xref: /openbmc/linux/mm/slab_common.c (revision c0e297dc)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25 
26 #include "slab.h"
27 
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32 
33 /*
34  * Set of flags that will prevent slab merging
35  */
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 		SLAB_FAILSLAB)
39 
40 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | SLAB_NOTRACK)
41 
42 /*
43  * Merge control. If this is set then no merging of slab caches will occur.
44  * (Could be removed. This was introduced to pacify the merge skeptics.)
45  */
46 static int slab_nomerge;
47 
48 static int __init setup_slab_nomerge(char *str)
49 {
50 	slab_nomerge = 1;
51 	return 1;
52 }
53 
54 #ifdef CONFIG_SLUB
55 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
56 #endif
57 
58 __setup("slab_nomerge", setup_slab_nomerge);
59 
60 /*
61  * Determine the size of a slab object
62  */
63 unsigned int kmem_cache_size(struct kmem_cache *s)
64 {
65 	return s->object_size;
66 }
67 EXPORT_SYMBOL(kmem_cache_size);
68 
69 #ifdef CONFIG_DEBUG_VM
70 static int kmem_cache_sanity_check(const char *name, size_t size)
71 {
72 	struct kmem_cache *s = NULL;
73 
74 	if (!name || in_interrupt() || size < sizeof(void *) ||
75 		size > KMALLOC_MAX_SIZE) {
76 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
77 		return -EINVAL;
78 	}
79 
80 	list_for_each_entry(s, &slab_caches, list) {
81 		char tmp;
82 		int res;
83 
84 		/*
85 		 * This happens when the module gets unloaded and doesn't
86 		 * destroy its slab cache and no-one else reuses the vmalloc
87 		 * area of the module.  Print a warning.
88 		 */
89 		res = probe_kernel_address(s->name, tmp);
90 		if (res) {
91 			pr_err("Slab cache with size %d has lost its name\n",
92 			       s->object_size);
93 			continue;
94 		}
95 	}
96 
97 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
98 	return 0;
99 }
100 #else
101 static inline int kmem_cache_sanity_check(const char *name, size_t size)
102 {
103 	return 0;
104 }
105 #endif
106 
107 #ifdef CONFIG_MEMCG_KMEM
108 void slab_init_memcg_params(struct kmem_cache *s)
109 {
110 	s->memcg_params.is_root_cache = true;
111 	INIT_LIST_HEAD(&s->memcg_params.list);
112 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
113 }
114 
115 static int init_memcg_params(struct kmem_cache *s,
116 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
117 {
118 	struct memcg_cache_array *arr;
119 
120 	if (memcg) {
121 		s->memcg_params.is_root_cache = false;
122 		s->memcg_params.memcg = memcg;
123 		s->memcg_params.root_cache = root_cache;
124 		return 0;
125 	}
126 
127 	slab_init_memcg_params(s);
128 
129 	if (!memcg_nr_cache_ids)
130 		return 0;
131 
132 	arr = kzalloc(sizeof(struct memcg_cache_array) +
133 		      memcg_nr_cache_ids * sizeof(void *),
134 		      GFP_KERNEL);
135 	if (!arr)
136 		return -ENOMEM;
137 
138 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
139 	return 0;
140 }
141 
142 static void destroy_memcg_params(struct kmem_cache *s)
143 {
144 	if (is_root_cache(s))
145 		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
146 }
147 
148 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
149 {
150 	struct memcg_cache_array *old, *new;
151 
152 	if (!is_root_cache(s))
153 		return 0;
154 
155 	new = kzalloc(sizeof(struct memcg_cache_array) +
156 		      new_array_size * sizeof(void *), GFP_KERNEL);
157 	if (!new)
158 		return -ENOMEM;
159 
160 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
161 					lockdep_is_held(&slab_mutex));
162 	if (old)
163 		memcpy(new->entries, old->entries,
164 		       memcg_nr_cache_ids * sizeof(void *));
165 
166 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
167 	if (old)
168 		kfree_rcu(old, rcu);
169 	return 0;
170 }
171 
172 int memcg_update_all_caches(int num_memcgs)
173 {
174 	struct kmem_cache *s;
175 	int ret = 0;
176 
177 	mutex_lock(&slab_mutex);
178 	list_for_each_entry(s, &slab_caches, list) {
179 		ret = update_memcg_params(s, num_memcgs);
180 		/*
181 		 * Instead of freeing the memory, we'll just leave the caches
182 		 * up to this point in an updated state.
