x = slab->slabs;
5453 total += x;
5454 nodes[node] += x;
5455 }
5456 #endif
5457 }
5458 }
5459
5460 /*
5461 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5462 * already held which will conflict with an existing lock order:
5463 *
5464 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5465 *
5466 * We don't really need mem_hotplug_lock (to hold off
5467 * slab_mem_going_offline_callback) here because slab's memory hot
5468 * unplug code doesn't destroy the kmem_cache->node[] data.
5469 */
5470
5471 #ifdef CONFIG_SLUB_DEBUG
5472 if (flags & SO_ALL) {
5473 struct kmem_cache_node *n;
5474
5475 for_each_kmem_cache_node(s, node, n) {
5476
5477 if (flags & SO_TOTAL)
5478 x = node_nr_objs(n);
5479 else if (flags & SO_OBJECTS)
5480 x = node_nr_objs(n) - count_partial(n, count_free);
5481 else
5482 x = node_nr_slabs(n);
5483 total += x;
5484 nodes[node] += x;
5485 }
5486
5487 } else
5488 #endif
5489 if (flags & SO_PARTIAL) {
5490 struct kmem_cache_node *n;
5491
5492 for_each_kmem_cache_node(s, node, n) {
5493 if (flags & SO_TOTAL)
5494 x = count_partial(n, count_total);
5495 else if (flags & SO_OBJECTS)
5496 x = count_partial(n, count_inuse);
5497 else
5498 x = n->nr_partial;
5499 total += x;
5500 nodes[node] += x;
5501 }
5502 }
5503
5504 len += sysfs_emit_at(buf, len, "%lu", total);
5505 #ifdef CONFIG_NUMA
5506 for (node = 0; node < nr_node_ids; node++) {
5507 if (nodes[node])
5508 len += sysfs_emit_at(buf, len, " N%d=%lu",
5509 node, nodes[node]);
5510 }
5511 #endif
5512 len += sysfs_emit_at(buf, len, "\n");
5513 kfree(nodes);
5514
5515 return len;
5516 }
5517
5518 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5519 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5520
5521 struct slab_attribute {
5522 struct attribute attr;
5523 ssize_t (*show)(struct kmem_cache *s, char *buf);
5524 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5525 };
5526
5527 #define SLAB_ATTR_RO(_name) \
5528 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5529
5530 #define SLAB_ATTR(_name) \
5531 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5532
slab_size_show(struct kmem_cache * s,char * buf)5533 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5534 {
5535 return sysfs_emit(buf, "%u\n", s->size);
5536 }
5537 SLAB_ATTR_RO(slab_size);
5538
align_show(struct kmem_cache * s,char * buf)5539 static ssize_t align_show(struct kmem_cache *s, char *buf)
5540 {
5541 return sysfs_emit(buf, "%u\n", s->align);
5542 }
5543 SLAB_ATTR_RO(align);
5544
object_size_show(struct kmem_cache * s,char * buf)5545 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5546 {
5547 return sysfs_emit(buf, "%u\n", s->object_size);
5548 }
5549 SLAB_ATTR_RO(object_size);
5550
objs_per_slab_show(struct kmem_cache * s,char * buf)5551 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5552 {
5553 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5554 }
5555 SLAB_ATTR_RO(objs_per_slab);
5556
order_show(struct kmem_cache * s,char * buf)5557 static ssize_t order_show(struct kmem_cache *s, char *buf)
5558 {
5559 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5560 }
5561 SLAB_ATTR_RO(order);
5562
min_partial_show(struct kmem_cache * s,char * buf)5563 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5564 {
5565 return sysfs_emit(buf, "%lu\n", s->min_partial);
5566 }
5567
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)5568 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5569 size_t length)
5570 {
5571 unsigned long min;
5572 int err;
5573
5574 err = kstrtoul(buf, 10, &min);
5575 if (err)
5576 return err;
5577
5578 s->min_partial = min;
5579 return length;
5580 }
5581 SLAB_ATTR(min_partial);
5582
cpu_partial_show(struct kmem_cache * s,char * buf)5583 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5584 {
5585 unsigned int nr_partial = 0;
5586 #ifdef CONFIG_SLUB_CPU_PARTIAL
5587 nr_partial = s->cpu_partial;
5588 #endif
5589
