xref: /openbmc/linux/mm/slab_common.c (revision afb46f79)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 #include <trace/events/kmem.h>
23 
24 #include "slab.h"
25 
26 enum slab_state slab_state;
27 LIST_HEAD(slab_caches);
28 DEFINE_MUTEX(slab_mutex);
29 struct kmem_cache *kmem_cache;
30 
31 #ifdef CONFIG_DEBUG_VM
32 static int kmem_cache_sanity_check(const char *name, size_t size)
33 {
34 	struct kmem_cache *s = NULL;
35 
36 	if (!name || in_interrupt() || size < sizeof(void *) ||
37 		size > KMALLOC_MAX_SIZE) {
38 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
39 		return -EINVAL;
40 	}
41 
42 	list_for_each_entry(s, &slab_caches, list) {
43 		char tmp;
44 		int res;
45 
46 		/*
47 		 * This happens when the module gets unloaded and doesn't
48 		 * destroy its slab cache and no-one else reuses the vmalloc
49 		 * area of the module.  Print a warning.
50 		 */
51 		res = probe_kernel_address(s->name, tmp);
52 		if (res) {
53 			pr_err("Slab cache with size %d has lost its name\n",
54 			       s->object_size);
55 			continue;
56 		}
57 
58 #if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
59 		if (!strcmp(s->name, name)) {
60 			pr_err("%s (%s): Cache name already exists.\n",
61 			       __func__, name);
62 			dump_stack();
63 			s = NULL;
64 			return -EINVAL;
65 		}
66 #endif
67 	}
68 
69 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
70 	return 0;
71 }
72 #else
73 static inline int kmem_cache_sanity_check(const char *name, size_t size)
74 {
75 	return 0;
76 }
77 #endif
78 
79 #ifdef CONFIG_MEMCG_KMEM
80 int memcg_update_all_caches(int num_memcgs)
81 {
82 	struct kmem_cache *s;
83 	int ret = 0;
84 	mutex_lock(&slab_mutex);
85 
86 	list_for_each_entry(s, &slab_caches, list) {
87 		if (!is_root_cache(s))
88 			continue;
89 
90 		ret = memcg_update_cache_size(s, num_memcgs);
91 		/*
92 		 * See comment in memcontrol.c, memcg_update_cache_size:
93 		 * Instead of freeing the memory, we'll just leave the caches
94 		 * up to this point in an updated state.
95 		 */
96 		if (ret)
97 			goto out;
98 	}
99 
100 	memcg_update_array_size(num_memcgs);
101 out:
102 	mutex_unlock(&slab_mutex);
103 	return ret;
104 }
105 #endif
106 
107 /*
108  * Figure out what the alignment of the objects will be given a set of
109  * flags, a user specified alignment and the size of the objects.
110  */
111 unsigned long calculate_alignment(unsigned long flags,
112 		unsigned long align, unsigned long size)
113 {
114 	/*
115 	 * If the user wants hardware cache aligned objects then follow that
116 	 * suggestion if the object is sufficiently large.
117 	 *
118 	 * The hardware cache alignment cannot override the specified
119 	 * alignment though. If that is greater then use it.
120 	 */
121 	if (flags & SLAB_HWCACHE_ALIGN) {
122 		unsigned long ralign = cache_line_size();
123 		while (size <= ralign / 2)
124 			ralign /= 2;
125 		align = max(align, ralign);
126 	}
127 
128 	if (align < ARCH_SLAB_MINALIGN)
129 		align = ARCH_SLAB_MINALIGN;
130 
131 	return ALIGN(align, sizeof(void *));
132 }
133 
134 static struct kmem_cache *
135 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
136 		     unsigned long flags, void (*ctor)(void *),
137 		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
138 {
139 	struct kmem_cache *s;
140 	int err;
141 
142 	err = -ENOMEM;
143 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
144 	if (!s)
145 		goto out;
146 
147 	s->name = name;
148 	s->object_size = object_size;
149 	s->size = size;
150 	s->align = align;
151 	s->ctor = ctor;
152 
153 	err = memcg_alloc_cache_params(memcg, s, root_cache);
154 	if (err)
155 		goto out_free_cache;
156 
157 	err = __kmem_cache_create(s, flags);
158 	if (err)
159 		goto out_free_cache;
160 
161 	s->refcount = 1;
162 	list_add(&s->list, &slab_caches);
163 	memcg_register_cache(s);
164 out:
165 	if (err)
166 		return ERR_PTR(err);
167 	return s;
168 
169 out_free_cache:
170 	memcg_free_cache_params(s);
171 	kfree(s);
172 	goto out;
173 }
174 
175 /*
176  * kmem_cache_create - Create a cache.
