xref: /openbmc/linux/mm/slab_common.c (revision c6a7ed77ee6334f3a85a0f3db74ca80101e25304)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/kmem.h>
30 
31 #include "internal.h"
32 
33 #include "slab.h"
34 
35 enum slab_state slab_state;
36 LIST_HEAD(slab_caches);
37 DEFINE_MUTEX(slab_mutex);
38 struct kmem_cache *kmem_cache;
39 
40 #ifdef CONFIG_HARDENED_USERCOPY
41 bool usercopy_fallback __ro_after_init =
42 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
43 module_param(usercopy_fallback, bool, 0400);
44 MODULE_PARM_DESC(usercopy_fallback,
45 		"WARN instead of reject usercopy whitelist violations");
46 #endif
47 
48 static LIST_HEAD(slab_caches_to_rcu_destroy);
49 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
50 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
51 		    slab_caches_to_rcu_destroy_workfn);
52 
53 /*
54  * Set of flags that will prevent slab merging
55  */
56 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
57 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
58 		SLAB_FAILSLAB | kasan_never_merge())
59 
60 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
61 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
62 
63 /*
64  * Merge control. If this is set then no merging of slab caches will occur.
65  */
66 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
67 
68 static int __init setup_slab_nomerge(char *str)
69 {
70 	slab_nomerge = true;
71 	return 1;
72 }
73 
74 static int __init setup_slab_merge(char *str)
75 {
76 	slab_nomerge = false;
77 	return 1;
78 }
79 
80 #ifdef CONFIG_SLUB
81 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
82 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
83 #endif
84 
85 __setup("slab_nomerge", setup_slab_nomerge);
86 __setup("slab_merge", setup_slab_merge);
87 
88 /*
89  * Determine the size of a slab object
90  */
91 unsigned int kmem_cache_size(struct kmem_cache *s)
92 {
93 	return s->object_size;
94 }
95 EXPORT_SYMBOL(kmem_cache_size);
96 
97 #ifdef CONFIG_DEBUG_VM
98 static int kmem_cache_sanity_check(const char *name, unsigned int size)
99 {
100 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
101 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
102 		return -EINVAL;
103 	}
104 
105 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
106 	return 0;
107 }
108 #else
109 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
110 {
111 	return 0;
112 }
113 #endif
114 
115 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
116 {
117 	size_t i;
118 
119 	for (i = 0; i < nr; i++) {
120 		if (s)
121 			kmem_cache_free(s, p[i]);
122 		else
123 			kfree(p[i]);
124 	}
125 }
126 
127 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
128 								void **p)
129 {
130 	size_t i;
131 
132 	for (i = 0; i < nr; i++) {
133 		void *x = p[i] = kmem_cache_alloc(s, flags);
134 		if (!x) {
135 			__kmem_cache_free_bulk(s, i, p);
136 			return 0;
137 		}
138 	}
139 	return i;
140 }
141 
142 /*
143  * Figure out what the alignment of the objects will be given a set of
144  * flags, a user specified alignment and the size of the objects.
145  */
146 static unsigned int calculate_alignment(slab_flags_t flags,
147 		unsigned int align, unsigned int size)
148 {
149 	/*
150 	 * If the user wants hardware cache aligned objects then follow that
151 	 * suggestion if the object is sufficiently large.
152 	 *
153 	 * The hardware cache alignment cannot override the specified
154 	 * alignment though. If that is greater then use it.
155 	 */
156 	if (flags & SLAB_HWCACHE_ALIGN) {
157 		unsigned int ralign;
158 
159 		ralign = cache_line_size();
160 		while (size <= ralign / 2)
161 			ralign /= 2;
162 		align = max(align, ralign);
163 	}
164 
165 	if (align < ARCH_SLAB_MINALIGN)
166 		align = ARCH_SLAB_MINALIGN;
167 
168 	return ALIGN(align, sizeof(void *));
169 }
170 
171 /*
172  * Find a mergeable slab cache
173  */
174 int slab_unmergeable(struct kmem_cache *s)
175 {
176 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
177 		return 1;
178 
179 	if (s->ctor)
180 		return 1;
181 
182 	if (s->usersize)
183 		return 1;
184 
185 	/*
186 	 * We may have set a slab to be unmergeable during bootstrap.
187 	 */
188 	if (s->refcount < 0)
189 		return 1;
190 
191 	return 0;
192 }
193 
194 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
195 		slab_flags_t flags, const char *name, void (*ctor)(void *))
196 {
197 	struct kmem_cache *s;
198 
199 	if (slab_nomerge)
200 		return NULL;
201 
202 	if (ctor)
203 		return NULL;
204 
205 	size = ALIGN(size, sizeof(void *));
206 	align = calculate_alignment(flags, align, size);
207 	size = ALIGN(size, align);
208 	flags = kmem_cache_flags(size, flags, name);
209 
210 	if (flags & SLAB_NEVER_MERGE)
211 		return NULL;
212 
213 	list_for_each_entry_reverse(s, &slab_caches, list) {
214 		if (slab_unmergeable(s))
215 			continue;
216 
217 		if (size > s->size)
218 			continue;
219 
220 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
221 			continue;
222 		/*
223 		 * Check if alignment is compatible.