5590 return sysfs_emit(buf, "%u\n", nr_partial);
5591 }
5592
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)5593 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5594 size_t length)
5595 {
5596 unsigned int objects;
5597 int err;
5598
5599 err = kstrtouint(buf, 10, &objects);
5600 if (err)
5601 return err;
5602 if (objects && !kmem_cache_has_cpu_partial(s))
5603 return -EINVAL;
5604
5605 slub_set_cpu_partial(s, objects);
5606 flush_all(s);
5607 return length;
5608 }
5609 SLAB_ATTR(cpu_partial);
5610
ctor_show(struct kmem_cache * s,char * buf)5611 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5612 {
5613 if (!s->ctor)
5614 return 0;
5615 return sysfs_emit(buf, "%pS\n", s->ctor);
5616 }
5617 SLAB_ATTR_RO(ctor);
5618
aliases_show(struct kmem_cache * s,char * buf)5619 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5620 {
5621 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5622 }
5623 SLAB_ATTR_RO(aliases);
5624
partial_show(struct kmem_cache * s,char * buf)5625 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5626 {
5627 return show_slab_objects(s, buf, SO_PARTIAL);
5628 }
5629 SLAB_ATTR_RO(partial);
5630
cpu_slabs_show(struct kmem_cache * s,char * buf)5631 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5632 {
5633 return show_slab_objects(s, buf, SO_CPU);
5634 }
5635 SLAB_ATTR_RO(cpu_slabs);
5636
objects_partial_show(struct kmem_cache * s,char * buf)5637 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5638 {
5639 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5640 }
5641 SLAB_ATTR_RO(objects_partial);
5642
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)5643 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5644 {
5645 int objects = 0;
5646 int slabs = 0;
5647 int cpu __maybe_unused;
5648 int len = 0;
5649
5650 #ifdef CONFIG_SLUB_CPU_PARTIAL
5651 for_each_online_cpu(cpu) {
5652 struct slab *slab;
5653
5654 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5655
5656 if (slab)
5657 slabs += slab->slabs;
5658 }
5659 #endif
5660
5661 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5662 objects = (slabs * oo_objects(s->oo)) / 2;
5663 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5664
5665 #ifdef CONFIG_SLUB_CPU_PARTIAL
5666 for_each_online_cpu(cpu) {
5667 struct slab *slab;
5668
5669 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5670 if (slab) {
5671 slabs = READ_ONCE(slab->slabs);
5672 objects = (slabs * oo_objects(s->oo)) / 2;
5673 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5674 cpu, objects, slabs);
5675 }
5676 }
5677 #endif
5678 len += sysfs_emit_at(buf, len, "\n");
5679
5680 return len;
5681 }
5682 SLAB_ATTR_RO(slabs_cpu_partial);
5683
reclaim_account_show(struct kmem_cache * s,char * buf)5684 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5685 {
5686 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5687 }
5688 SLAB_ATTR_RO(reclaim_account);
5689
hwcache_align_show(struct kmem_cache * s,char * buf)5690 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5691 {
5692 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5693 }
5694 SLAB_ATTR_RO(hwcache_align);
5695
5696 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)5697 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5698 {
5699 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5700 }
5701 SLAB_ATTR_RO(cache_dma);
5702 #endif
5703
5704 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)5705 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5706 {
5707 return sysfs_emit(buf, "%u\n", s->usersize);
5708 }
5709 SLAB_ATTR_RO(usersize);
5710 #endif
5711
destroy_by_rcu_show(struct kmem_cache * s,char * buf)5712 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5713 {
5714 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5715 }
5716 SLAB_ATTR_RO(destroy_by_rcu);
5717
5718 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)5719 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5720 {
