xref: /openbmc/linux/mm/slab_common.c (revision a8fe58ce)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25 
26 #include "slab.h"
27 
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32 
33 /*
34  * Set of flags that will prevent slab merging
35  */
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 		SLAB_FAILSLAB)
39 
40 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
41 			 SLAB_NOTRACK | SLAB_ACCOUNT)
42 
43 /*
44  * Merge control. If this is set then no merging of slab caches will occur.
45  * (Could be removed. This was introduced to pacify the merge skeptics.)
46  */
47 static int slab_nomerge;
48 
49 static int __init setup_slab_nomerge(char *str)
50 {
51 	slab_nomerge = 1;
52 	return 1;
53 }
54 
55 #ifdef CONFIG_SLUB
56 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57 #endif
58 
59 __setup("slab_nomerge", setup_slab_nomerge);
60 
61 /*
62  * Determine the size of a slab object
63  */
64 unsigned int kmem_cache_size(struct kmem_cache *s)
65 {
66 	return s->object_size;
67 }
68 EXPORT_SYMBOL(kmem_cache_size);
69 
70 #ifdef CONFIG_DEBUG_VM
71 static int kmem_cache_sanity_check(const char *name, size_t size)
72 {
73 	struct kmem_cache *s = NULL;
74 
75 	if (!name || in_interrupt() || size < sizeof(void *) ||
76 		size > KMALLOC_MAX_SIZE) {
77 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 		return -EINVAL;
79 	}
80 
81 	list_for_each_entry(s, &slab_caches, list) {
82 		char tmp;
83 		int res;
84 
85 		/*
86 		 * This happens when the module gets unloaded and doesn't
87 		 * destroy its slab cache and no-one else reuses the vmalloc
88 		 * area of the module.  Print a warning.
89 		 */
90 		res = probe_kernel_address(s->name, tmp);
91 		if (res) {
92 			pr_err("Slab cache with size %d has lost its name\n",
93 			       s->object_size);
94 			continue;
95 		}
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, size_t size)
103 {
104 	return 0;
105 }
106 #endif
107 
108 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109 {
110 	size_t i;
111 
112 	for (i = 0; i < nr; i++)
113 		kmem_cache_free(s, p[i]);
114 }
115 
116 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
117 								void **p)
118 {
119 	size_t i;
120 
121 	for (i = 0; i < nr; i++) {
122 		void *x = p[i] = kmem_cache_alloc(s, flags);
123 		if (!x) {
124 			__kmem_cache_free_bulk(s, i, p);
125 			return 0;
126 		}
127 	}
128 	return i;
129 }
130 
131 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
132 void slab_init_memcg_params(struct kmem_cache *s)
133 {
134 	s->memcg_params.is_root_cache = true;
135 	INIT_LIST_HEAD(&s->memcg_params.list);
136 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
137 }
138 
139 static int init_memcg_params(struct kmem_cache *s,
140 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
141 {
142 	struct memcg_cache_array *arr;
143 
144 	if (memcg) {
145 		s->memcg_params.is_root_cache = false;
146 		s->memcg_params.memcg = memcg;
147 		s->memcg_params.root_cache = root_cache;
148 		return 0;
149 	}
150 
151 	slab_init_memcg_params(s);
152 
153 	if (!memcg_nr_cache_ids)
154 		return 0;
155 
156 	arr = kzalloc(sizeof(struct memcg_cache_array) +
157 		      memcg_nr_cache_ids * sizeof(void *),
158 		      GFP_KERNEL);
159 	if (!arr)
160 		return -ENOMEM;
161 
162 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
163 	return 0;
164 }
165 
166 static void destroy_memcg_params(struct kmem_cache *s)
167 {
168 	if (is_root_cache(s))
169 		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
170 }
171 
172 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
173 {
174 	struct memcg_cache_array *old, *new;
175 
176 	if (!is_root_cache(s))
177 		return 0;
178 
179 	new = kzalloc(sizeof(struct memcg_cache_array) +
180 		      new_array_size * sizeof(void *), GFP_KERNEL);
181 	if (!new)
182 		return -ENOMEM;
183 
184 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
185 					lockdep_is_held(&slab_mutex));
186 	if (old)
187 		memcpy(new->entries, old->entries,
188 		       memcg_nr_cache_ids * sizeof(void *));
189 
190 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
191 	if (old)
192 		kfree_rcu(old, rcu);
193 	return 0;
194 }
195 
196 int memcg_update_all_caches(int num_memcgs)
197 {
198 	struct kmem_cache *s;
199 	int ret = 0;
200 
201 	mutex_lock(&slab_mutex);
202 	list_for_each_entry(s, &slab_caches, list) {
203 		ret = update_memcg_params(s, num_memcgs);
204 		/*
205 		 * Instead of freeing the memory, we'll just leave the caches
206 		 * up to this point in an updated state.
