xref: /openbmc/linux/mm/slab_common.c (revision b35565bb)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25 
26 #include "slab.h"
27 
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32 
33 static LIST_HEAD(slab_caches_to_rcu_destroy);
34 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
35 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
36 		    slab_caches_to_rcu_destroy_workfn);
37 
38 /*
39  * Set of flags that will prevent slab merging
40  */
41 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
42 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
43 		SLAB_FAILSLAB | SLAB_KASAN)
44 
45 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
46 			 SLAB_NOTRACK | SLAB_ACCOUNT)
47 
48 /*
49  * Merge control. If this is set then no merging of slab caches will occur.
50  */
51 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
52 
53 static int __init setup_slab_nomerge(char *str)
54 {
55 	slab_nomerge = true;
56 	return 1;
57 }
58 
59 #ifdef CONFIG_SLUB
60 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
61 #endif
62 
63 __setup("slab_nomerge", setup_slab_nomerge);
64 
65 /*
66  * Determine the size of a slab object
67  */
68 unsigned int kmem_cache_size(struct kmem_cache *s)
69 {
70 	return s->object_size;
71 }
72 EXPORT_SYMBOL(kmem_cache_size);
73 
74 #ifdef CONFIG_DEBUG_VM
75 static int kmem_cache_sanity_check(const char *name, size_t size)
76 {
77 	struct kmem_cache *s = NULL;
78 
79 	if (!name || in_interrupt() || size < sizeof(void *) ||
80 		size > KMALLOC_MAX_SIZE) {
81 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
82 		return -EINVAL;
83 	}
84 
85 	list_for_each_entry(s, &slab_caches, list) {
86 		char tmp;
87 		int res;
88 
89 		/*
90 		 * This happens when the module gets unloaded and doesn't
91 		 * destroy its slab cache and no-one else reuses the vmalloc
92 		 * area of the module.  Print a warning.
93 		 */
94 		res = probe_kernel_address(s->name, tmp);
95 		if (res) {
96 			pr_err("Slab cache with size %d has lost its name\n",
97 			       s->object_size);
98 			continue;
99 		}
100 	}
101 
102 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
103 	return 0;
104 }
105 #else
106 static inline int kmem_cache_sanity_check(const char *name, size_t size)
107 {
108 	return 0;
109 }
110 #endif
111 
112 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
113 {
114 	size_t i;
115 
116 	for (i = 0; i < nr; i++) {
117 		if (s)
118 			kmem_cache_free(s, p[i]);
119 		else
120 			kfree(p[i]);
121 	}
122 }
123 
124 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
125 								void **p)
126 {
127 	size_t i;
128 
129 	for (i = 0; i < nr; i++) {
130 		void *x = p[i] = kmem_cache_alloc(s, flags);
131 		if (!x) {
132 			__kmem_cache_free_bulk(s, i, p);
133 			return 0;
134 		}
135 	}
136 	return i;
137 }
138 
139 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
140 
141 LIST_HEAD(slab_root_caches);
142 
143 void slab_init_memcg_params(struct kmem_cache *s)
144 {
145 	s->memcg_params.root_cache = NULL;
146 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
147 	INIT_LIST_HEAD(&s->memcg_params.children);
148 }
149 
150 static int init_memcg_params(struct kmem_cache *s,
151 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
152 {
153 	struct memcg_cache_array *arr;
154 
155 	if (root_cache) {
156 		s->memcg_params.root_cache = root_cache;
157 		s->memcg_params.memcg = memcg;
158 		INIT_LIST_HEAD(&s->memcg_params.children_node);
159 		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
160 		return 0;
161 	}
162 
163 	slab_init_memcg_params(s);
164 
165 	if (!memcg_nr_cache_ids)
166 		return 0;
167 
168 	arr = kvzalloc(sizeof(struct memcg_cache_array) +
169 		       memcg_nr_cache_ids * sizeof(void *),
170 		       GFP_KERNEL);
171 	if (!arr)
172 		return -ENOMEM;
173 
174 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
175 	return 0;
176 }
177 
178 static void destroy_memcg_params(struct kmem_cache *s)
179 {
180 	if (is_root_cache(s))
181 		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
182 }
183 
184 static void free_memcg_params(struct rcu_head *rcu)
185 {
186 	struct memcg_cache_array *old;
187 
188 	old = container_of(rcu, struct memcg_cache_array, rcu);
189 	kvfree(old);
190 }
191 
192 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
193 {
194 	struct memcg_cache_array *old, *new;
195 
196 	new = kvzalloc(sizeof(struct memcg_cache_array) +
197 		       new_array_size * sizeof(void *), GFP_KERNEL);
198 	if (!new)
199 		return -ENOMEM;
200 
201 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
202 					lockdep_is_held(&slab_mutex));
203 	if (old)
204 		memcpy(new->entries, old->entries,
205 		       memcg_nr_cache_ids * sizeof(void *));
206 
207 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
208 	if (old)
209 		call_rcu(&old->rcu, free_memcg_params);
210 	return 0;
211 }
212 
213 int memcg_update_all_caches(int num_memcgs)
214 {
215 	struct kmem_cache *s;
216 	int ret = 0;
217 
218 	mutex_lock(&slab_mutex);
219 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
220 		ret = update_memcg_params(s, num_memcgs);
221 		/*
222 		 * Instead of freeing the memory, we'll just leave the caches
223 		 * up to this point in an updated state.
