xref: /openbmc/linux/mm/slab_common.c (revision a31edb20)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/debugfs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
23 #include <asm/page.h>
24 #include <linux/memcontrol.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/kmem.h>
28 
29 #include "slab.h"
30 
31 enum slab_state slab_state;
32 LIST_HEAD(slab_caches);
33 DEFINE_MUTEX(slab_mutex);
34 struct kmem_cache *kmem_cache;
35 
36 #ifdef CONFIG_HARDENED_USERCOPY
37 bool usercopy_fallback __ro_after_init =
38 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
39 module_param(usercopy_fallback, bool, 0400);
40 MODULE_PARM_DESC(usercopy_fallback,
41 		"WARN instead of reject usercopy whitelist violations");
42 #endif
43 
44 static LIST_HEAD(slab_caches_to_rcu_destroy);
45 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
46 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
47 		    slab_caches_to_rcu_destroy_workfn);
48 
49 /*
50  * Set of flags that will prevent slab merging
51  */
52 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
53 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
54 		SLAB_FAILSLAB | SLAB_KASAN)
55 
56 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
57 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
58 
59 /*
60  * Merge control. If this is set then no merging of slab caches will occur.
61  */
62 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
63 
64 static int __init setup_slab_nomerge(char *str)
65 {
66 	slab_nomerge = true;
67 	return 1;
68 }
69 
70 #ifdef CONFIG_SLUB
71 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
72 #endif
73 
74 __setup("slab_nomerge", setup_slab_nomerge);
75 
76 /*
77  * Determine the size of a slab object
78  */
79 unsigned int kmem_cache_size(struct kmem_cache *s)
80 {
81 	return s->object_size;
82 }
83 EXPORT_SYMBOL(kmem_cache_size);
84 
85 #ifdef CONFIG_DEBUG_VM
86 static int kmem_cache_sanity_check(const char *name, unsigned int size)
87 {
88 	if (!name || in_interrupt() || size < sizeof(void *) ||
89 		size > KMALLOC_MAX_SIZE) {
90 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
91 		return -EINVAL;
92 	}
93 
94 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
95 	return 0;
96 }
97 #else
98 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
99 {
100 	return 0;
101 }
102 #endif
103 
104 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
105 {
106 	size_t i;
107 
108 	for (i = 0; i < nr; i++) {
109 		if (s)
110 			kmem_cache_free(s, p[i]);
111 		else
112 			kfree(p[i]);
113 	}
114 }
115 
116 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
117 								void **p)
118 {
119 	size_t i;
120 
121 	for (i = 0; i < nr; i++) {
122 		void *x = p[i] = kmem_cache_alloc(s, flags);
123 		if (!x) {
124 			__kmem_cache_free_bulk(s, i, p);
125 			return 0;
126 		}
127 	}
128 	return i;
129 }
130 
131 #ifdef CONFIG_MEMCG_KMEM
132 
133 LIST_HEAD(slab_root_caches);
134 static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
135 
136 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
137 
138 void slab_init_memcg_params(struct kmem_cache *s)
139 {
140 	s->memcg_params.root_cache = NULL;
141 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
142 	INIT_LIST_HEAD(&s->memcg_params.children);
143 	s->memcg_params.dying = false;
144 }
145 
146 static int init_memcg_params(struct kmem_cache *s,
147 			     struct kmem_cache *root_cache)
148 {
149 	struct memcg_cache_array *arr;
150 
151 	if (root_cache) {
152 		int ret = percpu_ref_init(&s->memcg_params.refcnt,
153 					  kmemcg_cache_shutdown,
154 					  0, GFP_KERNEL);
155 		if (ret)
156 			return ret;
157 
158 		s->memcg_params.root_cache = root_cache;