183 		 */
184 		if (ret)
185 			break;
186 	}
187 	mutex_unlock(&slab_mutex);
188 	return ret;
189 }
190 #else
191 static inline int init_memcg_params(struct kmem_cache *s,
192 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
193 {
194 	return 0;
195 }
196 
197 static inline void destroy_memcg_params(struct kmem_cache *s)
198 {
199 }
200 #endif /* CONFIG_MEMCG_KMEM */
201 
202 /*
203  * Find a mergeable slab cache
204  */
205 int slab_unmergeable(struct kmem_cache *s)
206 {
207 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
208 		return 1;
209 
210 	if (!is_root_cache(s))
211 		return 1;
212 
213 	if (s->ctor)
214 		return 1;
215 
216 	/*
217 	 * We may have set a slab to be unmergeable during bootstrap.
218 	 */
219 	if (s->refcount < 0)
220 		return 1;
221 
222 	return 0;
223 }
224 
225 struct kmem_cache *find_mergeable(size_t size, size_t align,
226 		unsigned long flags, const char *name, void (*ctor)(void *))
227 {
228 	struct kmem_cache *s;
229 
230 	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
231 		return NULL;
232 
233 	if (ctor)
234 		return NULL;
235 
236 	size = ALIGN(size, sizeof(void *));
237 	align = calculate_alignment(flags, align, size);
238 	size = ALIGN(size, align);
239 	flags = kmem_cache_flags(size, flags, name, NULL);
240 
241 	list_for_each_entry_reverse(s, &slab_caches, list) {
242 		if (slab_unmergeable(s))
243 			continue;
244 
245 		if (size > s->size)
246 			continue;
247 
248 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
249 			continue;
250 		/*
251 		 * Check if alignment is compatible.
252 		 * Courtesy of Adrian Drzewiecki
253 		 */
254 		if ((s->size & ~(align - 1)) != s->size)
255 			continue;
256 
257 		if (s->size - size >= sizeof(void *))
258 			continue;
259 
260 		if (IS_ENABLED(CONFIG_SLAB) && align &&
261 			(align > s->align || s->align % align))
262 			continue;
263 
264 		return s;
265 	}
266 	return NULL;
267 }
268 
269 /*
270  * Figure out what the alignment of the objects will be given a set of
271  * flags, a user specified alignment and the size of the objects.
272  */
273 unsigned long calculate_alignment(unsigned long flags,
274 		unsigned long align, unsigned long size)
275 {
276 	/*
277 	 * If the user wants hardware cache aligned objects then follow that
278 	 * suggestion if the object is sufficiently large.
279 	 *
280 	 * The hardware cache alignment cannot override the specified
281 	 * alignment though. If that is greater then use it.
282 	 */
283 	if (flags & SLAB_HWCACHE_ALIGN) {
284 		unsigned long ralign = cache_line_size();
285 		while (size <= ralign / 2)
286 			ralign /= 2;
287 		align = max(align, ralign);
288 	}
289 
290 	if (align < ARCH_SLAB_MINALIGN)
291 		align = ARCH_SLAB_MINALIGN;
292 
293 	return ALIGN(align, sizeof(void *));
294 }
295 
296 static struct kmem_cache *
297 do_kmem_cache_create(const char *name, size_t object_size, size_t size,
298 		     size_t align, unsigned long flags, void (*ctor)(void *),
299 		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
300 {
301 	struct kmem_cache *s;
302 	int err;
303 
304 	err = -ENOMEM;
305 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
306 	if (!s)
307 		goto out;
308 
309 	s->name = name;
310 	s->object_size = object_size;
311 	s->size = size;
312 	s->align = align;
313 	s->ctor = ctor;
314 
315 	err = init_memcg_params(s, memcg, root_cache);
316 	if (err)
317 		goto out_free_cache;
318 
319 	err = __kmem_cache_create(s, flags);
320 	if (err)
321 		goto out_free_cache;
322 
323 	s->refcount = 1;
324 	list_add(&s->list, &slab_caches);
325 out:
326 	if (err)
327 		return ERR_PTR(err);
328 	return s;
329 
330 out_free_cache:
331 	destroy_memcg_params(s);
332 	kmem_cache_free(kmem_cache, s);
333 	goto out;
334 }
335 
336 /*
337  * kmem_cache_create - Create a cache.