5721 return show_slab_objects(s, buf, SO_ALL);
5722 }
5723 SLAB_ATTR_RO(slabs);
5724
total_objects_show(struct kmem_cache * s,char * buf)5725 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5726 {
5727 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5728 }
5729 SLAB_ATTR_RO(total_objects);
5730
objects_show(struct kmem_cache * s,char * buf)5731 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5732 {
5733 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5734 }
5735 SLAB_ATTR_RO(objects);
5736
sanity_checks_show(struct kmem_cache * s,char * buf)5737 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5738 {
5739 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5740 }
5741 SLAB_ATTR_RO(sanity_checks);
5742
trace_show(struct kmem_cache * s,char * buf)5743 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5744 {
5745 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5746 }
5747 SLAB_ATTR_RO(trace);
5748
red_zone_show(struct kmem_cache * s,char * buf)5749 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5750 {
5751 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5752 }
5753
5754 SLAB_ATTR_RO(red_zone);
5755
poison_show(struct kmem_cache * s,char * buf)5756 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5757 {
5758 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5759 }
5760
5761 SLAB_ATTR_RO(poison);
5762
store_user_show(struct kmem_cache * s,char * buf)5763 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5764 {
5765 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5766 }
5767
5768 SLAB_ATTR_RO(store_user);
5769
validate_show(struct kmem_cache * s,char * buf)5770 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5771 {
5772 return 0;
5773 }
5774
validate_store(struct kmem_cache * s,const char * buf,size_t length)5775 static ssize_t validate_store(struct kmem_cache *s,
5776 const char *buf, size_t length)
5777 {
5778 int ret = -EINVAL;
5779
5780 if (buf[0] == '1' && kmem_cache_debug(s)) {
5781 ret = validate_slab_cache(s);
5782 if (ret >= 0)
5783 ret = length;
5784 }
5785 return ret;
5786 }
5787 SLAB_ATTR(validate);
5788
5789 #endif /* CONFIG_SLUB_DEBUG */
5790
5791 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)5792 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5793 {
5794 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5795 }
5796
failslab_store(struct kmem_cache * s,const char * buf,size_t length)5797 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5798 size_t length)
5799 {
5800 if (s->refcount > 1)
5801 return -EINVAL;
5802
5803 if (buf[0] == '1')
5804 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5805 else
5806 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5807
5808 return length;
5809 }
5810 SLAB_ATTR(failslab);
5811 #endif
5812
shrink_show(struct kmem_cache * s,char * buf)5813 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5814 {
5815 return 0;
5816 }
5817
shrink_store(struct kmem_cache * s,const char * buf,size_t length)5818 static ssize_t shrink_store(struct kmem_cache *s,
5819 const char *buf, size_t length)
5820 {
5821 if (buf[0] == '1')
5822 kmem_cache_shrink(s);
5823 else
5824 return -EINVAL;
5825 return length;
5826 }
5827 SLAB_ATTR(shrink);
5828
5829 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)5830 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5831 {
5832 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5833 }
5834
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)5835 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5836 const char *buf, size_t length)
5837 {
5838 unsigned int ratio;
5839 int err;
5840
5841 err = kstrtouint(buf, 10, &ratio);
5842 if (err)
5843 return err;
5844 if (ratio > 100)
5845 return -ERANGE;
5846
5847 s->remote_node_defrag_ratio = ratio * 10;
5848
5849 return length;
5850 }
5851 SLAB_ATTR(remote_node_defrag_ratio);
5852 #endif
