1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Slab allocator functions that are independent of the allocator strategy 4 * 5 * (C) 2012 Christoph Lameter <cl@linux.com> 6 */ 7 #include <linux/slab.h> 8 9 #include <linux/mm.h> 10 #include <linux/poison.h> 11 #include <linux/interrupt.h> 12 #include <linux/memory.h> 13 #include <linux/compiler.h> 14 #include <linux/module.h> 15 #include <linux/cpu.h> 16 #include <linux/uaccess.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <asm/cacheflush.h> 20 #include <asm/tlbflush.h> 21 #include <asm/page.h> 22 #include <linux/memcontrol.h> 23 24 #define CREATE_TRACE_POINTS 25 #include <trace/events/kmem.h> 26 27 #include "slab.h" 28 29 enum slab_state slab_state; 30 LIST_HEAD(slab_caches); 31 DEFINE_MUTEX(slab_mutex); 32 struct kmem_cache *kmem_cache; 33 34 #ifdef CONFIG_HARDENED_USERCOPY 35 bool usercopy_fallback __ro_after_init = 36 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); 37 module_param(usercopy_fallback, bool, 0400); 38 MODULE_PARM_DESC(usercopy_fallback, 39 "WARN instead of reject usercopy whitelist violations"); 40 #endif 41 42 static LIST_HEAD(slab_caches_to_rcu_destroy); 43 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); 44 static DECLARE_WORK(slab_caches_to_rcu_destroy_work, 45 slab_caches_to_rcu_destroy_workfn); 46 47 /* 48 * Set of flags that will prevent slab merging 49 */ 50 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 51 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ 52 SLAB_FAILSLAB | SLAB_KASAN) 53 54 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ 55 SLAB_ACCOUNT) 56 57 /* 58 * Merge control. If this is set then no merging of slab caches will occur. 59 */ 60 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); 61 62 static int __init setup_slab_nomerge(char *str) 63 { 64 slab_nomerge = true; 65 return 1; 66 } 67 68 #ifdef CONFIG_SLUB 69 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 70 #endif 71 72 __setup("slab_nomerge", setup_slab_nomerge); 73 74 /* 75 * Determine the size of a slab object 76 */ 77 unsigned int kmem_cache_size(struct kmem_cache *s) 78 { 79 return s->object_size; 80 } 81 EXPORT_SYMBOL(kmem_cache_size); 82 83 #ifdef CONFIG_DEBUG_VM 84 static int kmem_cache_sanity_check(const char *name, size_t size) 85 { 86 struct kmem_cache *s = NULL; 87 88 if (!name || in_interrupt() || size < sizeof(void *) || 89 size > KMALLOC_MAX_SIZE) { 90 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 91 return -EINVAL; 92 } 93 94 list_for_each_entry(s, &slab_caches, list) { 95 char tmp; 96 int res; 97 98 /* 99 * This happens when the module gets unloaded and doesn't 100 * destroy its slab cache and no-one else reuses the vmalloc 101 * area of the module. Print a warning. 102 */ 103 res = probe_kernel_address(s->name, tmp); 104 if (res) { 105 pr_err("Slab cache with size %d has lost its name\n", 106 s->object_size); 107 continue; 108 } 109 } 110 111 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 112 return 0; 113 } 114 #else 115 static inline int kmem_cache_sanity_check(const char *name, size_t size) 116 { 117 return 0; 118 } 119 #endif 120 121 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) 122 { 123 size_t i; 124 125 for (i = 0; i < nr; i++) { 126 if (s) 127 kmem_cache_free(s, p[i]); 128 else 129 kfree(p[i]); 130 } 131 } 132 133 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, 134 void **p) 135 { 136 size_t i; 137 138 for (i = 0; i < nr; i++) { 139 void *x = p[i] = kmem_cache_alloc(s, flags); 140 if (!x) { 141 __kmem_cache_free_bulk(s, i, p); 142 return 0; 143 } 144 } 145 return i; 146 } 147 148 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 149 150 LIST_HEAD(slab_root_caches); 151 152 void slab_init_memcg_params(struct kmem_cache *s) 153 { 154 s->memcg_params.root_cache = NULL; 155 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); 156 INIT_LIST_HEAD(&s->memcg_params.children); 157 } 158 159 static int init_memcg_params(struct kmem_cache *s, 160 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 161 { 162 struct memcg_cache_array *arr; 163 164 if (root_cache) { 165 s->memcg_params.root_cache = root_cache; 166 s->memcg_params.memcg = memcg; 167 INIT_LIST_HEAD(&s->memcg_params.children_node); 168 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); 169 return 0; 170 } 171 172 slab_init_memcg_params(s); 173 174 if (!memcg_nr_cache_ids) 175 return 0; 176 177 arr = kvzalloc(sizeof(struct memcg_cache_array) + 178 memcg_nr_cache_ids * sizeof(void *), 179 GFP_KERNEL); 180 if (!arr) 181 return -ENOMEM; 182 183 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); 184 return 0; 185 } 186 187 static void destroy_memcg_params(struct kmem_cache *s) 188 { 189 if (is_root_cache(s)) 190 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); 191 } 192 193 static void free_memcg_params(struct rcu_head *rcu) 194 { 195 struct memcg_cache_array *old; 196 197 old = container_of(rcu, struct memcg_cache_array, rcu); 198 kvfree(old); 199 } 200 201 static int update_memcg_params(struct kmem_cache *s, int new_array_size) 202 { 203 struct memcg_cache_array *old, *new; 204 205 new = kvzalloc(sizeof(struct memcg_cache_array) + 206 new_array_size * sizeof(void *), GFP_KERNEL); 207 if (!new) 208 return -ENOMEM; 209 210 old = rcu_dereference_protected(s->memcg_params.memcg_caches, 211 lockdep_is_held(&slab_mutex)); 212 if (old) 213 memcpy(new->entries, old->entries, 214 memcg_nr_cache_ids * sizeof(void *)); 215 216 rcu_assign_pointer(s->memcg_params.memcg_caches, new); 217 if (old) 218 call_rcu(&old->rcu, free_memcg_params); 219 return 0; 220 } 221 222 int memcg_update_all_caches(int num_memcgs) 223 { 224 struct kmem_cache *s; 225 int ret = 0; 226 227 mutex_lock(&slab_mutex); 228 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 229 ret = update_memcg_params(s, num_memcgs); 230 /* 231 * Instead of freeing the memory, we'll just leave the caches 232 * up to this point in an updated state. 