177  * @name: A string which is used in /proc/slabinfo to identify this cache.
178  * @size: The size of objects to be created in this cache.
179  * @align: The required alignment for the objects.
180  * @flags: SLAB flags
181  * @ctor: A constructor for the objects.
182  *
183  * Returns a ptr to the cache on success, NULL on failure.
184  * Cannot be called within a interrupt, but can be interrupted.
185  * The @ctor is run when new pages are allocated by the cache.
186  *
187  * The flags are
188  *
189  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
190  * to catch references to uninitialised memory.
191  *
192  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
193  * for buffer overruns.
194  *
195  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
196  * cacheline.  This can be beneficial if you're counting cycles as closely
197  * as davem.
198  */
199 struct kmem_cache *
200 kmem_cache_create(const char *name, size_t size, size_t align,
201 		  unsigned long flags, void (*ctor)(void *))
202 {
203 	struct kmem_cache *s;
204 	char *cache_name;
205 	int err;
206 
207 	get_online_cpus();
208 	mutex_lock(&slab_mutex);
209 
210 	err = kmem_cache_sanity_check(name, size);
211 	if (err)
212 		goto out_unlock;
213 
214 	/*
215 	 * Some allocators will constraint the set of valid flags to a subset
216 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
217 	 * case, and we'll just provide them with a sanitized version of the
218 	 * passed flags.
219 	 */
220 	flags &= CACHE_CREATE_MASK;
221 
222 	s = __kmem_cache_alias(name, size, align, flags, ctor);
223 	if (s)
224 		goto out_unlock;
225 
226 	cache_name = kstrdup(name, GFP_KERNEL);
227 	if (!cache_name) {
228 		err = -ENOMEM;
229 		goto out_unlock;
230 	}
231 
232 	s = do_kmem_cache_create(cache_name, size, size,
233 				 calculate_alignment(flags, align, size),
234 				 flags, ctor, NULL, NULL);
235 	if (IS_ERR(s)) {
236 		err = PTR_ERR(s);
237 		kfree(cache_name);
238 	}
239 
240 out_unlock:
241 	mutex_unlock(&slab_mutex);
242 	put_online_cpus();
243 
244 	if (err) {
245 		if (flags & SLAB_PANIC)
246 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
247 				name, err);
248 		else {
249 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
250 				name, err);
251 			dump_stack();
252 		}
253 		return NULL;
254 	}
255 	return s;
256 }
257 EXPORT_SYMBOL(kmem_cache_create);
258 
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261  * kmem_cache_create_memcg - Create a cache for a memory cgroup.
262  * @memcg: The memory cgroup the new cache is for.
263  * @root_cache: The parent of the new cache.
264  *
265  * This function attempts to create a kmem cache that will serve allocation
266  * requests going from @memcg to @root_cache. The new cache inherits properties
267  * from its parent.
268  */
269 void kmem_cache_create_memcg(struct mem_cgroup *memcg, struct kmem_cache *root_cache)
270 {
271 	struct kmem_cache *s;
272 	char *cache_name;
273 
274 	get_online_cpus();
275 	mutex_lock(&slab_mutex);
276 
277 	/*
278 	 * Since per-memcg caches are created asynchronously on first
279 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
280 	 * create the same cache, but only one of them may succeed.
