1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Slab allocator functions that are independent of the allocator strategy 4 * 5 * (C) 2012 Christoph Lameter <cl@linux.com> 6 */ 7 #include <linux/slab.h> 8 9 #include <linux/mm.h> 10 #include <linux/poison.h> 11 #include <linux/interrupt.h> 12 #include <linux/memory.h> 13 #include <linux/cache.h> 14 #include <linux/compiler.h> 15 #include <linux/kfence.h> 16 #include <linux/module.h> 17 #include <linux/cpu.h> 18 #include <linux/uaccess.h> 19 #include <linux/seq_file.h> 20 #include <linux/proc_fs.h> 21 #include <linux/debugfs.h> 22 #include <linux/kasan.h> 23 #include <asm/cacheflush.h> 24 #include <asm/tlbflush.h> 25 #include <asm/page.h> 26 #include <linux/memcontrol.h> 27 28 #define CREATE_TRACE_POINTS 29 #include <trace/events/kmem.h> 30 31 #include "internal.h" 32 33 #include "slab.h" 34 35 enum slab_state slab_state; 36 LIST_HEAD(slab_caches); 37 DEFINE_MUTEX(slab_mutex); 38 struct kmem_cache *kmem_cache; 39 40 static LIST_HEAD(slab_caches_to_rcu_destroy); 41 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); 42 static DECLARE_WORK(slab_caches_to_rcu_destroy_work, 43 slab_caches_to_rcu_destroy_workfn); 44 45 /* 46 * Set of flags that will prevent slab merging 47 */ 48 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 49 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ 50 SLAB_FAILSLAB | kasan_never_merge()) 51 52 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ 53 SLAB_CACHE_DMA32 | SLAB_ACCOUNT) 54 55 /* 56 * Merge control. If this is set then no merging of slab caches will occur. 57 */ 58 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); 59 60 static int __init setup_slab_nomerge(char *str) 61 { 62 slab_nomerge = true; 63 return 1; 64 } 65 66 static int __init setup_slab_merge(char *str) 67 { 68 slab_nomerge = false; 69 return 1; 70 } 71 72 #ifdef CONFIG_SLUB 73 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 74 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0); 75 #endif 76 77 __setup("slab_nomerge", setup_slab_nomerge); 78 __setup("slab_merge", setup_slab_merge); 79 80 /* 81 * Determine the size of a slab object 82 */ 83 unsigned int kmem_cache_size(struct kmem_cache *s) 84 { 85 return s->object_size; 86 } 87 EXPORT_SYMBOL(kmem_cache_size); 88 89 #ifdef CONFIG_DEBUG_VM 90 static int kmem_cache_sanity_check(const char *name, unsigned int size) 91 { 92 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) { 93 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 94 return -EINVAL; 95 } 96 97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 98 return 0; 99 } 100 #else 101 static inline int kmem_cache_sanity_check(const char *name, unsigned int size) 102 { 103 return 0; 104 } 105 #endif 106 107 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) 108 { 109 size_t i; 110 111 for (i = 0; i < nr; i++) { 112 if (s) 113 kmem_cache_free(s, p[i]); 114 else 115 kfree(p[i]); 116 } 117 } 118 119 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, 120 void **p) 121 { 122 size_t i; 123 124 for (i = 0; i < nr; i++) { 125 void *x = p[i] = kmem_cache_alloc(s, flags); 126 if (!x) { 127 __kmem_cache_free_bulk(s, i, p); 128 return 0; 129 } 130 } 131 return i; 132 } 133 134 /* 135 * Figure out what the alignment of the objects will be given a set of 136 * flags, a user specified alignment and the size of the objects. 137 */ 138 static unsigned int calculate_alignment(slab_flags_t flags, 139 unsigned int align, unsigned int size) 140 { 141 /* 142 * If the user wants hardware cache aligned objects then follow that 143 * suggestion if the object is sufficiently large. 144 * 145 * The hardware cache alignment cannot override the specified 146 * alignment though. If that is greater then use it. 147 */ 148 if (flags & SLAB_HWCACHE_ALIGN) { 149 unsigned int ralign; 150 151 ralign = cache_line_size(); 152 while (size <= ralign / 2) 153 ralign /= 2; 154 align = max(align, ralign); 155 } 156 157 align = max(align, arch_slab_minalign()); 158 159 return ALIGN(align, sizeof(void *)); 160 } 161 162 /* 163 * Find a mergeable slab cache 164 */ 165 int slab_unmergeable(struct kmem_cache *s) 166 { 167 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 168 return 1; 169 170 if (s->ctor) 171 return 1; 172 173 if (s->usersize) 174 return 1; 175 176 /* 177 * We may have set a slab to be unmergeable during bootstrap. 