1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Slab allocator functions that are independent of the allocator strategy 4 * 5 * (C) 2012 Christoph Lameter <cl@linux.com> 6 */ 7 #include <linux/slab.h> 8 9 #include <linux/mm.h> 10 #include <linux/poison.h> 11 #include <linux/interrupt.h> 12 #include <linux/memory.h> 13 #include <linux/cache.h> 14 #include <linux/compiler.h> 15 #include <linux/module.h> 16 #include <linux/cpu.h> 17 #include <linux/uaccess.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/debugfs.h> 21 #include <asm/cacheflush.h> 22 #include <asm/tlbflush.h> 23 #include <asm/page.h> 24 #include <linux/memcontrol.h> 25 26 #define CREATE_TRACE_POINTS 27 #include <trace/events/kmem.h> 28 29 #include "slab.h" 30 31 enum slab_state slab_state; 32 LIST_HEAD(slab_caches); 33 DEFINE_MUTEX(slab_mutex); 34 struct kmem_cache *kmem_cache; 35 36 #ifdef CONFIG_HARDENED_USERCOPY 37 bool usercopy_fallback __ro_after_init = 38 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); 39 module_param(usercopy_fallback, bool, 0400); 40 MODULE_PARM_DESC(usercopy_fallback, 41 "WARN instead of reject usercopy whitelist violations"); 42 #endif 43 44 static LIST_HEAD(slab_caches_to_rcu_destroy); 45 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); 46 static DECLARE_WORK(slab_caches_to_rcu_destroy_work, 47 slab_caches_to_rcu_destroy_workfn); 48 49 /* 50 * Set of flags that will prevent slab merging 51 */ 52 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 53 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ 54 SLAB_FAILSLAB | SLAB_KASAN) 55 56 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ 57 SLAB_CACHE_DMA32 | SLAB_ACCOUNT) 58 59 /* 60 * Merge control. If this is set then no merging of slab caches will occur. 61 */ 62 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); 63 64 static int __init setup_slab_nomerge(char *str) 65 { 66 slab_nomerge = true; 67 return 1; 68 } 69 70 #ifdef CONFIG_SLUB 71 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 72 #endif 73 74 __setup("slab_nomerge", setup_slab_nomerge); 75 76 /* 77 * Determine the size of a slab object 78 */ 79 unsigned int kmem_cache_size(struct kmem_cache *s) 80 { 81 return s->object_size; 82 } 83 EXPORT_SYMBOL(kmem_cache_size); 84 85 #ifdef CONFIG_DEBUG_VM 86 static int kmem_cache_sanity_check(const char *name, unsigned int size) 87 { 88 if (!name || in_interrupt() || size < sizeof(void *) || 89 size > KMALLOC_MAX_SIZE) { 90 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 91 return -EINVAL; 92 } 93 94 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 95 return 0; 96 } 97 #else 98 static inline int kmem_cache_sanity_check(const char *name, unsigned int size) 99 { 100 return 0; 101 } 102 #endif 103 104 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) 105 { 106 size_t i; 107 108 for (i = 0; i < nr; i++) { 109 if (s) 110 kmem_cache_free(s, p[i]); 111 else 112 kfree(p[i]); 113 } 114 } 115 116 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, 117 void **p) 118 { 119 size_t i; 120 121 for (i = 0; i < nr; i++) { 122 void *x = p[i] = kmem_cache_alloc(s, flags); 123 if (!x) { 124 __kmem_cache_free_bulk(s, i, p); 125 return 0; 126 } 127 } 128 return i; 129 } 130 131 #ifdef CONFIG_MEMCG_KMEM 132 133 LIST_HEAD(slab_root_caches); 134 static DEFINE_SPINLOCK(memcg_kmem_wq_lock); 135 136 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref); 137 138 void slab_init_memcg_params(struct kmem_cache *s) 139 { 140 s->memcg_params.root_cache = NULL; 141 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); 142 INIT_LIST_HEAD(&s->memcg_params.children); 143 s->memcg_params.dying = false; 144 } 145 146 static int init_memcg_params(struct kmem_cache *s, 147 struct kmem_cache *root_cache) 148 { 149 struct memcg_cache_array *arr; 150 151 if (root_cache) { 152 int ret = percpu_ref_init(&s->memcg_params.refcnt, 153 kmemcg_cache_shutdown, 154 0, GFP_KERNEL); 155 if (ret) 156 return ret; 157 158 s->memcg_params.root_cache = root_cache; 159 INIT_LIST_HEAD(&s->memcg_params.children_node); 160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); 161 return 0; 162 } 163 164 slab_init_memcg_params(s); 165 166 if (!memcg_nr_cache_ids) 167 return 0; 168 169 arr = kvzalloc(sizeof(struct memcg_cache_array) + 170 memcg_nr_cache_ids * sizeof(void *), 171 GFP_KERNEL); 172 if (!arr) 173 return -ENOMEM; 174 175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); 176 return 0; 177 } 178 179 static void destroy_memcg_params(struct kmem_cache *s) 180 { 181 if (is_root_cache(s)) { 182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); 183 } else { 184 mem_cgroup_put(s->memcg_params.memcg); 185 WRITE_ONCE(s->memcg_params.memcg, NULL); 186 percpu_ref_exit(&s->memcg_params.refcnt); 187 } 188 } 189 190 static void free_memcg_params(struct rcu_head *rcu) 191 { 192 struct memcg_cache_array *old; 193 194 old = container_of(rcu, struct memcg_cache_array, rcu); 195 kvfree(old); 196 } 197 198 static int update_memcg_params(struct kmem_cache *s, int new_array_size) 199 { 200 struct memcg_cache_array *old, *new; 201 202 new = kvzalloc(sizeof(struct memcg_cache_array) + 203 new_array_size * sizeof(void *), GFP_KERNEL); 204 if (!new) 205 return -ENOMEM; 206 207 old = rcu_dereference_protected(s->memcg_params.memcg_caches, 208 lockdep_is_held(&slab_mutex)); 209 if (old) 210 memcpy(new->entries, old->entries, 211 memcg_nr_cache_ids * sizeof(void *)); 212 213 rcu_assign_pointer(s->memcg_params.memcg_caches, new); 214 if (old) 215 call_rcu(&old->rcu, free_memcg_params); 216 return 0; 217 } 218 219 int memcg_update_all_caches(int num_memcgs) 220 { 221 struct kmem_cache *s; 222 int ret = 0; 223 224 mutex_lock(&slab_mutex); 225 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 226 ret = update_memcg_params(s, num_memcgs); 227 /* 228 * Instead of freeing the memory, we'll just leave the caches 229 * up to this point in an updated state. 