281 	 */
282 	if (cache_from_memcg_idx(root_cache, memcg_cache_id(memcg)))
283 		goto out_unlock;
284 
285 	cache_name = memcg_create_cache_name(memcg, root_cache);
286 	if (!cache_name)
287 		goto out_unlock;
288 
289 	s = do_kmem_cache_create(cache_name, root_cache->object_size,
290 				 root_cache->size, root_cache->align,
291 				 root_cache->flags, root_cache->ctor,
292 				 memcg, root_cache);
293 	if (IS_ERR(s)) {
294 		kfree(cache_name);
295 		goto out_unlock;
296 	}
297 
298 	s->allocflags |= __GFP_KMEMCG;
299 
300 out_unlock:
301 	mutex_unlock(&slab_mutex);
302 	put_online_cpus();
303 }
304 
305 static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
306 {
307 	int rc;
308 
309 	if (!s->memcg_params ||
310 	    !s->memcg_params->is_root_cache)
311 		return 0;
312 
313 	mutex_unlock(&slab_mutex);
314 	rc = __kmem_cache_destroy_memcg_children(s);
315 	mutex_lock(&slab_mutex);
316 
317 	return rc;
318 }
319 #else
320 static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
321 {
322 	return 0;
323 }
324 #endif /* CONFIG_MEMCG_KMEM */
325 
326 void kmem_cache_destroy(struct kmem_cache *s)
327 {
328 	get_online_cpus();
329 	mutex_lock(&slab_mutex);
330 
331 	s->refcount--;
332 	if (s->refcount)
333 		goto out_unlock;
334 
335 	if (kmem_cache_destroy_memcg_children(s) != 0)
336 		goto out_unlock;
337 
338 	list_del(&s->list);
339 	memcg_unregister_cache(s);
340 
341 	if (__kmem_cache_shutdown(s) != 0) {
342 		list_add(&s->list, &slab_caches);
343 		memcg_register_cache(s);
344 		printk(KERN_ERR "kmem_cache_destroy %s: "
345 		       "Slab cache still has objects\n", s->name);
346 		dump_stack();
347 		goto out_unlock;
348 	}
349 
350 	mutex_unlock(&slab_mutex);
351 	if (s->flags & SLAB_DESTROY_BY_RCU)
352 		rcu_barrier();
353 
354 	memcg_free_cache_params(s);
355 	kfree(s->name);
356 	kmem_cache_free(kmem_cache, s);
357 	goto out_put_cpus;
358 
359 out_unlock:
360 	mutex_unlock(&slab_mutex);
361 out_put_cpus:
362 	put_online_cpus();
363 }
364 EXPORT_SYMBOL(kmem_cache_destroy);
365 
366 int slab_is_available(void)
367 {
368 	return slab_state >= UP;
369 }
370 
371 #ifndef CONFIG_SLOB
372 /* Create a cache during boot when no slab services are available yet */
373 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
374 		unsigned long flags)
375 {
376 	int err;
377 
378 	s->name = name;
379 	s->size = s->object_size = size;
380 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
381 	err = __kmem_cache_create(s, flags);
382 
383 	if (err)
384 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
385 					name, size, err);
386 
387 	s->refcount = -1;	/* Exempt from merging for now */
388 }
389 
390 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
391 				unsigned long flags)
392 {
393 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
394 
395 	if (!s)
396 		panic("Out of memory when creating slab %s\n", name);
397 
398 	create_boot_cache(s, name, size, flags);
399 	list_add(&s->list, &slab_caches);
400 	s->refcount = 1;
401 	return s;
402 }
403 
404 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
405 EXPORT_SYMBOL(kmalloc_caches);
406 
407 #ifdef CONFIG_ZONE_DMA
408 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
409 EXPORT_SYMBOL(kmalloc_dma_caches);
410 #endif
411 
412 /*
413  * Conversion table for small slabs sizes / 8 to the index in the
414  * kmalloc array. This is necessary for slabs < 192 since we have non power
415  * of two cache sizes there. The size of larger slabs can be determined using
416  * fls.