178 */ 179 if (s->refcount < 0) 180 return 1; 181 182 return 0; 183 } 184 185 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, 186 slab_flags_t flags, const char *name, void (*ctor)(void *)) 187 { 188 struct kmem_cache *s; 189 190 if (slab_nomerge) 191 return NULL; 192 193 if (ctor) 194 return NULL; 195 196 size = ALIGN(size, sizeof(void *)); 197 align = calculate_alignment(flags, align, size); 198 size = ALIGN(size, align); 199 flags = kmem_cache_flags(size, flags, name); 200 201 if (flags & SLAB_NEVER_MERGE) 202 return NULL; 203 204 list_for_each_entry_reverse(s, &slab_caches, list) { 205 if (slab_unmergeable(s)) 206 continue; 207 208 if (size > s->size) 209 continue; 210 211 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 212 continue; 213 /* 214 * Check if alignment is compatible. 215 * Courtesy of Adrian Drzewiecki 216 */ 217 if ((s->size & ~(align - 1)) != s->size) 218 continue; 219 220 if (s->size - size >= sizeof(void *)) 221 continue; 222 223 if (IS_ENABLED(CONFIG_SLAB) && align && 224 (align > s->align || s->align % align)) 225 continue; 226 227 return s; 228 } 229 return NULL; 230 } 231 232 static struct kmem_cache *create_cache(const char *name, 233 unsigned int object_size, unsigned int align, 234 slab_flags_t flags, unsigned int useroffset, 235 unsigned int usersize, void (*ctor)(void *), 236 struct kmem_cache *root_cache) 237 { 238 struct kmem_cache *s; 239 int err; 240 241 if (WARN_ON(useroffset + usersize > object_size)) 242 useroffset = usersize = 0; 243 244 err = -ENOMEM; 245 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 246 if (!s) 247 goto out; 248 249 s->name = name; 250 s->size = s->object_size = object_size; 251 s->align = align; 252 s->ctor = ctor; 253 s->useroffset = useroffset; 254 s->usersize = usersize; 255 256 err = __kmem_cache_create(s, flags); 257 if (err) 258 goto out_free_cache; 259 260 s->refcount = 1; 261 list_add(&s->list, &slab_caches); 262 out: 263 if (err) 264 return ERR_PTR(err); 265 return s; 266 267 out_free_cache: 268 kmem_cache_free(kmem_cache, s); 269 goto out; 270 } 271 272 /** 273 * kmem_cache_create_usercopy - Create a cache with a region suitable 274 * for copying to userspace 275 * @name: A string which is used in /proc/slabinfo to identify this cache. 276 * @size: The size of objects to be created in this cache. 277 * @align: The required alignment for the objects. 278 * @flags: SLAB flags 279 * @useroffset: Usercopy region offset 280 * @usersize: Usercopy region size 281 * @ctor: A constructor for the objects. 282 * 283 * Cannot be called within a interrupt, but can be interrupted. 284 * The @ctor is run when new pages are allocated by the cache. 285 * 286 * The flags are 287 * 288 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 289 * to catch references to uninitialised memory. 290 * 291 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 292 * for buffer overruns. 293 * 294 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 295 * cacheline. This can be beneficial if you're counting cycles as closely 296 * as davem. 297 * 298 * Return: a pointer to the cache on success, NULL on failure. 299 */ 300 struct kmem_cache * 301 kmem_cache_create_usercopy(const char *name, 302 unsigned int size, unsigned int align, 303 slab_flags_t flags, 304 unsigned int useroffset, unsigned int usersize, 305 void (*ctor)(void *)) 306 { 307 struct kmem_cache *s = NULL; 308 const char *cache_name; 309 int err; 310 311 #ifdef CONFIG_SLUB_DEBUG 312 /* 313 * If no slub_debug was enabled globally, the static key is not yet 314 * enabled by setup_slub_debug(). Enable it if the cache is being 315 * created with any of the debugging flags passed explicitly. 316 */ 317 if (flags & SLAB_DEBUG_FLAGS) 318 static_branch_enable(&slub_debug_enabled); 319 #endif 320 321 mutex_lock(&slab_mutex); 322 323 err = kmem_cache_sanity_check(name, size); 324 if (err) { 325 goto out_unlock; 326 } 327 328 /* Refuse requests with allocator specific flags */ 329 if (flags & ~SLAB_FLAGS_PERMITTED) { 330 err = -EINVAL; 331 goto out_unlock; 332 } 333 334 /* 335 * Some allocators will constraint the set of valid flags to a subset 336 * of all flags. We expect them to define CACHE_CREATE_MASK in this 337 * case, and we'll just provide them with a sanitized version of the 338 * passed flags. 339 */ 340 flags &= CACHE_CREATE_MASK; 341 342 /* Fail closed on bad usersize of useroffset values. */ 343 if (WARN_ON(!usersize && useroffset) || 344 WARN_ON(size < usersize || size - usersize < useroffset)) 345 usersize = useroffset = 0; 346 347 if (!usersize) 348 s = __kmem_cache_alias(name, size, align, flags, ctor); 349 if (s) 350 goto out_unlock; 351 352 cache_name = kstrdup_const(name, GFP_KERNEL); 353 if (!cache_name) { 354 err = -ENOMEM; 355 goto out_unlock; 356 } 357 358 s = create_cache(cache_name, size, 359 calculate_alignment(flags, align, size), 360 flags, useroffset, usersize, ctor, NULL); 361 if (IS_ERR(s)) { 362 err = PTR_ERR(s); 363 kfree_const(cache_name); 364 } 365 366 out_unlock: 367 mutex_unlock(&slab_mutex); 368 369 if (err) { 370 if (flags & SLAB_PANIC) 371 panic("%s: Failed to create slab '%s'. Error %d\n", 372 __func__, name, err); 373 else { 374 pr_warn("%s(%s) failed with error %d\n", 375 __func__, name, err); 376 dump_stack(); 377 } 378 return NULL; 379 } 380 return s; 381 } 382 EXPORT_SYMBOL(kmem_cache_create_usercopy); 383 384 /** 385 * kmem_cache_create - Create a cache. 