224 		 */
225 		if (ret)
226 			break;
227 	}
228 	mutex_unlock(&slab_mutex);
229 	return ret;
230 }
231 
232 void memcg_link_cache(struct kmem_cache *s)
233 {
234 	if (is_root_cache(s)) {
235 		list_add(&s->root_caches_node, &slab_root_caches);
236 	} else {
237 		list_add(&s->memcg_params.children_node,
238 			 &s->memcg_params.root_cache->memcg_params.children);
239 		list_add(&s->memcg_params.kmem_caches_node,
240 			 &s->memcg_params.memcg->kmem_caches);
241 	}
242 }
243 
244 static void memcg_unlink_cache(struct kmem_cache *s)
245 {
246 	if (is_root_cache(s)) {
247 		list_del(&s->root_caches_node);
248 	} else {
249 		list_del(&s->memcg_params.children_node);
250 		list_del(&s->memcg_params.kmem_caches_node);
251 	}
252 }
253 #else
254 static inline int init_memcg_params(struct kmem_cache *s,
255 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
256 {
257 	return 0;
258 }
259 
260 static inline void destroy_memcg_params(struct kmem_cache *s)
261 {
262 }
263 
264 static inline void memcg_unlink_cache(struct kmem_cache *s)
265 {
266 }
267 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
268 
269 /*
270  * Find a mergeable slab cache
271  */
272 int slab_unmergeable(struct kmem_cache *s)
273 {
274 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
275 		return 1;
276 
277 	if (!is_root_cache(s))
278 		return 1;
279 
280 	if (s->ctor)
281 		return 1;
282 
283 	/*
284 	 * We may have set a slab to be unmergeable during bootstrap.
285 	 */
286 	if (s->refcount < 0)
287 		return 1;
288 
289 	return 0;
290 }
291 
292 struct kmem_cache *find_mergeable(size_t size, size_t align,
293 		unsigned long flags, const char *name, void (*ctor)(void *))
294 {
295 	struct kmem_cache *s;
296 
297 	if (slab_nomerge)
298 		return NULL;
299 
300 	if (ctor)
301 		return NULL;
302 
303 	size = ALIGN(size, sizeof(void *));
304 	align = calculate_alignment(flags, align, size);
305 	size = ALIGN(size, align);
306 	flags = kmem_cache_flags(size, flags, name, NULL);
307 
308 	if (flags & SLAB_NEVER_MERGE)
309 		return NULL;
310 
311 	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
312 		if (slab_unmergeable(s))
313 			continue;
314 
315 		if (size > s->size)
316 			continue;
317 
318 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
319 			continue;
320 		/*
321 		 * Check if alignment is compatible.
322 		 * Courtesy of Adrian Drzewiecki
323 		 */
324 		if ((s->size & ~(align - 1)) != s->size)
325 			continue;
326 
327 		if (s->size - size >= sizeof(void *))
328 			continue;
329 
330 		if (IS_ENABLED(CONFIG_SLAB) && align &&
331 			(align > s->align || s->align % align))
332 			continue;
333 
334 		return s;
335 	}
336 	return NULL;
337 }
338 
339 /*
340  * Figure out what the alignment of the objects will be given a set of
341  * flags, a user specified alignment and the size of the objects.
342  */
343 unsigned long calculate_alignment(unsigned long flags,
344 		unsigned long align, unsigned long size)
345 {
346 	/*
347 	 * If the user wants hardware cache aligned objects then follow that
348 	 * suggestion if the object is sufficiently large.
349 	 *
350 	 * The hardware cache alignment cannot override the specified
351 	 * alignment though. If that is greater then use it.
352 	 */
353 	if (flags & SLAB_HWCACHE_ALIGN) {
354 		unsigned long ralign = cache_line_size();
355 		while (size <= ralign / 2)
356 			ralign /= 2;
357 		align = max(align, ralign);
358 	}
359 
360 	if (align < ARCH_SLAB_MINALIGN)
361 		align = ARCH_SLAB_MINALIGN;
362 
363 	return ALIGN(align, sizeof(void *));
364 }
365 
366 static struct kmem_cache *create_cache(const char *name,
367 		size_t object_size, size_t size, size_t align,
368 		unsigned long flags, void (*ctor)(void *),
369 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
370 {
371 	struct kmem_cache *s;
372 	int err;
373 
374 	err = -ENOMEM;
375 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
376 	if (!s)
377 		goto out;
378 
379 	s->name = name;
380 	s->object_size = object_size;
381 	s->size = size;
382 	s->align = align;
383 	s->ctor = ctor;
384 
385 	err = init_memcg_params(s, memcg, root_cache);
386 	if (err)
387 		goto out_free_cache;
388 
389 	err = __kmem_cache_create(s, flags);
390 	if (err)
391 		goto out_free_cache;
392 
393 	s->refcount = 1;
394 	list_add(&s->list, &slab_caches);
395 	memcg_link_cache(s);
396 out:
397 	if (err)
398 		return ERR_PTR(err);
399 	return s;
400 
401 out_free_cache:
402 	destroy_memcg_params(s);
403 	kmem_cache_free(kmem_cache, s);
404 	goto out;
405 }
406 
407 /*
408  * kmem_cache_create - Create a cache.