233 */ 234 if (ret) 235 break; 236 } 237 mutex_unlock(&slab_mutex); 238 return ret; 239 } 240 241 void memcg_link_cache(struct kmem_cache *s) 242 { 243 if (is_root_cache(s)) { 244 list_add(&s->root_caches_node, &slab_root_caches); 245 } else { 246 list_add(&s->memcg_params.children_node, 247 &s->memcg_params.root_cache->memcg_params.children); 248 list_add(&s->memcg_params.kmem_caches_node, 249 &s->memcg_params.memcg->kmem_caches); 250 } 251 } 252 253 static void memcg_unlink_cache(struct kmem_cache *s) 254 { 255 if (is_root_cache(s)) { 256 list_del(&s->root_caches_node); 257 } else { 258 list_del(&s->memcg_params.children_node); 259 list_del(&s->memcg_params.kmem_caches_node); 260 } 261 } 262 #else 263 static inline int init_memcg_params(struct kmem_cache *s, 264 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 265 { 266 return 0; 267 } 268 269 static inline void destroy_memcg_params(struct kmem_cache *s) 270 { 271 } 272 273 static inline void memcg_unlink_cache(struct kmem_cache *s) 274 { 275 } 276 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 277 278 /* 279 * Figure out what the alignment of the objects will be given a set of 280 * flags, a user specified alignment and the size of the objects. 281 */ 282 static unsigned long calculate_alignment(unsigned long flags, 283 unsigned long align, unsigned long size) 284 { 285 /* 286 * If the user wants hardware cache aligned objects then follow that 287 * suggestion if the object is sufficiently large. 288 * 289 * The hardware cache alignment cannot override the specified 290 * alignment though. If that is greater then use it. 291 */ 292 if (flags & SLAB_HWCACHE_ALIGN) { 293 unsigned long ralign; 294 295 ralign = cache_line_size(); 296 while (size <= ralign / 2) 297 ralign /= 2; 298 align = max(align, ralign); 299 } 300 301 if (align < ARCH_SLAB_MINALIGN) 302 align = ARCH_SLAB_MINALIGN; 303 304 return ALIGN(align, sizeof(void *)); 305 } 306 307 /* 308 * Find a mergeable slab cache 309 */ 310 int slab_unmergeable(struct kmem_cache *s) 311 { 312 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 313 return 1; 314 315 if (!is_root_cache(s)) 316 return 1; 317 318 if (s->ctor) 319 return 1; 320 321 if (s->usersize) 322 return 1; 323 324 /* 325 * We may have set a slab to be unmergeable during bootstrap. 326 */ 327 if (s->refcount < 0) 328 return 1; 329 330 return 0; 331 } 332 333 struct kmem_cache *find_mergeable(size_t size, size_t align, 334 slab_flags_t flags, const char *name, void (*ctor)(void *)) 335 { 336 struct kmem_cache *s; 337 338 if (slab_nomerge) 339 return NULL; 340 341 if (ctor) 342 return NULL; 343 344 size = ALIGN(size, sizeof(void *)); 345 align = calculate_alignment(flags, align, size); 346 size = ALIGN(size, align); 347 flags = kmem_cache_flags(size, flags, name, NULL); 348 349 if (flags & SLAB_NEVER_MERGE) 350 return NULL; 351 352 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { 353 if (slab_unmergeable(s)) 354 continue; 355 356 if (size > s->size) 357 continue; 358 359 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 360 continue; 361 /* 362 * Check if alignment is compatible. 363 * Courtesy of Adrian Drzewiecki 364 */ 365 if ((s->size & ~(align - 1)) != s->size) 366 continue; 367 368 if (s->size - size >= sizeof(void *)) 369 continue; 370 371 if (IS_ENABLED(CONFIG_SLAB) && align && 372 (align > s->align || s->align % align)) 373 continue; 374 375 return s; 376 } 377 return NULL; 378 } 379 380 static struct kmem_cache *create_cache(const char *name, 381 size_t object_size, size_t size, size_t align, 382 slab_flags_t flags, size_t useroffset, 383 size_t usersize, void (*ctor)(void *), 384 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 385 { 386 struct kmem_cache *s; 387 int err; 388 389 if (WARN_ON(useroffset + usersize > object_size)) 390 useroffset = usersize = 0; 391 392 err = -ENOMEM; 393 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 394 if (!s) 395 goto out; 396 397 s->name = name; 398 s->object_size = object_size; 399 s->size = size; 400 s->align = align; 401 s->ctor = ctor; 402 s->useroffset = useroffset; 403 s->usersize = usersize; 404 405 err = init_memcg_params(s, memcg, root_cache); 406 if (err) 407 goto out_free_cache; 408 409 err = __kmem_cache_create(s, flags); 410 if (err) 411 goto out_free_cache; 412 413 s->refcount = 1; 414 list_add(&s->list, &slab_caches); 415 memcg_link_cache(s); 416 out: 417 if (err) 418 return ERR_PTR(err); 419 return s; 420 421 out_free_cache: 422 destroy_memcg_params(s); 423 kmem_cache_free(kmem_cache, s); 424 goto out; 425 } 426 427 /* 428 * kmem_cache_create_usercopy - Create a cache. 