224 		 * Courtesy of Adrian Drzewiecki
225 		 */
226 		if ((s->size & ~(align - 1)) != s->size)
227 			continue;
228 
229 		if (s->size - size >= sizeof(void *))
230 			continue;
231 
232 		if (IS_ENABLED(CONFIG_SLAB) && align &&
233 			(align > s->align || s->align % align))
234 			continue;
235 
236 		return s;
237 	}
238 	return NULL;
239 }
240 
241 static struct kmem_cache *create_cache(const char *name,
242 		unsigned int object_size, unsigned int align,
243 		slab_flags_t flags, unsigned int useroffset,
244 		unsigned int usersize, void (*ctor)(void *),
245 		struct kmem_cache *root_cache)
246 {
247 	struct kmem_cache *s;
248 	int err;
249 
250 	if (WARN_ON(useroffset + usersize > object_size))
251 		useroffset = usersize = 0;
252 
253 	err = -ENOMEM;
254 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
255 	if (!s)
256 		goto out;
257 
258 	s->name = name;
259 	s->size = s->object_size = object_size;
260 	s->align = align;
261 	s->ctor = ctor;
262 	s->useroffset = useroffset;
263 	s->usersize = usersize;
264 
265 	err = __kmem_cache_create(s, flags);
266 	if (err)
267 		goto out_free_cache;
268 
269 	s->refcount = 1;
270 	list_add(&s->list, &slab_caches);
271 out:
272 	if (err)
273 		return ERR_PTR(err);
274 	return s;
275 
276 out_free_cache:
277 	kmem_cache_free(kmem_cache, s);
278 	goto out;
279 }
280 
281 /**
282  * kmem_cache_create_usercopy - Create a cache with a region suitable
283  * for copying to userspace
284  * @name: A string which is used in /proc/slabinfo to identify this cache.
285  * @size: The size of objects to be created in this cache.
286  * @align: The required alignment for the objects.
287  * @flags: SLAB flags
288  * @useroffset: Usercopy region offset
289  * @usersize: Usercopy region size
290  * @ctor: A constructor for the objects.
291  *
292  * Cannot be called within a interrupt, but can be interrupted.
293  * The @ctor is run when new pages are allocated by the cache.
294  *
295  * The flags are
296  *
297  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
298  * to catch references to uninitialised memory.
299  *
300  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
301  * for buffer overruns.
302  *
303  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
304  * cacheline.  This can be beneficial if you're counting cycles as closely
305  * as davem.
306  *
307  * Return: a pointer to the cache on success, NULL on failure.
308  */
309 struct kmem_cache *
310 kmem_cache_create_usercopy(const char *name,
311 		  unsigned int size, unsigned int align,
312 		  slab_flags_t flags,
313 		  unsigned int useroffset, unsigned int usersize,
314 		  void (*ctor)(void *))
315 {
316 	struct kmem_cache *s = NULL;
317 	const char *cache_name;
318 	int err;
319 
320 #ifdef CONFIG_SLUB_DEBUG
321 	/*
322 	 * If no slub_debug was enabled globally, the static key is not yet
323 	 * enabled by setup_slub_debug(). Enable it if the cache is being
324 	 * created with any of the debugging flags passed explicitly.
325 	 */
326 	if (flags & SLAB_DEBUG_FLAGS)
327 		static_branch_enable(&slub_debug_enabled);
328 #endif
329 
330 	mutex_lock(&slab_mutex);
331 
332 	err = kmem_cache_sanity_check(name, size);
333 	if (err) {
334 		goto out_unlock;
335 	}
336 
337 	/* Refuse requests with allocator specific flags */
338 	if (flags & ~SLAB_FLAGS_PERMITTED) {
339 		err = -EINVAL;
340 		goto out_unlock;
341 	}
342 
343 	/*
344 	 * Some allocators will constraint the set of valid flags to a subset
345 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
346 	 * case, and we'll just provide them with a sanitized version of the
347 	 * passed flags.
