1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Slab allocator functions that are independent of the allocator strategy 4 * 5 * (C) 2012 Christoph Lameter <cl@linux.com> 6 */ 7 #include <linux/slab.h> 8 9 #include <linux/mm.h> 10 #include <linux/poison.h> 11 #include <linux/interrupt.h> 12 #include <linux/memory.h> 13 #include <linux/cache.h> 14 #include <linux/compiler.h> 15 #include <linux/module.h> 16 #include <linux/cpu.h> 17 #include <linux/uaccess.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <asm/cacheflush.h> 21 #include <asm/tlbflush.h> 22 #include <asm/page.h> 23 #include <linux/memcontrol.h> 24 25 #define CREATE_TRACE_POINTS 26 #include <trace/events/kmem.h> 27 28 #include "slab.h" 29 30 enum slab_state slab_state; 31 LIST_HEAD(slab_caches); 32 DEFINE_MUTEX(slab_mutex); 33 struct kmem_cache *kmem_cache; 34 35 #ifdef CONFIG_HARDENED_USERCOPY 36 bool usercopy_fallback __ro_after_init = 37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); 38 module_param(usercopy_fallback, bool, 0400); 39 MODULE_PARM_DESC(usercopy_fallback, 40 "WARN instead of reject usercopy whitelist violations"); 41 #endif 42 43 static LIST_HEAD(slab_caches_to_rcu_destroy); 44 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); 45 static DECLARE_WORK(slab_caches_to_rcu_destroy_work, 46 slab_caches_to_rcu_destroy_workfn); 47 48 /* 49 * Set of flags that will prevent slab merging 50 */ 51 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ 53 SLAB_FAILSLAB | SLAB_KASAN) 54 55 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ 56 SLAB_ACCOUNT) 57 58 /* 59 * Merge control. If this is set then no merging of slab caches will occur. 60 */ 61 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); 62 63 static int __init setup_slab_nomerge(char *str) 64 { 65 slab_nomerge = true; 66 return 1; 67 } 68 69 #ifdef CONFIG_SLUB 70 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 71 #endif 72 73 __setup("slab_nomerge", setup_slab_nomerge); 74 75 /* 76 * Determine the size of a slab object 77 */ 78 unsigned int kmem_cache_size(struct kmem_cache *s) 79 { 80 return s->object_size; 81 } 82 EXPORT_SYMBOL(kmem_cache_size); 83 84 #ifdef CONFIG_DEBUG_VM 85 static int kmem_cache_sanity_check(const char *name, unsigned int size) 86 { 87 if (!name || in_interrupt() || size < sizeof(void *) || 88 size > KMALLOC_MAX_SIZE) { 89 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 90 return -EINVAL; 91 } 92 93 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 94 return 0; 95 } 96 #else 97 static inline int kmem_cache_sanity_check(const char *name, unsigned int size) 98 { 99 return 0; 100 } 101 #endif 102 103 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) 104 { 105 size_t i; 106 107 for (i = 0; i < nr; i++) { 108 if (s) 109 kmem_cache_free(s, p[i]); 110 else 111 kfree(p[i]); 112 } 113 } 114 115 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, 116 void **p) 117 { 118 size_t i; 119 120 for (i = 0; i < nr; i++) { 121 void *x = p[i] = kmem_cache_alloc(s, flags); 122 if (!x) { 123 __kmem_cache_free_bulk(s, i, p); 124 return 0; 125 } 126 } 127 return i; 128 } 129 130 #ifdef CONFIG_MEMCG_KMEM 131 132 LIST_HEAD(slab_root_caches); 133 134 void slab_init_memcg_params(struct kmem_cache *s) 135 { 136 s->memcg_params.root_cache = NULL; 137 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); 138 INIT_LIST_HEAD(&s->memcg_params.children); 139 s->memcg_params.dying = false; 140 } 141 142 static int init_memcg_params(struct kmem_cache *s, 143 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 144 { 145 struct memcg_cache_array *arr; 146 147 if (root_cache) { 148 s->memcg_params.root_cache = root_cache; 149 s->memcg_params.memcg = memcg; 150 INIT_LIST_HEAD(&s->memcg_params.children_node); 151 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); 152 return 0; 153 } 154 155 slab_init_memcg_params(s); 156 157 if (!memcg_nr_cache_ids) 158 return 0; 159 160 arr = kvzalloc(sizeof(struct memcg_cache_array) + 161 memcg_nr_cache_ids * sizeof(void *), 162 GFP_KERNEL); 163 if (!arr) 164 return -ENOMEM; 165 166 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); 167 return 0; 168 } 169 170 static void destroy_memcg_params(struct kmem_cache *s) 171 { 172 if (is_root_cache(s)) 173 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); 174 } 175 176 static void free_memcg_params(struct rcu_head *rcu) 177 { 178 struct memcg_cache_array *old; 179 180 old = container_of(rcu, struct memcg_cache_array, rcu); 181 kvfree(old); 182 } 183 184 static int update_memcg_params(struct kmem_cache *s, int new_array_size) 185 { 186 struct memcg_cache_array *old, *new; 187 188 new = kvzalloc(sizeof(struct memcg_cache_array) + 189 new_array_size * sizeof(void *), GFP_KERNEL); 190 if (!new) 191 return -ENOMEM; 192 193 old = rcu_dereference_protected(s->memcg_params.memcg_caches, 194 lockdep_is_held(&slab_mutex)); 195 if (old) 196 memcpy(new->entries, old->entries, 197 memcg_nr_cache_ids * sizeof(void *)); 198 199 rcu_assign_pointer(s->memcg_params.memcg_caches, new); 200 if (old) 201 call_rcu(&old->rcu, free_memcg_params); 202 return 0; 203 } 204 205 int memcg_update_all_caches(int num_memcgs) 206 { 207 struct kmem_cache *s; 208 int ret = 0; 209 210 mutex_lock(&slab_mutex); 211 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 212 ret = update_memcg_params(s, num_memcgs); 213 /* 214 * Instead of freeing the memory, we'll just leave the caches 215 * up to this point in an updated state. 