429 * @name: A string which is used in /proc/slabinfo to identify this cache. 430 * @size: The size of objects to be created in this cache. 431 * @align: The required alignment for the objects. 432 * @flags: SLAB flags 433 * @useroffset: Usercopy region offset 434 * @usersize: Usercopy region size 435 * @ctor: A constructor for the objects. 436 * 437 * Returns a ptr to the cache on success, NULL on failure. 438 * Cannot be called within a interrupt, but can be interrupted. 439 * The @ctor is run when new pages are allocated by the cache. 440 * 441 * The flags are 442 * 443 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 444 * to catch references to uninitialised memory. 445 * 446 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 447 * for buffer overruns. 448 * 449 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 450 * cacheline. This can be beneficial if you're counting cycles as closely 451 * as davem. 452 */ 453 struct kmem_cache * 454 kmem_cache_create_usercopy(const char *name, size_t size, size_t align, 455 slab_flags_t flags, size_t useroffset, size_t usersize, 456 void (*ctor)(void *)) 457 { 458 struct kmem_cache *s = NULL; 459 const char *cache_name; 460 int err; 461 462 get_online_cpus(); 463 get_online_mems(); 464 memcg_get_cache_ids(); 465 466 mutex_lock(&slab_mutex); 467 468 err = kmem_cache_sanity_check(name, size); 469 if (err) { 470 goto out_unlock; 471 } 472 473 /* Refuse requests with allocator specific flags */ 474 if (flags & ~SLAB_FLAGS_PERMITTED) { 475 err = -EINVAL; 476 goto out_unlock; 477 } 478 479 /* 480 * Some allocators will constraint the set of valid flags to a subset 481 * of all flags. We expect them to define CACHE_CREATE_MASK in this 482 * case, and we'll just provide them with a sanitized version of the 483 * passed flags. 484 */ 485 flags &= CACHE_CREATE_MASK; 486 487 /* Fail closed on bad usersize of useroffset values. */ 488 if (WARN_ON(!usersize && useroffset) || 489 WARN_ON(size < usersize || size - usersize < useroffset)) 490 usersize = useroffset = 0; 491 492 if (!usersize) 493 s = __kmem_cache_alias(name, size, align, flags, ctor); 494 if (s) 495 goto out_unlock; 496 497 cache_name = kstrdup_const(name, GFP_KERNEL); 498 if (!cache_name) { 499 err = -ENOMEM; 500 goto out_unlock; 501 } 502 503 s = create_cache(cache_name, size, size, 504 calculate_alignment(flags, align, size), 505 flags, useroffset, usersize, ctor, NULL, NULL); 506 if (IS_ERR(s)) { 507 err = PTR_ERR(s); 508 kfree_const(cache_name); 509 } 510 511 out_unlock: 512 mutex_unlock(&slab_mutex); 513 514 memcg_put_cache_ids(); 515 put_online_mems(); 516 put_online_cpus(); 517 518 if (err) { 519 if (flags & SLAB_PANIC) 520 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", 521 name, err); 522 else { 523 pr_warn("kmem_cache_create(%s) failed with error %d\n", 524 name, err); 525 dump_stack(); 526 } 527 return NULL; 528 } 529 return s; 530 } 531 EXPORT_SYMBOL(kmem_cache_create_usercopy); 532 533 struct kmem_cache * 534 kmem_cache_create(const char *name, size_t size, size_t align, 535 slab_flags_t flags, void (*ctor)(void *)) 536 { 537 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, 538 ctor); 539 } 540 EXPORT_SYMBOL(kmem_cache_create); 541 542 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) 543 { 544 LIST_HEAD(to_destroy); 545 struct kmem_cache *s, *s2; 546 547 /* 548 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the 549 * @slab_caches_to_rcu_destroy list. The slab pages are freed 550 * through RCU and and the associated kmem_cache are dereferenced 551 * while freeing the pages, so the kmem_caches should be freed only 552 * after the pending RCU operations are finished. As rcu_barrier() 553 * is a pretty slow operation, we batch all pending destructions 554 * asynchronously. 555 */ 556 mutex_lock(&slab_mutex); 557 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); 558 mutex_unlock(&slab_mutex); 559 560 if (list_empty(&to_destroy)) 561 return; 562 563 rcu_barrier(); 564 565 list_for_each_entry_safe(s, s2, &to_destroy, list) { 566 #ifdef SLAB_SUPPORTS_SYSFS 567 sysfs_slab_release(s); 568 #else 569 slab_kmem_cache_release(s); 570 #endif 571 } 572 } 573 574 static int shutdown_cache(struct kmem_cache *s) 575 { 576 /* free asan quarantined objects */ 577 kasan_cache_shutdown(s); 578 579 if (__kmem_cache_shutdown(s) != 0) 580 return -EBUSY; 581 582 memcg_unlink_cache(s); 583 list_del(&s->list); 584 585 if (s->flags & SLAB_TYPESAFE_BY_RCU) { 586 list_add_tail(&s->list, &slab_caches_to_rcu_destroy); 587 schedule_work(&slab_caches_to_rcu_destroy_work); 588 } else { 589 #ifdef SLAB_SUPPORTS_SYSFS 590 sysfs_slab_release(s); 591 #else 592 slab_kmem_cache_release(s); 593 #endif 594 } 595 596 return 0; 597 } 598 599 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 600 /* 601 * memcg_create_kmem_cache - Create a cache for a memory cgroup. 602 * @memcg: The memory cgroup the new cache is for. 603 * @root_cache: The parent of the new cache. 