159 		INIT_LIST_HEAD(&s->memcg_params.children_node);
160 		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161 		return 0;
162 	}
163 
164 	slab_init_memcg_params(s);
165 
166 	if (!memcg_nr_cache_ids)
167 		return 0;
168 
169 	arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 		       memcg_nr_cache_ids * sizeof(void *),
171 		       GFP_KERNEL);
172 	if (!arr)
173 		return -ENOMEM;
174 
175 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 	return 0;
177 }
178 
179 static void destroy_memcg_params(struct kmem_cache *s)
180 {
181 	if (is_root_cache(s)) {
182 		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 	} else {
184 		mem_cgroup_put(s->memcg_params.memcg);
185 		WRITE_ONCE(s->memcg_params.memcg, NULL);
186 		percpu_ref_exit(&s->memcg_params.refcnt);
187 	}
188 }
189 
190 static void free_memcg_params(struct rcu_head *rcu)
191 {
192 	struct memcg_cache_array *old;
193 
194 	old = container_of(rcu, struct memcg_cache_array, rcu);
195 	kvfree(old);
196 }
197 
198 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
199 {
200 	struct memcg_cache_array *old, *new;
201 
202 	new = kvzalloc(sizeof(struct memcg_cache_array) +
203 		       new_array_size * sizeof(void *), GFP_KERNEL);
204 	if (!new)
205 		return -ENOMEM;
206 
207 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
208 					lockdep_is_held(&slab_mutex));
209 	if (old)
210 		memcpy(new->entries, old->entries,
211 		       memcg_nr_cache_ids * sizeof(void *));
212 
213 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
214 	if (old)
215 		call_rcu(&old->rcu, free_memcg_params);
216 	return 0;
217 }
218 
219 int memcg_update_all_caches(int num_memcgs)
220 {
221 	struct kmem_cache *s;
222 	int ret = 0;
223 
224 	mutex_lock(&slab_mutex);
225 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
226 		ret = update_memcg_params(s, num_memcgs);
227 		/*
228 		 * Instead of freeing the memory, we'll just leave the caches
229 		 * up to this point in an updated state.
230 		 */
231 		if (ret)
232 			break;
233 	}
234 	mutex_unlock(&slab_mutex);
235 	return ret;
236 }
237 
238 void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
239 {
240 	if (is_root_cache(s)) {
241 		list_add(&s->root_caches_node, &slab_root_caches);
242 	} else {
243 		css_get(&memcg->css);
244 		s->memcg_params.memcg = memcg;
245 		list_add(&s->memcg_params.children_node,
246 			 &s->memcg_params.root_cache->memcg_params.children);
247 		list_add(&s->memcg_params.kmem_caches_node,
248 			 &s->memcg_params.memcg->kmem_caches);
249 	}
250 }
251 
252 static void memcg_unlink_cache(struct kmem_cache *s)
253 {
254 	if (is_root_cache(s)) {
255 		list_del(&s->root_caches_node);
256 	} else {
257 		list_del(&s->memcg_params.children_node);
258 		list_del(&s->memcg_params.kmem_caches_node);
259 	}
260 }
261 #else
262 static inline int init_memcg_params(struct kmem_cache *s,
263 				    struct kmem_cache *root_cache)
264 {
265 	return 0;
266 }
267 
268 static inline void destroy_memcg_params(struct kmem_cache *s)
269 {
270 }
271 
272 static inline void memcg_unlink_cache(struct kmem_cache *s)
273 {
274 }
275 #endif /* CONFIG_MEMCG_KMEM */
276 
277 /*
278  * Figure out what the alignment of the objects will be given a set of
279  * flags, a user specified alignment and the size of the objects.
280  */
281 static unsigned int calculate_alignment(slab_flags_t flags,
282 		unsigned int align, unsigned int size)
283 {
284 	/*
285 	 * If the user wants hardware cache aligned objects then follow that
286 	 * suggestion if the object is sufficiently large.
287 	 *
288 	 * The hardware cache alignment cannot override the specified
289 	 * alignment though. If that is greater then use it.