207 		 */
208 		if (ret)
209 			break;
210 	}
211 	mutex_unlock(&slab_mutex);
212 	return ret;
213 }
214 #else
215 static inline int init_memcg_params(struct kmem_cache *s,
216 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
217 {
218 	return 0;
219 }
220 
221 static inline void destroy_memcg_params(struct kmem_cache *s)
222 {
223 }
224 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
225 
226 /*
227  * Find a mergeable slab cache
228  */
229 int slab_unmergeable(struct kmem_cache *s)
230 {
231 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
232 		return 1;
233 
234 	if (!is_root_cache(s))
235 		return 1;
236 
237 	if (s->ctor)
238 		return 1;
239 
240 	/*
241 	 * We may have set a slab to be unmergeable during bootstrap.
242 	 */
243 	if (s->refcount < 0)
244 		return 1;
245 
246 	return 0;
247 }
248 
249 struct kmem_cache *find_mergeable(size_t size, size_t align,
250 		unsigned long flags, const char *name, void (*ctor)(void *))
251 {
252 	struct kmem_cache *s;
253 
254 	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
255 		return NULL;
256 
257 	if (ctor)
258 		return NULL;
259 
260 	size = ALIGN(size, sizeof(void *));
261 	align = calculate_alignment(flags, align, size);
262 	size = ALIGN(size, align);
263 	flags = kmem_cache_flags(size, flags, name, NULL);
264 
265 	list_for_each_entry_reverse(s, &slab_caches, list) {
266 		if (slab_unmergeable(s))
267 			continue;
268 
269 		if (size > s->size)
270 			continue;
271 
272 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
273 			continue;
274 		/*
275 		 * Check if alignment is compatible.
276 		 * Courtesy of Adrian Drzewiecki
277 		 */
278 		if ((s->size & ~(align - 1)) != s->size)
279 			continue;
280 
281 		if (s->size - size >= sizeof(void *))
282 			continue;
283 
284 		if (IS_ENABLED(CONFIG_SLAB) && align &&
285 			(align > s->align || s->align % align))
286 			continue;
287 
288 		return s;
289 	}
290 	return NULL;
291 }
292 
293 /*
294  * Figure out what the alignment of the objects will be given a set of
295  * flags, a user specified alignment and the size of the objects.
296  */
297 unsigned long calculate_alignment(unsigned long flags,
298 		unsigned long align, unsigned long size)
299 {
300 	/*
301 	 * If the user wants hardware cache aligned objects then follow that
302 	 * suggestion if the object is sufficiently large.
303 	 *
304 	 * The hardware cache alignment cannot override the specified
305 	 * alignment though. If that is greater then use it.
306 	 */
307 	if (flags & SLAB_HWCACHE_ALIGN) {
308 		unsigned long ralign = cache_line_size();
309 		while (size <= ralign / 2)
310 			ralign /= 2;
311 		align = max(align, ralign);
312 	}
313 
314 	if (align < ARCH_SLAB_MINALIGN)
315 		align = ARCH_SLAB_MINALIGN;
316 
317 	return ALIGN(align, sizeof(void *));
318 }
319 
320 static struct kmem_cache *create_cache(const char *name,
321 		size_t object_size, size_t size, size_t align,
322 		unsigned long flags, void (*ctor)(void *),
323 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
324 {
325 	struct kmem_cache *s;
326 	int err;
327 
328 	err = -ENOMEM;
329 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
330 	if (!s)
331 		goto out;
332 
333 	s->name = name;
334 	s->object_size = object_size;
335 	s->size = size;
336 	s->align = align;
337 	s->ctor = ctor;
338 
339 	err = init_memcg_params(s, memcg, root_cache);
340 	if (err)
341 		goto out_free_cache;
342 
343 	err = __kmem_cache_create(s, flags);
344 	if (err)
345 		goto out_free_cache;
346 
347 	s->refcount = 1;
348 	list_add(&s->list, &slab_caches);
349 out:
350 	if (err)
351 		return ERR_PTR(err);
352 	return s;
353 
354 out_free_cache:
355 	destroy_memcg_params(s);
356 	kmem_cache_free(kmem_cache, s);
357 	goto out;
358 }
359 
360 /*
361  * kmem_cache_create - Create a cache.