604 * 605 * This function attempts to create a kmem cache that will serve allocation 606 * requests going from @memcg to @root_cache. The new cache inherits properties 607 * from its parent. 608 */ 609 void memcg_create_kmem_cache(struct mem_cgroup *memcg, 610 struct kmem_cache *root_cache) 611 { 612 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ 613 struct cgroup_subsys_state *css = &memcg->css; 614 struct memcg_cache_array *arr; 615 struct kmem_cache *s = NULL; 616 char *cache_name; 617 int idx; 618 619 get_online_cpus(); 620 get_online_mems(); 621 622 mutex_lock(&slab_mutex); 623 624 /* 625 * The memory cgroup could have been offlined while the cache 626 * creation work was pending. 627 */ 628 if (memcg->kmem_state != KMEM_ONLINE) 629 goto out_unlock; 630 631 idx = memcg_cache_id(memcg); 632 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, 633 lockdep_is_held(&slab_mutex)); 634 635 /* 636 * Since per-memcg caches are created asynchronously on first 637 * allocation (see memcg_kmem_get_cache()), several threads can try to 638 * create the same cache, but only one of them may succeed. 639 */ 640 if (arr->entries[idx]) 641 goto out_unlock; 642 643 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); 644 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, 645 css->serial_nr, memcg_name_buf); 646 if (!cache_name) 647 goto out_unlock; 648 649 s = create_cache(cache_name, root_cache->object_size, 650 root_cache->size, root_cache->align, 651 root_cache->flags & CACHE_CREATE_MASK, 652 root_cache->useroffset, root_cache->usersize, 653 root_cache->ctor, memcg, root_cache); 654 /* 655 * If we could not create a memcg cache, do not complain, because 656 * that's not critical at all as we can always proceed with the root 657 * cache. 658 */ 659 if (IS_ERR(s)) { 660 kfree(cache_name); 661 goto out_unlock; 662 } 663 664 /* 665 * Since readers won't lock (see cache_from_memcg_idx()), we need a 666 * barrier here to ensure nobody will see the kmem_cache partially 667 * initialized. 668 */ 669 smp_wmb(); 670 arr->entries[idx] = s; 671 672 out_unlock: 673 mutex_unlock(&slab_mutex); 674 675 put_online_mems(); 676 put_online_cpus(); 677 } 678 679 static void kmemcg_deactivate_workfn(struct work_struct *work) 680 { 681 struct kmem_cache *s = container_of(work, struct kmem_cache, 682 memcg_params.deact_work); 683 684 get_online_cpus(); 685 get_online_mems(); 686 687 mutex_lock(&slab_mutex); 688 689 s->memcg_params.deact_fn(s); 690 691 mutex_unlock(&slab_mutex); 692 693 put_online_mems(); 694 put_online_cpus(); 695 696 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */ 697 css_put(&s->memcg_params.memcg->css); 698 } 699 700 static void kmemcg_deactivate_rcufn(struct rcu_head *head) 701 { 702 struct kmem_cache *s = container_of(head, struct kmem_cache, 703 memcg_params.deact_rcu_head); 704 705 /* 706 * We need to grab blocking locks. Bounce to ->deact_work. The 707 * work item shares the space with the RCU head and can't be 708 * initialized eariler. 709 */ 710 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn); 711 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work); 712 } 713 714 /** 715 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a 716 * sched RCU grace period 717 * @s: target kmem_cache 718 * @deact_fn: deactivation function to call 719 * 720 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex 721 * held after a sched RCU grace period. The slab is guaranteed to stay 722 * alive until @deact_fn is finished. This is to be used from 723 * __kmemcg_cache_deactivate(). 724 */ 725 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s, 726 void (*deact_fn)(struct kmem_cache *)) 727 { 728 if (WARN_ON_ONCE(is_root_cache(s)) || 729 WARN_ON_ONCE(s->memcg_params.deact_fn)) 730 return; 731 732 /* pin memcg so that @s doesn't get destroyed in the middle */ 733 css_get(&s->memcg_params.memcg->css); 734 735 s->memcg_params.deact_fn = deact_fn; 736 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn); 737 } 738 739 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) 740 { 741 int idx; 742 struct memcg_cache_array *arr; 743 struct kmem_cache *s, *c; 744 745 idx = memcg_cache_id(memcg); 746 747 get_online_cpus(); 748 get_online_mems(); 749 750 mutex_lock(&slab_mutex); 751 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 752 arr = rcu_dereference_protected(s->memcg_params.memcg_caches, 753 lockdep_is_held(&slab_mutex)); 754 c = arr->entries[idx]; 755 if (!c) 756 continue; 757 758 __kmemcg_cache_deactivate(c); 759 arr->entries[idx] = NULL; 760 } 761 mutex_unlock(&slab_mutex); 762 763 put_online_mems(); 764 put_online_cpus(); 765 } 766 767 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) 768 { 769 struct kmem_cache *s, *s2; 770 771 get_online_cpus(); 772 get_online_mems(); 773 774 mutex_lock(&slab_mutex); 775 list_for_each_entry_safe(s, s2, &memcg->kmem_caches, 776 memcg_params.kmem_caches_node) { 777 /* 778 * The cgroup is about to be freed and therefore has no charges 779 * left. Hence, all its caches must be empty by now. 780 */ 781 BUG_ON(shutdown_cache(s)); 782 } 783 mutex_unlock(&slab_mutex); 784 785 put_online_mems(); 786 put_online_cpus(); 787 } 788 789 static int shutdown_memcg_caches(struct kmem_cache *s) 790 { 791 struct memcg_cache_array *arr; 792 struct kmem_cache *c, *c2; 793 LIST_HEAD(busy); 794 int i; 795 796 BUG_ON(!is_root_cache(s)); 797 798 /* 799 * First, shutdown active caches, i.e. caches that belong to online 800 * memory cgroups. 