216 */ 217 if (ret) 218 break; 219 } 220 mutex_unlock(&slab_mutex); 221 return ret; 222 } 223 224 void memcg_link_cache(struct kmem_cache *s) 225 { 226 if (is_root_cache(s)) { 227 list_add(&s->root_caches_node, &slab_root_caches); 228 } else { 229 list_add(&s->memcg_params.children_node, 230 &s->memcg_params.root_cache->memcg_params.children); 231 list_add(&s->memcg_params.kmem_caches_node, 232 &s->memcg_params.memcg->kmem_caches); 233 } 234 } 235 236 static void memcg_unlink_cache(struct kmem_cache *s) 237 { 238 if (is_root_cache(s)) { 239 list_del(&s->root_caches_node); 240 } else { 241 list_del(&s->memcg_params.children_node); 242 list_del(&s->memcg_params.kmem_caches_node); 243 } 244 } 245 #else 246 static inline int init_memcg_params(struct kmem_cache *s, 247 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 248 { 249 return 0; 250 } 251 252 static inline void destroy_memcg_params(struct kmem_cache *s) 253 { 254 } 255 256 static inline void memcg_unlink_cache(struct kmem_cache *s) 257 { 258 } 259 #endif /* CONFIG_MEMCG_KMEM */ 260 261 /* 262 * Figure out what the alignment of the objects will be given a set of 263 * flags, a user specified alignment and the size of the objects. 264 */ 265 static unsigned int calculate_alignment(slab_flags_t flags, 266 unsigned int align, unsigned int size) 267 { 268 /* 269 * If the user wants hardware cache aligned objects then follow that 270 * suggestion if the object is sufficiently large. 271 * 272 * The hardware cache alignment cannot override the specified 273 * alignment though. If that is greater then use it. 274 */ 275 if (flags & SLAB_HWCACHE_ALIGN) { 276 unsigned int ralign; 277 278 ralign = cache_line_size(); 279 while (size <= ralign / 2) 280 ralign /= 2; 281 align = max(align, ralign); 282 } 283 284 if (align < ARCH_SLAB_MINALIGN) 285 align = ARCH_SLAB_MINALIGN; 286 287 return ALIGN(align, sizeof(void *)); 288 } 289 290 /* 291 * Find a mergeable slab cache 292 */ 293 int slab_unmergeable(struct kmem_cache *s) 294 { 295 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 296 return 1; 297 298 if (!is_root_cache(s)) 299 return 1; 300 301 if (s->ctor) 302 return 1; 303 304 if (s->usersize) 305 return 1; 306 307 /* 308 * We may have set a slab to be unmergeable during bootstrap. 309 */ 310 if (s->refcount < 0) 311 return 1; 312 313 return 0; 314 } 315 316 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, 317 slab_flags_t flags, const char *name, void (*ctor)(void *)) 318 { 319 struct kmem_cache *s; 320 321 if (slab_nomerge) 322 return NULL; 323 324 if (ctor) 325 return NULL; 326 327 size = ALIGN(size, sizeof(void *)); 328 align = calculate_alignment(flags, align, size); 329 size = ALIGN(size, align); 330 flags = kmem_cache_flags(size, flags, name, NULL); 331 332 if (flags & SLAB_NEVER_MERGE) 333 return NULL; 334 335 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { 336 if (slab_unmergeable(s)) 337 continue; 338 339 if (size > s->size) 340 continue; 341 342 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 343 continue; 344 /* 345 * Check if alignment is compatible. 346 * Courtesy of Adrian Drzewiecki 347 */ 348 if ((s->size & ~(align - 1)) != s->size) 349 continue; 350 351 if (s->size - size >= sizeof(void *)) 352 continue; 353 354 if (IS_ENABLED(CONFIG_SLAB) && align && 355 (align > s->align || s->align % align)) 356 continue; 357 358 return s; 359 } 360 return NULL; 361 } 362 363 static struct kmem_cache *create_cache(const char *name, 364 unsigned int object_size, unsigned int align, 365 slab_flags_t flags, unsigned int useroffset, 366 unsigned int usersize, void (*ctor)(void *), 367 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 368 { 369 struct kmem_cache *s; 370 int err; 371 372 if (WARN_ON(useroffset + usersize > object_size)) 373 useroffset = usersize = 0; 374 375 err = -ENOMEM; 376 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 377 if (!s) 378 goto out; 379 380 s->name = name; 381 s->size = s->object_size = object_size; 382 s->align = align; 383 s->ctor = ctor; 384 s->useroffset = useroffset; 385 s->usersize = usersize; 386 387 err = init_memcg_params(s, memcg, root_cache); 388 if (err) 389 goto out_free_cache; 390 391 err = __kmem_cache_create(s, flags); 392 if (err) 393 goto out_free_cache; 394 395 s->refcount = 1; 396 list_add(&s->list, &slab_caches); 397 memcg_link_cache(s); 398 out: 399 if (err) 400 return ERR_PTR(err); 401 return s; 402 403 out_free_cache: 404 destroy_memcg_params(s); 405 kmem_cache_free(kmem_cache, s); 406 goto out; 407 } 408 409 /** 410 * kmem_cache_create_usercopy - Create a cache with a region suitable 411 * for copying to userspace 412 * @name: A string which is used in /proc/slabinfo to identify this cache. 413 * @size: The size of objects to be created in this cache. 414 * @align: The required alignment for the objects. 415 * @flags: SLAB flags 416 * @useroffset: Usercopy region offset 417 * @usersize: Usercopy region size 418 * @ctor: A constructor for the objects. 419 * 420 * Cannot be called within a interrupt, but can be interrupted. 421 * The @ctor is run when new pages are allocated by the cache. 422 * 423 * The flags are 424 * 425 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 426 * to catch references to uninitialised memory. 427 * 428 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 429 * for buffer overruns. 430 * 431 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 432 * cacheline. This can be beneficial if you're counting cycles as closely 433 * as davem. 434 * 435 * Return: a pointer to the cache on success, NULL on failure. 