230 */ 231 if (ret) 232 break; 233 } 234 mutex_unlock(&slab_mutex); 235 return ret; 236 } 237 238 void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg) 239 { 240 if (is_root_cache(s)) { 241 list_add(&s->root_caches_node, &slab_root_caches); 242 } else { 243 css_get(&memcg->css); 244 s->memcg_params.memcg = memcg; 245 list_add(&s->memcg_params.children_node, 246 &s->memcg_params.root_cache->memcg_params.children); 247 list_add(&s->memcg_params.kmem_caches_node, 248 &s->memcg_params.memcg->kmem_caches); 249 } 250 } 251 252 static void memcg_unlink_cache(struct kmem_cache *s) 253 { 254 if (is_root_cache(s)) { 255 list_del(&s->root_caches_node); 256 } else { 257 list_del(&s->memcg_params.children_node); 258 list_del(&s->memcg_params.kmem_caches_node); 259 } 260 } 261 #else 262 static inline int init_memcg_params(struct kmem_cache *s, 263 struct kmem_cache *root_cache) 264 { 265 return 0; 266 } 267 268 static inline void destroy_memcg_params(struct kmem_cache *s) 269 { 270 } 271 272 static inline void memcg_unlink_cache(struct kmem_cache *s) 273 { 274 } 275 #endif /* CONFIG_MEMCG_KMEM */ 276 277 /* 278 * Figure out what the alignment of the objects will be given a set of 279 * flags, a user specified alignment and the size of the objects. 280 */ 281 static unsigned int calculate_alignment(slab_flags_t flags, 282 unsigned int align, unsigned int size) 283 { 284 /* 285 * If the user wants hardware cache aligned objects then follow that 286 * suggestion if the object is sufficiently large. 287 * 288 * The hardware cache alignment cannot override the specified 289 * alignment though. If that is greater then use it. 290 */ 291 if (flags & SLAB_HWCACHE_ALIGN) { 292 unsigned int ralign; 293 294 ralign = cache_line_size(); 295 while (size <= ralign / 2) 296 ralign /= 2; 297 align = max(align, ralign); 298 } 299 300 if (align < ARCH_SLAB_MINALIGN) 301 align = ARCH_SLAB_MINALIGN; 302 303 return ALIGN(align, sizeof(void *)); 304 } 305 306 /* 307 * Find a mergeable slab cache 308 */ 309 int slab_unmergeable(struct kmem_cache *s) 310 { 311 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 312 return 1; 313 314 if (!is_root_cache(s)) 315 return 1; 316 317 if (s->ctor) 318 return 1; 319 320 if (s->usersize) 321 return 1; 322 323 /* 324 * We may have set a slab to be unmergeable during bootstrap. 325 */ 326 if (s->refcount < 0) 327 return 1; 328 329 #ifdef CONFIG_MEMCG_KMEM 330 /* 331 * Skip the dying kmem_cache. 332 */ 333 if (s->memcg_params.dying) 334 return 1; 335 #endif 336 337 return 0; 338 } 339 340 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, 341 slab_flags_t flags, const char *name, void (*ctor)(void *)) 342 { 343 struct kmem_cache *s; 344 345 if (slab_nomerge) 346 return NULL; 347 348 if (ctor) 349 return NULL; 350 351 size = ALIGN(size, sizeof(void *)); 352 align = calculate_alignment(flags, align, size); 353 size = ALIGN(size, align); 354 flags = kmem_cache_flags(size, flags, name, NULL); 355 356 if (flags & SLAB_NEVER_MERGE) 357 return NULL; 358 359 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { 360 if (slab_unmergeable(s)) 361 continue; 362 363 if (size > s->size) 364 continue; 365 366 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 367 continue; 368 /* 369 * Check if alignment is compatible. 370 * Courtesy of Adrian Drzewiecki 371 */ 372 if ((s->size & ~(align - 1)) != s->size) 373 continue; 374 375 if (s->size - size >= sizeof(void *)) 376 continue; 377 378 if (IS_ENABLED(CONFIG_SLAB) && align && 379 (align > s->align || s->align % align)) 380 continue; 381 382 return s; 383 } 384 return NULL; 385 } 386 387 static struct kmem_cache *create_cache(const char *name, 388 unsigned int object_size, unsigned int align, 389 slab_flags_t flags, unsigned int useroffset, 390 unsigned int usersize, void (*ctor)(void *), 391 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 392 { 393 struct kmem_cache *s; 394 int err; 395 396 if (WARN_ON(useroffset + usersize > object_size)) 397 useroffset = usersize = 0; 398 399 err = -ENOMEM; 400 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 401 if (!s) 402 goto out; 403 404 s->name = name; 405 s->size = s->object_size = object_size; 406 s->align = align; 407 s->ctor = ctor; 408 s->useroffset = useroffset; 409 s->usersize = usersize; 410 411 err = init_memcg_params(s, root_cache); 412 if (err) 413 goto out_free_cache; 414 415 err = __kmem_cache_create(s, flags); 416 if (err) 417 goto out_free_cache; 418 419 s->refcount = 1; 420 list_add(&s->list, &slab_caches); 421 memcg_link_cache(s, memcg); 422 out: 423 if (err) 424 return ERR_PTR(err); 425 return s; 426 427 out_free_cache: 428 destroy_memcg_params(s); 429 kmem_cache_free(kmem_cache, s); 430 goto out; 431 } 432 433 /** 434 * kmem_cache_create_usercopy - Create a cache with a region suitable 435 * for copying to userspace 436 * @name: A string which is used in /proc/slabinfo to identify this cache. 437 * @size: The size of objects to be created in this cache. 438 * @align: The required alignment for the objects. 439 * @flags: SLAB flags 440 * @useroffset: Usercopy region offset 441 * @usersize: Usercopy region size 442 * @ctor: A constructor for the objects. 443 * 444 * Cannot be called within a interrupt, but can be interrupted. 445 * The @ctor is run when new pages are allocated by the cache. 446 * 447 * The flags are 448 * 449 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 450 * to catch references to uninitialised memory. 451 * 452 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 453 * for buffer overruns. 454 * 455 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 456 * cacheline. This can be beneficial if you're counting cycles as closely 457 * as davem. 458 * 459 * Return: a pointer to the cache on success, NULL on failure. 460 */ 461 struct kmem_cache * 462 kmem_cache_create_usercopy(const char *name, 463 unsigned int size, unsigned int align, 464 slab_flags_t flags, 465 unsigned int useroffset, unsigned int usersize, 466 void (*ctor)(void *)) 467 { 468 struct kmem_cache *s = NULL; 469 const char *cache_name; 470 int err; 471 472 get_online_cpus(); 473 get_online_mems(); 474 memcg_get_cache_ids(); 475 476 mutex_lock(&slab_mutex); 477 478 err = kmem_cache_sanity_check(name, size); 479 if (err) { 480 goto out_unlock; 481 } 482 483 /* Refuse requests with allocator specific flags */ 484 if (flags & ~SLAB_FLAGS_PERMITTED) { 485 err = -EINVAL; 486 goto out_unlock; 487 } 488 489 /* 490 * Some allocators will constraint the set of valid flags to a subset 491 * of all flags. We expect them to define CACHE_CREATE_MASK in this 492 * case, and we'll just provide them with a sanitized version of the 493 * passed flags. 