5853
5854 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)5855 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5856 {
5857 unsigned long sum = 0;
5858 int cpu;
5859 int len = 0;
5860 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5861
5862 if (!data)
5863 return -ENOMEM;
5864
5865 for_each_online_cpu(cpu) {
5866 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5867
5868 data[cpu] = x;
5869 sum += x;
5870 }
5871
5872 len += sysfs_emit_at(buf, len, "%lu", sum);
5873
5874 #ifdef CONFIG_SMP
5875 for_each_online_cpu(cpu) {
5876 if (data[cpu])
5877 len += sysfs_emit_at(buf, len, " C%d=%u",
5878 cpu, data[cpu]);
5879 }
5880 #endif
5881 kfree(data);
5882 len += sysfs_emit_at(buf, len, "\n");
5883
5884 return len;
5885 }
5886
clear_stat(struct kmem_cache * s,enum stat_item si)5887 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5888 {
5889 int cpu;
5890
5891 for_each_online_cpu(cpu)
5892 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5893 }
5894
5895 #define STAT_ATTR(si, text) \
5896 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5897 { \
5898 return show_stat(s, buf, si); \
5899 } \
5900 static ssize_t text##_store(struct kmem_cache *s, \
5901 const char *buf, size_t length) \
5902 { \
5903 if (buf[0] != '0') \
5904 return -EINVAL; \
5905 clear_stat(s, si); \
5906 return length; \
5907 } \
5908 SLAB_ATTR(text); \
5909
5910 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5911 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5912 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5913 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5914 STAT_ATTR(FREE_FROZEN, free_frozen);
5915 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5916 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5917 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5918 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5919 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5920 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5921 STAT_ATTR(FREE_SLAB, free_slab);
5922 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5923 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5924 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5925 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5926 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5927 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5928 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5929 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5930 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5931 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5932 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5933 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5934 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5935 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5936 #endif /* CONFIG_SLUB_STATS */
5937
5938 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)5939 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5940 {
5941 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5942 }
5943
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)5944 static ssize_t skip_kfence_store(struct kmem_cache *s,
5945 const char *buf, size_t length)
5946 {
5947 int ret = length;
5948
5949 if (buf[0] == '0')
5950 s->flags &= ~SLAB_SKIP_KFENCE;
5951 else if (buf[0] == '1')
5952 s->flags |= SLAB_SKIP_KFENCE;
5953 else
5954 ret = -EINVAL;
5955
5956 return ret;
5957 }
5958 SLAB_ATTR(skip_kfence);
5959 #endif
5960
5961 static struct attribute *slab_attrs[] = {
5962 &slab_size_attr.attr,
5963 &object_size_attr.attr,
5964 &objs_per_slab_attr.attr,
5965 &order_attr.attr,
5966 &min_partial_attr.attr,
5967 &cpu_partial_attr.attr,
5968 &objects_partial_attr.attr,
5969 &partial_attr.attr,
5970 &cpu_slabs_attr.attr,
5971 &ctor_attr.attr,
5972 &aliases_attr.attr,
5973 &align_attr.attr,
5974 &hwcache_align_attr.attr,