386 * @name: A string which is used in /proc/slabinfo to identify this cache. 387 * @size: The size of objects to be created in this cache. 388 * @align: The required alignment for the objects. 389 * @flags: SLAB flags 390 * @ctor: A constructor for the objects. 391 * 392 * Cannot be called within a interrupt, but can be interrupted. 393 * The @ctor is run when new pages are allocated by the cache. 394 * 395 * The flags are 396 * 397 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 398 * to catch references to uninitialised memory. 399 * 400 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 401 * for buffer overruns. 402 * 403 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 404 * cacheline. This can be beneficial if you're counting cycles as closely 405 * as davem. 406 * 407 * Return: a pointer to the cache on success, NULL on failure. 408 */ 409 struct kmem_cache * 410 kmem_cache_create(const char *name, unsigned int size, unsigned int align, 411 slab_flags_t flags, void (*ctor)(void *)) 412 { 413 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, 414 ctor); 415 } 416 EXPORT_SYMBOL(kmem_cache_create); 417 418 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) 419 { 420 LIST_HEAD(to_destroy); 421 struct kmem_cache *s, *s2; 422 423 /* 424 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the 425 * @slab_caches_to_rcu_destroy list. The slab pages are freed 426 * through RCU and the associated kmem_cache are dereferenced 427 * while freeing the pages, so the kmem_caches should be freed only 428 * after the pending RCU operations are finished. As rcu_barrier() 429 * is a pretty slow operation, we batch all pending destructions 430 * asynchronously. 431 */ 432 mutex_lock(&slab_mutex); 433 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); 434 mutex_unlock(&slab_mutex); 435 436 if (list_empty(&to_destroy)) 437 return; 438 439 rcu_barrier(); 440 441 list_for_each_entry_safe(s, s2, &to_destroy, list) { 442 debugfs_slab_release(s); 443 kfence_shutdown_cache(s); 444 #ifdef SLAB_SUPPORTS_SYSFS 445 sysfs_slab_release(s); 446 #else 447 slab_kmem_cache_release(s); 448 #endif 449 } 450 } 451 452 static int shutdown_cache(struct kmem_cache *s) 453 { 454 /* free asan quarantined objects */ 455 kasan_cache_shutdown(s); 456 457 if (__kmem_cache_shutdown(s) != 0) 458 return -EBUSY; 459 460 list_del(&s->list); 461 462 if (s->flags & SLAB_TYPESAFE_BY_RCU) { 463 #ifdef SLAB_SUPPORTS_SYSFS 464 sysfs_slab_unlink(s); 465 #endif 466 list_add_tail(&s->list, &slab_caches_to_rcu_destroy); 467 schedule_work(&slab_caches_to_rcu_destroy_work); 468 } else { 469 kfence_shutdown_cache(s); 470 debugfs_slab_release(s); 471 #ifdef SLAB_SUPPORTS_SYSFS 472 sysfs_slab_unlink(s); 473 sysfs_slab_release(s); 474 #else 475 slab_kmem_cache_release(s); 476 #endif 477 } 478 479 return 0; 480 } 481 482 void slab_kmem_cache_release(struct kmem_cache *s) 483 { 484 __kmem_cache_release(s); 485 kfree_const(s->name); 486 kmem_cache_free(kmem_cache, s); 487 } 488 489 void kmem_cache_destroy(struct kmem_cache *s) 490 { 491 if (unlikely(!s) || !kasan_check_byte(s)) 492 return; 493 494 cpus_read_lock(); 495 mutex_lock(&slab_mutex); 496 497 s->refcount--; 498 if (s->refcount) 499 goto out_unlock; 500 501 WARN(shutdown_cache(s), 502 "%s %s: Slab cache still has objects when called from %pS", 503 __func__, s->name, (void *)_RET_IP_); 504 out_unlock: 505 mutex_unlock(&slab_mutex); 506 cpus_read_unlock(); 507 } 508 EXPORT_SYMBOL(kmem_cache_destroy); 509 510 /** 511 * kmem_cache_shrink - Shrink a cache. 512 * @cachep: The cache to shrink. 513 * 514 * Releases as many slabs as possible for a cache. 515 * To help debugging, a zero exit status indicates all slabs were released. 516 * 517 * Return: %0 if all slabs were released, non-zero otherwise 518 */ 519 int kmem_cache_shrink(struct kmem_cache *cachep) 520 { 521 int ret; 522 523 524 kasan_cache_shrink(cachep); 525 ret = __kmem_cache_shrink(cachep); 526 527 return ret; 528 } 529 EXPORT_SYMBOL(kmem_cache_shrink); 530 531 bool slab_is_available(void) 532 { 533 return slab_state >= UP; 534 } 535 536 #ifdef CONFIG_PRINTK 537 /** 538 * kmem_valid_obj - does the pointer reference a valid slab object? 