362  * @name: A string which is used in /proc/slabinfo to identify this cache.
363  * @size: The size of objects to be created in this cache.
364  * @align: The required alignment for the objects.
365  * @flags: SLAB flags
366  * @ctor: A constructor for the objects.
367  *
368  * Returns a ptr to the cache on success, NULL on failure.
369  * Cannot be called within a interrupt, but can be interrupted.
370  * The @ctor is run when new pages are allocated by the cache.
371  *
372  * The flags are
373  *
374  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375  * to catch references to uninitialised memory.
376  *
377  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
378  * for buffer overruns.
379  *
380  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381  * cacheline.  This can be beneficial if you're counting cycles as closely
382  * as davem.
383  */
384 struct kmem_cache *
385 kmem_cache_create(const char *name, size_t size, size_t align,
386 		  unsigned long flags, void (*ctor)(void *))
387 {
388 	struct kmem_cache *s = NULL;
389 	const char *cache_name;
390 	int err;
391 
392 	get_online_cpus();
393 	get_online_mems();
394 	memcg_get_cache_ids();
395 
396 	mutex_lock(&slab_mutex);
397 
398 	err = kmem_cache_sanity_check(name, size);
399 	if (err) {
400 		goto out_unlock;
401 	}
402 
403 	/*
404 	 * Some allocators will constraint the set of valid flags to a subset
405 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
406 	 * case, and we'll just provide them with a sanitized version of the
407 	 * passed flags.
408 	 */
409 	flags &= CACHE_CREATE_MASK;
410 
411 	s = __kmem_cache_alias(name, size, align, flags, ctor);
412 	if (s)
413 		goto out_unlock;
414 
415 	cache_name = kstrdup_const(name, GFP_KERNEL);
416 	if (!cache_name) {
417 		err = -ENOMEM;
418 		goto out_unlock;
419 	}
420 
421 	s = create_cache(cache_name, size, size,
422 			 calculate_alignment(flags, align, size),
423 			 flags, ctor, NULL, NULL);
424 	if (IS_ERR(s)) {
425 		err = PTR_ERR(s);
426 		kfree_const(cache_name);
427 	}
428 
429 out_unlock:
430 	mutex_unlock(&slab_mutex);
431 
432 	memcg_put_cache_ids();
433 	put_online_mems();
434 	put_online_cpus();
435 
436 	if (err) {
437 		if (flags & SLAB_PANIC)
438 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
439 				name, err);
440 		else {
441 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
442 				name, err);
443 			dump_stack();
444 		}
445 		return NULL;
446 	}
447 	return s;
448 }
449 EXPORT_SYMBOL(kmem_cache_create);
450 
451 static int shutdown_cache(struct kmem_cache *s,
452 		struct list_head *release, bool *need_rcu_barrier)
453 {
454 	if (__kmem_cache_shutdown(s) != 0)
455 		return -EBUSY;
456 
457 	if (s->flags & SLAB_DESTROY_BY_RCU)
458 		*need_rcu_barrier = true;
459 
460 	list_move(&s->list, release);
461 	return 0;
462 }
463 
464 static void release_caches(struct list_head *release, bool need_rcu_barrier)
465 {
466 	struct kmem_cache *s, *s2;
467 
468 	if (need_rcu_barrier)
469 		rcu_barrier();
470 
471 	list_for_each_entry_safe(s, s2, release, list) {
472 #ifdef SLAB_SUPPORTS_SYSFS
473 		sysfs_slab_remove(s);
474 #else
475 		slab_kmem_cache_release(s);
476 #endif
477 	}
478 }
479 
480 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
481 /*
482  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
483  * @memcg: The memory cgroup the new cache is for.
484  * @root_cache: The parent of the new cache.
485  *
486  * This function attempts to create a kmem cache that will serve allocation
487  * requests going from @memcg to @root_cache. The new cache inherits properties
488  * from its parent.
489  */
490 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
491 			     struct kmem_cache *root_cache)
492 {
493 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
494 	struct cgroup_subsys_state *css = &memcg->css;
495 	struct memcg_cache_array *arr;
496 	struct kmem_cache *s = NULL;
497 	char *cache_name;
498 	int idx;
499 
500 	get_online_cpus();
501 	get_online_mems();
502 
503 	mutex_lock(&slab_mutex);
504 
505 	/*
506 	 * The memory cgroup could have been offlined while the cache
507 	 * creation work was pending.