436 */ 437 struct kmem_cache * 438 kmem_cache_create_usercopy(const char *name, 439 unsigned int size, unsigned int align, 440 slab_flags_t flags, 441 unsigned int useroffset, unsigned int usersize, 442 void (*ctor)(void *)) 443 { 444 struct kmem_cache *s = NULL; 445 const char *cache_name; 446 int err; 447 448 get_online_cpus(); 449 get_online_mems(); 450 memcg_get_cache_ids(); 451 452 mutex_lock(&slab_mutex); 453 454 err = kmem_cache_sanity_check(name, size); 455 if (err) { 456 goto out_unlock; 457 } 458 459 /* Refuse requests with allocator specific flags */ 460 if (flags & ~SLAB_FLAGS_PERMITTED) { 461 err = -EINVAL; 462 goto out_unlock; 463 } 464 465 /* 466 * Some allocators will constraint the set of valid flags to a subset 467 * of all flags. We expect them to define CACHE_CREATE_MASK in this 468 * case, and we'll just provide them with a sanitized version of the 469 * passed flags. 470 */ 471 flags &= CACHE_CREATE_MASK; 472 473 /* Fail closed on bad usersize of useroffset values. */ 474 if (WARN_ON(!usersize && useroffset) || 475 WARN_ON(size < usersize || size - usersize < useroffset)) 476 usersize = useroffset = 0; 477 478 if (!usersize) 479 s = __kmem_cache_alias(name, size, align, flags, ctor); 480 if (s) 481 goto out_unlock; 482 483 cache_name = kstrdup_const(name, GFP_KERNEL); 484 if (!cache_name) { 485 err = -ENOMEM; 486 goto out_unlock; 487 } 488 489 s = create_cache(cache_name, size, 490 calculate_alignment(flags, align, size), 491 flags, useroffset, usersize, ctor, NULL, NULL); 492 if (IS_ERR(s)) { 493 err = PTR_ERR(s); 494 kfree_const(cache_name); 495 } 496 497 out_unlock: 498 mutex_unlock(&slab_mutex); 499 500 memcg_put_cache_ids(); 501 put_online_mems(); 502 put_online_cpus(); 503 504 if (err) { 505 if (flags & SLAB_PANIC) 506 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", 507 name, err); 508 else { 509 pr_warn("kmem_cache_create(%s) failed with error %d\n", 510 name, err); 511 dump_stack(); 512 } 513 return NULL; 514 } 515 return s; 516 } 517 EXPORT_SYMBOL(kmem_cache_create_usercopy); 518 519 /** 520 * kmem_cache_create - Create a cache. 521 * @name: A string which is used in /proc/slabinfo to identify this cache. 522 * @size: The size of objects to be created in this cache. 523 * @align: The required alignment for the objects. 524 * @flags: SLAB flags 525 * @ctor: A constructor for the objects. 526 * 527 * Cannot be called within a interrupt, but can be interrupted. 528 * The @ctor is run when new pages are allocated by the cache. 529 * 530 * The flags are 531 * 532 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 533 * to catch references to uninitialised memory. 534 * 535 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 536 * for buffer overruns. 537 * 538 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 539 * cacheline. This can be beneficial if you're counting cycles as closely 540 * as davem. 541 * 542 * Return: a pointer to the cache on success, NULL on failure. 543 */ 544 struct kmem_cache * 545 kmem_cache_create(const char *name, unsigned int size, unsigned int align, 546 slab_flags_t flags, void (*ctor)(void *)) 547 { 548 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, 549 ctor); 550 } 551 EXPORT_SYMBOL(kmem_cache_create); 552 553 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) 554 { 555 LIST_HEAD(to_destroy); 556 struct kmem_cache *s, *s2; 557 558 /* 559 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the 560 * @slab_caches_to_rcu_destroy list. The slab pages are freed 561 * through RCU and and the associated kmem_cache are dereferenced 562 * while freeing the pages, so the kmem_caches should be freed only 563 * after the pending RCU operations are finished. As rcu_barrier() 564 * is a pretty slow operation, we batch all pending destructions 565 * asynchronously. 566 */ 567 mutex_lock(&slab_mutex); 568 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); 569 mutex_unlock(&slab_mutex); 570 571 if (list_empty(&to_destroy)) 572 return; 573 574 rcu_barrier(); 575 576 list_for_each_entry_safe(s, s2, &to_destroy, list) { 577 #ifdef SLAB_SUPPORTS_SYSFS 578 sysfs_slab_release(s); 579 #else 580 slab_kmem_cache_release(s); 581 #endif 582 } 583 } 584 585 static int shutdown_cache(struct kmem_cache *s) 586 { 587 /* free asan quarantined objects */ 588 kasan_cache_shutdown(s); 589 590 if (__kmem_cache_shutdown(s) != 0) 591 return -EBUSY; 592 593 memcg_unlink_cache(s); 594 list_del(&s->list); 595 596 if (s->flags & SLAB_TYPESAFE_BY_RCU) { 597 #ifdef SLAB_SUPPORTS_SYSFS 598 sysfs_slab_unlink(s); 599 #endif 600 list_add_tail(&s->list, &slab_caches_to_rcu_destroy); 601 schedule_work(&slab_caches_to_rcu_destroy_work); 602 } else { 603 #ifdef SLAB_SUPPORTS_SYSFS 604 sysfs_slab_unlink(s); 605 sysfs_slab_release(s); 606 #else 607 slab_kmem_cache_release(s); 608 #endif 609 } 610 611 return 0; 612 } 613 614 #ifdef CONFIG_MEMCG_KMEM 615 /* 616 * memcg_create_kmem_cache - Create a cache for a memory cgroup. 617 * @memcg: The memory cgroup the new cache is for. 618 * @root_cache: The parent of the new cache. 619 * 620 * This function attempts to create a kmem cache that will serve allocation 621 * requests going from @memcg to @root_cache. The new cache inherits properties 622 * from its parent. 