801 */ 802 arr = rcu_dereference_protected(s->memcg_params.memcg_caches, 803 lockdep_is_held(&slab_mutex)); 804 for_each_memcg_cache_index(i) { 805 c = arr->entries[i]; 806 if (!c) 807 continue; 808 if (shutdown_cache(c)) 809 /* 810 * The cache still has objects. Move it to a temporary 811 * list so as not to try to destroy it for a second 812 * time while iterating over inactive caches below. 813 */ 814 list_move(&c->memcg_params.children_node, &busy); 815 else 816 /* 817 * The cache is empty and will be destroyed soon. Clear 818 * the pointer to it in the memcg_caches array so that 819 * it will never be accessed even if the root cache 820 * stays alive. 821 */ 822 arr->entries[i] = NULL; 823 } 824 825 /* 826 * Second, shutdown all caches left from memory cgroups that are now 827 * offline. 828 */ 829 list_for_each_entry_safe(c, c2, &s->memcg_params.children, 830 memcg_params.children_node) 831 shutdown_cache(c); 832 833 list_splice(&busy, &s->memcg_params.children); 834 835 /* 836 * A cache being destroyed must be empty. In particular, this means 837 * that all per memcg caches attached to it must be empty too. 838 */ 839 if (!list_empty(&s->memcg_params.children)) 840 return -EBUSY; 841 return 0; 842 } 843 #else 844 static inline int shutdown_memcg_caches(struct kmem_cache *s) 845 { 846 return 0; 847 } 848 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 849 850 void slab_kmem_cache_release(struct kmem_cache *s) 851 { 852 __kmem_cache_release(s); 853 destroy_memcg_params(s); 854 kfree_const(s->name); 855 kmem_cache_free(kmem_cache, s); 856 } 857 858 void kmem_cache_destroy(struct kmem_cache *s) 859 { 860 int err; 861 862 if (unlikely(!s)) 863 return; 864 865 get_online_cpus(); 866 get_online_mems(); 867 868 mutex_lock(&slab_mutex); 869 870 s->refcount--; 871 if (s->refcount) 872 goto out_unlock; 873 874 err = shutdown_memcg_caches(s); 875 if (!err) 876 err = shutdown_cache(s); 877 878 if (err) { 879 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", 880 s->name); 881 dump_stack(); 882 } 883 out_unlock: 884 mutex_unlock(&slab_mutex); 885 886 put_online_mems(); 887 put_online_cpus(); 888 } 889 EXPORT_SYMBOL(kmem_cache_destroy); 890 891 /** 892 * kmem_cache_shrink - Shrink a cache. 893 * @cachep: The cache to shrink. 894 * 895 * Releases as many slabs as possible for a cache. 896 * To help debugging, a zero exit status indicates all slabs were released. 897 */ 898 int kmem_cache_shrink(struct kmem_cache *cachep) 899 { 900 int ret; 901 902 get_online_cpus(); 903 get_online_mems(); 904 kasan_cache_shrink(cachep); 905 ret = __kmem_cache_shrink(cachep); 906 put_online_mems(); 907 put_online_cpus(); 908 return ret; 909 } 910 EXPORT_SYMBOL(kmem_cache_shrink); 911 912 bool slab_is_available(void) 913 { 914 return slab_state >= UP; 915 } 916 917 #ifndef CONFIG_SLOB 918 /* Create a cache during boot when no slab services are available yet */ 919 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, 920 slab_flags_t flags, size_t useroffset, size_t usersize) 921 { 922 int err; 923 924 s->name = name; 925 s->size = s->object_size = size; 926 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); 927 s->useroffset = useroffset; 928 s->usersize = usersize; 929 930 slab_init_memcg_params(s); 931 932 err = __kmem_cache_create(s, flags); 933 934 if (err) 935 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", 936 name, size, err); 937 938 s->refcount = -1; /* Exempt from merging for now */ 939 } 940 941 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, 942 slab_flags_t flags, size_t useroffset, 943 size_t usersize) 944 { 945 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 946 947 if (!s) 948 panic("Out of memory when creating slab %s\n", name); 949 950 create_boot_cache(s, name, size, flags, useroffset, usersize); 951 list_add(&s->list, &slab_caches); 952 memcg_link_cache(s); 953 s->refcount = 1; 954 return s; 955 } 956 957 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 958 EXPORT_SYMBOL(kmalloc_caches); 959 960 #ifdef CONFIG_ZONE_DMA 961 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 962 EXPORT_SYMBOL(kmalloc_dma_caches); 963 #endif 964 965 /* 966 * Conversion table for small slabs sizes / 8 to the index in the 967 * kmalloc array. This is necessary for slabs < 192 since we have non power 968 * of two cache sizes there. The size of larger slabs can be determined using 969 * fls. 970 */ 971 static s8 size_index[24] = { 972 3, /* 8 */ 973 4, /* 16 */ 974 5, /* 24 */ 975 5, /* 32 */ 976 6, /* 40 */ 977 6, /* 48 */ 978 6, /* 56 */ 979 6, /* 64 */ 980 1, /* 72 */ 981 1, /* 80 */ 982 1, /* 88 */ 983 1, /* 96 */ 984 7, /* 104 */ 985 7, /* 112 */ 986 7, /* 120 */ 987 7, /* 128 */ 988 2, /* 136 */ 989 2, /* 144 */ 990 2, /* 152 */ 991 2, /* 160 */ 992 2, /* 168 */ 993 2, /* 176 */ 994 2, /* 184 */ 995 2 /* 192 */ 996 }; 997 998 static inline int size_index_elem(size_t bytes) 999 { 1000 return (bytes - 1) / 8; 1001 } 1002 1003 /* 1004 * Find the kmem_cache structure that serves a given size of 1005 * allocation 1006 */ 1007 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) 1008 { 1009 int index; 1010 1011 if (unlikely(size > KMALLOC_MAX_SIZE)) { 1012 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 1013 return NULL; 1014 } 1015 1016 if (size <= 192) { 1017 if (!size) 1018 return ZERO_SIZE_PTR; 1019 1020 index = size_index[size_index_elem(size)]; 1021 } else 1022 index = fls(size - 1); 1023 1024 #ifdef CONFIG_ZONE_DMA 1025 if (unlikely((flags & GFP_DMA))) 1026 return kmalloc_dma_caches[index]; 1027 1028 #endif 1029 return kmalloc_caches[index]; 1030 } 1031 1032 /* 1033 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. 