539 * @object: pointer to query. 540 * 541 * Return: %true if the pointer is to a not-yet-freed object from 542 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer 543 * is to an already-freed object, and %false otherwise. 544 */ 545 bool kmem_valid_obj(void *object) 546 { 547 struct folio *folio; 548 549 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ 550 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) 551 return false; 552 folio = virt_to_folio(object); 553 return folio_test_slab(folio); 554 } 555 EXPORT_SYMBOL_GPL(kmem_valid_obj); 556 557 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 558 { 559 if (__kfence_obj_info(kpp, object, slab)) 560 return; 561 __kmem_obj_info(kpp, object, slab); 562 } 563 564 /** 565 * kmem_dump_obj - Print available slab provenance information 566 * @object: slab object for which to find provenance information. 567 * 568 * This function uses pr_cont(), so that the caller is expected to have 569 * printed out whatever preamble is appropriate. The provenance information 570 * depends on the type of object and on how much debugging is enabled. 571 * For a slab-cache object, the fact that it is a slab object is printed, 572 * and, if available, the slab name, return address, and stack trace from 573 * the allocation and last free path of that object. 574 * 575 * This function will splat if passed a pointer to a non-slab object. 576 * If you are not sure what type of object you have, you should instead 577 * use mem_dump_obj(). 578 */ 579 void kmem_dump_obj(void *object) 580 { 581 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; 582 int i; 583 struct slab *slab; 584 unsigned long ptroffset; 585 struct kmem_obj_info kp = { }; 586 587 if (WARN_ON_ONCE(!virt_addr_valid(object))) 588 return; 589 slab = virt_to_slab(object); 590 if (WARN_ON_ONCE(!slab)) { 591 pr_cont(" non-slab memory.\n"); 592 return; 593 } 594 kmem_obj_info(&kp, object, slab); 595 if (kp.kp_slab_cache) 596 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); 597 else 598 pr_cont(" slab%s", cp); 599 if (is_kfence_address(object)) 600 pr_cont(" (kfence)"); 601 if (kp.kp_objp) 602 pr_cont(" start %px", kp.kp_objp); 603 if (kp.kp_data_offset) 604 pr_cont(" data offset %lu", kp.kp_data_offset); 605 if (kp.kp_objp) { 606 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; 607 pr_cont(" pointer offset %lu", ptroffset); 608 } 609 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize) 610 pr_cont(" size %u", kp.kp_slab_cache->usersize); 611 if (kp.kp_ret) 612 pr_cont(" allocated at %pS\n", kp.kp_ret); 613 else 614 pr_cont("\n"); 615 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { 616 if (!kp.kp_stack[i]) 617 break; 618 pr_info(" %pS\n", kp.kp_stack[i]); 619 } 620 621 if (kp.kp_free_stack[0]) 622 pr_cont(" Free path:\n"); 623 624 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) { 625 if (!kp.kp_free_stack[i]) 626 break; 627 pr_info(" %pS\n", kp.kp_free_stack[i]); 628 } 629 630 } 631 EXPORT_SYMBOL_GPL(kmem_dump_obj); 632 #endif 633 634 #ifndef CONFIG_SLOB 635 /* Create a cache during boot when no slab services are available yet */ 636 void __init create_boot_cache(struct kmem_cache *s, const char *name, 637 unsigned int size, slab_flags_t flags, 638 unsigned int useroffset, unsigned int usersize) 639 { 640 int err; 641 unsigned int align = ARCH_KMALLOC_MINALIGN; 642 643 s->name = name; 644 s->size = s->object_size = size; 645 646 /* 647 * For power of two sizes, guarantee natural alignment for kmalloc 648 * caches, regardless of SL*B debugging options. 649 */ 650 if (is_power_of_2(size)) 651 align = max(align, size); 652 s->align = calculate_alignment(flags, align, size); 653 654 s->useroffset = useroffset; 655 s->usersize = usersize; 656 657 err = __kmem_cache_create(s, flags); 658 659 if (err) 660 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", 661 name, size, err); 662 663 s->refcount = -1; /* Exempt from merging for now */ 664 } 665 666 struct kmem_cache *__init create_kmalloc_cache(const char *name, 667 unsigned int size, slab_flags_t flags, 668 unsigned int useroffset, unsigned int usersize) 669 { 670 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 671 672 if (!s) 673 panic("Out of memory when creating slab %s\n", name); 674 675 create_boot_cache(s, name, size, flags, useroffset, usersize); 676 kasan_cache_create_kmalloc(s); 677 list_add(&s->list, &slab_caches); 678 s->refcount = 1; 679 return s; 680 } 681 682 struct kmem_cache * 683 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = 684 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; 685 