508 	 */
509 	if (!memcg_kmem_online(memcg))
510 		goto out_unlock;
511 
512 	idx = memcg_cache_id(memcg);
513 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
514 					lockdep_is_held(&slab_mutex));
515 
516 	/*
517 	 * Since per-memcg caches are created asynchronously on first
518 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
519 	 * create the same cache, but only one of them may succeed.
520 	 */
521 	if (arr->entries[idx])
522 		goto out_unlock;
523 
524 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
525 	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
526 			       css->id, memcg_name_buf);
527 	if (!cache_name)
528 		goto out_unlock;
529 
530 	s = create_cache(cache_name, root_cache->object_size,
531 			 root_cache->size, root_cache->align,
532 			 root_cache->flags, root_cache->ctor,
533 			 memcg, root_cache);
534 	/*
535 	 * If we could not create a memcg cache, do not complain, because
536 	 * that's not critical at all as we can always proceed with the root
537 	 * cache.
538 	 */
539 	if (IS_ERR(s)) {
540 		kfree(cache_name);
541 		goto out_unlock;
542 	}
543 
544 	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
545 
546 	/*
547 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
548 	 * barrier here to ensure nobody will see the kmem_cache partially
549 	 * initialized.
550 	 */
551 	smp_wmb();
552 	arr->entries[idx] = s;
553 
554 out_unlock:
555 	mutex_unlock(&slab_mutex);
556 
557 	put_online_mems();
558 	put_online_cpus();
559 }
560 
561 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
562 {
563 	int idx;
564 	struct memcg_cache_array *arr;
565 	struct kmem_cache *s, *c;
566 
567 	idx = memcg_cache_id(memcg);
568 
569 	get_online_cpus();
570 	get_online_mems();
571 
572 	mutex_lock(&slab_mutex);
573 	list_for_each_entry(s, &slab_caches, list) {
574 		if (!is_root_cache(s))
575 			continue;
576 
577 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
578 						lockdep_is_held(&slab_mutex));
579 		c = arr->entries[idx];
580 		if (!c)
581 			continue;
582 
583 		__kmem_cache_shrink(c, true);
584 		arr->entries[idx] = NULL;
585 	}
586 	mutex_unlock(&slab_mutex);
587 
588 	put_online_mems();
589 	put_online_cpus();
590 }
591 
592 static int __shutdown_memcg_cache(struct kmem_cache *s,
593 		struct list_head *release, bool *need_rcu_barrier)
594 {
595 	BUG_ON(is_root_cache(s));
596 
597 	if (shutdown_cache(s, release, need_rcu_barrier))
598 		return -EBUSY;
599 
600 	list_del(&s->memcg_params.list);
601 	return 0;
602 }
603 
604 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
605 {
606 	LIST_HEAD(release);
607 	bool need_rcu_barrier = false;
608 	struct kmem_cache *s, *s2;
609 
610 	get_online_cpus();
611 	get_online_mems();
612 
613 	mutex_lock(&slab_mutex);
614 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
615 		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
616 			continue;
617 		/*
618 		 * The cgroup is about to be freed and therefore has no charges
619 		 * left. Hence, all its caches must be empty by now.
620 		 */
621 		BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
622 	}
623 	mutex_unlock(&slab_mutex);
624 
625 	put_online_mems();
626 	put_online_cpus();
627 
628 	release_caches(&release, need_rcu_barrier);
629 }
630 
631 static int shutdown_memcg_caches(struct kmem_cache *s,
632 		struct list_head *release, bool *need_rcu_barrier)
633 {
634 	struct memcg_cache_array *arr;
635 	struct kmem_cache *c, *c2;
636 	LIST_HEAD(busy);
637 	int i;
638 
639 	BUG_ON(!is_root_cache(s));
640 
641 	/*
642 	 * First, shutdown active caches, i.e. caches that belong to online
643 	 * memory cgroups.
644 	 */
645 	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
646 					lockdep_is_held(&slab_mutex));
647 	for_each_memcg_cache_index(i) {
648 		c = arr->entries[i];
649 		if (!c)
650 			continue;
651 		if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
652 			/*
653 			 * The cache still has objects. Move it to a temporary
654 			 * list so as not to try to destroy it for a second
655 			 * time while iterating over inactive caches below.
656 			 */
657 			list_move(&c->memcg_params.list, &busy);
658 		else
659 			/*
660 			 * The cache is empty and will be destroyed soon. Clear
661 			 * the pointer to it in the memcg_caches array so that
662 			 * it will never be accessed even if the root cache
663 			 * stays alive.