290 	 */
291 	if (flags & SLAB_HWCACHE_ALIGN) {
292 		unsigned int ralign;
293 
294 		ralign = cache_line_size();
295 		while (size <= ralign / 2)
296 			ralign /= 2;
297 		align = max(align, ralign);
298 	}
299 
300 	if (align < ARCH_SLAB_MINALIGN)
301 		align = ARCH_SLAB_MINALIGN;
302 
303 	return ALIGN(align, sizeof(void *));
304 }
305 
306 /*
307  * Find a mergeable slab cache
308  */
309 int slab_unmergeable(struct kmem_cache *s)
310 {
311 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
312 		return 1;
313 
314 	if (!is_root_cache(s))
315 		return 1;
316 
317 	if (s->ctor)
318 		return 1;
319 
320 	if (s->usersize)
321 		return 1;
322 
323 	/*
324 	 * We may have set a slab to be unmergeable during bootstrap.
325 	 */
326 	if (s->refcount < 0)
327 		return 1;
328 
329 #ifdef CONFIG_MEMCG_KMEM
330 	/*
331 	 * Skip the dying kmem_cache.
332 	 */
333 	if (s->memcg_params.dying)
334 		return 1;
335 #endif
336 
337 	return 0;
338 }
339 
340 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
341 		slab_flags_t flags, const char *name, void (*ctor)(void *))
342 {
343 	struct kmem_cache *s;
344 
345 	if (slab_nomerge)
346 		return NULL;
347 
348 	if (ctor)
349 		return NULL;
350 
351 	size = ALIGN(size, sizeof(void *));
352 	align = calculate_alignment(flags, align, size);
353 	size = ALIGN(size, align);
354 	flags = kmem_cache_flags(size, flags, name, NULL);
355 
356 	if (flags & SLAB_NEVER_MERGE)
357 		return NULL;
358 
359 	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
360 		if (slab_unmergeable(s))
361 			continue;
362 
363 		if (size > s->size)
364 			continue;
365 
366 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
367 			continue;
368 		/*
369 		 * Check if alignment is compatible.
370 		 * Courtesy of Adrian Drzewiecki
371 		 */
372 		if ((s->size & ~(align - 1)) != s->size)
373 			continue;
374 
375 		if (s->size - size >= sizeof(void *))
376 			continue;
377 
378 		if (IS_ENABLED(CONFIG_SLAB) && align &&
379 			(align > s->align || s->align % align))
380 			continue;
381 
382 		return s;
383 	}
384 	return NULL;
385 }
386 
387 static struct kmem_cache *create_cache(const char *name,
388 		unsigned int object_size, unsigned int align,
389 		slab_flags_t flags, unsigned int useroffset,
390 		unsigned int usersize, void (*ctor)(void *),
391 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
392 {
393 	struct kmem_cache *s;
394 	int err;
395 
396 	if (WARN_ON(useroffset + usersize > object_size))
397 		useroffset = usersize = 0;
398 
399 	err = -ENOMEM;
400 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
401 	if (!s)
402 		goto out;
403 
404 	s->name = name;
405 	s->size = s->object_size = object_size;
406 	s->align = align;
407 	s->ctor = ctor;
408 	s->useroffset = useroffset;
409 	s->usersize = usersize;
410 
411 	err = init_memcg_params(s, root_cache);
412 	if (err)
413 		goto out_free_cache;
414 
415 	err = __kmem_cache_create(s, flags);
416 	if (err)
417 		goto out_free_cache;
418 
419 	s->refcount = 1;
420 	list_add(&s->list, &slab_caches);
421 	memcg_link_cache(s, memcg);
422 out:
423 	if (err)
424 		return ERR_PTR(err);
425 	return s;
426 
427 out_free_cache:
428 	destroy_memcg_params(s);
429 	kmem_cache_free(kmem_cache, s);
430 	goto out;
431 }
432 
433 /**
434  * kmem_cache_create_usercopy - Create a cache with a region suitable
435  * for copying to userspace
436  * @name: A string which is used in /proc/slabinfo to identify this cache.