348 	 */
349 	flags &= CACHE_CREATE_MASK;
350 
351 	/* Fail closed on bad usersize of useroffset values. */
352 	if (WARN_ON(!usersize && useroffset) ||
353 	    WARN_ON(size < usersize || size - usersize < useroffset))
354 		usersize = useroffset = 0;
355 
356 	if (!usersize)
357 		s = __kmem_cache_alias(name, size, align, flags, ctor);
358 	if (s)
359 		goto out_unlock;
360 
361 	cache_name = kstrdup_const(name, GFP_KERNEL);
362 	if (!cache_name) {
363 		err = -ENOMEM;
364 		goto out_unlock;
365 	}
366 
367 	s = create_cache(cache_name, size,
368 			 calculate_alignment(flags, align, size),
369 			 flags, useroffset, usersize, ctor, NULL);
370 	if (IS_ERR(s)) {
371 		err = PTR_ERR(s);
372 		kfree_const(cache_name);
373 	}
374 
375 out_unlock:
376 	mutex_unlock(&slab_mutex);
377 
378 	if (err) {
379 		if (flags & SLAB_PANIC)
380 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
381 				name, err);
382 		else {
383 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
384 				name, err);
385 			dump_stack();
386 		}
387 		return NULL;
388 	}
389 	return s;
390 }
391 EXPORT_SYMBOL(kmem_cache_create_usercopy);
392 
393 /**
394  * kmem_cache_create - Create a cache.
395  * @name: A string which is used in /proc/slabinfo to identify this cache.
396  * @size: The size of objects to be created in this cache.
397  * @align: The required alignment for the objects.
398  * @flags: SLAB flags
399  * @ctor: A constructor for the objects.
400  *
401  * Cannot be called within a interrupt, but can be interrupted.
402  * The @ctor is run when new pages are allocated by the cache.
403  *
404  * The flags are
405  *
406  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
407  * to catch references to uninitialised memory.
408  *
409  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
410  * for buffer overruns.
411  *
412  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
413  * cacheline.  This can be beneficial if you're counting cycles as closely
414  * as davem.
415  *
416  * Return: a pointer to the cache on success, NULL on failure.
417  */
418 struct kmem_cache *
419 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
420 		slab_flags_t flags, void (*ctor)(void *))
421 {
422 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
423 					  ctor);
424 }
425 EXPORT_SYMBOL(kmem_cache_create);
426 
427 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
428 {
429 	LIST_HEAD(to_destroy);
430 	struct kmem_cache *s, *s2;
431 
432 	/*
433 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
434 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
435 	 * through RCU and the associated kmem_cache are dereferenced
436 	 * while freeing the pages, so the kmem_caches should be freed only
437 	 * after the pending RCU operations are finished.  As rcu_barrier()
438 	 * is a pretty slow operation, we batch all pending destructions
439 	 * asynchronously.
440 	 */
441 	mutex_lock(&slab_mutex);
442 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
443 	mutex_unlock(&slab_mutex);
444 
445 	if (list_empty(&to_destroy))
446 		return;
447 
448 	rcu_barrier();
449 
450 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
451 		kfence_shutdown_cache(s);
452 #ifdef SLAB_SUPPORTS_SYSFS
453 		sysfs_slab_release(s);
454 #else
455 		slab_kmem_cache_release(s);
456 #endif
457 	}
458 }
459 
460 static int shutdown_cache(struct kmem_cache *s)
461 {
462 	/* free asan quarantined objects */
463 	kasan_cache_shutdown(s);
464 
465 	if (__kmem_cache_shutdown(s) != 0)
466 		return -EBUSY;
467 
468 	list_del(&s->list);
469 
470 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
471 #ifdef SLAB_SUPPORTS_SYSFS
472 		sysfs_slab_unlink(s);
473 #endif
474 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
475 		schedule_work(&slab_caches_to_rcu_destroy_work);
476 	} else {
477 		kfence_shutdown_cache(s);
478 #ifdef SLAB_SUPPORTS_SYSFS
479 		sysfs_slab_unlink(s);
480 		sysfs_slab_release(s);
481 #else
482 		slab_kmem_cache_release(s);
483 #endif
484 	}
485 
486 	return 0;
487 }
488 
489 void slab_kmem_cache_release(struct kmem_cache *s)
490 {
491 	__kmem_cache_release(s);
492 	kfree_const(s->name);
493 	kmem_cache_free(kmem_cache, s);
494 }
495 
496 void kmem_cache_destroy(struct kmem_cache *s)
497 {
498 	int err;
499 
500 	if (unlikely(!s))
501 		return;
502 
503 	mutex_lock(&slab_mutex);
504 
505 	s->refcount--;
506 	if (s->refcount)
507 		goto out_unlock;
508 
509 	err = shutdown_cache(s);
510 	if (err) {
511 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
512 		       s->name);
513 		dump_stack();
514 	}
515 out_unlock:
516 	mutex_unlock(&slab_mutex);
517 }
518 EXPORT_SYMBOL(kmem_cache_destroy);
519 
520 /**
521  * kmem_cache_shrink - Shrink a cache.
522  * @cachep: The cache to shrink.
523  *
524  * Releases as many slabs as possible for a cache.
525  * To help debugging, a zero exit status indicates all slabs were released.