664 			 */
665 			arr->entries[i] = NULL;
666 	}
667 
668 	/*
669 	 * Second, shutdown all caches left from memory cgroups that are now
670 	 * offline.
671 	 */
672 	list_for_each_entry_safe(c, c2, &s->memcg_params.list,
673 				 memcg_params.list)
674 		__shutdown_memcg_cache(c, release, need_rcu_barrier);
675 
676 	list_splice(&busy, &s->memcg_params.list);
677 
678 	/*
679 	 * A cache being destroyed must be empty. In particular, this means
680 	 * that all per memcg caches attached to it must be empty too.
681 	 */
682 	if (!list_empty(&s->memcg_params.list))
683 		return -EBUSY;
684 	return 0;
685 }
686 #else
687 static inline int shutdown_memcg_caches(struct kmem_cache *s,
688 		struct list_head *release, bool *need_rcu_barrier)
689 {
690 	return 0;
691 }
692 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
693 
694 void slab_kmem_cache_release(struct kmem_cache *s)
695 {
696 	destroy_memcg_params(s);
697 	kfree_const(s->name);
698 	kmem_cache_free(kmem_cache, s);
699 }
700 
701 void kmem_cache_destroy(struct kmem_cache *s)
702 {
703 	LIST_HEAD(release);
704 	bool need_rcu_barrier = false;
705 	int err;
706 
707 	if (unlikely(!s))
708 		return;
709 
710 	get_online_cpus();
711 	get_online_mems();
712 
713 	mutex_lock(&slab_mutex);
714 
715 	s->refcount--;
716 	if (s->refcount)
717 		goto out_unlock;
718 
719 	err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
720 	if (!err)
721 		err = shutdown_cache(s, &release, &need_rcu_barrier);
722 
723 	if (err) {
724 		pr_err("kmem_cache_destroy %s: "
725 		       "Slab cache still has objects\n", s->name);
726 		dump_stack();
727 	}
728 out_unlock:
729 	mutex_unlock(&slab_mutex);
730 
731 	put_online_mems();
732 	put_online_cpus();
733 
734 	release_caches(&release, need_rcu_barrier);
735 }
736 EXPORT_SYMBOL(kmem_cache_destroy);
737 
738 /**
739  * kmem_cache_shrink - Shrink a cache.
740  * @cachep: The cache to shrink.
741  *
742  * Releases as many slabs as possible for a cache.
743  * To help debugging, a zero exit status indicates all slabs were released.
744  */
745 int kmem_cache_shrink(struct kmem_cache *cachep)
746 {
747 	int ret;
748 
749 	get_online_cpus();
750 	get_online_mems();
751 	ret = __kmem_cache_shrink(cachep, false);
752 	put_online_mems();
753 	put_online_cpus();
754 	return ret;
755 }
756 EXPORT_SYMBOL(kmem_cache_shrink);
757 
758 bool slab_is_available(void)
759 {
760 	return slab_state >= UP;
761 }
762 
763 #ifndef CONFIG_SLOB
764 /* Create a cache during boot when no slab services are available yet */
765 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
766 		unsigned long flags)
767 {
768 	int err;
769 
770 	s->name = name;
771 	s->size = s->object_size = size;
772 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
773 
774 	slab_init_memcg_params(s);
775 
776 	err = __kmem_cache_create(s, flags);
777 
778 	if (err)
779 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
780 					name, size, err);
781 
782 	s->refcount = -1;	/* Exempt from merging for now */
783 }
784 
785 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
786 				unsigned long flags)
787 {
788 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
789 
790 	if (!s)
791 		panic("Out of memory when creating slab %s\n", name);
792 
793 	create_boot_cache(s, name, size, flags);
794 	list_add(&s->list, &slab_caches);
795 	s->refcount = 1;
796 	return s;
797 }
798 
799 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
800 EXPORT_SYMBOL(kmalloc_caches);
801 
802 #ifdef CONFIG_ZONE_DMA
803 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
804 EXPORT_SYMBOL(kmalloc_dma_caches);
805 #endif
806 
807 /*
808  * Conversion table for small slabs sizes / 8 to the index in the
809  * kmalloc array. This is necessary for slabs < 192 since we have non power
810  * of two cache sizes there. The size of larger slabs can be determined using
811  * fls.