338  * @name: A string which is used in /proc/slabinfo to identify this cache.
339  * @size: The size of objects to be created in this cache.
340  * @align: The required alignment for the objects.
341  * @flags: SLAB flags
342  * @ctor: A constructor for the objects.
343  *
344  * Returns a ptr to the cache on success, NULL on failure.
345  * Cannot be called within a interrupt, but can be interrupted.
346  * The @ctor is run when new pages are allocated by the cache.
347  *
348  * The flags are
349  *
350  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
351  * to catch references to uninitialised memory.
352  *
353  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
354  * for buffer overruns.
355  *
356  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
357  * cacheline.  This can be beneficial if you're counting cycles as closely
358  * as davem.
359  */
360 struct kmem_cache *
361 kmem_cache_create(const char *name, size_t size, size_t align,
362 		  unsigned long flags, void (*ctor)(void *))
363 {
364 	struct kmem_cache *s;
365 	const char *cache_name;
366 	int err;
367 
368 	get_online_cpus();
369 	get_online_mems();
370 	memcg_get_cache_ids();
371 
372 	mutex_lock(&slab_mutex);
373 
374 	err = kmem_cache_sanity_check(name, size);
375 	if (err) {
376 		s = NULL;	/* suppress uninit var warning */
377 		goto out_unlock;
378 	}
379 
380 	/*
381 	 * Some allocators will constraint the set of valid flags to a subset
382 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
383 	 * case, and we'll just provide them with a sanitized version of the
384 	 * passed flags.
385 	 */
386 	flags &= CACHE_CREATE_MASK;
387 
388 	s = __kmem_cache_alias(name, size, align, flags, ctor);
389 	if (s)
390 		goto out_unlock;
391 
392 	cache_name = kstrdup_const(name, GFP_KERNEL);
393 	if (!cache_name) {
394 		err = -ENOMEM;
395 		goto out_unlock;
396 	}
397 
398 	s = do_kmem_cache_create(cache_name, size, size,
399 				 calculate_alignment(flags, align, size),
400 				 flags, ctor, NULL, NULL);
401 	if (IS_ERR(s)) {
402 		err = PTR_ERR(s);
403 		kfree_const(cache_name);
404 	}
405 
406 out_unlock:
407 	mutex_unlock(&slab_mutex);
408 
409 	memcg_put_cache_ids();
410 	put_online_mems();
411 	put_online_cpus();
412 
413 	if (err) {
414 		if (flags & SLAB_PANIC)
415 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
416 				name, err);
417 		else {
418 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
419 				name, err);
420 			dump_stack();
421 		}
422 		return NULL;
423 	}
424 	return s;
425 }
426 EXPORT_SYMBOL(kmem_cache_create);
427 
428 static int do_kmem_cache_shutdown(struct kmem_cache *s,
429 		struct list_head *release, bool *need_rcu_barrier)
430 {
431 	if (__kmem_cache_shutdown(s) != 0) {
432 		printk(KERN_ERR "kmem_cache_destroy %s: "
433 		       "Slab cache still has objects\n", s->name);
434 		dump_stack();
435 		return -EBUSY;
436 	}
437 
438 	if (s->flags & SLAB_DESTROY_BY_RCU)
439 		*need_rcu_barrier = true;
440 
441 #ifdef CONFIG_MEMCG_KMEM
442 	if (!is_root_cache(s))
443 		list_del(&s->memcg_params.list);
444 #endif
445 	list_move(&s->list, release);
446 	return 0;
447 }
448 
449 static void do_kmem_cache_release(struct list_head *release,
450 				  bool need_rcu_barrier)
451 {
452 	struct kmem_cache *s, *s2;
453 
454 	if (need_rcu_barrier)
455 		rcu_barrier();
456 
457 	list_for_each_entry_safe(s, s2, release, list) {
458 #ifdef SLAB_SUPPORTS_SYSFS
459 		sysfs_slab_remove(s);
460 #else
461 		slab_kmem_cache_release(s);
462 #endif
463 	}
464 }
465 
466 #ifdef CONFIG_MEMCG_KMEM
467 /*
468  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
469  * @memcg: The memory cgroup the new cache is for.