494 */ 495 flags &= CACHE_CREATE_MASK; 496 497 /* Fail closed on bad usersize of useroffset values. */ 498 if (WARN_ON(!usersize && useroffset) || 499 WARN_ON(size < usersize || size - usersize < useroffset)) 500 usersize = useroffset = 0; 501 502 if (!usersize) 503 s = __kmem_cache_alias(name, size, align, flags, ctor); 504 if (s) 505 goto out_unlock; 506 507 cache_name = kstrdup_const(name, GFP_KERNEL); 508 if (!cache_name) { 509 err = -ENOMEM; 510 goto out_unlock; 511 } 512 513 s = create_cache(cache_name, size, 514 calculate_alignment(flags, align, size), 515 flags, useroffset, usersize, ctor, NULL, NULL); 516 if (IS_ERR(s)) { 517 err = PTR_ERR(s); 518 kfree_const(cache_name); 519 } 520 521 out_unlock: 522 mutex_unlock(&slab_mutex); 523 524 memcg_put_cache_ids(); 525 put_online_mems(); 526 put_online_cpus(); 527 528 if (err) { 529 if (flags & SLAB_PANIC) 530 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", 531 name, err); 532 else { 533 pr_warn("kmem_cache_create(%s) failed with error %d\n", 534 name, err); 535 dump_stack(); 536 } 537 return NULL; 538 } 539 return s; 540 } 541 EXPORT_SYMBOL(kmem_cache_create_usercopy); 542 543 /** 544 * kmem_cache_create - Create a cache. 545 * @name: A string which is used in /proc/slabinfo to identify this cache. 546 * @size: The size of objects to be created in this cache. 547 * @align: The required alignment for the objects. 548 * @flags: SLAB flags 549 * @ctor: A constructor for the objects. 550 * 551 * Cannot be called within a interrupt, but can be interrupted. 552 * The @ctor is run when new pages are allocated by the cache. 553 * 554 * The flags are 555 * 556 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 557 * to catch references to uninitialised memory. 558 * 559 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 560 * for buffer overruns. 561 * 562 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 563 * cacheline. This can be beneficial if you're counting cycles as closely 564 * as davem. 565 * 566 * Return: a pointer to the cache on success, NULL on failure. 567 */ 568 struct kmem_cache * 569 kmem_cache_create(const char *name, unsigned int size, unsigned int align, 570 slab_flags_t flags, void (*ctor)(void *)) 571 { 572 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, 573 ctor); 574 } 575 EXPORT_SYMBOL(kmem_cache_create); 576 577 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) 578 { 579 LIST_HEAD(to_destroy); 580 struct kmem_cache *s, *s2; 581 582 /* 583 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the 584 * @slab_caches_to_rcu_destroy list. The slab pages are freed 585 * through RCU and and the associated kmem_cache are dereferenced 586 * while freeing the pages, so the kmem_caches should be freed only 587 * after the pending RCU operations are finished. As rcu_barrier() 588 * is a pretty slow operation, we batch all pending destructions 589 * asynchronously. 590 */ 591 mutex_lock(&slab_mutex); 592 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); 593 mutex_unlock(&slab_mutex); 594 595 if (list_empty(&to_destroy)) 596 return; 597 598 rcu_barrier(); 599 600 list_for_each_entry_safe(s, s2, &to_destroy, list) { 601 #ifdef SLAB_SUPPORTS_SYSFS 602 sysfs_slab_release(s); 603 #else 604 slab_kmem_cache_release(s); 605 #endif 606 } 607 } 608 609 static int shutdown_cache(struct kmem_cache *s) 610 { 611 /* free asan quarantined objects */ 612 kasan_cache_shutdown(s); 613 614 if (__kmem_cache_shutdown(s) != 0) 615 return -EBUSY; 616 617 memcg_unlink_cache(s); 618 list_del(&s->list); 619 620 if (s->flags & SLAB_TYPESAFE_BY_RCU) { 621 #ifdef SLAB_SUPPORTS_SYSFS 622 sysfs_slab_unlink(s); 623 #endif 624 list_add_tail(&s->list, &slab_caches_to_rcu_destroy); 625 schedule_work(&slab_caches_to_rcu_destroy_work); 626 } else { 627 #ifdef SLAB_SUPPORTS_SYSFS 628 sysfs_slab_unlink(s); 629 sysfs_slab_release(s); 630 #else 631 slab_kmem_cache_release(s); 632 #endif 633 } 634 635 return 0; 636 } 637 638 #ifdef CONFIG_MEMCG_KMEM 639 /* 640 * memcg_create_kmem_cache - Create a cache for a memory cgroup. 641 * @memcg: The memory cgroup the new cache is for. 642 * @root_cache: The parent of the new cache. 643 * 644 * This function attempts to create a kmem cache that will serve allocation 645 * requests going from @memcg to @root_cache. The new cache inherits properties 646 * from its parent. 647 */ 648 void memcg_create_kmem_cache(struct mem_cgroup *memcg, 649 struct kmem_cache *root_cache) 650 { 651 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ 652 struct cgroup_subsys_state *css = &memcg->css; 653 struct memcg_cache_array *arr; 654 struct kmem_cache *s = NULL; 655 char *cache_name; 656 int idx; 657 658 get_online_cpus(); 659 get_online_mems(); 660 661 mutex_lock(&slab_mutex); 662 663 /* 664 * The memory cgroup could have been offlined while the cache 665 * creation work was pending. 666 */ 667 if (memcg->kmem_state != KMEM_ONLINE) 668 goto out_unlock; 669 670 idx = memcg_cache_id(memcg); 671 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, 672 lockdep_is_held(&slab_mutex)); 673 674 /* 675 * Since per-memcg caches are created asynchronously on first 676 * allocation (see memcg_kmem_get_cache()), several threads can try to 677 * create the same cache, but only one of them may succeed. 678 */ 679 if (arr->entries[idx]) 680 goto out_unlock; 681 682 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); 683 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, 684 css->serial_nr, memcg_name_buf); 685 if (!cache_name) 686 goto out_unlock; 687 688 s = create_cache(cache_name, root_cache->object_size, 689 root_cache->align, 690 root_cache->flags & CACHE_CREATE_MASK, 691 root_cache->useroffset, root_cache->usersize, 692 root_cache->ctor, memcg, root_cache); 693 /* 694 * If we could not create a memcg cache, do not complain, because 695 * that's not critical at all as we can always proceed with the root 696 * cache. 697 */ 698 if (IS_ERR(s)) { 699 kfree(cache_name); 700 goto out_unlock; 701 } 702 703 /* 704 * Since readers won't lock (see memcg_kmem_get_cache()), we need a 705 * barrier here to ensure nobody will see the kmem_cache partially 706 * initialized. 