812  */
813 static s8 size_index[24] = {
814 	3,	/* 8 */
815 	4,	/* 16 */
816 	5,	/* 24 */
817 	5,	/* 32 */
818 	6,	/* 40 */
819 	6,	/* 48 */
820 	6,	/* 56 */
821 	6,	/* 64 */
822 	1,	/* 72 */
823 	1,	/* 80 */
824 	1,	/* 88 */
825 	1,	/* 96 */
826 	7,	/* 104 */
827 	7,	/* 112 */
828 	7,	/* 120 */
829 	7,	/* 128 */
830 	2,	/* 136 */
831 	2,	/* 144 */
832 	2,	/* 152 */
833 	2,	/* 160 */
834 	2,	/* 168 */
835 	2,	/* 176 */
836 	2,	/* 184 */
837 	2	/* 192 */
838 };
839 
840 static inline int size_index_elem(size_t bytes)
841 {
842 	return (bytes - 1) / 8;
843 }
844 
845 /*
846  * Find the kmem_cache structure that serves a given size of
847  * allocation
848  */
849 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
850 {
851 	int index;
852 
853 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
854 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
855 		return NULL;
856 	}
857 
858 	if (size <= 192) {
859 		if (!size)
860 			return ZERO_SIZE_PTR;
861 
862 		index = size_index[size_index_elem(size)];
863 	} else
864 		index = fls(size - 1);
865 
866 #ifdef CONFIG_ZONE_DMA
867 	if (unlikely((flags & GFP_DMA)))
868 		return kmalloc_dma_caches[index];
869 
870 #endif
871 	return kmalloc_caches[index];
872 }
873 
874 /*
875  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
876  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
877  * kmalloc-67108864.
878  */
879 static struct {
880 	const char *name;
881 	unsigned long size;
882 } const kmalloc_info[] __initconst = {
883 	{NULL,                      0},		{"kmalloc-96",             96},
884 	{"kmalloc-192",           192},		{"kmalloc-8",               8},
885 	{"kmalloc-16",             16},		{"kmalloc-32",             32},
886 	{"kmalloc-64",             64},		{"kmalloc-128",           128},
887 	{"kmalloc-256",           256},		{"kmalloc-512",           512},
888 	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
889 	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
890 	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
891 	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
892 	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
893 	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
894 	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
895 	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
896 	{"kmalloc-67108864", 67108864}
897 };
898 
899 /*
900  * Patch up the size_index table if we have strange large alignment
901  * requirements for the kmalloc array. This is only the case for
902  * MIPS it seems. The standard arches will not generate any code here.
903  *
904  * Largest permitted alignment is 256 bytes due to the way we
905  * handle the index determination for the smaller caches.
906  *
907  * Make sure that nothing crazy happens if someone starts tinkering
908  * around with ARCH_KMALLOC_MINALIGN
909  */
910 void __init setup_kmalloc_cache_index_table(void)
911 {
912 	int i;
913 
914 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
915 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
916 
917 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
918 		int elem = size_index_elem(i);
919 
920 		if (elem >= ARRAY_SIZE(size_index))
921 			break;
922 		size_index[elem] = KMALLOC_SHIFT_LOW;
923 	}
924 
925 	if (KMALLOC_MIN_SIZE >= 64) {
926 		/*
927 		 * The 96 byte size cache is not used if the alignment
928 		 * is 64 byte.
929 		 */
930 		for (i = 64 + 8; i <= 96; i += 8)
931 			size_index[size_index_elem(i)] = 7;
932 
933 	}
934 
935 	if (KMALLOC_MIN_SIZE >= 128) {
936 		/*
937 		 * The 192 byte sized cache is not used if the alignment
938 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
939 		 * instead.
940 		 */
941 		for (i = 128 + 8; i <= 192; i += 8)
942 			size_index[size_index_elem(i)] = 8;
943 	}
944 }
945 
946 static void __init new_kmalloc_cache(int idx, unsigned long flags)
947 {
948 	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
949 					kmalloc_info[idx].size, flags);
950 }
951 
952 /*
953  * Create the kmalloc array. Some of the regular kmalloc arrays
954  * may already have been created because they were needed to
955  * enable allocations for slab creation.
956  */
957 void __init create_kmalloc_caches(unsigned long flags)
958 {
959 	int i;
960 
961 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
962 		if (!kmalloc_caches[i])
963 			new_kmalloc_cache(i, flags);
964 
965 		/*
966 		 * Caches that are not of the two-to-the-power-of size.