470  * @root_cache: The parent of the new cache.
471  *
472  * This function attempts to create a kmem cache that will serve allocation
473  * requests going from @memcg to @root_cache. The new cache inherits properties
474  * from its parent.
475  */
476 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
477 			     struct kmem_cache *root_cache)
478 {
479 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
480 	struct cgroup_subsys_state *css = mem_cgroup_css(memcg);
481 	struct memcg_cache_array *arr;
482 	struct kmem_cache *s = NULL;
483 	char *cache_name;
484 	int idx;
485 
486 	get_online_cpus();
487 	get_online_mems();
488 
489 	mutex_lock(&slab_mutex);
490 
491 	/*
492 	 * The memory cgroup could have been deactivated while the cache
493 	 * creation work was pending.
494 	 */
495 	if (!memcg_kmem_is_active(memcg))
496 		goto out_unlock;
497 
498 	idx = memcg_cache_id(memcg);
499 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
500 					lockdep_is_held(&slab_mutex));
501 
502 	/*
503 	 * Since per-memcg caches are created asynchronously on first
504 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
505 	 * create the same cache, but only one of them may succeed.
506 	 */
507 	if (arr->entries[idx])
508 		goto out_unlock;
509 
510 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
511 	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
512 			       css->id, memcg_name_buf);
513 	if (!cache_name)
514 		goto out_unlock;
515 
516 	s = do_kmem_cache_create(cache_name, root_cache->object_size,
517 				 root_cache->size, root_cache->align,
518 				 root_cache->flags, root_cache->ctor,
519 				 memcg, root_cache);
520 	/*
521 	 * If we could not create a memcg cache, do not complain, because
522 	 * that's not critical at all as we can always proceed with the root
523 	 * cache.
524 	 */
525 	if (IS_ERR(s)) {
526 		kfree(cache_name);
527 		goto out_unlock;
528 	}
529 
530 	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
531 
532 	/*
533 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
534 	 * barrier here to ensure nobody will see the kmem_cache partially
535 	 * initialized.
536 	 */
537 	smp_wmb();
538 	arr->entries[idx] = s;
539 
540 out_unlock:
541 	mutex_unlock(&slab_mutex);
542 
543 	put_online_mems();
544 	put_online_cpus();
545 }
546 
547 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
548 {
549 	int idx;
550 	struct memcg_cache_array *arr;
551 	struct kmem_cache *s, *c;
552 
553 	idx = memcg_cache_id(memcg);
554 
555 	get_online_cpus();
556 	get_online_mems();
557 
558 	mutex_lock(&slab_mutex);
559 	list_for_each_entry(s, &slab_caches, list) {
560 		if (!is_root_cache(s))
561 			continue;
562 
563 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
564 						lockdep_is_held(&slab_mutex));
565 		c = arr->entries[idx];
566 		if (!c)
567 			continue;
568 
569 		__kmem_cache_shrink(c, true);
570 		arr->entries[idx] = NULL;
571 	}
572 	mutex_unlock(&slab_mutex);
573 
574 	put_online_mems();
575 	put_online_cpus();
576 }
577 
578 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
579 {
580 	LIST_HEAD(release);
581 	bool need_rcu_barrier = false;
582 	struct kmem_cache *s, *s2;
583 
584 	get_online_cpus();
585 	get_online_mems();
586 
587 	mutex_lock(&slab_mutex);
588 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
589 		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
590 			continue;
591 		/*
592 		 * The cgroup is about to be freed and therefore has no charges
593 		 * left. Hence, all its caches must be empty by now.