417  */
418 static s8 size_index[24] = {
419 	3,	/* 8 */
420 	4,	/* 16 */
421 	5,	/* 24 */
422 	5,	/* 32 */
423 	6,	/* 40 */
424 	6,	/* 48 */
425 	6,	/* 56 */
426 	6,	/* 64 */
427 	1,	/* 72 */
428 	1,	/* 80 */
429 	1,	/* 88 */
430 	1,	/* 96 */
431 	7,	/* 104 */
432 	7,	/* 112 */
433 	7,	/* 120 */
434 	7,	/* 128 */
435 	2,	/* 136 */
436 	2,	/* 144 */
437 	2,	/* 152 */
438 	2,	/* 160 */
439 	2,	/* 168 */
440 	2,	/* 176 */
441 	2,	/* 184 */
442 	2	/* 192 */
443 };
444 
445 static inline int size_index_elem(size_t bytes)
446 {
447 	return (bytes - 1) / 8;
448 }
449 
450 /*
451  * Find the kmem_cache structure that serves a given size of
452  * allocation
453  */
454 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
455 {
456 	int index;
457 
458 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
459 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
460 		return NULL;
461 	}
462 
463 	if (size <= 192) {
464 		if (!size)
465 			return ZERO_SIZE_PTR;
466 
467 		index = size_index[size_index_elem(size)];
468 	} else
469 		index = fls(size - 1);
470 
471 #ifdef CONFIG_ZONE_DMA
472 	if (unlikely((flags & GFP_DMA)))
473 		return kmalloc_dma_caches[index];
474 
475 #endif
476 	return kmalloc_caches[index];
477 }
478 
479 /*
480  * Create the kmalloc array. Some of the regular kmalloc arrays
481  * may already have been created because they were needed to
482  * enable allocations for slab creation.
483  */
484 void __init create_kmalloc_caches(unsigned long flags)
485 {
486 	int i;
487 
488 	/*
489 	 * Patch up the size_index table if we have strange large alignment
490 	 * requirements for the kmalloc array. This is only the case for
491 	 * MIPS it seems. The standard arches will not generate any code here.
492 	 *
493 	 * Largest permitted alignment is 256 bytes due to the way we
494 	 * handle the index determination for the smaller caches.
495 	 *
496 	 * Make sure that nothing crazy happens if someone starts tinkering
497 	 * around with ARCH_KMALLOC_MINALIGN
498 	 */
499 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
500 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
501 
502 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
503 		int elem = size_index_elem(i);
504 
505 		if (elem >= ARRAY_SIZE(size_index))
506 			break;
507 		size_index[elem] = KMALLOC_SHIFT_LOW;
508 	}
509 
510 	if (KMALLOC_MIN_SIZE >= 64) {
511 		/*
512 		 * The 96 byte size cache is not used if the alignment
513 		 * is 64 byte.
514 		 */
515 		for (i = 64 + 8; i <= 96; i += 8)
516 			size_index[size_index_elem(i)] = 7;
517 
518 	}
519 
520 	if (KMALLOC_MIN_SIZE >= 128) {
521 		/*
522 		 * The 192 byte sized cache is not used if the alignment
523 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
524 		 * instead.
525 		 */
526 		for (i = 128 + 8; i <= 192; i += 8)
527 			size_index[size_index_elem(i)] = 8;
528 	}
529 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
530 		if (!kmalloc_caches[i]) {
531 			kmalloc_caches[i] = create_kmalloc_cache(NULL,
532 							1 << i, flags);
533 		}
534 
535 		/*
536 		 * Caches that are not of the two-to-the-power-of size.
537 		 * These have to be created immediately after the
538 		 * earlier power of two caches
539 		 */
540 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
541 			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
542 
543 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
544 			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
545 	}
546 
547 	/* Kmalloc array is now usable */
548 	slab_state = UP;
549 
550 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
551 		struct kmem_cache *s = kmalloc_caches[i];
552 		char *n;
553 
554 		if (s) {
555 			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
556 
557 			BUG_ON(!n);
558 			s->name = n;
559 		}
560 	}
561 
562 #ifdef CONFIG_ZONE_DMA
563 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
564 		struct kmem_cache *s = kmalloc_caches[i];
565 
566 		if (s) {
567 			int size = kmalloc_size(i);
568 			char *n = kasprintf(GFP_NOWAIT,
569 				 "dma-kmalloc-%d", size);
570 
571 			BUG_ON(!n);
572 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
573 				size, SLAB_CACHE_DMA | flags);
574 		}
575 	}
576 #endif
577 }
578 #endif /* !CONFIG_SLOB */
579 
580 #ifdef CONFIG_TRACING
581 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
582 {
583 	void *ret = kmalloc_order(size, flags, order);
584 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
585 	return ret;
586 }
587 EXPORT_SYMBOL(kmalloc_order_trace);
588 #endif
589 
590 #ifdef CONFIG_SLABINFO
591 
592 #ifdef CONFIG_SLAB
593 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
594 #else
595 #define SLABINFO_RIGHTS S_IRUSR
596 #endif
597 
598 void print_slabinfo_header(struct seq_file *m)
599 {
600 	/*
601 	 * Output format version, so at least we can change it
602 	 * without _too_ many complaints.