5975 &reclaim_account_attr.attr,
5976 &destroy_by_rcu_attr.attr,
5977 &shrink_attr.attr,
5978 &slabs_cpu_partial_attr.attr,
5979 #ifdef CONFIG_SLUB_DEBUG
5980 &total_objects_attr.attr,
5981 &objects_attr.attr,
5982 &slabs_attr.attr,
5983 &sanity_checks_attr.attr,
5984 &trace_attr.attr,
5985 &red_zone_attr.attr,
5986 &poison_attr.attr,
5987 &store_user_attr.attr,
5988 &validate_attr.attr,
5989 #endif
5990 #ifdef CONFIG_ZONE_DMA
5991 &cache_dma_attr.attr,
5992 #endif
5993 #ifdef CONFIG_NUMA
5994 &remote_node_defrag_ratio_attr.attr,
5995 #endif
5996 #ifdef CONFIG_SLUB_STATS
5997 &alloc_fastpath_attr.attr,
5998 &alloc_slowpath_attr.attr,
5999 &free_fastpath_attr.attr,
6000 &free_slowpath_attr.attr,
6001 &free_frozen_attr.attr,
6002 &free_add_partial_attr.attr,
6003 &free_remove_partial_attr.attr,
6004 &alloc_from_partial_attr.attr,
6005 &alloc_slab_attr.attr,
6006 &alloc_refill_attr.attr,
6007 &alloc_node_mismatch_attr.attr,
6008 &free_slab_attr.attr,
6009 &cpuslab_flush_attr.attr,
6010 &deactivate_full_attr.attr,
6011 &deactivate_empty_attr.attr,
6012 &deactivate_to_head_attr.attr,
6013 &deactivate_to_tail_attr.attr,
6014 &deactivate_remote_frees_attr.attr,
6015 &deactivate_bypass_attr.attr,
6016 &order_fallback_attr.attr,
6017 &cmpxchg_double_fail_attr.attr,
6018 &cmpxchg_double_cpu_fail_attr.attr,
6019 &cpu_partial_alloc_attr.attr,
6020 &cpu_partial_free_attr.attr,
6021 &cpu_partial_node_attr.attr,
6022 &cpu_partial_drain_attr.attr,
6023 #endif
6024 #ifdef CONFIG_FAILSLAB
6025 &failslab_attr.attr,
6026 #endif
6027 #ifdef CONFIG_HARDENED_USERCOPY
6028 &usersize_attr.attr,
6029 #endif
6030 #ifdef CONFIG_KFENCE
6031 &skip_kfence_attr.attr,
6032 #endif
6033
6034 NULL
6035 };
6036
6037 static const struct attribute_group slab_attr_group = {
6038 .attrs = slab_attrs,
6039 };
6040
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)6041 static ssize_t slab_attr_show(struct kobject *kobj,
6042 struct attribute *attr,
6043 char *buf)
6044 {
6045 struct slab_attribute *attribute;
6046 struct kmem_cache *s;
6047
6048 attribute = to_slab_attr(attr);
6049 s = to_slab(kobj);
6050
6051 if (!attribute->show)
6052 return -EIO;
6053
6054 return attribute->show(s, buf);
6055 }
6056
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)6057 static ssize_t slab_attr_store(struct kobject *kobj,
6058 struct attribute *attr,
6059 const char *buf, size_t len)
6060 {
6061 struct slab_attribute *attribute;
6062 struct kmem_cache *s;
6063
6064 attribute = to_slab_attr(attr);
6065 s = to_slab(kobj);
6066
6067 if (!attribute->store)
6068 return -EIO;
6069
6070 return attribute->store(s, buf, len);
6071 }
6072
kmem_cache_release(struct kobject * k)6073 static void kmem_cache_release(struct kobject *k)
6074 {
6075 slab_kmem_cache_release(to_slab(k));
6076 }
6077
6078 static const struct sysfs_ops slab_sysfs_ops = {
6079 .show = slab_attr_show,
6080 .store = slab_attr_store,
6081 };
6082
6083 static const struct kobj_type slab_ktype = {
6084 .sysfs_ops = &slab_sysfs_ops,
6085 .release = kmem_cache_release,
6086 };
6087
6088 static struct kset *slab_kset;
6089
cache_kset(struct kmem_cache * s)6090 static inline struct kset *cache_kset(struct kmem_cache *s)
6091 {
6092 return slab_kset;
6093 }
6094
6095 #define ID_STR_LENGTH 32
6096
6097 /* Create a unique string id for a slab cache:
6098 *
6099 * Format :[flags-]size
6100 */
create_unique_id(struct kmem_cache * s)6101 static char *create_unique_id(struct kmem_cache *s)
6102 {
6103 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6104 char *p = name;
6105
6106 if (!name)
6107 return ERR_PTR(-ENOMEM);
6108
6109 *p++ = ':';
6110 /*
6111 * First flags affecting slabcache operations. We will only
6112 * get here for aliasable slabs so we do not need to support
6113 * too many flags. The flags here must cover all flags that
6114 * are matched during merging to guarantee that the id is
6115 * unique.