EXPORT_SYMBOL(kmalloc_caches); 686 687 /* 688 * Conversion table for small slabs sizes / 8 to the index in the 689 * kmalloc array. This is necessary for slabs < 192 since we have non power 690 * of two cache sizes there. The size of larger slabs can be determined using 691 * fls. 692 */ 693 static u8 size_index[24] __ro_after_init = { 694 3, /* 8 */ 695 4, /* 16 */ 696 5, /* 24 */ 697 5, /* 32 */ 698 6, /* 40 */ 699 6, /* 48 */ 700 6, /* 56 */ 701 6, /* 64 */ 702 1, /* 72 */ 703 1, /* 80 */ 704 1, /* 88 */ 705 1, /* 96 */ 706 7, /* 104 */ 707 7, /* 112 */ 708 7, /* 120 */ 709 7, /* 128 */ 710 2, /* 136 */ 711 2, /* 144 */ 712 2, /* 152 */ 713 2, /* 160 */ 714 2, /* 168 */ 715 2, /* 176 */ 716 2, /* 184 */ 717 2 /* 192 */ 718 }; 719 720 static inline unsigned int size_index_elem(unsigned int bytes) 721 { 722 return (bytes - 1) / 8; 723 } 724 725 /* 726 * Find the kmem_cache structure that serves a given size of 727 * allocation 728 */ 729 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) 730 { 731 unsigned int index; 732 733 if (size <= 192) { 734 if (!size) 735 return ZERO_SIZE_PTR; 736 737 index = size_index[size_index_elem(size)]; 738 } else { 739 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) 740 return NULL; 741 index = fls(size - 1); 742 } 743 744 return kmalloc_caches[kmalloc_type(flags)][index]; 745 } 746 747 #ifdef CONFIG_ZONE_DMA 748 #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz, 749 #else 750 #define KMALLOC_DMA_NAME(sz) 751 #endif 752 753 #ifdef CONFIG_MEMCG_KMEM 754 #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz, 755 #else 756 #define KMALLOC_CGROUP_NAME(sz) 757 #endif 758 759 #define INIT_KMALLOC_INFO(__size, __short_size) \ 760 { \ 761 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ 762 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \ 763 KMALLOC_CGROUP_NAME(__short_size) \ 764 KMALLOC_DMA_NAME(__short_size) \ 765 .size = __size, \ 766 } 767 768 /* 769 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. 770 * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is 771 * kmalloc-32M. 772 */ 773 const struct kmalloc_info_struct kmalloc_info[] __initconst = { 774 INIT_KMALLOC_INFO(0, 0), 775 INIT_KMALLOC_INFO(96, 96), 776 INIT_KMALLOC_INFO(192, 192), 777 INIT_KMALLOC_INFO(8, 8), 778 INIT_KMALLOC_INFO(16, 16), 779 INIT_KMALLOC_INFO(32, 32), 780 INIT_KMALLOC_INFO(64, 64), 781 INIT_KMALLOC_INFO(128, 128), 782 INIT_KMALLOC_INFO(256, 256), 783 INIT_KMALLOC_INFO(512, 512), 784 INIT_KMALLOC_INFO(1024, 1k), 785 INIT_KMALLOC_INFO(2048, 2k), 786 INIT_KMALLOC_INFO(4096, 4k), 787 INIT_KMALLOC_INFO(8192, 8k), 788 INIT_KMALLOC_INFO(16384, 16k), 789 INIT_KMALLOC_INFO(32768, 32k), 790 INIT_KMALLOC_INFO(65536, 64k), 791 INIT_KMALLOC_INFO(131072, 128k), 792 INIT_KMALLOC_INFO(262144, 256k), 793 INIT_KMALLOC_INFO(524288, 512k), 794 INIT_KMALLOC_INFO(1048576, 1M), 795 INIT_KMALLOC_INFO(2097152, 2M), 796 INIT_KMALLOC_INFO(4194304, 4M), 797 INIT_KMALLOC_INFO(8388608, 8M), 798 INIT_KMALLOC_INFO(16777216, 16M), 799 INIT_KMALLOC_INFO(33554432, 32M) 800 }; 801 802 /* 803 * Patch up the size_index table if we have strange large alignment 804 * requirements for the kmalloc array. This is only the case for 805 * MIPS it seems. The standard arches will not generate any code here. 806 * 807 * Largest permitted alignment is 256 bytes due to the way we 808 * handle the index determination for the smaller caches. 809 * 810 * Make sure that nothing crazy happens if someone starts tinkering 811 * around with ARCH_KMALLOC_MINALIGN 812 */ 813 void __init setup_kmalloc_cache_index_table(void) 814 { 815 unsigned int i; 816 817 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 818 !is_power_of_2(KMALLOC_MIN_SIZE)); 819 820 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 821 unsigned int elem = size_index_elem(i); 822 823 if (elem >= ARRAY_SIZE(size_index)) 824 break; 825 size_index[elem] = KMALLOC_SHIFT_LOW; 826 } 827 828 if (KMALLOC_MIN_SIZE >= 64) { 829 /* 830 * The 96 byte sized cache is not used if the alignment 831 * is 64 byte. 832 */ 833 for (i = 64 + 8; i <= 96; i += 8) 834 size_index[size_index_elem(i)] = 7; 835 836 } 837 838 if (KMALLOC_MIN_SIZE >= 128) { 839 /* 840 * The 192 byte sized cache is not used if the alignment 841 * is 128 byte. Redirect kmalloc to use the 256 byte cache 842 * instead. 