409  * @name: A string which is used in /proc/slabinfo to identify this cache.
410  * @size: The size of objects to be created in this cache.
411  * @align: The required alignment for the objects.
412  * @flags: SLAB flags
413  * @ctor: A constructor for the objects.
414  *
415  * Returns a ptr to the cache on success, NULL on failure.
416  * Cannot be called within a interrupt, but can be interrupted.
417  * The @ctor is run when new pages are allocated by the cache.
418  *
419  * The flags are
420  *
421  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
422  * to catch references to uninitialised memory.
423  *
424  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
425  * for buffer overruns.
426  *
427  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
428  * cacheline.  This can be beneficial if you're counting cycles as closely
429  * as davem.
430  */
431 struct kmem_cache *
432 kmem_cache_create(const char *name, size_t size, size_t align,
433 		  unsigned long flags, void (*ctor)(void *))
434 {
435 	struct kmem_cache *s = NULL;
436 	const char *cache_name;
437 	int err;
438 
439 	get_online_cpus();
440 	get_online_mems();
441 	memcg_get_cache_ids();
442 
443 	mutex_lock(&slab_mutex);
444 
445 	err = kmem_cache_sanity_check(name, size);
446 	if (err) {
447 		goto out_unlock;
448 	}
449 
450 	/* Refuse requests with allocator specific flags */
451 	if (flags & ~SLAB_FLAGS_PERMITTED) {
452 		err = -EINVAL;
453 		goto out_unlock;
454 	}
455 
456 	/*
457 	 * Some allocators will constraint the set of valid flags to a subset
458 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
459 	 * case, and we'll just provide them with a sanitized version of the
460 	 * passed flags.
461 	 */
462 	flags &= CACHE_CREATE_MASK;
463 
464 	s = __kmem_cache_alias(name, size, align, flags, ctor);
465 	if (s)
466 		goto out_unlock;
467 
468 	cache_name = kstrdup_const(name, GFP_KERNEL);
469 	if (!cache_name) {
470 		err = -ENOMEM;
471 		goto out_unlock;
472 	}
473 
474 	s = create_cache(cache_name, size, size,
475 			 calculate_alignment(flags, align, size),
476 			 flags, ctor, NULL, NULL);
477 	if (IS_ERR(s)) {
478 		err = PTR_ERR(s);
479 		kfree_const(cache_name);
480 	}
481 
482 out_unlock:
483 	mutex_unlock(&slab_mutex);
484 
485 	memcg_put_cache_ids();
486 	put_online_mems();
487 	put_online_cpus();
488 
489 	if (err) {
490 		if (flags & SLAB_PANIC)
491 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
492 				name, err);
493 		else {
494 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
495 				name, err);
496 			dump_stack();
497 		}
498 		return NULL;
499 	}
500 	return s;
501 }
502 EXPORT_SYMBOL(kmem_cache_create);
503 
504 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
505 {
506 	LIST_HEAD(to_destroy);
507 	struct kmem_cache *s, *s2;
508 
509 	/*
510 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
511 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
512 	 * through RCU and and the associated kmem_cache are dereferenced
513 	 * while freeing the pages, so the kmem_caches should be freed only
514 	 * after the pending RCU operations are finished.  As rcu_barrier()
515 	 * is a pretty slow operation, we batch all pending destructions
516 	 * asynchronously.
517 	 */
518 	mutex_lock(&slab_mutex);
519 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
520 	mutex_unlock(&slab_mutex);
521 
522 	if (list_empty(&to_destroy))
523 		return;
524 
525 	rcu_barrier();
526 
527 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
528 #ifdef SLAB_SUPPORTS_SYSFS
529 		sysfs_slab_release(s);
530 #else
531 		slab_kmem_cache_release(s);
532 #endif
533 	}
534 }
535 
536 static int shutdown_cache(struct kmem_cache *s)
537 {
538 	/* free asan quarantined objects */
539 	kasan_cache_shutdown(s);
540 
541 	if (__kmem_cache_shutdown(s) != 0)
542 		return -EBUSY;
543 
544 	memcg_unlink_cache(s);
545 	list_del(&s->list);
546 
547 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
548 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
549 		schedule_work(&slab_caches_to_rcu_destroy_work);
550 	} else {
551 #ifdef SLAB_SUPPORTS_SYSFS
552 		sysfs_slab_release(s);
553 #else
554 		slab_kmem_cache_release(s);
555 #endif
556 	}
557 
558 	return 0;
559 }
560 
561 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
562 /*
563  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
564  * @memcg: The memory cgroup the new cache is for.
565  * @root_cache: The parent of the new cache.
566  *
567  * This function attempts to create a kmem cache that will serve allocation
568  * requests going from @memcg to @root_cache. The new cache inherits properties
569  * from its parent.