6116 */
6117 if (s->flags & SLAB_CACHE_DMA)
6118 *p++ = 'd';
6119 if (s->flags & SLAB_CACHE_DMA32)
6120 *p++ = 'D';
6121 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6122 *p++ = 'a';
6123 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6124 *p++ = 'F';
6125 if (s->flags & SLAB_ACCOUNT)
6126 *p++ = 'A';
6127 if (p != name + 1)
6128 *p++ = '-';
6129 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6130
6131 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6132 kfree(name);
6133 return ERR_PTR(-EINVAL);
6134 }
6135 kmsan_unpoison_memory(name, p - name);
6136 return name;
6137 }
6138
sysfs_slab_add(struct kmem_cache * s)6139 static int sysfs_slab_add(struct kmem_cache *s)
6140 {
6141 int err;
6142 const char *name;
6143 struct kset *kset = cache_kset(s);
6144 int unmergeable = slab_unmergeable(s);
6145
6146 if (!unmergeable && disable_higher_order_debug &&
6147 (slub_debug & DEBUG_METADATA_FLAGS))
6148 unmergeable = 1;
6149
6150 if (unmergeable) {
6151 /*
6152 * Slabcache can never be merged so we can use the name proper.
6153 * This is typically the case for debug situations. In that
6154 * case we can catch duplicate names easily.
6155 */
6156 sysfs_remove_link(&slab_kset->kobj, s->name);
6157 name = s->name;
6158 } else {
6159 /*
6160 * Create a unique name for the slab as a target
6161 * for the symlinks.
6162 */
6163 name = create_unique_id(s);
6164 if (IS_ERR(name))
6165 return PTR_ERR(name);
6166 }
6167
6168 s->kobj.kset = kset;
6169 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6170 if (err)
6171 goto out;
6172
6173 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6174 if (err)
6175 goto out_del_kobj;
6176
6177 if (!unmergeable) {
6178 /* Setup first alias */
6179 sysfs_slab_alias(s, s->name);
6180 }
6181 out:
6182 if (!unmergeable)
6183 kfree(name);
6184 return err;
6185 out_del_kobj:
6186 kobject_del(&s->kobj);
6187 goto out;
6188 }
6189
sysfs_slab_unlink(struct kmem_cache * s)6190 void sysfs_slab_unlink(struct kmem_cache *s)
6191 {
6192 if (slab_state >= FULL)
6193 kobject_del(&s->kobj);
6194 }
6195
sysfs_slab_release(struct kmem_cache * s)6196 void sysfs_slab_release(struct kmem_cache *s)
6197 {
6198 if (slab_state >= FULL)
6199 kobject_put(&s->kobj);
6200 }
6201
6202 /*
6203 * Need to buffer aliases during bootup until sysfs becomes
6204 * available lest we lose that information.
6205 */
6206 struct saved_alias {
6207 struct kmem_cache *s;
6208 const char *name;
6209 struct saved_alias *next;
6210 };
6211
6212 static struct saved_alias *alias_list;
6213
sysfs_slab_alias(struct kmem_cache * s,const char * name)6214 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6215 {
6216 struct saved_alias *al;
6217
6218 if (slab_state == FULL) {
6219 /*
6220 * If we have a leftover link then remove it.
6221 */
6222 sysfs_remove_link(&slab_kset->kobj, name);
6223 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6224 }
6225
6226 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6227 if (!al)
6228 return -ENOMEM;
6229
6230 al->s = s;
6231 al->name = name;
6232 al->next = alias_list;
6233 alias_list = al;
6234 kmsan_unpoison_memory(al, sizeof(*al));
6235 return 0;
6236 }
6237
slab_sysfs_init(void)6238 static int __init slab_sysfs_init(void)
6239 {
6240 struct kmem_cache *s;
6241 int err;
6242
6243 mutex_lock(&slab_mutex);
6244
6245 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6246 if (!slab_kset) {
6247 mutex_unlock(&slab_mutex);
6248 pr_err("Cannot register slab subsystem.\n");
6249 return -ENOMEM;
6250 }
6251
6252 slab_state = FULL;
6253
6254 list_for_each_entry(s, &slab_caches, list) {
6255 err = sysfs_slab_add(s);
6256 if (err)
6257 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6258 s->name);