707 */ 708 smp_wmb(); 709 arr->entries[idx] = s; 710 711 out_unlock: 712 mutex_unlock(&slab_mutex); 713 714 put_online_mems(); 715 put_online_cpus(); 716 } 717 718 static void kmemcg_workfn(struct work_struct *work) 719 { 720 struct kmem_cache *s = container_of(work, struct kmem_cache, 721 memcg_params.work); 722 723 get_online_cpus(); 724 get_online_mems(); 725 726 mutex_lock(&slab_mutex); 727 s->memcg_params.work_fn(s); 728 mutex_unlock(&slab_mutex); 729 730 put_online_mems(); 731 put_online_cpus(); 732 } 733 734 static void kmemcg_rcufn(struct rcu_head *head) 735 { 736 struct kmem_cache *s = container_of(head, struct kmem_cache, 737 memcg_params.rcu_head); 738 739 /* 740 * We need to grab blocking locks. Bounce to ->work. The 741 * work item shares the space with the RCU head and can't be 742 * initialized earlier. 743 */ 744 INIT_WORK(&s->memcg_params.work, kmemcg_workfn); 745 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work); 746 } 747 748 static void kmemcg_cache_shutdown_fn(struct kmem_cache *s) 749 { 750 WARN_ON(shutdown_cache(s)); 751 } 752 753 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref) 754 { 755 struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache, 756 memcg_params.refcnt); 757 unsigned long flags; 758 759 spin_lock_irqsave(&memcg_kmem_wq_lock, flags); 760 if (s->memcg_params.root_cache->memcg_params.dying) 761 goto unlock; 762 763 s->memcg_params.work_fn = kmemcg_cache_shutdown_fn; 764 INIT_WORK(&s->memcg_params.work, kmemcg_workfn); 765 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work); 766 767 unlock: 768 spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags); 769 } 770 771 static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 772 { 773 __kmemcg_cache_deactivate_after_rcu(s); 774 percpu_ref_kill(&s->memcg_params.refcnt); 775 } 776 777 static void kmemcg_cache_deactivate(struct kmem_cache *s) 778 { 779 if (WARN_ON_ONCE(is_root_cache(s))) 780 return; 781 782 __kmemcg_cache_deactivate(s); 783 s->flags |= SLAB_DEACTIVATED; 784 785 /* 786 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying 787 * flag and make sure that no new kmem_cache deactivation tasks 788 * are queued (see flush_memcg_workqueue() ). 789 */ 790 spin_lock_irq(&memcg_kmem_wq_lock); 791 if (s->memcg_params.root_cache->memcg_params.dying) 792 goto unlock; 793 794 s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu; 795 call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn); 796 unlock: 797 spin_unlock_irq(&memcg_kmem_wq_lock); 798 } 799 800 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg, 801 struct mem_cgroup *parent) 802 { 803 int idx; 804 struct memcg_cache_array *arr; 805 struct kmem_cache *s, *c; 806 unsigned int nr_reparented; 807 808 idx = memcg_cache_id(memcg); 809 810 get_online_cpus(); 811 get_online_mems(); 812 813 mutex_lock(&slab_mutex); 814 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 815 arr = rcu_dereference_protected(s->memcg_params.memcg_caches, 816 lockdep_is_held(&slab_mutex)); 817 c = arr->entries[idx]; 818 if (!c) 819 continue; 820 821 kmemcg_cache_deactivate(c); 822 arr->entries[idx] = NULL; 823 } 824 nr_reparented = 0; 825 list_for_each_entry(s, &memcg->kmem_caches, 826 memcg_params.kmem_caches_node) { 827 WRITE_ONCE(s->memcg_params.memcg, parent); 828 css_put(&memcg->css); 829 nr_reparented++; 830 } 831 if (nr_reparented) { 832 list_splice_init(&memcg->kmem_caches, 833 &parent->kmem_caches); 834 css_get_many(&parent->css, nr_reparented); 835 } 836 mutex_unlock(&slab_mutex); 837 838 put_online_mems(); 839 put_online_cpus(); 840 } 841 842 static int shutdown_memcg_caches(struct kmem_cache *s) 843 { 844 struct memcg_cache_array *arr; 845 struct kmem_cache *c, *c2; 846 LIST_HEAD(busy); 847 int i; 848 849 BUG_ON(!is_root_cache(s)); 850 851 /* 852 * First, shutdown active caches, i.e. caches that belong to online 853 * memory cgroups. 854 */ 855 arr = rcu_dereference_protected(s->memcg_params.memcg_caches, 856 lockdep_is_held(&slab_mutex)); 857 for_each_memcg_cache_index(i) { 858 c = arr->entries[i]; 859 if (!c) 860 continue; 861 if (shutdown_cache(c)) 862 /* 863 * The cache still has objects. Move it to a temporary 864 * list so as not to try to destroy it for a second 865 * time while iterating over inactive caches below. 866 */ 867 list_move(&c->memcg_params.children_node, &busy); 868 else 869 /* 870 * The cache is empty and will be destroyed soon. Clear 871 * the pointer to it in the memcg_caches array so that 872 * it will never be accessed even if the root cache 873 * stays alive. 874 */ 875 arr->entries[i] = NULL; 876 } 877 878 /* 879 * Second, shutdown all caches left from memory cgroups that are now 880 * offline. 881 */ 882 list_for_each_entry_safe(c, c2, &s->memcg_params.children, 883 memcg_params.children_node) 884 shutdown_cache(c); 885 886 list_splice(&busy, &s->memcg_params.children); 887 888 /* 889 * A cache being destroyed must be empty. In particular, this means 890 * that all per memcg caches attached to it must be empty too. 891 */ 892 if (!list_empty(&s->memcg_params.children)) 893 return -EBUSY; 894 return 0; 895 } 896 897 static void memcg_set_kmem_cache_dying(struct kmem_cache *s) 898 { 899 spin_lock_irq(&memcg_kmem_wq_lock); 900 s->memcg_params.dying = true; 901 spin_unlock_irq(&memcg_kmem_wq_lock); 902 } 903 904 static void flush_memcg_workqueue(struct kmem_cache *s) 905 { 906 /* 907 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make 908 * sure all registered rcu callbacks have been invoked. 909 */ 910 rcu_barrier(); 911 912 /* 913 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB 914 * deactivates the memcg kmem_caches through workqueue. Make sure all 915 * previous workitems on workqueue are processed. 916 */ 917 if (likely(memcg_kmem_cache_wq)) 918 flush_workqueue(memcg_kmem_cache_wq); 919 920 /* 921 * If we're racing with children kmem_cache deactivation, it might 922 * take another rcu grace period to complete their destruction. 