843 */ 844 for (i = 128 + 8; i <= 192; i += 8) 845 size_index[size_index_elem(i)] = 8; 846 } 847 } 848 849 static void __init 850 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags) 851 { 852 if (type == KMALLOC_RECLAIM) { 853 flags |= SLAB_RECLAIM_ACCOUNT; 854 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) { 855 if (mem_cgroup_kmem_disabled()) { 856 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx]; 857 return; 858 } 859 flags |= SLAB_ACCOUNT; 860 } 861 862 kmalloc_caches[type][idx] = create_kmalloc_cache( 863 kmalloc_info[idx].name[type], 864 kmalloc_info[idx].size, flags, 0, 865 kmalloc_info[idx].size); 866 867 /* 868 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for 869 * KMALLOC_NORMAL caches. 870 */ 871 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL)) 872 kmalloc_caches[type][idx]->refcount = -1; 873 } 874 875 /* 876 * Create the kmalloc array. Some of the regular kmalloc arrays 877 * may already have been created because they were needed to 878 * enable allocations for slab creation. 879 */ 880 void __init create_kmalloc_caches(slab_flags_t flags) 881 { 882 int i; 883 enum kmalloc_cache_type type; 884 885 /* 886 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined 887 */ 888 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { 889 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 890 if (!kmalloc_caches[type][i]) 891 new_kmalloc_cache(i, type, flags); 892 893 /* 894 * Caches that are not of the two-to-the-power-of size. 895 * These have to be created immediately after the 896 * earlier power of two caches 897 */ 898 if (KMALLOC_MIN_SIZE <= 32 && i == 6 && 899 !kmalloc_caches[type][1]) 900 new_kmalloc_cache(1, type, flags); 901 if (KMALLOC_MIN_SIZE <= 64 && i == 7 && 902 !kmalloc_caches[type][2]) 903 new_kmalloc_cache(2, type, flags); 904 } 905 } 906 907 /* Kmalloc array is now usable */ 908 slab_state = UP; 909 910 #ifdef CONFIG_ZONE_DMA 911 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 912 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; 913 914 if (s) { 915 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( 916 kmalloc_info[i].name[KMALLOC_DMA], 917 kmalloc_info[i].size, 918 SLAB_CACHE_DMA | flags, 0, 919 kmalloc_info[i].size); 920 } 921 } 922 #endif 923 } 924 #endif /* !CONFIG_SLOB */ 925 926 gfp_t kmalloc_fix_flags(gfp_t flags) 927 { 928 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 929 930 flags &= ~GFP_SLAB_BUG_MASK; 931 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 932 invalid_mask, &invalid_mask, flags, &flags); 933 dump_stack(); 934 935 return flags; 936 } 937 938 /* 939 * To avoid unnecessary overhead, we pass through large allocation requests 940 * directly to the page allocator. We use __GFP_COMP, because we will need to 941 * know the allocation order to free the pages properly in kfree. 942 */ 943 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) 944 { 945 void *ret = NULL; 946 struct page *page; 947 948 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 949 flags = kmalloc_fix_flags(flags); 950 951 flags |= __GFP_COMP; 952 page = alloc_pages(flags, order); 953 if (likely(page)) { 954 ret = page_address(page); 955 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 956 PAGE_SIZE << order); 957 } 958 ret = kasan_kmalloc_large(ret, size, flags); 959 /* As ret might get tagged, call kmemleak hook after KASAN. */ 960 kmemleak_alloc(ret, size, 1, flags); 961 return ret; 962 } 963 EXPORT_SYMBOL(kmalloc_order); 964 965 #ifdef CONFIG_TRACING 966 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 967 { 968 void *ret = kmalloc_order(size, flags, order); 969 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 970 return ret; 971 } 972 EXPORT_SYMBOL(kmalloc_order_trace); 973 #endif 974 975 #ifdef CONFIG_SLAB_FREELIST_RANDOM 976 /* Randomize a generic freelist */ 977 static void freelist_randomize(struct rnd_state *state, unsigned int *list, 978 unsigned int count) 979 { 980 unsigned int rand; 981 unsigned int i; 982 983 for (i = 0; i < count; i++) 984 list[i] = i; 985 986 /* Fisher-Yates shuffle */ 987 for (i = count - 1; i > 0; i--) { 988 rand = prandom_u32_state(state); 989 rand %= (i + 1); 990 swap(list[i], list[rand]); 991 } 992 } 993 994 /* Create a random sequence per cache */ 995 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 996 gfp_t gfp) 997 { 998 struct rnd_state state; 999 1000 if (count < 2 || cachep->random_seq) 1001 return 0; 1002 1003 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); 1004 if (!cachep->random_seq) 1005 return -ENOMEM; 1006 1007 /* Get best entropy at this stage of boot */ 1008 prandom_seed_state(&state, get_random_long()); 1009 1010 freelist_randomize(&state, cachep->random_seq, count); 1011 return 0; 1012 } 1013 1014 /* Destroy the per-cache random freelist sequence */ 1015 void cache_random_seq_destroy(struct kmem_cache *cachep) 1016 { 1017 kfree(cachep->random_seq); 1018 cachep->random_seq = NULL; 1019 } 1020 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1021 1022 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 1023 #ifdef CONFIG_SLAB 1024 #define SLABINFO_RIGHTS (0600) 1025 #else 1026 #define SLABINFO_RIGHTS (0400) 1027 #endif 1028 1029 static void print_slabinfo_header(struct seq_file *m) 1030 { 1031 /* 1032 * Output format version, so at least we can change it 1033 * without _too_ many complaints. 