437  * @size: The size of objects to be created in this cache.
438  * @align: The required alignment for the objects.
439  * @flags: SLAB flags
440  * @useroffset: Usercopy region offset
441  * @usersize: Usercopy region size
442  * @ctor: A constructor for the objects.
443  *
444  * Cannot be called within a interrupt, but can be interrupted.
445  * The @ctor is run when new pages are allocated by the cache.
446  *
447  * The flags are
448  *
449  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
450  * to catch references to uninitialised memory.
451  *
452  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
453  * for buffer overruns.
454  *
455  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
456  * cacheline.  This can be beneficial if you're counting cycles as closely
457  * as davem.
458  *
459  * Return: a pointer to the cache on success, NULL on failure.
460  */
461 struct kmem_cache *
462 kmem_cache_create_usercopy(const char *name,
463 		  unsigned int size, unsigned int align,
464 		  slab_flags_t flags,
465 		  unsigned int useroffset, unsigned int usersize,
466 		  void (*ctor)(void *))
467 {
468 	struct kmem_cache *s = NULL;
469 	const char *cache_name;
470 	int err;
471 
472 	get_online_cpus();
473 	get_online_mems();
474 	memcg_get_cache_ids();
475 
476 	mutex_lock(&slab_mutex);
477 
478 	err = kmem_cache_sanity_check(name, size);
479 	if (err) {
480 		goto out_unlock;
481 	}
482 
483 	/* Refuse requests with allocator specific flags */
484 	if (flags & ~SLAB_FLAGS_PERMITTED) {
485 		err = -EINVAL;
486 		goto out_unlock;
487 	}
488 
489 	/*
490 	 * Some allocators will constraint the set of valid flags to a subset
491 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
492 	 * case, and we'll just provide them with a sanitized version of the
493 	 * passed flags.
494 	 */
495 	flags &= CACHE_CREATE_MASK;
496 
497 	/* Fail closed on bad usersize of useroffset values. */
498 	if (WARN_ON(!usersize && useroffset) ||
499 	    WARN_ON(size < usersize || size - usersize < useroffset))
500 		usersize = useroffset = 0;
501 
502 	if (!usersize)
503 		s = __kmem_cache_alias(name, size, align, flags, ctor);
504 	if (s)
505 		goto out_unlock;
506 
507 	cache_name = kstrdup_const(name, GFP_KERNEL);
508 	if (!cache_name) {
509 		err = -ENOMEM;
510 		goto out_unlock;
511 	}
512 
513 	s = create_cache(cache_name, size,
514 			 calculate_alignment(flags, align, size),
515 			 flags, useroffset, usersize, ctor, NULL, NULL);
516 	if (IS_ERR(s)) {
517 		err = PTR_ERR(s);
518 		kfree_const(cache_name);
519 	}
520 
521 out_unlock:
522 	mutex_unlock(&slab_mutex);
523 
524 	memcg_put_cache_ids();
525 	put_online_mems();
526 	put_online_cpus();
527 
528 	if (err) {
529 		if (flags & SLAB_PANIC)
530 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
531 				name, err);
532 		else {
533 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
534 				name, err);
535 			dump_stack();
536 		}
537 		return NULL;
538 	}
539 	return s;
540 }
541 EXPORT_SYMBOL(kmem_cache_create_usercopy);
542 
543 /**
544  * kmem_cache_create - Create a cache.
545  * @name: A string which is used in /proc/slabinfo to identify this cache.
546  * @size: The size of objects to be created in this cache.
547  * @align: The required alignment for the objects.
548  * @flags: SLAB flags
549  * @ctor: A constructor for the objects.
550  *
551  * Cannot be called within a interrupt, but can be interrupted.