603 	 */
604 #ifdef CONFIG_DEBUG_SLAB
605 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
606 #else
607 	seq_puts(m, "slabinfo - version: 2.1\n");
608 #endif
609 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
610 		 "<objperslab> <pagesperslab>");
611 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
612 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
613 #ifdef CONFIG_DEBUG_SLAB
614 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
615 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
616 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
617 #endif
618 	seq_putc(m, '\n');
619 }
620 
621 static void *s_start(struct seq_file *m, loff_t *pos)
622 {
623 	loff_t n = *pos;
624 
625 	mutex_lock(&slab_mutex);
626 	if (!n)
627 		print_slabinfo_header(m);
628 
629 	return seq_list_start(&slab_caches, *pos);
630 }
631 
632 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
633 {
634 	return seq_list_next(p, &slab_caches, pos);
635 }
636 
637 void slab_stop(struct seq_file *m, void *p)
638 {
639 	mutex_unlock(&slab_mutex);
640 }
641 
642 static void
643 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
644 {
645 	struct kmem_cache *c;
646 	struct slabinfo sinfo;
647 	int i;
648 
649 	if (!is_root_cache(s))
650 		return;
651 
652 	for_each_memcg_cache_index(i) {
653 		c = cache_from_memcg_idx(s, i);
654 		if (!c)
655 			continue;
656 
657 		memset(&sinfo, 0, sizeof(sinfo));
658 		get_slabinfo(c, &sinfo);
659 
660 		info->active_slabs += sinfo.active_slabs;
661 		info->num_slabs += sinfo.num_slabs;
662 		info->shared_avail += sinfo.shared_avail;
663 		info->active_objs += sinfo.active_objs;
664 		info->num_objs += sinfo.num_objs;
665 	}
666 }
667 
668 int cache_show(struct kmem_cache *s, struct seq_file *m)
669 {
670 	struct slabinfo sinfo;
671 
672 	memset(&sinfo, 0, sizeof(sinfo));
673 	get_slabinfo(s, &sinfo);
674 
675 	memcg_accumulate_slabinfo(s, &sinfo);
676 
677 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
678 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
679 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
680 
681 	seq_printf(m, " : tunables %4u %4u %4u",
682 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
683 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
684 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
685 	slabinfo_show_stats(m, s);
686 	seq_putc(m, '\n');
687 	return 0;
688 }
689 
690 static int s_show(struct seq_file *m, void *p)
691 {
692 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
693 
694 	if (!is_root_cache(s))
695 		return 0;
696 	return cache_show(s, m);
697 }
698 
699 /*
700  * slabinfo_op - iterator that generates /proc/slabinfo
701  *
702  * Output layout:
703  * cache-name
704  * num-active-objs
705  * total-objs
706  * object size
707  * num-active-slabs
708  * total-slabs
709  * num-pages-per-slab
710  * + further values on SMP and with statistics enabled
711  */
712 static const struct seq_operations slabinfo_op = {
713 	.start = s_start,
714 	.next = slab_next,
715 	.stop = slab_stop,
716 	.show = s_show,
717 };
718 
719 static int slabinfo_open(struct inode *inode, struct file *file)
720 {
721 	return seq_open(file, &slabinfo_op);
722 }
723 
724 static const struct file_operations proc_slabinfo_operations = {
725 	.open		= slabinfo_open,
726 	.read		= seq_read,
727 	.write          = slabinfo_write,
728 	.llseek		= seq_lseek,
729 	.release	= seq_release,
730 };
731 
732 static int __init slab_proc_init(void)
733 {
734 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
735 						&proc_slabinfo_operations);
736 	return 0;
737 }
738 module_init(slab_proc_init);
739 #endif /* CONFIG_SLABINFO */
740