570  */
571 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
572 			     struct kmem_cache *root_cache)
573 {
574 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
575 	struct cgroup_subsys_state *css = &memcg->css;
576 	struct memcg_cache_array *arr;
577 	struct kmem_cache *s = NULL;
578 	char *cache_name;
579 	int idx;
580 
581 	get_online_cpus();
582 	get_online_mems();
583 
584 	mutex_lock(&slab_mutex);
585 
586 	/*
587 	 * The memory cgroup could have been offlined while the cache
588 	 * creation work was pending.
589 	 */
590 	if (memcg->kmem_state != KMEM_ONLINE)
591 		goto out_unlock;
592 
593 	idx = memcg_cache_id(memcg);
594 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
595 					lockdep_is_held(&slab_mutex));
596 
597 	/*
598 	 * Since per-memcg caches are created asynchronously on first
599 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
600 	 * create the same cache, but only one of them may succeed.
601 	 */
602 	if (arr->entries[idx])
603 		goto out_unlock;
604 
605 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
606 	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
607 			       css->serial_nr, memcg_name_buf);
608 	if (!cache_name)
609 		goto out_unlock;
610 
611 	s = create_cache(cache_name, root_cache->object_size,
612 			 root_cache->size, root_cache->align,
613 			 root_cache->flags & CACHE_CREATE_MASK,
614 			 root_cache->ctor, memcg, root_cache);
615 	/*
616 	 * If we could not create a memcg cache, do not complain, because
617 	 * that's not critical at all as we can always proceed with the root
618 	 * cache.
619 	 */
620 	if (IS_ERR(s)) {
621 		kfree(cache_name);
622 		goto out_unlock;
623 	}
624 
625 	/*
626 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
627 	 * barrier here to ensure nobody will see the kmem_cache partially
628 	 * initialized.
629 	 */
630 	smp_wmb();
631 	arr->entries[idx] = s;
632 
633 out_unlock:
634 	mutex_unlock(&slab_mutex);
635 
636 	put_online_mems();
637 	put_online_cpus();
638 }
639 
640 static void kmemcg_deactivate_workfn(struct work_struct *work)
641 {
642 	struct kmem_cache *s = container_of(work, struct kmem_cache,
643 					    memcg_params.deact_work);
644 
645 	get_online_cpus();
646 	get_online_mems();
647 
648 	mutex_lock(&slab_mutex);
649 
650 	s->memcg_params.deact_fn(s);
651 
652 	mutex_unlock(&slab_mutex);
653 
654 	put_online_mems();
655 	put_online_cpus();
656 
657 	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
658 	css_put(&s->memcg_params.memcg->css);
659 }
660 
661 static void kmemcg_deactivate_rcufn(struct rcu_head *head)
662 {
663 	struct kmem_cache *s = container_of(head, struct kmem_cache,
664 					    memcg_params.deact_rcu_head);
665 
666 	/*
667 	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
668 	 * work item shares the space with the RCU head and can't be
669 	 * initialized eariler.
670 	 */
671 	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
672 	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
673 }
674 
675 /**
676  * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
677  *					   sched RCU grace period
678  * @s: target kmem_cache
679  * @deact_fn: deactivation function to call
680  *
681  * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
682  * held after a sched RCU grace period.  The slab is guaranteed to stay
683  * alive until @deact_fn is finished.  This is to be used from
684  * __kmemcg_cache_deactivate().
685  */
686 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
687 					   void (*deact_fn)(struct kmem_cache *))
688 {
689 	if (WARN_ON_ONCE(is_root_cache(s)) ||
690 	    WARN_ON_ONCE(s->memcg_params.deact_fn))
691 		return;
692 
693 	/* pin memcg so that @s doesn't get destroyed in the middle */
694 	css_get(&s->memcg_params.memcg->css);
695 
696 	s->memcg_params.deact_fn = deact_fn;
697 	call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
698 }
699 
700 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
701 {
702 	int idx;
703 	struct memcg_cache_array *arr;
704 	struct kmem_cache *s, *c;
705 
706 	idx = memcg_cache_id(memcg);
707 
708 	get_online_cpus();
709 	get_online_mems();
710 
711 	mutex_lock(&slab_mutex);
712 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
713 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
714 						lockdep_is_held(&slab_mutex));
715 		c = arr->entries[idx];
716 		if (!c)
717 			continue;
718 
719 		__kmemcg_cache_deactivate(c);
720 		arr->entries[idx] = NULL;
721 	}
722 	mutex_unlock(&slab_mutex);
723 
724 	put_online_mems();
725 	put_online_cpus();
726 }
727 
728 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
729 {
730 	struct kmem_cache *s, *s2;
731 
732 	get_online_cpus();
733 	get_online_mems();
734 
735 	mutex_lock(&slab_mutex);
736 	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
737 				 memcg_params.kmem_caches_node) {
738 		/*
739 		 * The cgroup is about to be freed and therefore has no charges
740 		 * left. Hence, all its caches must be empty by now.
741 		 */
742 		BUG_ON(shutdown_cache(s));
743 	}
744 	mutex_unlock(&slab_mutex);
745 
746 	put_online_mems();
747 	put_online_cpus();
748 }
749 
750 static int shutdown_memcg_caches(struct kmem_cache *s)
751 {
752 	struct memcg_cache_array *arr;
753 	struct kmem_cache *c, *c2;
754 	LIST_HEAD(busy);
755 	int i;
756 
757 	BUG_ON(!is_root_cache(s));
758 
759 	/*
760 	 * First, shutdown active caches, i.e. caches that belong to online
761 	 * memory cgroups.