923 * At this moment the corresponding percpu_ref_kill() call should be 924 * done, but it might take another rcu grace period to complete 925 * switching to the atomic mode. 926 * Please, note that we check without grabbing the slab_mutex. It's safe 927 * because at this moment the children list can't grow. 928 */ 929 if (!list_empty(&s->memcg_params.children)) 930 rcu_barrier(); 931 } 932 #else 933 static inline int shutdown_memcg_caches(struct kmem_cache *s) 934 { 935 return 0; 936 } 937 #endif /* CONFIG_MEMCG_KMEM */ 938 939 void slab_kmem_cache_release(struct kmem_cache *s) 940 { 941 __kmem_cache_release(s); 942 destroy_memcg_params(s); 943 kfree_const(s->name); 944 kmem_cache_free(kmem_cache, s); 945 } 946 947 void kmem_cache_destroy(struct kmem_cache *s) 948 { 949 int err; 950 951 if (unlikely(!s)) 952 return; 953 954 get_online_cpus(); 955 get_online_mems(); 956 957 mutex_lock(&slab_mutex); 958 959 s->refcount--; 960 if (s->refcount) 961 goto out_unlock; 962 963 #ifdef CONFIG_MEMCG_KMEM 964 memcg_set_kmem_cache_dying(s); 965 966 mutex_unlock(&slab_mutex); 967 968 put_online_mems(); 969 put_online_cpus(); 970 971 flush_memcg_workqueue(s); 972 973 get_online_cpus(); 974 get_online_mems(); 975 976 mutex_lock(&slab_mutex); 977 #endif 978 979 err = shutdown_memcg_caches(s); 980 if (!err) 981 err = shutdown_cache(s); 982 983 if (err) { 984 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", 985 s->name); 986 dump_stack(); 987 } 988 out_unlock: 989 mutex_unlock(&slab_mutex); 990 991 put_online_mems(); 992 put_online_cpus(); 993 } 994 EXPORT_SYMBOL(kmem_cache_destroy); 995 996 /** 997 * kmem_cache_shrink - Shrink a cache. 998 * @cachep: The cache to shrink. 999 * 1000 * Releases as many slabs as possible for a cache. 1001 * To help debugging, a zero exit status indicates all slabs were released. 1002 * 1003 * Return: %0 if all slabs were released, non-zero otherwise 1004 */ 1005 int kmem_cache_shrink(struct kmem_cache *cachep) 1006 { 1007 int ret; 1008 1009 get_online_cpus(); 1010 get_online_mems(); 1011 kasan_cache_shrink(cachep); 1012 ret = __kmem_cache_shrink(cachep); 1013 put_online_mems(); 1014 put_online_cpus(); 1015 return ret; 1016 } 1017 EXPORT_SYMBOL(kmem_cache_shrink); 1018 1019 /** 1020 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache 1021 * @s: The cache pointer 1022 */ 1023 void kmem_cache_shrink_all(struct kmem_cache *s) 1024 { 1025 struct kmem_cache *c; 1026 1027 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) { 1028 kmem_cache_shrink(s); 1029 return; 1030 } 1031 1032 get_online_cpus(); 1033 get_online_mems(); 1034 kasan_cache_shrink(s); 1035 __kmem_cache_shrink(s); 1036 1037 /* 1038 * We have to take the slab_mutex to protect from the memcg list 1039 * modification. 1040 */ 1041 mutex_lock(&slab_mutex); 1042 for_each_memcg_cache(c, s) { 1043 /* 1044 * Don't need to shrink deactivated memcg caches. 1045 */ 1046 if (s->flags & SLAB_DEACTIVATED) 1047 continue; 1048 kasan_cache_shrink(c); 1049 __kmem_cache_shrink(c); 1050 } 1051 mutex_unlock(&slab_mutex); 1052 put_online_mems(); 1053 put_online_cpus(); 1054 } 1055 1056 bool slab_is_available(void) 1057 { 1058 return slab_state >= UP; 1059 } 1060 1061 #ifndef CONFIG_SLOB 1062 /* Create a cache during boot when no slab services are available yet */ 1063 void __init create_boot_cache(struct kmem_cache *s, const char *name, 1064 unsigned int size, slab_flags_t flags, 1065 unsigned int useroffset, unsigned int usersize) 1066 { 1067 int err; 1068 unsigned int align = ARCH_KMALLOC_MINALIGN; 1069 1070 s->name = name; 1071 s->size = s->object_size = size; 1072 1073 /* 1074 * For power of two sizes, guarantee natural alignment for kmalloc 1075 * caches, regardless of SL*B debugging options. 1076 */ 1077 if (is_power_of_2(size)) 1078 align = max(align, size); 1079 s->align = calculate_alignment(flags, align, size); 1080 1081 s->useroffset = useroffset; 1082 s->usersize = usersize; 1083 1084 slab_init_memcg_params(s); 1085 1086 err = __kmem_cache_create(s, flags); 1087 1088 if (err) 1089 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", 1090 name, size, err); 1091 1092 s->refcount = -1; /* Exempt from merging for now */ 1093 } 1094 1095 struct kmem_cache *__init create_kmalloc_cache(const char *name, 1096 unsigned int size, slab_flags_t flags, 1097 unsigned int useroffset, unsigned int usersize) 1098 { 1099 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 1100 1101 if (!s) 1102 panic("Out of memory when creating slab %s\n", name); 1103 1104 create_boot_cache(s, name, size, flags, useroffset, usersize); 1105 list_add(&s->list, &slab_caches); 1106 memcg_link_cache(s, NULL); 1107 s->refcount = 1; 1108 return s; 1109 } 1110 1111 struct kmem_cache * 1112 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = 1113 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; 1114 EXPORT_SYMBOL(kmalloc_caches); 1115 1116 /* 1117 * Conversion table for small slabs sizes / 8 to the index in the 1118 * kmalloc array. This is necessary for slabs < 192 since we have non power 1119 * of two cache sizes there. The size of larger slabs can be determined using 1120 * fls. 1121 */ 1122 static u8 size_index[24] __ro_after_init = { 1123 3, /* 8 */ 1124 4, /* 16 */ 1125 5, /* 24 */ 1126 5, /* 32 */ 1127 6, /* 40 */ 1128 6, /* 48 */ 1129 6, /* 56 */ 1130 6, /* 64 */ 1131 1, /* 72 */ 1132 1, /* 80 */ 1133 1, /* 88 */ 1134 1, /* 96 */ 1135 7, /* 104 */ 1136 7, /* 112 */ 1137 7, /* 120 */ 1138 7, /* 128 */ 1139 2, /* 136 */ 1140 2, /* 144 */ 1141 2, /* 152 */ 1142 2, /* 160 */ 1143 2, /* 168 */ 1144 2, /* 176 */ 1145 2, /* 184 */ 1146 2 /* 192 */ 1147 }; 1148 1149 static inline unsigned int size_index_elem(unsigned int bytes) 1150 { 1151 return (bytes - 1) / 8; 1152 } 1153 1154 /* 1155 * Find the kmem_cache structure that serves a given size of 1156 * allocation 1157 */ 1158 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) 1159 { 1160 unsigned int index; 1161 1162 if (size <= 192) { 1163 if (!size) 1164 return ZERO_SIZE_PTR; 1165 1166 index = size_index[size_index_elem(size)]; 1167 } else { 1168 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) 1169 return NULL; 1170 index = fls(size - 1); 1171 } 1172 1173 return kmalloc_caches[kmalloc_type(flags)][index]; 1174 } 1175 1176 #ifdef CONFIG_ZONE_DMA 1177 #define INIT_KMALLOC_INFO(__size, __short_size) \ 1178 { \ 1179 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ 1180 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \ 1181 .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \ 1182 .size = __size, \ 1183 } 1184 #else 1185 #define INIT_KMALLOC_INFO(__size, __short_size) \ 1186 { \ 1187 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ 1188 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \ 1189 .size = __size, \ 1190 } 1191 #endif 1192 1193 /* 1194 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. 