526  *
527  * Return: %0 if all slabs were released, non-zero otherwise
528  */
529 int kmem_cache_shrink(struct kmem_cache *cachep)
530 {
531 	int ret;
532 
533 
534 	kasan_cache_shrink(cachep);
535 	ret = __kmem_cache_shrink(cachep);
536 
537 	return ret;
538 }
539 EXPORT_SYMBOL(kmem_cache_shrink);
540 
541 bool slab_is_available(void)
542 {
543 	return slab_state >= UP;
544 }
545 
546 #ifdef CONFIG_PRINTK
547 /**
548  * kmem_valid_obj - does the pointer reference a valid slab object?
549  * @object: pointer to query.
550  *
551  * Return: %true if the pointer is to a not-yet-freed object from
552  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
553  * is to an already-freed object, and %false otherwise.
554  */
555 bool kmem_valid_obj(void *object)
556 {
557 	struct page *page;
558 
559 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
560 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
561 		return false;
562 	page = virt_to_head_page(object);
563 	return PageSlab(page);
564 }
565 EXPORT_SYMBOL_GPL(kmem_valid_obj);
566 
567 /**
568  * kmem_dump_obj - Print available slab provenance information
569  * @object: slab object for which to find provenance information.
570  *
571  * This function uses pr_cont(), so that the caller is expected to have
572  * printed out whatever preamble is appropriate.  The provenance information
573  * depends on the type of object and on how much debugging is enabled.
574  * For a slab-cache object, the fact that it is a slab object is printed,
575  * and, if available, the slab name, return address, and stack trace from
576  * the allocation of that object.
577  *
578  * This function will splat if passed a pointer to a non-slab object.
579  * If you are not sure what type of object you have, you should instead
580  * use mem_dump_obj().
581  */
582 void kmem_dump_obj(void *object)
583 {
584 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
585 	int i;
586 	struct page *page;
587 	unsigned long ptroffset;
588 	struct kmem_obj_info kp = { };
589 
590 	if (WARN_ON_ONCE(!virt_addr_valid(object)))
591 		return;
592 	page = virt_to_head_page(object);
593 	if (WARN_ON_ONCE(!PageSlab(page))) {
594 		pr_cont(" non-slab memory.\n");
595 		return;
596 	}
597 	kmem_obj_info(&kp, object, page);
598 	if (kp.kp_slab_cache)
599 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
600 	else
601 		pr_cont(" slab%s", cp);
602 	if (kp.kp_objp)
603 		pr_cont(" start %px", kp.kp_objp);
604 	if (kp.kp_data_offset)
605 		pr_cont(" data offset %lu", kp.kp_data_offset);
606 	if (kp.kp_objp) {
607 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
608 		pr_cont(" pointer offset %lu", ptroffset);
609 	}
610 	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
611 		pr_cont(" size %u", kp.kp_slab_cache->usersize);
612 	if (kp.kp_ret)
613 		pr_cont(" allocated at %pS\n", kp.kp_ret);
614 	else
615 		pr_cont("\n");
616 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
617 		if (!kp.kp_stack[i])
618 			break;
619 		pr_info("    %pS\n", kp.kp_stack[i]);
620 	}
621 }
622 EXPORT_SYMBOL_GPL(kmem_dump_obj);
623 #endif
624 
625 #ifndef CONFIG_SLOB
626 /* Create a cache during boot when no slab services are available yet */
627 void __init create_boot_cache(struct kmem_cache *s, const char *name,
628 		unsigned int size, slab_flags_t flags,
629 		unsigned int useroffset, unsigned int usersize)
630 {
631 	int err;
632 	unsigned int align = ARCH_KMALLOC_MINALIGN;
633 
634 	s->name = name;
635 	s->size = s->object_size = size;
636 
637 	/*
638 	 * For power of two sizes, guarantee natural alignment for kmalloc
639 	 * caches, regardless of SL*B debugging options.
640 	 */
641 	if (is_power_of_2(size))
642 		align = max(align, size);
643 	s->align = calculate_alignment(flags, align, size);
644 
645 	s->useroffset = useroffset;
646 	s->usersize = usersize;
647 
648 	err = __kmem_cache_create(s, flags);
649 
650 	if (err)
651 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
652 					name, size, err);
653 
654 	s->refcount = -1;	/* Exempt from merging for now */
655 }
656 
657 struct kmem_cache *__init create_kmalloc_cache(const char *name,
658 		unsigned int size, slab_flags_t flags,
659 		unsigned int useroffset, unsigned int usersize)
660 {
661 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
662 
663 	if (!s)
664 		panic("Out of memory when creating slab %s\n", name);
665 
666 	create_boot_cache(s, name, size, flags, useroffset, usersize);
667 	kasan_cache_create_kmalloc(s);
668 	list_add(&s->list, &slab_caches);
669 	s->refcount = 1;
670 	return s;
671 }
672 
673 struct kmem_cache *
674 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
675 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
676 EXPORT_SYMBOL(kmalloc_caches);
677 
678 /*
679  * Conversion table for small slabs sizes / 8 to the index in the
680  * kmalloc array. This is necessary for slabs < 192 since we have non power
681  * of two cache sizes there. The size of larger slabs can be determined using
682  * fls.