762 	 */
763 	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
764 					lockdep_is_held(&slab_mutex));
765 	for_each_memcg_cache_index(i) {
766 		c = arr->entries[i];
767 		if (!c)
768 			continue;
769 		if (shutdown_cache(c))
770 			/*
771 			 * The cache still has objects. Move it to a temporary
772 			 * list so as not to try to destroy it for a second
773 			 * time while iterating over inactive caches below.
774 			 */
775 			list_move(&c->memcg_params.children_node, &busy);
776 		else
777 			/*
778 			 * The cache is empty and will be destroyed soon. Clear
779 			 * the pointer to it in the memcg_caches array so that
780 			 * it will never be accessed even if the root cache
781 			 * stays alive.
782 			 */
783 			arr->entries[i] = NULL;
784 	}
785 
786 	/*
787 	 * Second, shutdown all caches left from memory cgroups that are now
788 	 * offline.
789 	 */
790 	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
791 				 memcg_params.children_node)
792 		shutdown_cache(c);
793 
794 	list_splice(&busy, &s->memcg_params.children);
795 
796 	/*
797 	 * A cache being destroyed must be empty. In particular, this means
798 	 * that all per memcg caches attached to it must be empty too.
799 	 */
800 	if (!list_empty(&s->memcg_params.children))
801 		return -EBUSY;
802 	return 0;
803 }
804 #else
805 static inline int shutdown_memcg_caches(struct kmem_cache *s)
806 {
807 	return 0;
808 }
809 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
810 
811 void slab_kmem_cache_release(struct kmem_cache *s)
812 {
813 	__kmem_cache_release(s);
814 	destroy_memcg_params(s);
815 	kfree_const(s->name);
816 	kmem_cache_free(kmem_cache, s);
817 }
818 
819 void kmem_cache_destroy(struct kmem_cache *s)
820 {
821 	int err;
822 
823 	if (unlikely(!s))
824 		return;
825 
826 	get_online_cpus();
827 	get_online_mems();
828 
829 	mutex_lock(&slab_mutex);
830 
831 	s->refcount--;
832 	if (s->refcount)
833 		goto out_unlock;
834 
835 	err = shutdown_memcg_caches(s);
836 	if (!err)
837 		err = shutdown_cache(s);
838 
839 	if (err) {
840 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
841 		       s->name);
842 		dump_stack();
843 	}
844 out_unlock:
845 	mutex_unlock(&slab_mutex);
846 
847 	put_online_mems();
848 	put_online_cpus();
849 }
850 EXPORT_SYMBOL(kmem_cache_destroy);
851 
852 /**
853  * kmem_cache_shrink - Shrink a cache.
854  * @cachep: The cache to shrink.
855  *
856  * Releases as many slabs as possible for a cache.
857  * To help debugging, a zero exit status indicates all slabs were released.
858  */
859 int kmem_cache_shrink(struct kmem_cache *cachep)
860 {
861 	int ret;
862 
863 	get_online_cpus();
864 	get_online_mems();
865 	kasan_cache_shrink(cachep);
866 	ret = __kmem_cache_shrink(cachep);
867 	put_online_mems();
868 	put_online_cpus();
869 	return ret;
870 }
871 EXPORT_SYMBOL(kmem_cache_shrink);
872 
873 bool slab_is_available(void)
874 {
875 	return slab_state >= UP;
876 }
877 
878 #ifndef CONFIG_SLOB
879 /* Create a cache during boot when no slab services are available yet */
880 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
881 		unsigned long flags)
882 {
883 	int err;
884 
885 	s->name = name;
886 	s->size = s->object_size = size;
887 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
888 
889 	slab_init_memcg_params(s);
890 
891 	err = __kmem_cache_create(s, flags);
892 
893 	if (err)
894 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
895 					name, size, err);
896 
897 	s->refcount = -1;	/* Exempt from merging for now */
898 }
899 
900 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
901 				unsigned long flags)
902 {
903 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
904 
905 	if (!s)
906 		panic("Out of memory when creating slab %s\n", name);
907 
908 	create_boot_cache(s, name, size, flags);
909 	list_add(&s->list, &slab_caches);
910 	memcg_link_cache(s);
911 	s->refcount = 1;
912 	return s;
913 }
914 
915 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
916 EXPORT_SYMBOL(kmalloc_caches);
917 
918 #ifdef CONFIG_ZONE_DMA
919 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
920 EXPORT_SYMBOL(kmalloc_dma_caches);
921 #endif
922 
923 /*
924  * Conversion table for small slabs sizes / 8 to the index in the
925  * kmalloc array. This is necessary for slabs < 192 since we have non power
926  * of two cache sizes there. The size of larger slabs can be determined using
927  * fls.