623 */ 624 void memcg_create_kmem_cache(struct mem_cgroup *memcg, 625 struct kmem_cache *root_cache) 626 { 627 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ 628 struct cgroup_subsys_state *css = &memcg->css; 629 struct memcg_cache_array *arr; 630 struct kmem_cache *s = NULL; 631 char *cache_name; 632 int idx; 633 634 get_online_cpus(); 635 get_online_mems(); 636 637 mutex_lock(&slab_mutex); 638 639 /* 640 * The memory cgroup could have been offlined while the cache 641 * creation work was pending. 642 */ 643 if (memcg->kmem_state != KMEM_ONLINE || root_cache->memcg_params.dying) 644 goto out_unlock; 645 646 idx = memcg_cache_id(memcg); 647 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, 648 lockdep_is_held(&slab_mutex)); 649 650 /* 651 * Since per-memcg caches are created asynchronously on first 652 * allocation (see memcg_kmem_get_cache()), several threads can try to 653 * create the same cache, but only one of them may succeed. 654 */ 655 if (arr->entries[idx]) 656 goto out_unlock; 657 658 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); 659 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, 660 css->serial_nr, memcg_name_buf); 661 if (!cache_name) 662 goto out_unlock; 663 664 s = create_cache(cache_name, root_cache->object_size, 665 root_cache->align, 666 root_cache->flags & CACHE_CREATE_MASK, 667 root_cache->useroffset, root_cache->usersize, 668 root_cache->ctor, memcg, root_cache); 669 /* 670 * If we could not create a memcg cache, do not complain, because 671 * that's not critical at all as we can always proceed with the root 672 * cache. 673 */ 674 if (IS_ERR(s)) { 675 kfree(cache_name); 676 goto out_unlock; 677 } 678 679 /* 680 * Since readers won't lock (see cache_from_memcg_idx()), we need a 681 * barrier here to ensure nobody will see the kmem_cache partially 682 * initialized. 683 */ 684 smp_wmb(); 685 arr->entries[idx] = s; 686 687 out_unlock: 688 mutex_unlock(&slab_mutex); 689 690 put_online_mems(); 691 put_online_cpus(); 692 } 693 694 static void kmemcg_deactivate_workfn(struct work_struct *work) 695 { 696 struct kmem_cache *s = container_of(work, struct kmem_cache, 697 memcg_params.deact_work); 698 699 get_online_cpus(); 700 get_online_mems(); 701 702 mutex_lock(&slab_mutex); 703 704 s->memcg_params.deact_fn(s); 705 706 mutex_unlock(&slab_mutex); 707 708 put_online_mems(); 709 put_online_cpus(); 710 711 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */ 712 css_put(&s->memcg_params.memcg->css); 713 } 714 715 static void kmemcg_deactivate_rcufn(struct rcu_head *head) 716 { 717 struct kmem_cache *s = container_of(head, struct kmem_cache, 718 memcg_params.deact_rcu_head); 719 720 /* 721 * We need to grab blocking locks. Bounce to ->deact_work. The 722 * work item shares the space with the RCU head and can't be 723 * initialized eariler. 724 */ 725 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn); 726 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work); 727 } 728 729 /** 730 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a 731 * sched RCU grace period 732 * @s: target kmem_cache 733 * @deact_fn: deactivation function to call 734 * 735 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex 736 * held after a sched RCU grace period. The slab is guaranteed to stay 737 * alive until @deact_fn is finished. This is to be used from 738 * __kmemcg_cache_deactivate(). 739 */ 740 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s, 741 void (*deact_fn)(struct kmem_cache *)) 742 { 743 if (WARN_ON_ONCE(is_root_cache(s)) || 744 WARN_ON_ONCE(s->memcg_params.deact_fn)) 745 return; 746 747 if (s->memcg_params.root_cache->memcg_params.dying) 748 return; 749 750 /* pin memcg so that @s doesn't get destroyed in the middle */ 751 css_get(&s->memcg_params.memcg->css); 752 753 s->memcg_params.deact_fn = deact_fn; 754 call_rcu(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn); 755 } 756 757 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) 758 { 759 int idx; 760 struct memcg_cache_array *arr; 761 struct kmem_cache *s, *c; 762 763 idx = memcg_cache_id(memcg); 764 765 get_online_cpus(); 766 get_online_mems(); 767 768 mutex_lock(&slab_mutex); 769 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 770 arr = rcu_dereference_protected(s->memcg_params.memcg_caches, 771 lockdep_is_held(&slab_mutex)); 772 c = arr->entries[idx]; 773 if (!c) 774 continue; 775 776 __kmemcg_cache_deactivate(c); 777 arr->entries[idx] = NULL; 778 } 779 mutex_unlock(&slab_mutex); 780 781 put_online_mems(); 782 put_online_cpus(); 783 } 784 785 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) 786 { 787 struct kmem_cache *s, *s2; 788 789 get_online_cpus(); 790 get_online_mems(); 791 792 mutex_lock(&slab_mutex); 793 list_for_each_entry_safe(s, s2, &memcg->kmem_caches, 794 memcg_params.kmem_caches_node) { 795 /* 796 * The cgroup is about to be freed and therefore has no charges 797 * left. Hence, all its caches must be empty by now. 798 */ 799 BUG_ON(shutdown_cache(s)); 800 } 801 mutex_unlock(&slab_mutex); 802 803 put_online_mems(); 804 put_online_cpus(); 805 } 806 807 static int shutdown_memcg_caches(struct kmem_cache *s) 808 { 809 struct memcg_cache_array *arr; 810 struct kmem_cache *c, *c2; 811 LIST_HEAD(busy); 812 int i; 813 814 BUG_ON(!is_root_cache(s)); 815 816 /* 817 * First, shutdown active caches, i.e. caches that belong to online 818 * memory cgroups. 819 */ 820 arr = rcu_dereference_protected(s->memcg_params.memcg_caches, 821 lockdep_is_held(&slab_mutex)); 822 for_each_memcg_cache_index(i) { 823 c = arr->entries[i]; 824 if (!c) 825 continue; 826 if (shutdown_cache(c)) 827 /* 828 * The cache still has objects. Move it to a temporary 829 * list so as not to try to destroy it for a second 830 * time while iterating over inactive caches below. 