683  */
684 static u8 size_index[24] __ro_after_init = {
685 	3,	/* 8 */
686 	4,	/* 16 */
687 	5,	/* 24 */
688 	5,	/* 32 */
689 	6,	/* 40 */
690 	6,	/* 48 */
691 	6,	/* 56 */
692 	6,	/* 64 */
693 	1,	/* 72 */
694 	1,	/* 80 */
695 	1,	/* 88 */
696 	1,	/* 96 */
697 	7,	/* 104 */
698 	7,	/* 112 */
699 	7,	/* 120 */
700 	7,	/* 128 */
701 	2,	/* 136 */
702 	2,	/* 144 */
703 	2,	/* 152 */
704 	2,	/* 160 */
705 	2,	/* 168 */
706 	2,	/* 176 */
707 	2,	/* 184 */
708 	2	/* 192 */
709 };
710 
711 static inline unsigned int size_index_elem(unsigned int bytes)
712 {
713 	return (bytes - 1) / 8;
714 }
715 
716 /*
717  * Find the kmem_cache structure that serves a given size of
718  * allocation
719  */
720 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
721 {
722 	unsigned int index;
723 
724 	if (size <= 192) {
725 		if (!size)
726 			return ZERO_SIZE_PTR;
727 
728 		index = size_index[size_index_elem(size)];
729 	} else {
730 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
731 			return NULL;
732 		index = fls(size - 1);
733 	}
734 
735 	return kmalloc_caches[kmalloc_type(flags)][index];
736 }
737 
738 #ifdef CONFIG_ZONE_DMA
739 #define INIT_KMALLOC_INFO(__size, __short_size)			\
740 {								\
741 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
742 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
743 	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
744 	.size = __size,						\
745 }
746 #else
747 #define INIT_KMALLOC_INFO(__size, __short_size)			\
748 {								\
749 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
750 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
751 	.size = __size,						\
752 }
753 #endif
754 
755 /*
756  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
757  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
758  * kmalloc-67108864.
759  */
760 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
761 	INIT_KMALLOC_INFO(0, 0),
762 	INIT_KMALLOC_INFO(96, 96),
763 	INIT_KMALLOC_INFO(192, 192),
764 	INIT_KMALLOC_INFO(8, 8),
765 	INIT_KMALLOC_INFO(16, 16),
766 	INIT_KMALLOC_INFO(32, 32),
767 	INIT_KMALLOC_INFO(64, 64),
768 	INIT_KMALLOC_INFO(128, 128),
769 	INIT_KMALLOC_INFO(256, 256),
770 	INIT_KMALLOC_INFO(512, 512),
771 	INIT_KMALLOC_INFO(1024, 1k),
772 	INIT_KMALLOC_INFO(2048, 2k),
773 	INIT_KMALLOC_INFO(4096, 4k),
774 	INIT_KMALLOC_INFO(8192, 8k),
775 	INIT_KMALLOC_INFO(16384, 16k),
776 	INIT_KMALLOC_INFO(32768, 32k),
777 	INIT_KMALLOC_INFO(65536, 64k),
778 	INIT_KMALLOC_INFO(131072, 128k),
779 	INIT_KMALLOC_INFO(262144, 256k),
780 	INIT_KMALLOC_INFO(524288, 512k),
781 	INIT_KMALLOC_INFO(1048576, 1M),
782 	INIT_KMALLOC_INFO(2097152, 2M),
783 	INIT_KMALLOC_INFO(4194304, 4M),
784 	INIT_KMALLOC_INFO(8388608, 8M),
785 	INIT_KMALLOC_INFO(16777216, 16M),
786 	INIT_KMALLOC_INFO(33554432, 32M),
787 	INIT_KMALLOC_INFO(67108864, 64M)
788 };
789 
790 /*
791  * Patch up the size_index table if we have strange large alignment
792  * requirements for the kmalloc array. This is only the case for
793  * MIPS it seems. The standard arches will not generate any code here.
794  *
795  * Largest permitted alignment is 256 bytes due to the way we
796  * handle the index determination for the smaller caches.
797  *
798  * Make sure that nothing crazy happens if someone starts tinkering
799  * around with ARCH_KMALLOC_MINALIGN
800  */
801 void __init setup_kmalloc_cache_index_table(void)
802 {
803 	unsigned int i;
804 
805 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
806 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
807 
808 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
809 		unsigned int elem = size_index_elem(i);
810 
811 		if (elem >= ARRAY_SIZE(size_index))
812 			break;
813 		size_index[elem] = KMALLOC_SHIFT_LOW;
814 	}
815 
816 	if (KMALLOC_MIN_SIZE >= 64) {
817 		/*
818 		 * The 96 byte size cache is not used if the alignment
819 		 * is 64 byte.