1195 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is 1196 * kmalloc-67108864. 1197 */ 1198 const struct kmalloc_info_struct kmalloc_info[] __initconst = { 1199 INIT_KMALLOC_INFO(0, 0), 1200 INIT_KMALLOC_INFO(96, 96), 1201 INIT_KMALLOC_INFO(192, 192), 1202 INIT_KMALLOC_INFO(8, 8), 1203 INIT_KMALLOC_INFO(16, 16), 1204 INIT_KMALLOC_INFO(32, 32), 1205 INIT_KMALLOC_INFO(64, 64), 1206 INIT_KMALLOC_INFO(128, 128), 1207 INIT_KMALLOC_INFO(256, 256), 1208 INIT_KMALLOC_INFO(512, 512), 1209 INIT_KMALLOC_INFO(1024, 1k), 1210 INIT_KMALLOC_INFO(2048, 2k), 1211 INIT_KMALLOC_INFO(4096, 4k), 1212 INIT_KMALLOC_INFO(8192, 8k), 1213 INIT_KMALLOC_INFO(16384, 16k), 1214 INIT_KMALLOC_INFO(32768, 32k), 1215 INIT_KMALLOC_INFO(65536, 64k), 1216 INIT_KMALLOC_INFO(131072, 128k), 1217 INIT_KMALLOC_INFO(262144, 256k), 1218 INIT_KMALLOC_INFO(524288, 512k), 1219 INIT_KMALLOC_INFO(1048576, 1M), 1220 INIT_KMALLOC_INFO(2097152, 2M), 1221 INIT_KMALLOC_INFO(4194304, 4M), 1222 INIT_KMALLOC_INFO(8388608, 8M), 1223 INIT_KMALLOC_INFO(16777216, 16M), 1224 INIT_KMALLOC_INFO(33554432, 32M), 1225 INIT_KMALLOC_INFO(67108864, 64M) 1226 }; 1227 1228 /* 1229 * Patch up the size_index table if we have strange large alignment 1230 * requirements for the kmalloc array. This is only the case for 1231 * MIPS it seems. The standard arches will not generate any code here. 1232 * 1233 * Largest permitted alignment is 256 bytes due to the way we 1234 * handle the index determination for the smaller caches. 1235 * 1236 * Make sure that nothing crazy happens if someone starts tinkering 1237 * around with ARCH_KMALLOC_MINALIGN 1238 */ 1239 void __init setup_kmalloc_cache_index_table(void) 1240 { 1241 unsigned int i; 1242 1243 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 1244 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 1245 1246 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 1247 unsigned int elem = size_index_elem(i); 1248 1249 if (elem >= ARRAY_SIZE(size_index)) 1250 break; 1251 size_index[elem] = KMALLOC_SHIFT_LOW; 1252 } 1253 1254 if (KMALLOC_MIN_SIZE >= 64) { 1255 /* 1256 * The 96 byte size cache is not used if the alignment 1257 * is 64 byte. 1258 */ 1259 for (i = 64 + 8; i <= 96; i += 8) 1260 size_index[size_index_elem(i)] = 7; 1261 1262 } 1263 1264 if (KMALLOC_MIN_SIZE >= 128) { 1265 /* 1266 * The 192 byte sized cache is not used if the alignment 1267 * is 128 byte. Redirect kmalloc to use the 256 byte cache 1268 * instead. 1269 */ 1270 for (i = 128 + 8; i <= 192; i += 8) 1271 size_index[size_index_elem(i)] = 8; 1272 } 1273 } 1274 1275 static void __init 1276 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags) 1277 { 1278 if (type == KMALLOC_RECLAIM) 1279 flags |= SLAB_RECLAIM_ACCOUNT; 1280 1281 kmalloc_caches[type][idx] = create_kmalloc_cache( 1282 kmalloc_info[idx].name[type], 1283 kmalloc_info[idx].size, flags, 0, 1284 kmalloc_info[idx].size); 1285 } 1286 1287 /* 1288 * Create the kmalloc array. Some of the regular kmalloc arrays 1289 * may already have been created because they were needed to 1290 * enable allocations for slab creation. 1291 */ 1292 void __init create_kmalloc_caches(slab_flags_t flags) 1293 { 1294 int i; 1295 enum kmalloc_cache_type type; 1296 1297 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { 1298 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 1299 if (!kmalloc_caches[type][i]) 1300 new_kmalloc_cache(i, type, flags); 1301 1302 /* 1303 * Caches that are not of the two-to-the-power-of size. 1304 * These have to be created immediately after the 1305 * earlier power of two caches 1306 */ 1307 if (KMALLOC_MIN_SIZE <= 32 && i == 6 && 1308 !kmalloc_caches[type][1]) 1309 new_kmalloc_cache(1, type, flags); 1310 if (KMALLOC_MIN_SIZE <= 64 && i == 7 && 1311 !kmalloc_caches[type][2]) 1312 new_kmalloc_cache(2, type, flags); 1313 } 1314 } 1315 1316 /* Kmalloc array is now usable */ 1317 slab_state = UP; 1318 1319 #ifdef CONFIG_ZONE_DMA 1320 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 1321 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; 1322 1323 if (s) { 1324 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( 1325 kmalloc_info[i].name[KMALLOC_DMA], 1326 kmalloc_info[i].size, 1327 SLAB_CACHE_DMA | flags, 0, 1328 kmalloc_info[i].size); 1329 } 1330 } 1331 #endif 1332 } 1333 #endif /* !CONFIG_SLOB */ 1334 1335 /* 1336 * To avoid unnecessary overhead, we pass through large allocation requests 1337 * directly to the page allocator. We use __GFP_COMP, because we will need to 1338 * know the allocation order to free the pages properly in kfree. 1339 */ 1340 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) 1341 { 1342 void *ret = NULL; 1343 struct page *page; 1344 1345 flags |= __GFP_COMP; 1346 page = alloc_pages(flags, order); 1347 if (likely(page)) { 1348 ret = page_address(page); 1349 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 1350 1 << order); 1351 } 1352 ret = kasan_kmalloc_large(ret, size, flags); 1353 /* As ret might get tagged, call kmemleak hook after KASAN. */ 1354 kmemleak_alloc(ret, size, 1, flags); 1355 return ret; 1356 } 1357 EXPORT_SYMBOL(kmalloc_order); 1358 1359 #ifdef CONFIG_TRACING 1360 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 1361 { 1362 void *ret = kmalloc_order(size, flags, order); 1363 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 1364 return ret; 1365 } 1366 EXPORT_SYMBOL(kmalloc_order_trace); 1367 #endif 1368 1369 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1370 /* Randomize a generic freelist */ 1371 static void freelist_randomize(struct rnd_state *state, unsigned int *list, 1372 unsigned int count) 1373 { 1374 unsigned int rand; 1375 unsigned int i; 1376 1377 for (i = 0; i < count; i++) 1378 list[i] = i; 1379 1380 /* Fisher-Yates shuffle */ 1381 for (i = count - 1; i > 0; i--) { 1382 rand = prandom_u32_state(state); 1383 rand %= (i + 1); 1384 swap(list[i], list[rand]); 1385 } 1386 } 1387 1388 /* Create a random sequence per cache */ 1389 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 1390 gfp_t gfp) 1391 { 1392 struct rnd_state state; 1393 1394 if (count < 2 || cachep->random_seq) 1395 return 0; 1396 1397 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); 1398 if (!cachep->random_seq) 1399 return -ENOMEM; 1400 1401 /* Get best entropy at this stage of boot */ 1402 prandom_seed_state(&state, get_random_long()); 1403 1404 freelist_randomize(&state, cachep->random_seq, count); 1405 return 0; 1406 } 1407 1408 /* Destroy the per-cache random freelist sequence */ 1409 void cache_random_seq_destroy(struct kmem_cache *cachep) 1410 { 1411 kfree(cachep->random_seq); 1412 cachep->random_seq = NULL; 1413 } 1414 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1415 1416 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 1417 #ifdef CONFIG_SLAB 1418 #define SLABINFO_RIGHTS (0600) 1419 #else 1420 #define SLABINFO_RIGHTS (0400) 1421 #endif 1422 1423 static void print_slabinfo_header(struct seq_file *m) 1424 { 1425 /* 1426 * Output format version, so at least we can change it 1427 * without _too_ many complaints. 