831 */ 832 list_move(&c->memcg_params.children_node, &busy); 833 else 834 /* 835 * The cache is empty and will be destroyed soon. Clear 836 * the pointer to it in the memcg_caches array so that 837 * it will never be accessed even if the root cache 838 * stays alive. 839 */ 840 arr->entries[i] = NULL; 841 } 842 843 /* 844 * Second, shutdown all caches left from memory cgroups that are now 845 * offline. 846 */ 847 list_for_each_entry_safe(c, c2, &s->memcg_params.children, 848 memcg_params.children_node) 849 shutdown_cache(c); 850 851 list_splice(&busy, &s->memcg_params.children); 852 853 /* 854 * A cache being destroyed must be empty. In particular, this means 855 * that all per memcg caches attached to it must be empty too. 856 */ 857 if (!list_empty(&s->memcg_params.children)) 858 return -EBUSY; 859 return 0; 860 } 861 862 static void flush_memcg_workqueue(struct kmem_cache *s) 863 { 864 mutex_lock(&slab_mutex); 865 s->memcg_params.dying = true; 866 mutex_unlock(&slab_mutex); 867 868 /* 869 * SLUB deactivates the kmem_caches through call_rcu. Make 870 * sure all registered rcu callbacks have been invoked. 871 */ 872 if (IS_ENABLED(CONFIG_SLUB)) 873 rcu_barrier(); 874 875 /* 876 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB 877 * deactivates the memcg kmem_caches through workqueue. Make sure all 878 * previous workitems on workqueue are processed. 879 */ 880 flush_workqueue(memcg_kmem_cache_wq); 881 } 882 #else 883 static inline int shutdown_memcg_caches(struct kmem_cache *s) 884 { 885 return 0; 886 } 887 888 static inline void flush_memcg_workqueue(struct kmem_cache *s) 889 { 890 } 891 #endif /* CONFIG_MEMCG_KMEM */ 892 893 void slab_kmem_cache_release(struct kmem_cache *s) 894 { 895 __kmem_cache_release(s); 896 destroy_memcg_params(s); 897 kfree_const(s->name); 898 kmem_cache_free(kmem_cache, s); 899 } 900 901 void kmem_cache_destroy(struct kmem_cache *s) 902 { 903 int err; 904 905 if (unlikely(!s)) 906 return; 907 908 flush_memcg_workqueue(s); 909 910 get_online_cpus(); 911 get_online_mems(); 912 913 mutex_lock(&slab_mutex); 914 915 s->refcount--; 916 if (s->refcount) 917 goto out_unlock; 918 919 err = shutdown_memcg_caches(s); 920 if (!err) 921 err = shutdown_cache(s); 922 923 if (err) { 924 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", 925 s->name); 926 dump_stack(); 927 } 928 out_unlock: 929 mutex_unlock(&slab_mutex); 930 931 put_online_mems(); 932 put_online_cpus(); 933 } 934 EXPORT_SYMBOL(kmem_cache_destroy); 935 936 /** 937 * kmem_cache_shrink - Shrink a cache. 938 * @cachep: The cache to shrink. 939 * 940 * Releases as many slabs as possible for a cache. 941 * To help debugging, a zero exit status indicates all slabs were released. 942 * 943 * Return: %0 if all slabs were released, non-zero otherwise 944 */ 945 int kmem_cache_shrink(struct kmem_cache *cachep) 946 { 947 int ret; 948 949 get_online_cpus(); 950 get_online_mems(); 951 kasan_cache_shrink(cachep); 952 ret = __kmem_cache_shrink(cachep); 953 put_online_mems(); 954 put_online_cpus(); 955 return ret; 956 } 957 EXPORT_SYMBOL(kmem_cache_shrink); 958 959 bool slab_is_available(void) 960 { 961 return slab_state >= UP; 962 } 963 964 #ifndef CONFIG_SLOB 965 /* Create a cache during boot when no slab services are available yet */ 966 void __init create_boot_cache(struct kmem_cache *s, const char *name, 967 unsigned int size, slab_flags_t flags, 968 unsigned int useroffset, unsigned int usersize) 969 { 970 int err; 971 972 s->name = name; 973 s->size = s->object_size = size; 974 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); 975 s->useroffset = useroffset; 976 s->usersize = usersize; 977 978 slab_init_memcg_params(s); 979 980 err = __kmem_cache_create(s, flags); 981 982 if (err) 983 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", 984 name, size, err); 985 986 s->refcount = -1; /* Exempt from merging for now */ 987 } 988 989 struct kmem_cache *__init create_kmalloc_cache(const char *name, 990 unsigned int size, slab_flags_t flags, 991 unsigned int useroffset, unsigned int usersize) 992 { 993 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 994 995 if (!s) 996 panic("Out of memory when creating slab %s\n", name); 997 998 create_boot_cache(s, name, size, flags, useroffset, usersize); 999 list_add(&s->list, &slab_caches); 1000 memcg_link_cache(s); 1001 s->refcount = 1; 1002 return s; 1003 } 1004 1005 struct kmem_cache * 1006 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init; 1007 EXPORT_SYMBOL(kmalloc_caches); 1008 1009 /* 1010 * Conversion table for small slabs sizes / 8 to the index in the 1011 * kmalloc array. This is necessary for slabs < 192 since we have non power 1012 * of two cache sizes there. The size of larger slabs can be determined using 1013 * fls. 1014 */ 1015 static u8 size_index[24] __ro_after_init = { 1016 3, /* 8 */ 1017 4, /* 16 */ 1018 5, /* 24 */ 1019 5, /* 32 */ 1020 6, /* 40 */ 1021 6, /* 48 */ 1022 6, /* 56 */ 1023 6, /* 64 */ 1024 1, /* 72 */ 1025 1, /* 80 */ 1026 1, /* 88 */ 1027 1, /* 96 */ 1028 7, /* 104 */ 1029 7, /* 112 */ 1030 7, /* 120 */ 1031 7, /* 128 */ 1032 2, /* 136 */ 1033 2, /* 144 */ 1034 2, /* 152 */ 1035 2, /* 160 */ 1036 2, /* 168 */ 1037 2, /* 176 */ 1038 2, /* 184 */ 1039 2 /* 192 */ 1040 }; 1041 1042 static inline unsigned int size_index_elem(unsigned int bytes) 1043 { 1044 return (bytes - 1) / 8; 1045 } 1046 1047 /* 1048 * Find the kmem_cache structure that serves a given size of 1049 * allocation 1050 */ 1051 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) 1052 { 1053 unsigned int index; 1054 1055 if (size <= 192) { 1056 if (!size) 1057 return ZERO_SIZE_PTR; 1058 1059 index = size_index[size_index_elem(size)]; 1060 } else { 1061 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) 1062 return NULL; 1063 index = fls(size - 1); 1064 } 1065 1066 return kmalloc_caches[kmalloc_type(flags)][index]; 1067 } 1068 1069 /* 1070 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. 