1034 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is 1035 * kmalloc-67108864. 1036 */ 1037 const struct kmalloc_info_struct kmalloc_info[] __initconst = { 1038 {NULL, 0}, {"kmalloc-96", 96}, 1039 {"kmalloc-192", 192}, {"kmalloc-8", 8}, 1040 {"kmalloc-16", 16}, {"kmalloc-32", 32}, 1041 {"kmalloc-64", 64}, {"kmalloc-128", 128}, 1042 {"kmalloc-256", 256}, {"kmalloc-512", 512}, 1043 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048}, 1044 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192}, 1045 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768}, 1046 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072}, 1047 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288}, 1048 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152}, 1049 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608}, 1050 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432}, 1051 {"kmalloc-67108864", 67108864} 1052 }; 1053 1054 /* 1055 * Patch up the size_index table if we have strange large alignment 1056 * requirements for the kmalloc array. This is only the case for 1057 * MIPS it seems. The standard arches will not generate any code here. 1058 * 1059 * Largest permitted alignment is 256 bytes due to the way we 1060 * handle the index determination for the smaller caches. 1061 * 1062 * Make sure that nothing crazy happens if someone starts tinkering 1063 * around with ARCH_KMALLOC_MINALIGN 1064 */ 1065 void __init setup_kmalloc_cache_index_table(void) 1066 { 1067 int i; 1068 1069 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 1070 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 1071 1072 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 1073 int elem = size_index_elem(i); 1074 1075 if (elem >= ARRAY_SIZE(size_index)) 1076 break; 1077 size_index[elem] = KMALLOC_SHIFT_LOW; 1078 } 1079 1080 if (KMALLOC_MIN_SIZE >= 64) { 1081 /* 1082 * The 96 byte size cache is not used if the alignment 1083 * is 64 byte. 1084 */ 1085 for (i = 64 + 8; i <= 96; i += 8) 1086 size_index[size_index_elem(i)] = 7; 1087 1088 } 1089 1090 if (KMALLOC_MIN_SIZE >= 128) { 1091 /* 1092 * The 192 byte sized cache is not used if the alignment 1093 * is 128 byte. Redirect kmalloc to use the 256 byte cache 1094 * instead. 1095 */ 1096 for (i = 128 + 8; i <= 192; i += 8) 1097 size_index[size_index_elem(i)] = 8; 1098 } 1099 } 1100 1101 static void __init new_kmalloc_cache(int idx, slab_flags_t flags) 1102 { 1103 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name, 1104 kmalloc_info[idx].size, flags, 0, 1105 kmalloc_info[idx].size); 1106 } 1107 1108 /* 1109 * Create the kmalloc array. Some of the regular kmalloc arrays 1110 * may already have been created because they were needed to 1111 * enable allocations for slab creation. 1112 */ 1113 void __init create_kmalloc_caches(slab_flags_t flags) 1114 { 1115 int i; 1116 1117 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 1118 if (!kmalloc_caches[i]) 1119 new_kmalloc_cache(i, flags); 1120 1121 /* 1122 * Caches that are not of the two-to-the-power-of size. 1123 * These have to be created immediately after the 1124 * earlier power of two caches 1125 */ 1126 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) 1127 new_kmalloc_cache(1, flags); 1128 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) 1129 new_kmalloc_cache(2, flags); 1130 } 1131 1132 /* Kmalloc array is now usable */ 1133 slab_state = UP; 1134 1135 #ifdef CONFIG_ZONE_DMA 1136 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 1137 struct kmem_cache *s = kmalloc_caches[i]; 1138 1139 if (s) { 1140 int size = kmalloc_size(i); 1141 char *n = kasprintf(GFP_NOWAIT, 1142 "dma-kmalloc-%d", size); 1143 1144 BUG_ON(!n); 1145 kmalloc_dma_caches[i] = create_kmalloc_cache(n, 1146 size, SLAB_CACHE_DMA | flags, 0, 0); 1147 } 1148 } 1149 #endif 1150 } 1151 #endif /* !CONFIG_SLOB */ 1152 1153 /* 1154 * To avoid unnecessary overhead, we pass through large allocation requests 1155 * directly to the page allocator. We use __GFP_COMP, because we will need to 1156 * know the allocation order to free the pages properly in kfree. 