6259 }
6260
6261 while (alias_list) {
6262 struct saved_alias *al = alias_list;
6263
6264 alias_list = alias_list->next;
6265 err = sysfs_slab_alias(al->s, al->name);
6266 if (err)
6267 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6268 al->name);
6269 kfree(al);
6270 }
6271
6272 mutex_unlock(&slab_mutex);
6273 return 0;
6274 }
6275 late_initcall(slab_sysfs_init);
6276 #endif /* SLAB_SUPPORTS_SYSFS */
6277
6278 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)6279 static int slab_debugfs_show(struct seq_file *seq, void *v)
6280 {
6281 struct loc_track *t = seq->private;
6282 struct location *l;
6283 unsigned long idx;
6284
6285 idx = (unsigned long) t->idx;
6286 if (idx < t->count) {
6287 l = &t->loc[idx];
6288
6289 seq_printf(seq, "%7ld ", l->count);
6290
6291 if (l->addr)
6292 seq_printf(seq, "%pS", (void *)l->addr);
6293 else
6294 seq_puts(seq, "<not-available>");
6295
6296 if (l->waste)
6297 seq_printf(seq, " waste=%lu/%lu",
6298 l->count * l->waste, l->waste);
6299
6300 if (l->sum_time != l->min_time) {
6301 seq_printf(seq, " age=%ld/%llu/%ld",
6302 l->min_time, div_u64(l->sum_time, l->count),
6303 l->max_time);
6304 } else
6305 seq_printf(seq, " age=%ld", l->min_time);
6306
6307 if (l->min_pid != l->max_pid)
6308 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6309 else
6310 seq_printf(seq, " pid=%ld",
6311 l->min_pid);
6312
6313 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6314 seq_printf(seq, " cpus=%*pbl",
6315 cpumask_pr_args(to_cpumask(l->cpus)));
6316
6317 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6318 seq_printf(seq, " nodes=%*pbl",
6319 nodemask_pr_args(&l->nodes));
6320
6321 #ifdef CONFIG_STACKDEPOT
6322 {
6323 depot_stack_handle_t handle;
6324 unsigned long *entries;
6325 unsigned int nr_entries, j;
6326
6327 handle = READ_ONCE(l->handle);
6328 if (handle) {
6329 nr_entries = stack_depot_fetch(handle, &entries);
6330 seq_puts(seq, "\n");
6331 for (j = 0; j < nr_entries; j++)
6332 seq_printf(seq, " %pS\n", (void *)entries[j]);
6333 }
6334 }
6335 #endif
6336 seq_puts(seq, "\n");
6337 }
6338
6339 if (!idx && !t->count)
6340 seq_puts(seq, "No data\n");
6341
6342 return 0;
6343 }
6344
slab_debugfs_stop(struct seq_file * seq,void * v)6345 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6346 {
6347 }
6348
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)6349 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6350 {
6351 struct loc_track *t = seq->private;
6352
6353 t->idx = ++(*ppos);
6354 if (*ppos <= t->count)
6355 return ppos;
6356
6357 return NULL;
6358 }
6359
cmp_loc_by_count(const void * a,const void * b,const void * data)6360 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6361 {
6362 struct location *loc1 = (struct location *)a;
6363 struct location *loc2 = (struct location *)b;
6364
6365 if (loc1->count > loc2->count)
6366 return -1;
6367 else
6368 return 1;
6369 }
6370
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)6371 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6372 {
6373 struct loc_track *t = seq->private;
6374
6375 t->idx = *ppos;
6376 return ppos;
6377 }
6378
6379 static const struct seq_operations slab_debugfs_sops = {
6380 .start = slab_debugfs_start,
6381 .next = slab_debugfs_next,
6382 .stop = slab_debugfs_stop,
6383 .show = slab_debugfs_show,
6384 };
6385
slab_debug_trace_open(struct inode * inode,struct file * filep)6386 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6387 {
6388
6389 struct kmem_cache_node *n;
6390 enum track_item alloc;
6391 int node;
6392 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6393 sizeof(struct loc_track));
6394 struct kmem_cache *s = file_inode(filep)->i_private;
6395 unsigned long *obj_map;
6396