1428 */ 1429 #ifdef CONFIG_DEBUG_SLAB 1430 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 1431 #else 1432 seq_puts(m, "slabinfo - version: 2.1\n"); 1433 #endif 1434 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); 1435 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 1436 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 1437 #ifdef CONFIG_DEBUG_SLAB 1438 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 1439 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 1440 #endif 1441 seq_putc(m, '\n'); 1442 } 1443 1444 void *slab_start(struct seq_file *m, loff_t *pos) 1445 { 1446 mutex_lock(&slab_mutex); 1447 return seq_list_start(&slab_root_caches, *pos); 1448 } 1449 1450 void *slab_next(struct seq_file *m, void *p, loff_t *pos) 1451 { 1452 return seq_list_next(p, &slab_root_caches, pos); 1453 } 1454 1455 void slab_stop(struct seq_file *m, void *p) 1456 { 1457 mutex_unlock(&slab_mutex); 1458 } 1459 1460 static void 1461 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) 1462 { 1463 struct kmem_cache *c; 1464 struct slabinfo sinfo; 1465 1466 if (!is_root_cache(s)) 1467 return; 1468 1469 for_each_memcg_cache(c, s) { 1470 memset(&sinfo, 0, sizeof(sinfo)); 1471 get_slabinfo(c, &sinfo); 1472 1473 info->active_slabs += sinfo.active_slabs; 1474 info->num_slabs += sinfo.num_slabs; 1475 info->shared_avail += sinfo.shared_avail; 1476 info->active_objs += sinfo.active_objs; 1477 info->num_objs += sinfo.num_objs; 1478 } 1479 } 1480 1481 static void cache_show(struct kmem_cache *s, struct seq_file *m) 1482 { 1483 struct slabinfo sinfo; 1484 1485 memset(&sinfo, 0, sizeof(sinfo)); 1486 get_slabinfo(s, &sinfo); 1487 1488 memcg_accumulate_slabinfo(s, &sinfo); 1489 1490 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 1491 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, 1492 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 1493 1494 seq_printf(m, " : tunables %4u %4u %4u", 1495 sinfo.limit, sinfo.batchcount, sinfo.shared); 1496 seq_printf(m, " : slabdata %6lu %6lu %6lu", 1497 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 1498 slabinfo_show_stats(m, s); 1499 seq_putc(m, '\n'); 1500 } 1501 1502 static int slab_show(struct seq_file *m, void *p) 1503 { 1504 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); 1505 1506 if (p == slab_root_caches.next) 1507 print_slabinfo_header(m); 1508 cache_show(s, m); 1509 return 0; 1510 } 1511 1512 void dump_unreclaimable_slab(void) 1513 { 1514 struct kmem_cache *s, *s2; 1515 struct slabinfo sinfo; 1516 1517 /* 1518 * Here acquiring slab_mutex is risky since we don't prefer to get 1519 * sleep in oom path. But, without mutex hold, it may introduce a 1520 * risk of crash. 1521 * Use mutex_trylock to protect the list traverse, dump nothing 1522 * without acquiring the mutex. 1523 */ 1524 if (!mutex_trylock(&slab_mutex)) { 1525 pr_warn("excessive unreclaimable slab but cannot dump stats\n"); 1526 return; 1527 } 1528 1529 pr_info("Unreclaimable slab info:\n"); 1530 pr_info("Name Used Total\n"); 1531 1532 list_for_each_entry_safe(s, s2, &slab_caches, list) { 1533 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT)) 1534 continue; 1535 1536 get_slabinfo(s, &sinfo); 1537 1538 if (sinfo.num_objs > 0) 1539 pr_info("%-17s %10luKB %10luKB\n", cache_name(s), 1540 (sinfo.active_objs * s->size) / 1024, 1541 (sinfo.num_objs * s->size) / 1024); 1542 } 1543 mutex_unlock(&slab_mutex); 1544 } 1545 1546 #if defined(CONFIG_MEMCG_KMEM) 1547 void *memcg_slab_start(struct seq_file *m, loff_t *pos) 1548 { 1549 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 1550 1551 mutex_lock(&slab_mutex); 1552 return seq_list_start(&memcg->kmem_caches, *pos); 1553 } 1554 1555 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) 1556 { 1557 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 1558 1559 return seq_list_next(p, &memcg->kmem_caches, pos); 1560 } 1561 1562 void memcg_slab_stop(struct seq_file *m, void *p) 1563 { 1564 mutex_unlock(&slab_mutex); 1565 } 1566 1567 int memcg_slab_show(struct seq_file *m, void *p) 1568 { 1569 struct kmem_cache *s = list_entry(p, struct kmem_cache, 1570 memcg_params.kmem_caches_node); 1571 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 1572 1573 if (p == memcg->kmem_caches.next) 1574 print_slabinfo_header(m); 1575 cache_show(s, m); 1576 return 0; 1577 } 1578 #endif 1579 1580 /* 1581 * slabinfo_op - iterator that generates /proc/slabinfo 1582 * 1583 * Output layout: 1584 * cache-name 1585 * num-active-objs 1586 * total-objs 1587 * object size 1588 * num-active-slabs 1589 * total-slabs 1590 * num-pages-per-slab 1591 * + further values on SMP and with statistics enabled 1592 */ 1593 static const struct seq_operations slabinfo_op = { 1594 .start = slab_start, 1595 .next = slab_next, 1596 .stop = slab_stop, 1597 .show = slab_show, 1598 }; 1599 1600 static int slabinfo_open(struct inode *inode, struct file *file) 1601 { 1602 return seq_open(file, &slabinfo_op); 1603 } 1604 1605 static const struct proc_ops slabinfo_proc_ops = { 1606 .proc_flags = PROC_ENTRY_PERMANENT, 1607 .proc_open = slabinfo_open, 1608 .proc_read = seq_read, 1609 .proc_write = slabinfo_write, 1610 .proc_lseek = seq_lseek, 1611 .proc_release = seq_release, 1612 }; 1613 1614 static int __init slab_proc_init(void) 1615 { 1616 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); 1617 return 0; 1618 } 1619 module_init(slab_proc_init); 1620 1621 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM) 1622 /* 1623 * Display information about kmem caches that have child memcg caches. 