1034 */ 1035 #ifdef CONFIG_DEBUG_SLAB 1036 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 1037 #else 1038 seq_puts(m, "slabinfo - version: 2.1\n"); 1039 #endif 1040 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); 1041 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 1042 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 1043 #ifdef CONFIG_DEBUG_SLAB 1044 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 1045 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 1046 #endif 1047 seq_putc(m, '\n'); 1048 } 1049 1050 static void *slab_start(struct seq_file *m, loff_t *pos) 1051 { 1052 mutex_lock(&slab_mutex); 1053 return seq_list_start(&slab_caches, *pos); 1054 } 1055 1056 static void *slab_next(struct seq_file *m, void *p, loff_t *pos) 1057 { 1058 return seq_list_next(p, &slab_caches, pos); 1059 } 1060 1061 static void slab_stop(struct seq_file *m, void *p) 1062 { 1063 mutex_unlock(&slab_mutex); 1064 } 1065 1066 static void cache_show(struct kmem_cache *s, struct seq_file *m) 1067 { 1068 struct slabinfo sinfo; 1069 1070 memset(&sinfo, 0, sizeof(sinfo)); 1071 get_slabinfo(s, &sinfo); 1072 1073 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 1074 s->name, sinfo.active_objs, sinfo.num_objs, s->size, 1075 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 1076 1077 seq_printf(m, " : tunables %4u %4u %4u", 1078 sinfo.limit, sinfo.batchcount, sinfo.shared); 1079 seq_printf(m, " : slabdata %6lu %6lu %6lu", 1080 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 1081 slabinfo_show_stats(m, s); 1082 seq_putc(m, '\n'); 1083 } 1084 1085 static int slab_show(struct seq_file *m, void *p) 1086 { 1087 struct kmem_cache *s = list_entry(p, struct kmem_cache, list); 1088 1089 if (p == slab_caches.next) 1090 print_slabinfo_header(m); 1091 cache_show(s, m); 1092 return 0; 1093 } 1094 1095 void dump_unreclaimable_slab(void) 1096 { 1097 struct kmem_cache *s; 1098 struct slabinfo sinfo; 1099 1100 /* 1101 * Here acquiring slab_mutex is risky since we don't prefer to get 1102 * sleep in oom path. But, without mutex hold, it may introduce a 1103 * risk of crash. 1104 * Use mutex_trylock to protect the list traverse, dump nothing 1105 * without acquiring the mutex. 1106 */ 1107 if (!mutex_trylock(&slab_mutex)) { 1108 pr_warn("excessive unreclaimable slab but cannot dump stats\n"); 1109 return; 1110 } 1111 1112 pr_info("Unreclaimable slab info:\n"); 1113 pr_info("Name Used Total\n"); 1114 1115 list_for_each_entry(s, &slab_caches, list) { 1116 if (s->flags & SLAB_RECLAIM_ACCOUNT) 1117 continue; 1118 1119 get_slabinfo(s, &sinfo); 1120 1121 if (sinfo.num_objs > 0) 1122 pr_info("%-17s %10luKB %10luKB\n", s->name, 1123 (sinfo.active_objs * s->size) / 1024, 1124 (sinfo.num_objs * s->size) / 1024); 1125 } 1126 mutex_unlock(&slab_mutex); 1127 } 1128 1129 /* 1130 * slabinfo_op - iterator that generates /proc/slabinfo 1131 * 1132 * Output layout: 1133 * cache-name 1134 * num-active-objs 1135 * total-objs 1136 * object size 1137 * num-active-slabs 1138 * total-slabs 1139 * num-pages-per-slab 1140 * + further values on SMP and with statistics enabled 1141 */ 1142 static const struct seq_operations slabinfo_op = { 1143 .start = slab_start, 1144 .next = slab_next, 1145 .stop = slab_stop, 1146 .show = slab_show, 1147 }; 1148 1149 static int slabinfo_open(struct inode *inode, struct file *file) 1150 { 1151 return seq_open(file, &slabinfo_op); 1152 } 1153 1154 static const struct proc_ops slabinfo_proc_ops = { 1155 .proc_flags = PROC_ENTRY_PERMANENT, 1156 .proc_open = slabinfo_open, 1157 .proc_read = seq_read, 1158 .proc_write = slabinfo_write, 1159 .proc_lseek = seq_lseek, 1160 .proc_release = seq_release, 1161 }; 1162 1163 static int __init slab_proc_init(void) 1164 { 1165 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); 1166 return 0; 1167 } 1168 module_init(slab_proc_init); 1169 1170 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ 1171 1172 static __always_inline void *__do_krealloc(const void *p, size_t new_size, 1173 gfp_t flags) 1174 { 1175 void *ret; 1176 size_t ks; 1177 1178 /* Don't use instrumented ksize to allow precise KASAN poisoning. */ 1179 if (likely(!ZERO_OR_NULL_PTR(p))) { 1180 if (!kasan_check_byte(p)) 1181 return NULL; 1182 ks = kfence_ksize(p) ?: __ksize(p); 1183 } else 1184 ks = 0; 1185 1186 /* If the object still fits, repoison it precisely. */ 1187 if (ks >= new_size) { 1188 p = kasan_krealloc((void *)p, new_size, flags); 1189 return (void *)p; 1190 } 1191 1192 ret = kmalloc_track_caller(new_size, flags); 1193 if (ret && p) { 1194 /* Disable KASAN checks as the object's redzone is accessed. */ 1195 kasan_disable_current(); 1196 memcpy(ret, kasan_reset_tag(p), ks); 1197 kasan_enable_current(); 1198 } 1199 1200 return ret; 1201 } 1202 1203 /** 1204 * krealloc - reallocate memory. The contents will remain unchanged. 