820 		 */
821 		for (i = 64 + 8; i <= 96; i += 8)
822 			size_index[size_index_elem(i)] = 7;
823 
824 	}
825 
826 	if (KMALLOC_MIN_SIZE >= 128) {
827 		/*
828 		 * The 192 byte sized cache is not used if the alignment
829 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
830 		 * instead.
831 		 */
832 		for (i = 128 + 8; i <= 192; i += 8)
833 			size_index[size_index_elem(i)] = 8;
834 	}
835 }
836 
837 static void __init
838 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
839 {
840 	if (type == KMALLOC_RECLAIM)
841 		flags |= SLAB_RECLAIM_ACCOUNT;
842 
843 	kmalloc_caches[type][idx] = create_kmalloc_cache(
844 					kmalloc_info[idx].name[type],
845 					kmalloc_info[idx].size, flags, 0,
846 					kmalloc_info[idx].size);
847 }
848 
849 /*
850  * Create the kmalloc array. Some of the regular kmalloc arrays
851  * may already have been created because they were needed to
852  * enable allocations for slab creation.
853  */
854 void __init create_kmalloc_caches(slab_flags_t flags)
855 {
856 	int i;
857 	enum kmalloc_cache_type type;
858 
859 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
860 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
861 			if (!kmalloc_caches[type][i])
862 				new_kmalloc_cache(i, type, flags);
863 
864 			/*
865 			 * Caches that are not of the two-to-the-power-of size.
866 			 * These have to be created immediately after the
867 			 * earlier power of two caches
868 			 */
869 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
870 					!kmalloc_caches[type][1])
871 				new_kmalloc_cache(1, type, flags);
872 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
873 					!kmalloc_caches[type][2])
874 				new_kmalloc_cache(2, type, flags);
875 		}
876 	}
877 
878 	/* Kmalloc array is now usable */
879 	slab_state = UP;
880 
881 #ifdef CONFIG_ZONE_DMA
882 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
883 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
884 
885 		if (s) {
886 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
887 				kmalloc_info[i].name[KMALLOC_DMA],
888 				kmalloc_info[i].size,
889 				SLAB_CACHE_DMA | flags, 0,
890 				kmalloc_info[i].size);
891 		}
892 	}
893 #endif
894 }
895 #endif /* !CONFIG_SLOB */
896 
897 gfp_t kmalloc_fix_flags(gfp_t flags)
898 {
899 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
900 
901 	flags &= ~GFP_SLAB_BUG_MASK;
902 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
903 			invalid_mask, &invalid_mask, flags, &flags);
904 	dump_stack();
905 
906 	return flags;
907 }
908 
909 /*
910  * To avoid unnecessary overhead, we pass through large allocation requests
911  * directly to the page allocator. We use __GFP_COMP, because we will need to
912  * know the allocation order to free the pages properly in kfree.
913  */
914 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
915 {
916 	void *ret = NULL;
917 	struct page *page;
918 
919 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
920 		flags = kmalloc_fix_flags(flags);
921 
922 	flags |= __GFP_COMP;
923 	page = alloc_pages(flags, order);
924 	if (likely(page)) {
925 		ret = page_address(page);
926 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
927 				      PAGE_SIZE << order);
928 	}
929 	ret = kasan_kmalloc_large(ret, size, flags);
930 	/* As ret might get tagged, call kmemleak hook after KASAN. */
931 	kmemleak_alloc(ret, size, 1, flags);
932 	return ret;
933 }
934 EXPORT_SYMBOL(kmalloc_order);
935 
936 #ifdef CONFIG_TRACING
937 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
938 {
939 	void *ret = kmalloc_order(size, flags, order);
940 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
941 	return ret;
942 }
943 EXPORT_SYMBOL(kmalloc_order_trace);
944 #endif
945 
946 #ifdef CONFIG_SLAB_FREELIST_RANDOM
947 /* Randomize a generic freelist */
948 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
949 			       unsigned int count)
950 {
951 	unsigned int rand;
952 	unsigned int i;
953 
954 	for (i = 0; i < count; i++)
955 		list[i] = i;
956 
957 	/* Fisher-Yates shuffle */
958 	for (i = count - 1; i > 0; i--) {
959 		rand = prandom_u32_state(state);
960 		rand %= (i + 1);
961 		swap(list[i], list[rand]);
962 	}
963 }
964 
965 /* Create a random sequence per cache */
966 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
967 				    gfp_t gfp)
968 {
969 	struct rnd_state state;
970 
971 	if (count < 2 || cachep->random_seq)
972 		return 0;
973 
974 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
975 	if (!cachep->random_seq)
976 		return -ENOMEM;
977 
978 	/* Get best entropy at this stage of boot */
979 	prandom_seed_state(&state, get_random_long());
980 
981 	freelist_randomize(&state, cachep->random_seq, count);
982 	return 0;
983 }
984 
985 /* Destroy the per-cache random freelist sequence */
986 void cache_random_seq_destroy(struct kmem_cache *cachep)
987 {
988 	kfree(cachep->random_seq);
989 	cachep->random_seq = NULL;
990 }
991 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
992 
993 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
994 #ifdef CONFIG_SLAB
995 #define SLABINFO_RIGHTS (0600)
996 #else
997 #define SLABINFO_RIGHTS (0400)
998 #endif
999 
1000 static void print_slabinfo_header(struct seq_file *m)
1001 {
1002 	/*
1003 	 * Output format version, so at least we can change it
1004 	 * without _too_ many complaints.