928  */
929 static s8 size_index[24] = {
930 	3,	/* 8 */
931 	4,	/* 16 */
932 	5,	/* 24 */
933 	5,	/* 32 */
934 	6,	/* 40 */
935 	6,	/* 48 */
936 	6,	/* 56 */
937 	6,	/* 64 */
938 	1,	/* 72 */
939 	1,	/* 80 */
940 	1,	/* 88 */
941 	1,	/* 96 */
942 	7,	/* 104 */
943 	7,	/* 112 */
944 	7,	/* 120 */
945 	7,	/* 128 */
946 	2,	/* 136 */
947 	2,	/* 144 */
948 	2,	/* 152 */
949 	2,	/* 160 */
950 	2,	/* 168 */
951 	2,	/* 176 */
952 	2,	/* 184 */
953 	2	/* 192 */
954 };
955 
956 static inline int size_index_elem(size_t bytes)
957 {
958 	return (bytes - 1) / 8;
959 }
960 
961 /*
962  * Find the kmem_cache structure that serves a given size of
963  * allocation
964  */
965 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
966 {
967 	int index;
968 
969 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
970 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
971 		return NULL;
972 	}
973 
974 	if (size <= 192) {
975 		if (!size)
976 			return ZERO_SIZE_PTR;
977 
978 		index = size_index[size_index_elem(size)];
979 	} else
980 		index = fls(size - 1);
981 
982 #ifdef CONFIG_ZONE_DMA
983 	if (unlikely((flags & GFP_DMA)))
984 		return kmalloc_dma_caches[index];
985 
986 #endif
987 	return kmalloc_caches[index];
988 }
989 
990 /*
991  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
992  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
993  * kmalloc-67108864.
994  */
995 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
996 	{NULL,                      0},		{"kmalloc-96",             96},
997 	{"kmalloc-192",           192},		{"kmalloc-8",               8},
998 	{"kmalloc-16",             16},		{"kmalloc-32",             32},
999 	{"kmalloc-64",             64},		{"kmalloc-128",           128},
1000 	{"kmalloc-256",           256},		{"kmalloc-512",           512},
1001 	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
1002 	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
1003 	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
1004 	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
1005 	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
1006 	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
1007 	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
1008 	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
1009 	{"kmalloc-67108864", 67108864}
1010 };
1011 
1012 /*
1013  * Patch up the size_index table if we have strange large alignment
1014  * requirements for the kmalloc array. This is only the case for
1015  * MIPS it seems. The standard arches will not generate any code here.
1016  *
1017  * Largest permitted alignment is 256 bytes due to the way we
1018  * handle the index determination for the smaller caches.
1019  *
1020  * Make sure that nothing crazy happens if someone starts tinkering
1021  * around with ARCH_KMALLOC_MINALIGN
1022  */
1023 void __init setup_kmalloc_cache_index_table(void)
1024 {
1025 	int i;
1026 
1027 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1028 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1029 
1030 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1031 		int elem = size_index_elem(i);
1032 
1033 		if (elem >= ARRAY_SIZE(size_index))
1034 			break;
1035 		size_index[elem] = KMALLOC_SHIFT_LOW;
1036 	}
1037 
1038 	if (KMALLOC_MIN_SIZE >= 64) {
1039 		/*
1040 		 * The 96 byte size cache is not used if the alignment
1041 		 * is 64 byte.
1042 		 */
1043 		for (i = 64 + 8; i <= 96; i += 8)
1044 			size_index[size_index_elem(i)] = 7;
1045 
1046 	}
1047 
1048 	if (KMALLOC_MIN_SIZE >= 128) {
1049 		/*
1050 		 * The 192 byte sized cache is not used if the alignment
1051 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1052 		 * instead.
1053 		 */
1054 		for (i = 128 + 8; i <= 192; i += 8)
1055 			size_index[size_index_elem(i)] = 8;
1056 	}
1057 }
1058 
1059 static void __init new_kmalloc_cache(int idx, unsigned long flags)
1060 {
1061 	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1062 					kmalloc_info[idx].size, flags);
1063 }
1064 
1065 /*
1066  * Create the kmalloc array. Some of the regular kmalloc arrays
1067  * may already have been created because they were needed to
1068  * enable allocations for slab creation.
1069  */
1070 void __init create_kmalloc_caches(unsigned long flags)
1071 {
1072 	int i;
1073 
1074 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1075 		if (!kmalloc_caches[i])
1076 			new_kmalloc_cache(i, flags);
1077 
1078 		/*
1079 		 * Caches that are not of the two-to-the-power-of size.
1080 		 * These have to be created immediately after the
1081 		 * earlier power of two caches
1082 		 */
1083 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1084 			new_kmalloc_cache(1, flags);
1085 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1086 			new_kmalloc_cache(2, flags);
1087 	}
1088 
1089 	/* Kmalloc array is now usable */
1090 	slab_state = UP;
1091 
1092 #ifdef CONFIG_ZONE_DMA
1093 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1094 		struct kmem_cache *s = kmalloc_caches[i];
1095 
1096 		if (s) {
1097 			int size = kmalloc_size(i);
1098 			char *n = kasprintf(GFP_NOWAIT,
1099 				 "dma-kmalloc-%d", size);
1100 
1101 			BUG_ON(!n);
1102 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1103 				size, SLAB_CACHE_DMA | flags);
1104 		}
1105 	}
1106 #endif
1107 }
1108 #endif /* !CONFIG_SLOB */
1109 
1110 /*
1111  * To avoid unnecessary overhead, we pass through large allocation requests
1112  * directly to the page allocator. We use __GFP_COMP, because we will need to
1113  * know the allocation order to free the pages properly in kfree.