594 		 */
595 		BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier));
596 	}
597 	mutex_unlock(&slab_mutex);
598 
599 	put_online_mems();
600 	put_online_cpus();
601 
602 	do_kmem_cache_release(&release, need_rcu_barrier);
603 }
604 #endif /* CONFIG_MEMCG_KMEM */
605 
606 void slab_kmem_cache_release(struct kmem_cache *s)
607 {
608 	destroy_memcg_params(s);
609 	kfree_const(s->name);
610 	kmem_cache_free(kmem_cache, s);
611 }
612 
613 void kmem_cache_destroy(struct kmem_cache *s)
614 {
615 	struct kmem_cache *c, *c2;
616 	LIST_HEAD(release);
617 	bool need_rcu_barrier = false;
618 	bool busy = false;
619 
620 	BUG_ON(!is_root_cache(s));
621 
622 	get_online_cpus();
623 	get_online_mems();
624 
625 	mutex_lock(&slab_mutex);
626 
627 	s->refcount--;
628 	if (s->refcount)
629 		goto out_unlock;
630 
631 	for_each_memcg_cache_safe(c, c2, s) {
632 		if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
633 			busy = true;
634 	}
635 
636 	if (!busy)
637 		do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
638 
639 out_unlock:
640 	mutex_unlock(&slab_mutex);
641 
642 	put_online_mems();
643 	put_online_cpus();
644 
645 	do_kmem_cache_release(&release, need_rcu_barrier);
646 }
647 EXPORT_SYMBOL(kmem_cache_destroy);
648 
649 /**
650  * kmem_cache_shrink - Shrink a cache.
651  * @cachep: The cache to shrink.
652  *
653  * Releases as many slabs as possible for a cache.
654  * To help debugging, a zero exit status indicates all slabs were released.
655  */
656 int kmem_cache_shrink(struct kmem_cache *cachep)
657 {
658 	int ret;
659 
660 	get_online_cpus();
661 	get_online_mems();
662 	ret = __kmem_cache_shrink(cachep, false);
663 	put_online_mems();
664 	put_online_cpus();
665 	return ret;
666 }
667 EXPORT_SYMBOL(kmem_cache_shrink);
668 
669 int slab_is_available(void)
670 {
671 	return slab_state >= UP;
672 }
673 
674 #ifndef CONFIG_SLOB
675 /* Create a cache during boot when no slab services are available yet */
676 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
677 		unsigned long flags)
678 {
679 	int err;
680 
681 	s->name = name;
682 	s->size = s->object_size = size;
683 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
684 
685 	slab_init_memcg_params(s);
686 
687 	err = __kmem_cache_create(s, flags);
688 
689 	if (err)
690 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
691 					name, size, err);
692 
693 	s->refcount = -1;	/* Exempt from merging for now */
694 }
695 
696 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
697 				unsigned long flags)
698 {
699 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
700 
701 	if (!s)
702 		panic("Out of memory when creating slab %s\n", name);
703 
704 	create_boot_cache(s, name, size, flags);
705 	list_add(&s->list, &slab_caches);
706 	s->refcount = 1;
707 	return s;
708 }
709 
710 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
711 EXPORT_SYMBOL(kmalloc_caches);
712 
713 #ifdef CONFIG_ZONE_DMA
714 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
715 EXPORT_SYMBOL(kmalloc_dma_caches);
716 #endif
717 
718 /*
719  * Conversion table for small slabs sizes / 8 to the index in the
720  * kmalloc array. This is necessary for slabs < 192 since we have non power
721  * of two cache sizes there. The size of larger slabs can be determined using
722  * fls.
723  */
724 static s8 size_index[24] = {
725 	3,	/* 8 */
726 	4,	/* 16 */
727 	5,	/* 24 */
728 	5,	/* 32 */
729 	6,	/* 40 */
730 	6,	/* 48 */
731 	6,	/* 56 */
732 	6,	/* 64 */
733 	1,	/* 72 */
734 	1,	/* 80 */
735 	1,	/* 88 */
736 	1,	/* 96 */
737 	7,	/* 104 */
738 	7,	/* 112 */
739 	7,	/* 120 */
740 	7,	/* 128 */
741 	2,	/* 136 */
742 	2,	/* 144 */
743 	2,	/* 152 */
744 	2,	/* 160 */
745 	2,	/* 168 */
746 	2,	/* 176 */
747 	2,	/* 184 */
748 	2	/* 192 */
749 };
750 
751 static inline int size_index_elem(size_t bytes)
752 {
753 	return (bytes - 1) / 8;
754 }
755 
756 /*
757  * Find the kmem_cache structure that serves a given size of
758  * allocation
759  */
760 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
761 {
762 	int index;
763 
764 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
765 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
766 		return NULL;
767 	}
768 
769 	if (size <= 192) {
770 		if (!size)
771 			return ZERO_SIZE_PTR;
772 
773 		index = size_index[size_index_elem(size)];
774 	} else
775 		index = fls(size - 1);
776 
777 #ifdef CONFIG_ZONE_DMA
778 	if (unlikely((flags & GFP_DMA)))
779 		return kmalloc_dma_caches[index];
780 
781 #endif
782 	return kmalloc_caches[index];
783 }
784 
785 /*
786  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
787  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
788  * kmalloc-67108864.