1071 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is 1072 * kmalloc-67108864. 1073 */ 1074 const struct kmalloc_info_struct kmalloc_info[] __initconst = { 1075 {NULL, 0}, {"kmalloc-96", 96}, 1076 {"kmalloc-192", 192}, {"kmalloc-8", 8}, 1077 {"kmalloc-16", 16}, {"kmalloc-32", 32}, 1078 {"kmalloc-64", 64}, {"kmalloc-128", 128}, 1079 {"kmalloc-256", 256}, {"kmalloc-512", 512}, 1080 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048}, 1081 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192}, 1082 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768}, 1083 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072}, 1084 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288}, 1085 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152}, 1086 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608}, 1087 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432}, 1088 {"kmalloc-64M", 67108864} 1089 }; 1090 1091 /* 1092 * Patch up the size_index table if we have strange large alignment 1093 * requirements for the kmalloc array. This is only the case for 1094 * MIPS it seems. The standard arches will not generate any code here. 1095 * 1096 * Largest permitted alignment is 256 bytes due to the way we 1097 * handle the index determination for the smaller caches. 1098 * 1099 * Make sure that nothing crazy happens if someone starts tinkering 1100 * around with ARCH_KMALLOC_MINALIGN 1101 */ 1102 void __init setup_kmalloc_cache_index_table(void) 1103 { 1104 unsigned int i; 1105 1106 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 1107 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 1108 1109 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 1110 unsigned int elem = size_index_elem(i); 1111 1112 if (elem >= ARRAY_SIZE(size_index)) 1113 break; 1114 size_index[elem] = KMALLOC_SHIFT_LOW; 1115 } 1116 1117 if (KMALLOC_MIN_SIZE >= 64) { 1118 /* 1119 * The 96 byte size cache is not used if the alignment 1120 * is 64 byte. 1121 */ 1122 for (i = 64 + 8; i <= 96; i += 8) 1123 size_index[size_index_elem(i)] = 7; 1124 1125 } 1126 1127 if (KMALLOC_MIN_SIZE >= 128) { 1128 /* 1129 * The 192 byte sized cache is not used if the alignment 1130 * is 128 byte. Redirect kmalloc to use the 256 byte cache 1131 * instead. 1132 */ 1133 for (i = 128 + 8; i <= 192; i += 8) 1134 size_index[size_index_elem(i)] = 8; 1135 } 1136 } 1137 1138 static const char * 1139 kmalloc_cache_name(const char *prefix, unsigned int size) 1140 { 1141 1142 static const char units[3] = "\0kM"; 1143 int idx = 0; 1144 1145 while (size >= 1024 && (size % 1024 == 0)) { 1146 size /= 1024; 1147 idx++; 1148 } 1149 1150 return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]); 1151 } 1152 1153 static void __init 1154 new_kmalloc_cache(int idx, int type, slab_flags_t flags) 1155 { 1156 const char *name; 1157 1158 if (type == KMALLOC_RECLAIM) { 1159 flags |= SLAB_RECLAIM_ACCOUNT; 1160 name = kmalloc_cache_name("kmalloc-rcl", 1161 kmalloc_info[idx].size); 1162 BUG_ON(!name); 1163 } else { 1164 name = kmalloc_info[idx].name; 1165 } 1166 1167 kmalloc_caches[type][idx] = create_kmalloc_cache(name, 1168 kmalloc_info[idx].size, flags, 0, 1169 kmalloc_info[idx].size); 1170 } 1171 1172 /* 1173 * Create the kmalloc array. Some of the regular kmalloc arrays 1174 * may already have been created because they were needed to 1175 * enable allocations for slab creation. 1176 */ 1177 void __init create_kmalloc_caches(slab_flags_t flags) 1178 { 1179 int i, type; 1180 1181 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { 1182 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 1183 if (!kmalloc_caches[type][i]) 1184 new_kmalloc_cache(i, type, flags); 1185 1186 /* 1187 * Caches that are not of the two-to-the-power-of size. 1188 * These have to be created immediately after the 1189 * earlier power of two caches 1190 */ 1191 if (KMALLOC_MIN_SIZE <= 32 && i == 6 && 1192 !kmalloc_caches[type][1]) 1193 new_kmalloc_cache(1, type, flags); 1194 if (KMALLOC_MIN_SIZE <= 64 && i == 7 && 1195 !kmalloc_caches[type][2]) 1196 new_kmalloc_cache(2, type, flags); 1197 } 1198 } 1199 1200 /* Kmalloc array is now usable */ 1201 slab_state = UP; 1202 1203 #ifdef CONFIG_ZONE_DMA 1204 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 1205 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; 1206 1207 if (s) { 1208 unsigned int size = kmalloc_size(i); 1209 const char *n = kmalloc_cache_name("dma-kmalloc", size); 1210 1211 BUG_ON(!n); 1212 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( 1213 n, size, SLAB_CACHE_DMA | flags, 0, 0); 1214 } 1215 } 1216 #endif 1217 } 1218 #endif /* !CONFIG_SLOB */ 1219 1220 /* 1221 * To avoid unnecessary overhead, we pass through large allocation requests 1222 * directly to the page allocator. We use __GFP_COMP, because we will need to 1223 * know the allocation order to free the pages properly in kfree. 