1005 	 */
1006 #ifdef CONFIG_DEBUG_SLAB
1007 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1008 #else
1009 	seq_puts(m, "slabinfo - version: 2.1\n");
1010 #endif
1011 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1012 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1013 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1014 #ifdef CONFIG_DEBUG_SLAB
1015 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1016 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1017 #endif
1018 	seq_putc(m, '\n');
1019 }
1020 
1021 void *slab_start(struct seq_file *m, loff_t *pos)
1022 {
1023 	mutex_lock(&slab_mutex);
1024 	return seq_list_start(&slab_caches, *pos);
1025 }
1026 
1027 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1028 {
1029 	return seq_list_next(p, &slab_caches, pos);
1030 }
1031 
1032 void slab_stop(struct seq_file *m, void *p)
1033 {
1034 	mutex_unlock(&slab_mutex);
1035 }
1036 
1037 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1038 {
1039 	struct slabinfo sinfo;
1040 
1041 	memset(&sinfo, 0, sizeof(sinfo));
1042 	get_slabinfo(s, &sinfo);
1043 
1044 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1045 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1046 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1047 
1048 	seq_printf(m, " : tunables %4u %4u %4u",
1049 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1050 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1051 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1052 	slabinfo_show_stats(m, s);
1053 	seq_putc(m, '\n');
1054 }
1055 
1056 static int slab_show(struct seq_file *m, void *p)
1057 {
1058 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1059 
1060 	if (p == slab_caches.next)
1061 		print_slabinfo_header(m);
1062 	cache_show(s, m);
1063 	return 0;
1064 }
1065 
1066 void dump_unreclaimable_slab(void)
1067 {
1068 	struct kmem_cache *s;
1069 	struct slabinfo sinfo;
1070 
1071 	/*
1072 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1073 	 * sleep in oom path. But, without mutex hold, it may introduce a
1074 	 * risk of crash.
1075 	 * Use mutex_trylock to protect the list traverse, dump nothing
1076 	 * without acquiring the mutex.
1077 	 */
1078 	if (!mutex_trylock(&slab_mutex)) {
1079 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1080 		return;
1081 	}
1082 
1083 	pr_info("Unreclaimable slab info:\n");
1084 	pr_info("Name                      Used          Total\n");
1085 
1086 	list_for_each_entry(s, &slab_caches, list) {
1087 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1088 			continue;
1089 
1090 		get_slabinfo(s, &sinfo);
1091 
1092 		if (sinfo.num_objs > 0)
1093 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1094 				(sinfo.active_objs * s->size) / 1024,
1095 				(sinfo.num_objs * s->size) / 1024);
1096 	}
1097 	mutex_unlock(&slab_mutex);
1098 }
1099 
1100 #if defined(CONFIG_MEMCG_KMEM)
1101 int memcg_slab_show(struct seq_file *m, void *p)
1102 {
1103 	/*
1104 	 * Deprecated.
1105 	 * Please, take a look at tools/cgroup/slabinfo.py .
1106 	 */
1107 	return 0;
1108 }
1109 #endif
1110 
1111 /*
1112  * slabinfo_op - iterator that generates /proc/slabinfo
1113  *
1114  * Output layout:
1115  * cache-name
1116  * num-active-objs
1117  * total-objs
1118  * object size
1119  * num-active-slabs
1120  * total-slabs
1121  * num-pages-per-slab
1122  * + further values on SMP and with statistics enabled
1123  */
1124 static const struct seq_operations slabinfo_op = {
1125 	.start = slab_start,
1126 	.next = slab_next,
1127 	.stop = slab_stop,
1128 	.show = slab_show,
1129 };
1130 
1131 static int slabinfo_open(struct inode *inode, struct file *file)
1132 {
1133 	return seq_open(file, &slabinfo_op);
1134 }
1135 
1136 static const struct proc_ops slabinfo_proc_ops = {
1137 	.proc_flags	= PROC_ENTRY_PERMANENT,
1138 	.proc_open	= slabinfo_open,
1139 	.proc_read	= seq_read,
1140 	.proc_write	= slabinfo_write,
1141 	.proc_lseek	= seq_lseek,
1142 	.proc_release	= seq_release,
1143 };
1144 
1145 static int __init slab_proc_init(void)
1146 {
1147 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1148 	return 0;
1149 }
1150 module_init(slab_proc_init);
1151 
1152 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1153 
1154 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1155 					   gfp_t flags)
1156 {
1157 	void *ret;
1158 	size_t ks;
1159 
1160 	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
1161 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1162 		if (!kasan_check_byte(p))
1163 			return NULL;
1164 		ks = kfence_ksize(p) ?: __ksize(p);
1165 	} else
1166 		ks = 0;
1167 
1168 	/* If the object still fits, repoison it precisely. */
1169 	if (ks >= new_size) {
1170 		p = kasan_krealloc((void *)p, new_size, flags);
1171 		return (void *)p;
1172 	}
1173 
1174 	ret = kmalloc_track_caller(new_size, flags);
1175 	if (ret && p) {
1176 		/* Disable KASAN checks as the object's redzone is accessed. */
1177 		kasan_disable_current();
1178 		memcpy(ret, kasan_reset_tag(p), ks);
1179 		kasan_enable_current();
1180 	}
1181 
1182 	return ret;
1183 }
1184 
1185 /**
1186  * krealloc - reallocate memory. The contents will remain unchanged.