789  */
790 static struct {
791 	const char *name;
792 	unsigned long size;
793 } const kmalloc_info[] __initconst = {
794 	{NULL,                      0},		{"kmalloc-96",             96},
795 	{"kmalloc-192",           192},		{"kmalloc-8",               8},
796 	{"kmalloc-16",             16},		{"kmalloc-32",             32},
797 	{"kmalloc-64",             64},		{"kmalloc-128",           128},
798 	{"kmalloc-256",           256},		{"kmalloc-512",           512},
799 	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
800 	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
801 	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
802 	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
803 	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
804 	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
805 	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
806 	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
807 	{"kmalloc-67108864", 67108864}
808 };
809 
810 /*
811  * Patch up the size_index table if we have strange large alignment
812  * requirements for the kmalloc array. This is only the case for
813  * MIPS it seems. The standard arches will not generate any code here.
814  *
815  * Largest permitted alignment is 256 bytes due to the way we
816  * handle the index determination for the smaller caches.
817  *
818  * Make sure that nothing crazy happens if someone starts tinkering
819  * around with ARCH_KMALLOC_MINALIGN
820  */
821 void __init setup_kmalloc_cache_index_table(void)
822 {
823 	int i;
824 
825 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
826 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
827 
828 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
829 		int elem = size_index_elem(i);
830 
831 		if (elem >= ARRAY_SIZE(size_index))
832 			break;
833 		size_index[elem] = KMALLOC_SHIFT_LOW;
834 	}
835 
836 	if (KMALLOC_MIN_SIZE >= 64) {
837 		/*
838 		 * The 96 byte size cache is not used if the alignment
839 		 * is 64 byte.
840 		 */
841 		for (i = 64 + 8; i <= 96; i += 8)
842 			size_index[size_index_elem(i)] = 7;
843 
844 	}
845 
846 	if (KMALLOC_MIN_SIZE >= 128) {
847 		/*
848 		 * The 192 byte sized cache is not used if the alignment
849 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
850 		 * instead.
851 		 */
852 		for (i = 128 + 8; i <= 192; i += 8)
853 			size_index[size_index_elem(i)] = 8;
854 	}
855 }
856 
857 static void __init new_kmalloc_cache(int idx, unsigned long flags)
858 {
859 	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
860 					kmalloc_info[idx].size, flags);
861 }
862 
863 /*
864  * Create the kmalloc array. Some of the regular kmalloc arrays
865  * may already have been created because they were needed to
866  * enable allocations for slab creation.
867  */
868 void __init create_kmalloc_caches(unsigned long flags)
869 {
870 	int i;
871 
872 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
873 		if (!kmalloc_caches[i])
874 			new_kmalloc_cache(i, flags);
875 
876 		/*
877 		 * Caches that are not of the two-to-the-power-of size.
878 		 * These have to be created immediately after the
879 		 * earlier power of two caches
880 		 */
881 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
882 			new_kmalloc_cache(1, flags);
883 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
884 			new_kmalloc_cache(2, flags);
885 	}
886 
887 	/* Kmalloc array is now usable */
888 	slab_state = UP;
889 
890 #ifdef CONFIG_ZONE_DMA
891 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
892 		struct kmem_cache *s = kmalloc_caches[i];
893 
894 		if (s) {
895 			int size = kmalloc_size(i);
896 			char *n = kasprintf(GFP_NOWAIT,
897 				 "dma-kmalloc-%d", size);
898 
899 			BUG_ON(!n);
900 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
901 				size, SLAB_CACHE_DMA | flags);
902 		}
903 	}
904 #endif
905 }
906 #endif /* !CONFIG_SLOB */
907 
908 /*
909  * To avoid unnecessary overhead, we pass through large allocation requests
910  * directly to the page allocator. We use __GFP_COMP, because we will need to
911  * know the allocation order to free the pages properly in kfree.