1624 */ 1625 static int memcg_slabinfo_show(struct seq_file *m, void *unused) 1626 { 1627 struct kmem_cache *s, *c; 1628 struct slabinfo sinfo; 1629 1630 mutex_lock(&slab_mutex); 1631 seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>"); 1632 seq_puts(m, " <active_slabs> <num_slabs>\n"); 1633 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 1634 /* 1635 * Skip kmem caches that don't have any memcg children. 1636 */ 1637 if (list_empty(&s->memcg_params.children)) 1638 continue; 1639 1640 memset(&sinfo, 0, sizeof(sinfo)); 1641 get_slabinfo(s, &sinfo); 1642 seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n", 1643 cache_name(s), sinfo.active_objs, sinfo.num_objs, 1644 sinfo.active_slabs, sinfo.num_slabs); 1645 1646 for_each_memcg_cache(c, s) { 1647 struct cgroup_subsys_state *css; 1648 char *status = ""; 1649 1650 css = &c->memcg_params.memcg->css; 1651 if (!(css->flags & CSS_ONLINE)) 1652 status = ":dead"; 1653 else if (c->flags & SLAB_DEACTIVATED) 1654 status = ":deact"; 1655 1656 memset(&sinfo, 0, sizeof(sinfo)); 1657 get_slabinfo(c, &sinfo); 1658 seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n", 1659 cache_name(c), css->id, status, 1660 sinfo.active_objs, sinfo.num_objs, 1661 sinfo.active_slabs, sinfo.num_slabs); 1662 } 1663 } 1664 mutex_unlock(&slab_mutex); 1665 return 0; 1666 } 1667 DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo); 1668 1669 static int __init memcg_slabinfo_init(void) 1670 { 1671 debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO, 1672 NULL, NULL, &memcg_slabinfo_fops); 1673 return 0; 1674 } 1675 1676 late_initcall(memcg_slabinfo_init); 1677 #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */ 1678 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ 1679 1680 static __always_inline void *__do_krealloc(const void *p, size_t new_size, 1681 gfp_t flags) 1682 { 1683 void *ret; 1684 size_t ks = 0; 1685 1686 if (p) 1687 ks = ksize(p); 1688 1689 if (ks >= new_size) { 1690 p = kasan_krealloc((void *)p, new_size, flags); 1691 return (void *)p; 1692 } 1693 1694 ret = kmalloc_track_caller(new_size, flags); 1695 if (ret && p) 1696 memcpy(ret, p, ks); 1697 1698 return ret; 1699 } 1700 1701 /** 1702 * krealloc - reallocate memory. The contents will remain unchanged. 1703 * @p: object to reallocate memory for. 1704 * @new_size: how many bytes of memory are required. 1705 * @flags: the type of memory to allocate. 1706 * 1707 * The contents of the object pointed to are preserved up to the 1708 * lesser of the new and old sizes. If @p is %NULL, krealloc() 1709 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a 1710 * %NULL pointer, the object pointed to is freed. 1711 * 1712 * Return: pointer to the allocated memory or %NULL in case of error 1713 */ 1714 void *krealloc(const void *p, size_t new_size, gfp_t flags) 1715 { 1716 void *ret; 1717 1718 if (unlikely(!new_size)) { 1719 kfree(p); 1720 return ZERO_SIZE_PTR; 1721 } 1722 1723 ret = __do_krealloc(p, new_size, flags); 1724 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 1725 kfree(p); 1726 1727 return ret; 1728 } 1729 EXPORT_SYMBOL(krealloc); 1730 1731 /** 1732 * kzfree - like kfree but zero memory 1733 * @p: object to free memory of 1734 * 1735 * The memory of the object @p points to is zeroed before freed. 1736 * If @p is %NULL, kzfree() does nothing. 1737 * 1738 * Note: this function zeroes the whole allocated buffer which can be a good 1739 * deal bigger than the requested buffer size passed to kmalloc(). So be 1740 * careful when using this function in performance sensitive code. 1741 */ 1742 void kzfree(const void *p) 1743 { 1744 size_t ks; 1745 void *mem = (void *)p; 1746 1747 if (unlikely(ZERO_OR_NULL_PTR(mem))) 1748 return; 1749 ks = ksize(mem); 1750 memzero_explicit(mem, ks); 1751 kfree(mem); 1752 } 1753 EXPORT_SYMBOL(kzfree); 1754 1755 /** 1756 * ksize - get the actual amount of memory allocated for a given object 1757 * @objp: Pointer to the object 1758 * 1759 * kmalloc may internally round up allocations and return more memory 1760 * than requested. ksize() can be used to determine the actual amount of 1761 * memory allocated. The caller may use this additional memory, even though 1762 * a smaller amount of memory was initially specified with the kmalloc call. 1763 * The caller must guarantee that objp points to a valid object previously 1764 * allocated with either kmalloc() or kmem_cache_alloc(). The object 1765 * must not be freed during the duration of the call. 1766 * 1767 * Return: size of the actual memory used by @objp in bytes 1768 */ 1769 size_t ksize(const void *objp) 1770 { 1771 size_t size; 1772 1773 if (WARN_ON_ONCE(!objp)) 1774 return 0; 1775 /* 1776 * We need to check that the pointed to object is valid, and only then 1777 * unpoison the shadow memory below. We use __kasan_check_read(), to 1778 * generate a more useful report at the time ksize() is called (rather 1779 * than later where behaviour is undefined due to potential 1780 * use-after-free or double-free). 1781 * 1782 * If the pointed to memory is invalid we return 0, to avoid users of 1783 * ksize() writing to and potentially corrupting the memory region. 1784 * 1785 * We want to perform the check before __ksize(), to avoid potentially 1786 * crashing in __ksize() due to accessing invalid metadata. 1787 */ 1788 if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1)) 1789 return 0; 1790 1791 size = __ksize(objp); 1792 /* 1793 * We assume that ksize callers could use whole allocated area, 1794 * so we need to unpoison this area. 1795 */ 1796 kasan_unpoison_shadow(objp, size); 1797 return size; 1798 } 1799 EXPORT_SYMBOL(ksize); 1800 1801 /* Tracepoints definitions. */ 1802 EXPORT_TRACEPOINT_SYMBOL(kmalloc); 1803 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 1804 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); 1805 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); 1806 EXPORT_TRACEPOINT_SYMBOL(kfree); 1807 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 1808 1809 int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 1810 { 1811 if (__should_failslab(s, gfpflags)) 1812 return -ENOMEM; 1813 return 0; 1814 } 1815 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 1816