1224 */ 1225 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) 1226 { 1227 void *ret; 1228 struct page *page; 1229 1230 flags |= __GFP_COMP; 1231 page = alloc_pages(flags, order); 1232 ret = page ? page_address(page) : NULL; 1233 ret = kasan_kmalloc_large(ret, size, flags); 1234 /* As ret might get tagged, call kmemleak hook after KASAN. */ 1235 kmemleak_alloc(ret, size, 1, flags); 1236 return ret; 1237 } 1238 EXPORT_SYMBOL(kmalloc_order); 1239 1240 #ifdef CONFIG_TRACING 1241 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 1242 { 1243 void *ret = kmalloc_order(size, flags, order); 1244 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 1245 return ret; 1246 } 1247 EXPORT_SYMBOL(kmalloc_order_trace); 1248 #endif 1249 1250 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1251 /* Randomize a generic freelist */ 1252 static void freelist_randomize(struct rnd_state *state, unsigned int *list, 1253 unsigned int count) 1254 { 1255 unsigned int rand; 1256 unsigned int i; 1257 1258 for (i = 0; i < count; i++) 1259 list[i] = i; 1260 1261 /* Fisher-Yates shuffle */ 1262 for (i = count - 1; i > 0; i--) { 1263 rand = prandom_u32_state(state); 1264 rand %= (i + 1); 1265 swap(list[i], list[rand]); 1266 } 1267 } 1268 1269 /* Create a random sequence per cache */ 1270 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 1271 gfp_t gfp) 1272 { 1273 struct rnd_state state; 1274 1275 if (count < 2 || cachep->random_seq) 1276 return 0; 1277 1278 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); 1279 if (!cachep->random_seq) 1280 return -ENOMEM; 1281 1282 /* Get best entropy at this stage of boot */ 1283 prandom_seed_state(&state, get_random_long()); 1284 1285 freelist_randomize(&state, cachep->random_seq, count); 1286 return 0; 1287 } 1288 1289 /* Destroy the per-cache random freelist sequence */ 1290 void cache_random_seq_destroy(struct kmem_cache *cachep) 1291 { 1292 kfree(cachep->random_seq); 1293 cachep->random_seq = NULL; 1294 } 1295 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1296 1297 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 1298 #ifdef CONFIG_SLAB 1299 #define SLABINFO_RIGHTS (0600) 1300 #else 1301 #define SLABINFO_RIGHTS (0400) 1302 #endif 1303 1304 static void print_slabinfo_header(struct seq_file *m) 1305 { 1306 /* 1307 * Output format version, so at least we can change it 1308 * without _too_ many complaints. 1309 */ 1310 #ifdef CONFIG_DEBUG_SLAB 1311 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 1312 #else 1313 seq_puts(m, "slabinfo - version: 2.1\n"); 1314 #endif 1315 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); 1316 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 1317 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 1318 #ifdef CONFIG_DEBUG_SLAB 1319 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 1320 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 1321 #endif 1322 seq_putc(m, '\n'); 1323 } 1324 1325 void *slab_start(struct seq_file *m, loff_t *pos) 1326 { 1327 mutex_lock(&slab_mutex); 1328 return seq_list_start(&slab_root_caches, *pos); 1329 } 1330 1331 void *slab_next(struct seq_file *m, void *p, loff_t *pos) 1332 { 1333 return seq_list_next(p, &slab_root_caches, pos); 1334 } 1335 1336 void slab_stop(struct seq_file *m, void *p) 1337 { 1338 mutex_unlock(&slab_mutex); 1339 } 1340 1341 static void 1342 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) 1343 { 1344 struct kmem_cache *c; 1345 struct slabinfo sinfo; 1346 1347 if (!is_root_cache(s)) 1348 return; 1349 1350 for_each_memcg_cache(c, s) { 1351 memset(&sinfo, 0, sizeof(sinfo)); 1352 get_slabinfo(c, &sinfo); 1353 1354 info->active_slabs += sinfo.active_slabs; 1355 info->num_slabs += sinfo.num_slabs; 1356 info->shared_avail += sinfo.shared_avail; 1357 info->active_objs += sinfo.active_objs; 1358 info->num_objs += sinfo.num_objs; 1359 } 1360 } 1361 1362 static void cache_show(struct kmem_cache *s, struct seq_file *m) 1363 { 1364 struct slabinfo sinfo; 1365 1366 memset(&sinfo, 0, sizeof(sinfo)); 1367 get_slabinfo(s, &sinfo); 1368 1369 memcg_accumulate_slabinfo(s, &sinfo); 1370 1371 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 1372 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, 1373 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 1374 1375 seq_printf(m, " : tunables %4u %4u %4u", 1376 sinfo.limit, sinfo.batchcount, sinfo.shared); 1377 seq_printf(m, " : slabdata %6lu %6lu %6lu", 1378 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 1379 slabinfo_show_stats(m, s); 1380 seq_putc(m, '\n'); 1381 } 1382 1383 static int slab_show(struct seq_file *m, void *p) 1384 { 1385 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); 1386 1387 if (p == slab_root_caches.next) 1388 print_slabinfo_header(m); 1389 cache_show(s, m); 1390 return 0; 1391 } 1392 1393 void dump_unreclaimable_slab(void) 1394 { 1395 struct kmem_cache *s, *s2; 1396 struct slabinfo sinfo; 1397 1398 /* 1399 * Here acquiring slab_mutex is risky since we don't prefer to get 1400 * sleep in oom path. But, without mutex hold, it may introduce a 1401 * risk of crash. 1402 * Use mutex_trylock to protect the list traverse, dump nothing 1403 * without acquiring the mutex. 