912  */
913 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
914 {
915 	void *ret;
916 	struct page *page;
917 
918 	flags |= __GFP_COMP;
919 	page = alloc_kmem_pages(flags, order);
920 	ret = page ? page_address(page) : NULL;
921 	kmemleak_alloc(ret, size, 1, flags);
922 	kasan_kmalloc_large(ret, size);
923 	return ret;
924 }
925 EXPORT_SYMBOL(kmalloc_order);
926 
927 #ifdef CONFIG_TRACING
928 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
929 {
930 	void *ret = kmalloc_order(size, flags, order);
931 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
932 	return ret;
933 }
934 EXPORT_SYMBOL(kmalloc_order_trace);
935 #endif
936 
937 #ifdef CONFIG_SLABINFO
938 
939 #ifdef CONFIG_SLAB
940 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
941 #else
942 #define SLABINFO_RIGHTS S_IRUSR
943 #endif
944 
945 static void print_slabinfo_header(struct seq_file *m)
946 {
947 	/*
948 	 * Output format version, so at least we can change it
949 	 * without _too_ many complaints.
950 	 */
951 #ifdef CONFIG_DEBUG_SLAB
952 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
953 #else
954 	seq_puts(m, "slabinfo - version: 2.1\n");
955 #endif
956 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
957 		 "<objperslab> <pagesperslab>");
958 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
959 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
960 #ifdef CONFIG_DEBUG_SLAB
961 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
962 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
963 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
964 #endif
965 	seq_putc(m, '\n');
966 }
967 
968 void *slab_start(struct seq_file *m, loff_t *pos)
969 {
970 	mutex_lock(&slab_mutex);
971 	return seq_list_start(&slab_caches, *pos);
972 }
973 
974 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
975 {
976 	return seq_list_next(p, &slab_caches, pos);
977 }
978 
979 void slab_stop(struct seq_file *m, void *p)
980 {
981 	mutex_unlock(&slab_mutex);
982 }
983 
984 static void
985 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
986 {
987 	struct kmem_cache *c;
988 	struct slabinfo sinfo;
989 
990 	if (!is_root_cache(s))
991 		return;
992 
993 	for_each_memcg_cache(c, s) {
994 		memset(&sinfo, 0, sizeof(sinfo));
995 		get_slabinfo(c, &sinfo);
996 
997 		info->active_slabs += sinfo.active_slabs;
998 		info->num_slabs += sinfo.num_slabs;
999 		info->shared_avail += sinfo.shared_avail;
1000 		info->active_objs += sinfo.active_objs;
1001 		info->num_objs += sinfo.num_objs;
1002 	}
1003 }
1004 
1005 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1006 {
1007 	struct slabinfo sinfo;
1008 
1009 	memset(&sinfo, 0, sizeof(sinfo));
1010 	get_slabinfo(s, &sinfo);
1011 
1012 	memcg_accumulate_slabinfo(s, &sinfo);
1013 
1014 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1015 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1016 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1017 
1018 	seq_printf(m, " : tunables %4u %4u %4u",
1019 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1020 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1021 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1022 	slabinfo_show_stats(m, s);
1023 	seq_putc(m, '\n');
1024 }
1025 
1026 static int slab_show(struct seq_file *m, void *p)
1027 {
1028 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1029 
1030 	if (p == slab_caches.next)
1031 		print_slabinfo_header(m);
1032 	if (is_root_cache(s))
1033 		cache_show(s, m);
1034 	return 0;
1035 }
1036 
1037 #ifdef CONFIG_MEMCG_KMEM
1038 int memcg_slab_show(struct seq_file *m, void *p)
1039 {
1040 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1041 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1042 
1043 	if (p == slab_caches.next)
1044 		print_slabinfo_header(m);
1045 	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1046 		cache_show(s, m);
1047 	return 0;
1048 }
1049 #endif
1050 
1051 /*
1052  * slabinfo_op - iterator that generates /proc/slabinfo
1053  *
1054  * Output layout:
1055  * cache-name
1056  * num-active-objs
1057  * total-objs
1058  * object size
1059  * num-active-slabs
1060  * total-slabs
1061  * num-pages-per-slab
1062  * + further values on SMP and with statistics enabled
1063  */
1064 static const struct seq_operations slabinfo_op = {
1065 	.start = slab_start,
1066 	.next = slab_next,
1067 	.stop = slab_stop,
1068 	.show = slab_show,
1069 };
1070 
1071 static int slabinfo_open(struct inode *inode, struct file *file)
1072 {
1073 	return seq_open(file, &slabinfo_op);
1074 }
1075 
1076 static const struct file_operations proc_slabinfo_operations = {
1077 	.open		= slabinfo_open,
1078 	.read		= seq_read,
1079 	.write          = slabinfo_write,
1080 	.llseek		= seq_lseek,
1081 	.release	= seq_release,
1082 };
1083 
1084 static int __init slab_proc_init(void)
1085 {
1086 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1087 						&proc_slabinfo_operations);
1088 	return 0;
1089 }
1090 module_init(slab_proc_init);
1091 #endif /* CONFIG_SLABINFO */
1092 
1093 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1094 					   gfp_t flags)
1095 {
1096 	void *ret;
1097 	size_t ks = 0;
1098 
1099 	if (p)
1100 		ks = ksize(p);
1101 
1102 	if (ks >= new_size) {
1103 		kasan_krealloc((void *)p, new_size);
1104 		return (void *)p;
1105 	}
1106 
1107 	ret = kmalloc_track_caller(new_size, flags);
1108 	if (ret && p)
1109 		memcpy(ret, p, ks);
1110 
1111 	return ret;
1112 }
1113 
1114 /**
1115  * __krealloc - like krealloc() but don't free @p.
1116  * @p: object to reallocate memory for.
1117  * @new_size: how many bytes of memory are required.
1118  * @flags: the type of memory to allocate.
1119  *
1120  * This function is like krealloc() except it never frees the originally
1121  * allocated buffer. Use this if you don't want to free the buffer immediately
1122  * like, for example, with RCU.
1123  */
1124 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1125 {
1126 	if (unlikely(!new_size))
1127 		return ZERO_SIZE_PTR;
1128 
1129 	return __do_krealloc(p, new_size, flags);
1130 
1131 }
1132 EXPORT_SYMBOL(__krealloc);
1133 
1134 /**
1135  * krealloc - reallocate memory. The contents will remain unchanged.
1136  * @p: object to reallocate memory for.
1137  * @new_size: how many bytes of memory are required.
1138  * @flags: the type of memory to allocate.
1139  *
1140  * The contents of the object pointed to are preserved up to the
1141  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1142  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1143  * %NULL pointer, the object pointed to is freed.
1144  */
1145 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1146 {
1147 	void *ret;
1148 
1149 	if (unlikely(!new_size)) {
1150 		kfree(p);
1151 		return ZERO_SIZE_PTR;
1152 	}
1153 
1154 	ret = __do_krealloc(p, new_size, flags);
1155 	if (ret && p != ret)
1156 		kfree(p);
1157 
1158 	return ret;
1159 }
1160 EXPORT_SYMBOL(krealloc);
1161 
1162 /**
1163  * kzfree - like kfree but zero memory
1164  * @p: object to free memory of
1165  *
1166  * The memory of the object @p points to is zeroed before freed.
1167  * If @p is %NULL, kzfree() does nothing.
1168  *
1169  * Note: this function zeroes the whole allocated buffer which can be a good
1170  * deal bigger than the requested buffer size passed to kmalloc(). So be
1171  * careful when using this function in performance sensitive code.
1172  */
1173 void kzfree(const void *p)
1174 {
1175 	size_t ks;
1176 	void *mem = (void *)p;
1177 
1178 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1179 		return;
1180 	ks = ksize(mem);
1181 	memset(mem, 0, ks);
1182 	kfree(mem);
1183 }
1184 EXPORT_SYMBOL(kzfree);
1185 
1186 /* Tracepoints definitions. */
1187 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1188 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1189 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1190 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1191 EXPORT_TRACEPOINT_SYMBOL(kfree);
1192 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1193