1157 */ 1158 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) 1159 { 1160 void *ret; 1161 struct page *page; 1162 1163 flags |= __GFP_COMP; 1164 page = alloc_pages(flags, order); 1165 ret = page ? page_address(page) : NULL; 1166 kmemleak_alloc(ret, size, 1, flags); 1167 kasan_kmalloc_large(ret, size, flags); 1168 return ret; 1169 } 1170 EXPORT_SYMBOL(kmalloc_order); 1171 1172 #ifdef CONFIG_TRACING 1173 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 1174 { 1175 void *ret = kmalloc_order(size, flags, order); 1176 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 1177 return ret; 1178 } 1179 EXPORT_SYMBOL(kmalloc_order_trace); 1180 #endif 1181 1182 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1183 /* Randomize a generic freelist */ 1184 static void freelist_randomize(struct rnd_state *state, unsigned int *list, 1185 size_t count) 1186 { 1187 size_t i; 1188 unsigned int rand; 1189 1190 for (i = 0; i < count; i++) 1191 list[i] = i; 1192 1193 /* Fisher-Yates shuffle */ 1194 for (i = count - 1; i > 0; i--) { 1195 rand = prandom_u32_state(state); 1196 rand %= (i + 1); 1197 swap(list[i], list[rand]); 1198 } 1199 } 1200 1201 /* Create a random sequence per cache */ 1202 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 1203 gfp_t gfp) 1204 { 1205 struct rnd_state state; 1206 1207 if (count < 2 || cachep->random_seq) 1208 return 0; 1209 1210 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); 1211 if (!cachep->random_seq) 1212 return -ENOMEM; 1213 1214 /* Get best entropy at this stage of boot */ 1215 prandom_seed_state(&state, get_random_long()); 1216 1217 freelist_randomize(&state, cachep->random_seq, count); 1218 return 0; 1219 } 1220 1221 /* Destroy the per-cache random freelist sequence */ 1222 void cache_random_seq_destroy(struct kmem_cache *cachep) 1223 { 1224 kfree(cachep->random_seq); 1225 cachep->random_seq = NULL; 1226 } 1227 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1228 1229 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 1230 #ifdef CONFIG_SLAB 1231 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) 1232 #else 1233 #define SLABINFO_RIGHTS S_IRUSR 1234 #endif 1235 1236 static void print_slabinfo_header(struct seq_file *m) 1237 { 1238 /* 1239 * Output format version, so at least we can change it 1240 * without _too_ many complaints. 1241 */ 1242 #ifdef CONFIG_DEBUG_SLAB 1243 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 1244 #else 1245 seq_puts(m, "slabinfo - version: 2.1\n"); 1246 #endif 1247 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); 1248 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 1249 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 1250 #ifdef CONFIG_DEBUG_SLAB 1251 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 1252 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 1253 #endif 1254 seq_putc(m, '\n'); 1255 } 1256 1257 void *slab_start(struct seq_file *m, loff_t *pos) 1258 { 1259 mutex_lock(&slab_mutex); 1260 return seq_list_start(&slab_root_caches, *pos); 1261 } 1262 1263 void *slab_next(struct seq_file *m, void *p, loff_t *pos) 1264 { 1265 return seq_list_next(p, &slab_root_caches, pos); 1266 } 1267 1268 void slab_stop(struct seq_file *m, void *p) 1269 { 1270 mutex_unlock(&slab_mutex); 1271 } 1272 1273 static void 1274 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) 1275 { 1276 struct kmem_cache *c; 1277 struct slabinfo sinfo; 1278 1279 if (!is_root_cache(s)) 1280 return; 1281 1282 for_each_memcg_cache(c, s) { 1283 memset(&sinfo, 0, sizeof(sinfo)); 1284 get_slabinfo(c, &sinfo); 1285 1286 info->active_slabs += sinfo.active_slabs; 1287 info->num_slabs += sinfo.num_slabs; 1288 info->shared_avail += sinfo.shared_avail; 1289 info->active_objs += sinfo.active_objs; 1290 info->num_objs += sinfo.num_objs; 1291 } 1292 } 1293 1294 static void cache_show(struct kmem_cache *s, struct seq_file *m) 1295 { 1296 struct slabinfo sinfo; 1297 1298 memset(&sinfo, 0, sizeof(sinfo)); 1299 get_slabinfo(s, &sinfo); 1300 1301 memcg_accumulate_slabinfo(s, &sinfo); 1302 1303 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 1304 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, 1305 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 1306 1307 seq_printf(m, " : tunables %4u %4u %4u", 1308 sinfo.limit, sinfo.batchcount, sinfo.shared); 1309 seq_printf(m, " : slabdata %6lu %6lu %6lu", 1310 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 1311 slabinfo_show_stats(m, s); 1312 seq_putc(m, '\n'); 1313 } 1314 1315 static int slab_show(struct seq_file *m, void *p) 1316 { 1317 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); 1318 1319 if (p == slab_root_caches.next) 1320 print_slabinfo_header(m); 1321 cache_show(s, m); 1322 return 0; 1323 } 1324 1325 void dump_unreclaimable_slab(void) 1326 { 1327 struct kmem_cache *s, *s2; 1328 struct slabinfo sinfo; 1329 1330 /* 1331 * Here acquiring slab_mutex is risky since we don't prefer to get 1332 * sleep in oom path. But, without mutex hold, it may introduce a 1333 * risk of crash. 1334 * Use mutex_trylock to protect the list traverse, dump nothing 1335 * without acquiring the mutex. 