1187  * @p: object to reallocate memory for.
1188  * @new_size: how many bytes of memory are required.
1189  * @flags: the type of memory to allocate.
1190  *
1191  * The contents of the object pointed to are preserved up to the
1192  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1193  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1194  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1195  *
1196  * Return: pointer to the allocated memory or %NULL in case of error
1197  */
1198 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1199 {
1200 	void *ret;
1201 
1202 	if (unlikely(!new_size)) {
1203 		kfree(p);
1204 		return ZERO_SIZE_PTR;
1205 	}
1206 
1207 	ret = __do_krealloc(p, new_size, flags);
1208 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1209 		kfree(p);
1210 
1211 	return ret;
1212 }
1213 EXPORT_SYMBOL(krealloc);
1214 
1215 /**
1216  * kfree_sensitive - Clear sensitive information in memory before freeing
1217  * @p: object to free memory of
1218  *
1219  * The memory of the object @p points to is zeroed before freed.
1220  * If @p is %NULL, kfree_sensitive() does nothing.
1221  *
1222  * Note: this function zeroes the whole allocated buffer which can be a good
1223  * deal bigger than the requested buffer size passed to kmalloc(). So be
1224  * careful when using this function in performance sensitive code.
1225  */
1226 void kfree_sensitive(const void *p)
1227 {
1228 	size_t ks;
1229 	void *mem = (void *)p;
1230 
1231 	ks = ksize(mem);
1232 	if (ks)
1233 		memzero_explicit(mem, ks);
1234 	kfree(mem);
1235 }
1236 EXPORT_SYMBOL(kfree_sensitive);
1237 
1238 /**
1239  * ksize - get the actual amount of memory allocated for a given object
1240  * @objp: Pointer to the object
1241  *
1242  * kmalloc may internally round up allocations and return more memory
1243  * than requested. ksize() can be used to determine the actual amount of
1244  * memory allocated. The caller may use this additional memory, even though
1245  * a smaller amount of memory was initially specified with the kmalloc call.
1246  * The caller must guarantee that objp points to a valid object previously
1247  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1248  * must not be freed during the duration of the call.
1249  *
1250  * Return: size of the actual memory used by @objp in bytes
1251  */
1252 size_t ksize(const void *objp)
1253 {
1254 	size_t size;
1255 
1256 	/*
1257 	 * We need to first check that the pointer to the object is valid, and
1258 	 * only then unpoison the memory. The report printed from ksize() is
1259 	 * more useful, then when it's printed later when the behaviour could
1260 	 * be undefined due to a potential use-after-free or double-free.
1261 	 *
1262 	 * We use kasan_check_byte(), which is supported for the hardware
1263 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1264 	 *
1265 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1266 	 * ksize() writing to and potentially corrupting the memory region.
1267 	 *
1268 	 * We want to perform the check before __ksize(), to avoid potentially
1269 	 * crashing in __ksize() due to accessing invalid metadata.
1270 	 */
1271 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1272 		return 0;
1273 
1274 	size = kfence_ksize(objp) ?: __ksize(objp);
1275 	/*
1276 	 * We assume that ksize callers could use whole allocated area,
1277 	 * so we need to unpoison this area.
1278 	 */
1279 	kasan_unpoison_range(objp, size);
1280 	return size;
1281 }
1282 EXPORT_SYMBOL(ksize);
1283 
1284 /* Tracepoints definitions. */
1285 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1286 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1287 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1288 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1289 EXPORT_TRACEPOINT_SYMBOL(kfree);
1290 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1291 
1292 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1293 {
1294 	if (__should_failslab(s, gfpflags))
1295 		return -ENOMEM;
1296 	return 0;
1297 }
1298 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1299