552  * The @ctor is run when new pages are allocated by the cache.
553  *
554  * The flags are
555  *
556  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
557  * to catch references to uninitialised memory.
558  *
559  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
560  * for buffer overruns.
561  *
562  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
563  * cacheline.  This can be beneficial if you're counting cycles as closely
564  * as davem.
565  *
566  * Return: a pointer to the cache on success, NULL on failure.
567  */
568 struct kmem_cache *
569 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
570 		slab_flags_t flags, void (*ctor)(void *))
571 {
572 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
573 					  ctor);
574 }
575 EXPORT_SYMBOL(kmem_cache_create);
576 
577 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
578 {
579 	LIST_HEAD(to_destroy);
580 	struct kmem_cache *s, *s2;
581 
582 	/*
583 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
584 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
585 	 * through RCU and and the associated kmem_cache are dereferenced
586 	 * while freeing the pages, so the kmem_caches should be freed only
587 	 * after the pending RCU operations are finished.  As rcu_barrier()
588 	 * is a pretty slow operation, we batch all pending destructions
589 	 * asynchronously.
590 	 */
591 	mutex_lock(&slab_mutex);
592 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
593 	mutex_unlock(&slab_mutex);
594 
595 	if (list_empty(&to_destroy))
596 		return;
597 
598 	rcu_barrier();
599 
600 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
601 #ifdef SLAB_SUPPORTS_SYSFS
602 		sysfs_slab_release(s);
603 #else
604 		slab_kmem_cache_release(s);
605 #endif
606 	}
607 }
608 
609 static int shutdown_cache(struct kmem_cache *s)
610 {
611 	/* free asan quarantined objects */
612 	kasan_cache_shutdown(s);
613 
614 	if (__kmem_cache_shutdown(s) != 0)
615 		return -EBUSY;
616 
617 	memcg_unlink_cache(s);
618 	list_del(&s->list);
619 
620 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
621 #ifdef SLAB_SUPPORTS_SYSFS
622 		sysfs_slab_unlink(s);
623 #endif
624 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
625 		schedule_work(&slab_caches_to_rcu_destroy_work);
626 	} else {
627 #ifdef SLAB_SUPPORTS_SYSFS
628 		sysfs_slab_unlink(s);
629 		sysfs_slab_release(s);
630 #else
631 		slab_kmem_cache_release(s);
632 #endif
633 	}
634 
635 	return 0;
636 }
637 
638 #ifdef CONFIG_MEMCG_KMEM
639 /*
640  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
641  * @memcg: The memory cgroup the new cache is for.
642  * @root_cache: The parent of the new cache.
643  *
644  * This function attempts to create a kmem cache that will serve allocation
645  * requests going from @memcg to @root_cache. The new cache inherits properties
646  * from its parent.
647  */
648 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
649 			     struct kmem_cache *root_cache)
650 {
651 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
652 	struct cgroup_subsys_state *css = &memcg->css;
653 	struct memcg_cache_array *arr;
654 	struct kmem_cache *s = NULL;
655 	char *cache_name;
656 	int idx;
657 
658 	get_online_cpus();
659 	get_online_mems();
660 
661 	mutex_lock(&slab_mutex);
662 
663 	/*
664 	 * The memory cgroup could have been offlined while the cache
665 	 * creation work was pending.
666 	 */
667 	if (memcg->kmem_state != KMEM_ONLINE)
668 		goto out_unlock;
669 
670 	idx = memcg_cache_id(memcg);
671 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
672 					lockdep_is_held(&slab_mutex));
673 
674 	/*
675 	 * Since per-memcg caches are created asynchronously on first
676 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
677 	 * create the same cache, but only one of them may succeed.