1404 */ 1405 if (!mutex_trylock(&slab_mutex)) { 1406 pr_warn("excessive unreclaimable slab but cannot dump stats\n"); 1407 return; 1408 } 1409 1410 pr_info("Unreclaimable slab info:\n"); 1411 pr_info("Name Used Total\n"); 1412 1413 list_for_each_entry_safe(s, s2, &slab_caches, list) { 1414 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT)) 1415 continue; 1416 1417 get_slabinfo(s, &sinfo); 1418 1419 if (sinfo.num_objs > 0) 1420 pr_info("%-17s %10luKB %10luKB\n", cache_name(s), 1421 (sinfo.active_objs * s->size) / 1024, 1422 (sinfo.num_objs * s->size) / 1024); 1423 } 1424 mutex_unlock(&slab_mutex); 1425 } 1426 1427 #if defined(CONFIG_MEMCG) 1428 void *memcg_slab_start(struct seq_file *m, loff_t *pos) 1429 { 1430 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 1431 1432 mutex_lock(&slab_mutex); 1433 return seq_list_start(&memcg->kmem_caches, *pos); 1434 } 1435 1436 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) 1437 { 1438 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 1439 1440 return seq_list_next(p, &memcg->kmem_caches, pos); 1441 } 1442 1443 void memcg_slab_stop(struct seq_file *m, void *p) 1444 { 1445 mutex_unlock(&slab_mutex); 1446 } 1447 1448 int memcg_slab_show(struct seq_file *m, void *p) 1449 { 1450 struct kmem_cache *s = list_entry(p, struct kmem_cache, 1451 memcg_params.kmem_caches_node); 1452 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 1453 1454 if (p == memcg->kmem_caches.next) 1455 print_slabinfo_header(m); 1456 cache_show(s, m); 1457 return 0; 1458 } 1459 #endif 1460 1461 /* 1462 * slabinfo_op - iterator that generates /proc/slabinfo 1463 * 1464 * Output layout: 1465 * cache-name 1466 * num-active-objs 1467 * total-objs 1468 * object size 1469 * num-active-slabs 1470 * total-slabs 1471 * num-pages-per-slab 1472 * + further values on SMP and with statistics enabled 1473 */ 1474 static const struct seq_operations slabinfo_op = { 1475 .start = slab_start, 1476 .next = slab_next, 1477 .stop = slab_stop, 1478 .show = slab_show, 1479 }; 1480 1481 static int slabinfo_open(struct inode *inode, struct file *file) 1482 { 1483 return seq_open(file, &slabinfo_op); 1484 } 1485 1486 static const struct file_operations proc_slabinfo_operations = { 1487 .open = slabinfo_open, 1488 .read = seq_read, 1489 .write = slabinfo_write, 1490 .llseek = seq_lseek, 1491 .release = seq_release, 1492 }; 1493 1494 static int __init slab_proc_init(void) 1495 { 1496 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, 1497 &proc_slabinfo_operations); 1498 return 0; 1499 } 1500 module_init(slab_proc_init); 1501 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ 1502 1503 static __always_inline void *__do_krealloc(const void *p, size_t new_size, 1504 gfp_t flags) 1505 { 1506 void *ret; 1507 size_t ks = 0; 1508 1509 if (p) 1510 ks = ksize(p); 1511 1512 if (ks >= new_size) { 1513 p = kasan_krealloc((void *)p, new_size, flags); 1514 return (void *)p; 1515 } 1516 1517 ret = kmalloc_track_caller(new_size, flags); 1518 if (ret && p) 1519 memcpy(ret, p, ks); 1520 1521 return ret; 1522 } 1523 1524 /** 1525 * __krealloc - like krealloc() but don't free @p. 1526 * @p: object to reallocate memory for. 1527 * @new_size: how many bytes of memory are required. 1528 * @flags: the type of memory to allocate. 1529 * 1530 * This function is like krealloc() except it never frees the originally 1531 * allocated buffer. Use this if you don't want to free the buffer immediately 1532 * like, for example, with RCU. 1533 * 1534 * Return: pointer to the allocated memory or %NULL in case of error 1535 */ 1536 void *__krealloc(const void *p, size_t new_size, gfp_t flags) 1537 { 1538 if (unlikely(!new_size)) 1539 return ZERO_SIZE_PTR; 1540 1541 return __do_krealloc(p, new_size, flags); 1542 1543 } 1544 EXPORT_SYMBOL(__krealloc); 1545 1546 /** 1547 * krealloc - reallocate memory. The contents will remain unchanged. 1548 * @p: object to reallocate memory for. 1549 * @new_size: how many bytes of memory are required. 1550 * @flags: the type of memory to allocate. 1551 * 1552 * The contents of the object pointed to are preserved up to the 1553 * lesser of the new and old sizes. If @p is %NULL, krealloc() 1554 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a 1555 * %NULL pointer, the object pointed to is freed. 1556 * 1557 * Return: pointer to the allocated memory or %NULL in case of error 1558 */ 1559 void *krealloc(const void *p, size_t new_size, gfp_t flags) 1560 { 1561 void *ret; 1562 1563 if (unlikely(!new_size)) { 1564 kfree(p); 1565 return ZERO_SIZE_PTR; 1566 } 1567 1568 ret = __do_krealloc(p, new_size, flags); 1569 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 1570 kfree(p); 1571 1572 return ret; 1573 } 1574 EXPORT_SYMBOL(krealloc); 1575 1576 /** 1577 * kzfree - like kfree but zero memory 1578 * @p: object to free memory of 1579 * 1580 * The memory of the object @p points to is zeroed before freed. 1581 * If @p is %NULL, kzfree() does nothing. 1582 * 1583 * Note: this function zeroes the whole allocated buffer which can be a good 1584 * deal bigger than the requested buffer size passed to kmalloc(). So be 1585 * careful when using this function in performance sensitive code. 1586 */ 1587 void kzfree(const void *p) 1588 { 1589 size_t ks; 1590 void *mem = (void *)p; 1591 1592 if (unlikely(ZERO_OR_NULL_PTR(mem))) 1593 return; 1594 ks = ksize(mem); 1595 memset(mem, 0, ks); 1596 kfree(mem); 1597 } 1598 EXPORT_SYMBOL(kzfree); 1599 1600 /* Tracepoints definitions. */ 1601 EXPORT_TRACEPOINT_SYMBOL(kmalloc); 1602 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 1603 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); 1604 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); 1605 EXPORT_TRACEPOINT_SYMBOL(kfree); 1606 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 1607 1608 int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 1609 { 1610 if (__should_failslab(s, gfpflags)) 1611 return -ENOMEM; 1612 return 0; 1613 } 1614 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 1615