967 		 * These have to be created immediately after the
968 		 * earlier power of two caches
969 		 */
970 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
971 			new_kmalloc_cache(1, flags);
972 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
973 			new_kmalloc_cache(2, flags);
974 	}
975 
976 	/* Kmalloc array is now usable */
977 	slab_state = UP;
978 
979 #ifdef CONFIG_ZONE_DMA
980 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
981 		struct kmem_cache *s = kmalloc_caches[i];
982 
983 		if (s) {
984 			int size = kmalloc_size(i);
985 			char *n = kasprintf(GFP_NOWAIT,
986 				 "dma-kmalloc-%d", size);
987 
988 			BUG_ON(!n);
989 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
990 				size, SLAB_CACHE_DMA | flags);
991 		}
992 	}
993 #endif
994 }
995 #endif /* !CONFIG_SLOB */
996 
997 /*
998  * To avoid unnecessary overhead, we pass through large allocation requests
999  * directly to the page allocator. We use __GFP_COMP, because we will need to
1000  * know the allocation order to free the pages properly in kfree.
1001  */
1002 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1003 {
1004 	void *ret;
1005 	struct page *page;
1006 
1007 	flags |= __GFP_COMP;
1008 	page = alloc_kmem_pages(flags, order);
1009 	ret = page ? page_address(page) : NULL;
1010 	kmemleak_alloc(ret, size, 1, flags);
1011 	kasan_kmalloc_large(ret, size);
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(kmalloc_order);
1015 
1016 #ifdef CONFIG_TRACING
1017 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1018 {
1019 	void *ret = kmalloc_order(size, flags, order);
1020 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1021 	return ret;
1022 }
1023 EXPORT_SYMBOL(kmalloc_order_trace);
1024 #endif
1025 
1026 #ifdef CONFIG_SLABINFO
1027 
1028 #ifdef CONFIG_SLAB
1029 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1030 #else
1031 #define SLABINFO_RIGHTS S_IRUSR
1032 #endif
1033 
1034 static void print_slabinfo_header(struct seq_file *m)
1035 {
1036 	/*
1037 	 * Output format version, so at least we can change it
1038 	 * without _too_ many complaints.
1039 	 */
1040 #ifdef CONFIG_DEBUG_SLAB
1041 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1042 #else
1043 	seq_puts(m, "slabinfo - version: 2.1\n");
1044 #endif
1045 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
1046 		 "<objperslab> <pagesperslab>");
1047 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1048 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1049 #ifdef CONFIG_DEBUG_SLAB
1050 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
1051 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1052 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1053 #endif
1054 	seq_putc(m, '\n');
1055 }
1056 
1057 void *slab_start(struct seq_file *m, loff_t *pos)
1058 {
1059 	mutex_lock(&slab_mutex);
1060 	return seq_list_start(&slab_caches, *pos);
1061 }
1062 
1063 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1064 {
1065 	return seq_list_next(p, &slab_caches, pos);
1066 }
1067 
1068 void slab_stop(struct seq_file *m, void *p)
1069 {
1070 	mutex_unlock(&slab_mutex);
1071 }
1072 
1073 static void
1074 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1075 {
1076 	struct kmem_cache *c;
1077 	struct slabinfo sinfo;
1078 
1079 	if (!is_root_cache(s))
1080 		return;
1081 
1082 	for_each_memcg_cache(c, s) {
1083 		memset(&sinfo, 0, sizeof(sinfo));
1084 		get_slabinfo(c, &sinfo);
1085 
1086 		info->active_slabs += sinfo.active_slabs;
1087 		info->num_slabs += sinfo.num_slabs;
1088 		info->shared_avail += sinfo.shared_avail;
1089 		info->active_objs += sinfo.active_objs;
1090 		info->num_objs += sinfo.num_objs;
1091 	}
1092 }
1093 
1094 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1095 {
1096 	struct slabinfo sinfo;
1097 
1098 	memset(&sinfo, 0, sizeof(sinfo));
1099 	get_slabinfo(s, &sinfo);
1100 
1101 	memcg_accumulate_slabinfo(s, &sinfo);
1102 
1103 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1104 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1105 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1106 
1107 	seq_printf(m, " : tunables %4u %4u %4u",
1108 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1109 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1110 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1111 	slabinfo_show_stats(m, s);
1112 	seq_putc(m, '\n');
1113 }
1114 
1115 static int slab_show(struct seq_file *m, void *p)
1116 {
1117 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1118 
1119 	if (p == slab_caches.next)
1120 		print_slabinfo_header(m);
1121 	if (is_root_cache(s))