1114  */
1115 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1116 {
1117 	void *ret;
1118 	struct page *page;
1119 
1120 	flags |= __GFP_COMP;
1121 	page = alloc_pages(flags, order);
1122 	ret = page ? page_address(page) : NULL;
1123 	kmemleak_alloc(ret, size, 1, flags);
1124 	kasan_kmalloc_large(ret, size, flags);
1125 	return ret;
1126 }
1127 EXPORT_SYMBOL(kmalloc_order);
1128 
1129 #ifdef CONFIG_TRACING
1130 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1131 {
1132 	void *ret = kmalloc_order(size, flags, order);
1133 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1134 	return ret;
1135 }
1136 EXPORT_SYMBOL(kmalloc_order_trace);
1137 #endif
1138 
1139 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1140 /* Randomize a generic freelist */
1141 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1142 			size_t count)
1143 {
1144 	size_t i;
1145 	unsigned int rand;
1146 
1147 	for (i = 0; i < count; i++)
1148 		list[i] = i;
1149 
1150 	/* Fisher-Yates shuffle */
1151 	for (i = count - 1; i > 0; i--) {
1152 		rand = prandom_u32_state(state);
1153 		rand %= (i + 1);
1154 		swap(list[i], list[rand]);
1155 	}
1156 }
1157 
1158 /* Create a random sequence per cache */
1159 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1160 				    gfp_t gfp)
1161 {
1162 	struct rnd_state state;
1163 
1164 	if (count < 2 || cachep->random_seq)
1165 		return 0;
1166 
1167 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1168 	if (!cachep->random_seq)
1169 		return -ENOMEM;
1170 
1171 	/* Get best entropy at this stage of boot */
1172 	prandom_seed_state(&state, get_random_long());
1173 
1174 	freelist_randomize(&state, cachep->random_seq, count);
1175 	return 0;
1176 }
1177 
1178 /* Destroy the per-cache random freelist sequence */
1179 void cache_random_seq_destroy(struct kmem_cache *cachep)
1180 {
1181 	kfree(cachep->random_seq);
1182 	cachep->random_seq = NULL;
1183 }
1184 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1185 
1186 #ifdef CONFIG_SLABINFO
1187 
1188 #ifdef CONFIG_SLAB
1189 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1190 #else
1191 #define SLABINFO_RIGHTS S_IRUSR
1192 #endif
1193 
1194 static void print_slabinfo_header(struct seq_file *m)
1195 {
1196 	/*
1197 	 * Output format version, so at least we can change it
1198 	 * without _too_ many complaints.
1199 	 */
1200 #ifdef CONFIG_DEBUG_SLAB
1201 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1202 #else
1203 	seq_puts(m, "slabinfo - version: 2.1\n");
1204 #endif
1205 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1206 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1207 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1208 #ifdef CONFIG_DEBUG_SLAB
1209 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1210 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1211 #endif
1212 	seq_putc(m, '\n');
1213 }
1214 
1215 void *slab_start(struct seq_file *m, loff_t *pos)
1216 {
1217 	mutex_lock(&slab_mutex);
1218 	return seq_list_start(&slab_root_caches, *pos);
1219 }
1220 
1221 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1222 {
1223 	return seq_list_next(p, &slab_root_caches, pos);
1224 }
1225 
1226 void slab_stop(struct seq_file *m, void *p)
1227 {
1228 	mutex_unlock(&slab_mutex);
1229 }
1230 
1231 static void
1232 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1233 {
1234 	struct kmem_cache *c;
1235 	struct slabinfo sinfo;
1236 
1237 	if (!is_root_cache(s))
1238 		return;
1239 
1240 	for_each_memcg_cache(c, s) {
1241 		memset(&sinfo, 0, sizeof(sinfo));
1242 		get_slabinfo(c, &sinfo);
1243 
1244 		info->active_slabs += sinfo.active_slabs;
1245 		info->num_slabs += sinfo.num_slabs;
1246 		info->shared_avail += sinfo.shared_avail;
1247 		info->active_objs += sinfo.active_objs;
1248 		info->num_objs += sinfo.num_objs;
1249 	}
1250 }
1251 
1252 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1253 {
1254 	struct slabinfo sinfo;
1255 
1256 	memset(&sinfo, 0, sizeof(sinfo));
1257 	get_slabinfo(s, &sinfo);
1258 
1259 	memcg_accumulate_slabinfo(s, &sinfo);
1260 
1261 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1262 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1263 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1264 
1265 	seq_printf(m, " : tunables %4u %4u %4u",
1266 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1267 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1268 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1269 	slabinfo_show_stats(m, s);
1270 	seq_putc(m, '\n');
1271 }
1272 
1273 static int slab_show(struct seq_file *m, void *p)
1274 {
1275 	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1276 
1277 	if (p == slab_root_caches.next)
1278 		print_slabinfo_header(m);
1279 	cache_show(s, m);
1280 	return 0;
1281 }
1282 
1283 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1284 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1285 {
1286 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1287 