1336 */ 1337 if (!mutex_trylock(&slab_mutex)) { 1338 pr_warn("excessive unreclaimable slab but cannot dump stats\n"); 1339 return; 1340 } 1341 1342 pr_info("Unreclaimable slab info:\n"); 1343 pr_info("Name Used Total\n"); 1344 1345 list_for_each_entry_safe(s, s2, &slab_caches, list) { 1346 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT)) 1347 continue; 1348 1349 get_slabinfo(s, &sinfo); 1350 1351 if (sinfo.num_objs > 0) 1352 pr_info("%-17s %10luKB %10luKB\n", cache_name(s), 1353 (sinfo.active_objs * s->size) / 1024, 1354 (sinfo.num_objs * s->size) / 1024); 1355 } 1356 mutex_unlock(&slab_mutex); 1357 } 1358 1359 #if defined(CONFIG_MEMCG) 1360 void *memcg_slab_start(struct seq_file *m, loff_t *pos) 1361 { 1362 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 1363 1364 mutex_lock(&slab_mutex); 1365 return seq_list_start(&memcg->kmem_caches, *pos); 1366 } 1367 1368 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) 1369 { 1370 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 1371 1372 return seq_list_next(p, &memcg->kmem_caches, pos); 1373 } 1374 1375 void memcg_slab_stop(struct seq_file *m, void *p) 1376 { 1377 mutex_unlock(&slab_mutex); 1378 } 1379 1380 int memcg_slab_show(struct seq_file *m, void *p) 1381 { 1382 struct kmem_cache *s = list_entry(p, struct kmem_cache, 1383 memcg_params.kmem_caches_node); 1384 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 1385 1386 if (p == memcg->kmem_caches.next) 1387 print_slabinfo_header(m); 1388 cache_show(s, m); 1389 return 0; 1390 } 1391 #endif 1392 1393 /* 1394 * slabinfo_op - iterator that generates /proc/slabinfo 1395 * 1396 * Output layout: 1397 * cache-name 1398 * num-active-objs 1399 * total-objs 1400 * object size 1401 * num-active-slabs 1402 * total-slabs 1403 * num-pages-per-slab 1404 * + further values on SMP and with statistics enabled 1405 */ 1406 static const struct seq_operations slabinfo_op = { 1407 .start = slab_start, 1408 .next = slab_next, 1409 .stop = slab_stop, 1410 .show = slab_show, 1411 }; 1412 1413 static int slabinfo_open(struct inode *inode, struct file *file) 1414 { 1415 return seq_open(file, &slabinfo_op); 1416 } 1417 1418 static const struct file_operations proc_slabinfo_operations = { 1419 .open = slabinfo_open, 1420 .read = seq_read, 1421 .write = slabinfo_write, 1422 .llseek = seq_lseek, 1423 .release = seq_release, 1424 }; 1425 1426 static int __init slab_proc_init(void) 1427 { 1428 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, 1429 &proc_slabinfo_operations); 1430 return 0; 1431 } 1432 module_init(slab_proc_init); 1433 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ 1434 1435 static __always_inline void *__do_krealloc(const void *p, size_t new_size, 1436 gfp_t flags) 1437 { 1438 void *ret; 1439 size_t ks = 0; 1440 1441 if (p) 1442 ks = ksize(p); 1443 1444 if (ks >= new_size) { 1445 kasan_krealloc((void *)p, new_size, flags); 1446 return (void *)p; 1447 } 1448 1449 ret = kmalloc_track_caller(new_size, flags); 1450 if (ret && p) 1451 memcpy(ret, p, ks); 1452 1453 return ret; 1454 } 1455 1456 /** 1457 * __krealloc - like krealloc() but don't free @p. 1458 * @p: object to reallocate memory for. 1459 * @new_size: how many bytes of memory are required. 1460 * @flags: the type of memory to allocate. 1461 * 1462 * This function is like krealloc() except it never frees the originally 1463 * allocated buffer. Use this if you don't want to free the buffer immediately 1464 * like, for example, with RCU. 1465 */ 1466 void *__krealloc(const void *p, size_t new_size, gfp_t flags) 1467 { 1468 if (unlikely(!new_size)) 1469 return ZERO_SIZE_PTR; 1470 1471 return __do_krealloc(p, new_size, flags); 1472 1473 } 1474 EXPORT_SYMBOL(__krealloc); 1475 1476 /** 1477 * krealloc - reallocate memory. The contents will remain unchanged. 1478 * @p: object to reallocate memory for. 1479 * @new_size: how many bytes of memory are required. 1480 * @flags: the type of memory to allocate. 1481 * 1482 * The contents of the object pointed to are preserved up to the 1483 * lesser of the new and old sizes. If @p is %NULL, krealloc() 1484 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a 1485 * %NULL pointer, the object pointed to is freed. 1486 */ 1487 void *krealloc(const void *p, size_t new_size, gfp_t flags) 1488 { 1489 void *ret; 1490 1491 if (unlikely(!new_size)) { 1492 kfree(p); 1493 return ZERO_SIZE_PTR; 1494 } 1495 1496 ret = __do_krealloc(p, new_size, flags); 1497 if (ret && p != ret) 1498 kfree(p); 1499 1500 return ret; 1501 } 1502 EXPORT_SYMBOL(krealloc); 1503 1504 /** 1505 * kzfree - like kfree but zero memory 1506 * @p: object to free memory of 1507 * 1508 * The memory of the object @p points to is zeroed before freed. 1509 * If @p is %NULL, kzfree() does nothing. 1510 * 1511 * Note: this function zeroes the whole allocated buffer which can be a good 1512 * deal bigger than the requested buffer size passed to kmalloc(). So be 1513 * careful when using this function in performance sensitive code. 1514 */ 1515 void kzfree(const void *p) 1516 { 1517 size_t ks; 1518 void *mem = (void *)p; 1519 1520 if (unlikely(ZERO_OR_NULL_PTR(mem))) 1521 return; 1522 ks = ksize(mem); 1523 memset(mem, 0, ks); 1524 kfree(mem); 1525 } 1526 EXPORT_SYMBOL(kzfree); 1527 1528 /* Tracepoints definitions. */ 1529 EXPORT_TRACEPOINT_SYMBOL(kmalloc); 1530 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 1531 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); 1532 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); 1533 EXPORT_TRACEPOINT_SYMBOL(kfree); 1534 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 1535