1205 * @p: object to reallocate memory for. 1206 * @new_size: how many bytes of memory are required. 1207 * @flags: the type of memory to allocate. 1208 * 1209 * The contents of the object pointed to are preserved up to the 1210 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored). 1211 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 1212 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 1213 * 1214 * Return: pointer to the allocated memory or %NULL in case of error 1215 */ 1216 void *krealloc(const void *p, size_t new_size, gfp_t flags) 1217 { 1218 void *ret; 1219 1220 if (unlikely(!new_size)) { 1221 kfree(p); 1222 return ZERO_SIZE_PTR; 1223 } 1224 1225 ret = __do_krealloc(p, new_size, flags); 1226 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 1227 kfree(p); 1228 1229 return ret; 1230 } 1231 EXPORT_SYMBOL(krealloc); 1232 1233 /** 1234 * kfree_sensitive - Clear sensitive information in memory before freeing 1235 * @p: object to free memory of 1236 * 1237 * The memory of the object @p points to is zeroed before freed. 1238 * If @p is %NULL, kfree_sensitive() does nothing. 1239 * 1240 * Note: this function zeroes the whole allocated buffer which can be a good 1241 * deal bigger than the requested buffer size passed to kmalloc(). So be 1242 * careful when using this function in performance sensitive code. 1243 */ 1244 void kfree_sensitive(const void *p) 1245 { 1246 size_t ks; 1247 void *mem = (void *)p; 1248 1249 ks = ksize(mem); 1250 if (ks) 1251 memzero_explicit(mem, ks); 1252 kfree(mem); 1253 } 1254 EXPORT_SYMBOL(kfree_sensitive); 1255 1256 /** 1257 * ksize - get the actual amount of memory allocated for a given object 1258 * @objp: Pointer to the object 1259 * 1260 * kmalloc may internally round up allocations and return more memory 1261 * than requested. ksize() can be used to determine the actual amount of 1262 * memory allocated. The caller may use this additional memory, even though 1263 * a smaller amount of memory was initially specified with the kmalloc call. 1264 * The caller must guarantee that objp points to a valid object previously 1265 * allocated with either kmalloc() or kmem_cache_alloc(). The object 1266 * must not be freed during the duration of the call. 1267 * 1268 * Return: size of the actual memory used by @objp in bytes 1269 */ 1270 size_t ksize(const void *objp) 1271 { 1272 size_t size; 1273 1274 /* 1275 * We need to first check that the pointer to the object is valid, and 1276 * only then unpoison the memory. The report printed from ksize() is 1277 * more useful, then when it's printed later when the behaviour could 1278 * be undefined due to a potential use-after-free or double-free. 1279 * 1280 * We use kasan_check_byte(), which is supported for the hardware 1281 * tag-based KASAN mode, unlike kasan_check_read/write(). 1282 * 1283 * If the pointed to memory is invalid, we return 0 to avoid users of 1284 * ksize() writing to and potentially corrupting the memory region. 1285 * 1286 * We want to perform the check before __ksize(), to avoid potentially 1287 * crashing in __ksize() due to accessing invalid metadata. 1288 */ 1289 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) 1290 return 0; 1291 1292 size = kfence_ksize(objp) ?: __ksize(objp); 1293 /* 1294 * We assume that ksize callers could use whole allocated area, 1295 * so we need to unpoison this area. 1296 */ 1297 kasan_unpoison_range(objp, size); 1298 return size; 1299 } 1300 EXPORT_SYMBOL(ksize); 1301 1302 /* Tracepoints definitions. */ 1303 EXPORT_TRACEPOINT_SYMBOL(kmalloc); 1304 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 1305 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); 1306 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); 1307 EXPORT_TRACEPOINT_SYMBOL(kfree); 1308 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 1309 1310 int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 1311 { 1312 if (__should_failslab(s, gfpflags)) 1313 return -ENOMEM; 1314 return 0; 1315 } 1316 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 1317