1288 	mutex_lock(&slab_mutex);
1289 	return seq_list_start(&memcg->kmem_caches, *pos);
1290 }
1291 
1292 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1293 {
1294 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1295 
1296 	return seq_list_next(p, &memcg->kmem_caches, pos);
1297 }
1298 
1299 void memcg_slab_stop(struct seq_file *m, void *p)
1300 {
1301 	mutex_unlock(&slab_mutex);
1302 }
1303 
1304 int memcg_slab_show(struct seq_file *m, void *p)
1305 {
1306 	struct kmem_cache *s = list_entry(p, struct kmem_cache,
1307 					  memcg_params.kmem_caches_node);
1308 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1309 
1310 	if (p == memcg->kmem_caches.next)
1311 		print_slabinfo_header(m);
1312 	cache_show(s, m);
1313 	return 0;
1314 }
1315 #endif
1316 
1317 /*
1318  * slabinfo_op - iterator that generates /proc/slabinfo
1319  *
1320  * Output layout:
1321  * cache-name
1322  * num-active-objs
1323  * total-objs
1324  * object size
1325  * num-active-slabs
1326  * total-slabs
1327  * num-pages-per-slab
1328  * + further values on SMP and with statistics enabled
1329  */
1330 static const struct seq_operations slabinfo_op = {
1331 	.start = slab_start,
1332 	.next = slab_next,
1333 	.stop = slab_stop,
1334 	.show = slab_show,
1335 };
1336 
1337 static int slabinfo_open(struct inode *inode, struct file *file)
1338 {
1339 	return seq_open(file, &slabinfo_op);
1340 }
1341 
1342 static const struct file_operations proc_slabinfo_operations = {
1343 	.open		= slabinfo_open,
1344 	.read		= seq_read,
1345 	.write          = slabinfo_write,
1346 	.llseek		= seq_lseek,
1347 	.release	= seq_release,
1348 };
1349 
1350 static int __init slab_proc_init(void)
1351 {
1352 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1353 						&proc_slabinfo_operations);
1354 	return 0;
1355 }
1356 module_init(slab_proc_init);
1357 #endif /* CONFIG_SLABINFO */
1358 
1359 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1360 					   gfp_t flags)
1361 {
1362 	void *ret;
1363 	size_t ks = 0;
1364 
1365 	if (p)
1366 		ks = ksize(p);
1367 
1368 	if (ks >= new_size) {
1369 		kasan_krealloc((void *)p, new_size, flags);
1370 		return (void *)p;
1371 	}
1372 
1373 	ret = kmalloc_track_caller(new_size, flags);
1374 	if (ret && p)
1375 		memcpy(ret, p, ks);
1376 
1377 	return ret;
1378 }
1379 
1380 /**
1381  * __krealloc - like krealloc() but don't free @p.
1382  * @p: object to reallocate memory for.
1383  * @new_size: how many bytes of memory are required.
1384  * @flags: the type of memory to allocate.
1385  *
1386  * This function is like krealloc() except it never frees the originally
1387  * allocated buffer. Use this if you don't want to free the buffer immediately
1388  * like, for example, with RCU.
1389  */
1390 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1391 {
1392 	if (unlikely(!new_size))
1393 		return ZERO_SIZE_PTR;
1394 
1395 	return __do_krealloc(p, new_size, flags);
1396 
1397 }
1398 EXPORT_SYMBOL(__krealloc);
1399 
1400 /**
1401  * krealloc - reallocate memory. The contents will remain unchanged.
1402  * @p: object to reallocate memory for.
1403  * @new_size: how many bytes of memory are required.
1404  * @flags: the type of memory to allocate.
1405  *
1406  * The contents of the object pointed to are preserved up to the
1407  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1408  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1409  * %NULL pointer, the object pointed to is freed.
1410  */
1411 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1412 {
1413 	void *ret;
1414 
1415 	if (unlikely(!new_size)) {
1416 		kfree(p);
1417 		return ZERO_SIZE_PTR;
1418 	}
1419 
1420 	ret = __do_krealloc(p, new_size, flags);
1421 	if (ret && p != ret)
1422 		kfree(p);
1423 
1424 	return ret;
1425 }
1426 EXPORT_SYMBOL(krealloc);
1427 
1428 /**
1429  * kzfree - like kfree but zero memory
1430  * @p: object to free memory of
1431  *
1432  * The memory of the object @p points to is zeroed before freed.
1433  * If @p is %NULL, kzfree() does nothing.
1434  *
1435  * Note: this function zeroes the whole allocated buffer which can be a good
1436  * deal bigger than the requested buffer size passed to kmalloc(). So be
1437  * careful when using this function in performance sensitive code.
1438  */
1439 void kzfree(const void *p)
1440 {
1441 	size_t ks;
1442 	void *mem = (void *)p;
1443 
1444 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1445 		return;
1446 	ks = ksize(mem);
1447 	memset(mem, 0, ks);
1448 	kfree(mem);
1449 }
1450 EXPORT_SYMBOL(kzfree);
1451 
1452 /* Tracepoints definitions. */
1453 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1454 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1455 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1456 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1457 EXPORT_TRACEPOINT_SYMBOL(kfree);
1458 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1459