6397 if (!t)
6398 return -ENOMEM;
6399
6400 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6401 if (!obj_map) {
6402 seq_release_private(inode, filep);
6403 return -ENOMEM;
6404 }
6405
6406 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6407 alloc = TRACK_ALLOC;
6408 else
6409 alloc = TRACK_FREE;
6410
6411 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6412 bitmap_free(obj_map);
6413 seq_release_private(inode, filep);
6414 return -ENOMEM;
6415 }
6416
6417 for_each_kmem_cache_node(s, node, n) {
6418 unsigned long flags;
6419 struct slab *slab;
6420
6421 if (!node_nr_slabs(n))
6422 continue;
6423
6424 spin_lock_irqsave(&n->list_lock, flags);
6425 list_for_each_entry(slab, &n->partial, slab_list)
6426 process_slab(t, s, slab, alloc, obj_map);
6427 list_for_each_entry(slab, &n->full, slab_list)
6428 process_slab(t, s, slab, alloc, obj_map);
6429 spin_unlock_irqrestore(&n->list_lock, flags);
6430 }
6431
6432 /* Sort locations by count */
6433 sort_r(t->loc, t->count, sizeof(struct location),
6434 cmp_loc_by_count, NULL, NULL);
6435
6436 bitmap_free(obj_map);
6437 return 0;
6438 }
6439
slab_debug_trace_release(struct inode * inode,struct file * file)6440 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6441 {
6442 struct seq_file *seq = file->private_data;
6443 struct loc_track *t = seq->private;
6444
6445 free_loc_track(t);
6446 return seq_release_private(inode, file);
6447 }
6448
6449 static const struct file_operations slab_debugfs_fops = {
6450 .open = slab_debug_trace_open,
6451 .read = seq_read,
6452 .llseek = seq_lseek,
6453 .release = slab_debug_trace_release,
6454 };
6455
debugfs_slab_add(struct kmem_cache * s)6456 static void debugfs_slab_add(struct kmem_cache *s)
6457 {
6458 struct dentry *slab_cache_dir;
6459
6460 if (unlikely(!slab_debugfs_root))
6461 return;
6462
6463 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6464
6465 debugfs_create_file("alloc_traces", 0400,
6466 slab_cache_dir, s, &slab_debugfs_fops);
6467
6468 debugfs_create_file("free_traces", 0400,
6469 slab_cache_dir, s, &slab_debugfs_fops);
6470 }
6471
debugfs_slab_release(struct kmem_cache * s)6472 void debugfs_slab_release(struct kmem_cache *s)
6473 {
6474 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6475 }
6476
slab_debugfs_init(void)6477 static int __init slab_debugfs_init(void)
6478 {
6479 struct kmem_cache *s;
6480
6481 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6482
6483 list_for_each_entry(s, &slab_caches, list)
6484 if (s->flags & SLAB_STORE_USER)
6485 debugfs_slab_add(s);
6486
6487 return 0;
6488
6489 }
6490 __initcall(slab_debugfs_init);
6491 #endif
6492 /*
6493 * The /proc/slabinfo ABI
6494 */
6495 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)6496 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6497 {
6498 unsigned long nr_slabs = 0;
6499 unsigned long nr_objs = 0;
6500 unsigned long nr_free = 0;
6501 int node;
6502 struct kmem_cache_node *n;
6503
6504 for_each_kmem_cache_node(s, node, n) {
6505 nr_slabs += node_nr_slabs(n);
6506 nr_objs += node_nr_objs(n);
6507 nr_free += count_partial(n, count_free);
6508 }
6509
6510 sinfo->active_objs = nr_objs - nr_free;
6511 sinfo->num_objs = nr_objs;
6512 sinfo->active_slabs = nr_slabs;
6513 sinfo->num_slabs = nr_slabs;
6514 sinfo->objects_per_slab = oo_objects(s->oo);
6515 sinfo->cache_order = oo_order(s->oo);
6516 }
6517
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * s)6518 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6519 {
6520 }
6521
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)6522 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6523 size_t count, loff_t *ppos)
6524 {
6525 return -EIO;
6526 }
6527 #endif /* CONFIG_SLUB_DEBUG */
6528