1122 		cache_show(s, m);
1123 	return 0;
1124 }
1125 
1126 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1127 int memcg_slab_show(struct seq_file *m, void *p)
1128 {
1129 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1130 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1131 
1132 	if (p == slab_caches.next)
1133 		print_slabinfo_header(m);
1134 	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1135 		cache_show(s, m);
1136 	return 0;
1137 }
1138 #endif
1139 
1140 /*
1141  * slabinfo_op - iterator that generates /proc/slabinfo
1142  *
1143  * Output layout:
1144  * cache-name
1145  * num-active-objs
1146  * total-objs
1147  * object size
1148  * num-active-slabs
1149  * total-slabs
1150  * num-pages-per-slab
1151  * + further values on SMP and with statistics enabled
1152  */
1153 static const struct seq_operations slabinfo_op = {
1154 	.start = slab_start,
1155 	.next = slab_next,
1156 	.stop = slab_stop,
1157 	.show = slab_show,
1158 };
1159 
1160 static int slabinfo_open(struct inode *inode, struct file *file)
1161 {
1162 	return seq_open(file, &slabinfo_op);
1163 }
1164 
1165 static const struct file_operations proc_slabinfo_operations = {
1166 	.open		= slabinfo_open,
1167 	.read		= seq_read,
1168 	.write          = slabinfo_write,
1169 	.llseek		= seq_lseek,
1170 	.release	= seq_release,
1171 };
1172 
1173 static int __init slab_proc_init(void)
1174 {
1175 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1176 						&proc_slabinfo_operations);
1177 	return 0;
1178 }
1179 module_init(slab_proc_init);
1180 #endif /* CONFIG_SLABINFO */
1181 
1182 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1183 					   gfp_t flags)
1184 {
1185 	void *ret;
1186 	size_t ks = 0;
1187 
1188 	if (p)
1189 		ks = ksize(p);
1190 
1191 	if (ks >= new_size) {
1192 		kasan_krealloc((void *)p, new_size);
1193 		return (void *)p;
1194 	}
1195 
1196 	ret = kmalloc_track_caller(new_size, flags);
1197 	if (ret && p)
1198 		memcpy(ret, p, ks);
1199 
1200 	return ret;
1201 }
1202 
1203 /**
1204  * __krealloc - like krealloc() but don't free @p.
1205  * @p: object to reallocate memory for.
1206  * @new_size: how many bytes of memory are required.
1207  * @flags: the type of memory to allocate.
1208  *
1209  * This function is like krealloc() except it never frees the originally
1210  * allocated buffer. Use this if you don't want to free the buffer immediately
1211  * like, for example, with RCU.
1212  */
1213 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1214 {
1215 	if (unlikely(!new_size))
1216 		return ZERO_SIZE_PTR;
1217 
1218 	return __do_krealloc(p, new_size, flags);
1219 
1220 }
1221 EXPORT_SYMBOL(__krealloc);
1222 
1223 /**
1224  * krealloc - reallocate memory. The contents will remain unchanged.
1225  * @p: object to reallocate memory for.
1226  * @new_size: how many bytes of memory are required.
1227  * @flags: the type of memory to allocate.
1228  *
1229  * The contents of the object pointed to are preserved up to the
1230  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1231  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1232  * %NULL pointer, the object pointed to is freed.
1233  */
1234 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1235 {
1236 	void *ret;
1237 
1238 	if (unlikely(!new_size)) {
1239 		kfree(p);
1240 		return ZERO_SIZE_PTR;
1241 	}
1242 
1243 	ret = __do_krealloc(p, new_size, flags);
1244 	if (ret && p != ret)
1245 		kfree(p);
1246 
1247 	return ret;
1248 }
1249 EXPORT_SYMBOL(krealloc);
1250 
1251 /**
1252  * kzfree - like kfree but zero memory
1253  * @p: object to free memory of
1254  *
1255  * The memory of the object @p points to is zeroed before freed.
1256  * If @p is %NULL, kzfree() does nothing.
1257  *
1258  * Note: this function zeroes the whole allocated buffer which can be a good
1259  * deal bigger than the requested buffer size passed to kmalloc(). So be
1260  * careful when using this function in performance sensitive code.
1261  */
1262 void kzfree(const void *p)
1263 {
1264 	size_t ks;
1265 	void *mem = (void *)p;
1266 
1267 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1268 		return;
1269 	ks = ksize(mem);
1270 	memset(mem, 0, ks);
1271 	kfree(mem);
1272 }
1273 EXPORT_SYMBOL(kzfree);
1274 
1275 /* Tracepoints definitions. */
1276 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1277 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1278 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1279 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1280 EXPORT_TRACEPOINT_SYMBOL(kfree);
1281 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1282