678 	 */
679 	if (arr->entries[idx])
680 		goto out_unlock;
681 
682 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
683 	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
684 			       css->serial_nr, memcg_name_buf);
685 	if (!cache_name)
686 		goto out_unlock;
687 
688 	s = create_cache(cache_name, root_cache->object_size,
689 			 root_cache->align,
690 			 root_cache->flags & CACHE_CREATE_MASK,
691 			 root_cache->useroffset, root_cache->usersize,
692 			 root_cache->ctor, memcg, root_cache);
693 	/*
694 	 * If we could not create a memcg cache, do not complain, because
695 	 * that's not critical at all as we can always proceed with the root
696 	 * cache.
697 	 */
698 	if (IS_ERR(s)) {
699 		kfree(cache_name);
700 		goto out_unlock;
701 	}
702 
703 	/*
704 	 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
705 	 * barrier here to ensure nobody will see the kmem_cache partially
706 	 * initialized.
707 	 */
708 	smp_wmb();
709 	arr->entries[idx] = s;
710 
711 out_unlock:
712 	mutex_unlock(&slab_mutex);
713 
714 	put_online_mems();
715 	put_online_cpus();
716 }
717 
718 static void kmemcg_workfn(struct work_struct *work)
719 {
720 	struct kmem_cache *s = container_of(work, struct kmem_cache,
721 					    memcg_params.work);
722 
723 	get_online_cpus();
724 	get_online_mems();
725 
726 	mutex_lock(&slab_mutex);
727 	s->memcg_params.work_fn(s);
728 	mutex_unlock(&slab_mutex);
729 
730 	put_online_mems();
731 	put_online_cpus();
732 }
733 
734 static void kmemcg_rcufn(struct rcu_head *head)
735 {
736 	struct kmem_cache *s = container_of(head, struct kmem_cache,
737 					    memcg_params.rcu_head);
738 
739 	/*
740 	 * We need to grab blocking locks.  Bounce to ->work.  The
741 	 * work item shares the space with the RCU head and can't be
742 	 * initialized earlier.
743 	 */
744 	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
745 	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
746 }
747 
748 static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
749 {
750 	WARN_ON(shutdown_cache(s));
751 }
752 
753 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
754 {
755 	struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
756 					    memcg_params.refcnt);
757 	unsigned long flags;
758 
759 	spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
760 	if (s->memcg_params.root_cache->memcg_params.dying)
761 		goto unlock;
762 
763 	s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
764 	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
765 	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
766 
767 unlock:
768 	spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
769 }
770 
771 static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
772 {
773 	__kmemcg_cache_deactivate_after_rcu(s);
774 	percpu_ref_kill(&s->memcg_params.refcnt);
775 }
776 
777 static void kmemcg_cache_deactivate(struct kmem_cache *s)
778 {
779 	if (WARN_ON_ONCE(is_root_cache(s)))
780 		return;
781 
782 	__kmemcg_cache_deactivate(s);
783 	s->flags |= SLAB_DEACTIVATED;
784 
785 	/*
786 	 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
787 	 * flag and make sure that no new kmem_cache deactivation tasks
788 	 * are queued (see flush_memcg_workqueue() ).
789 	 */
790 	spin_lock_irq(&memcg_kmem_wq_lock);
791 	if (s->memcg_params.root_cache->memcg_params.dying)
792 		goto unlock;
793 
794 	s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
795 	call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
796 unlock:
797 	spin_unlock_irq(&memcg_kmem_wq_lock);
798 }
799 
800 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
801 				  struct mem_cgroup *parent)
802 {
803 	int idx;
804 	struct memcg_cache_array *arr;
805 	struct kmem_cache *s, *c;
806 	unsigned int nr_reparented;
807 
808 	idx = memcg_cache_id(memcg);
809 
810 	get_online_cpus();
811 	get_online_mems();
812 
813 	mutex_lock(&slab_mutex);
814 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
815 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
816 						lockdep_is_held(&slab_mutex));
817 		c = arr->entries[idx];
818 		if (!c)
819 			continue;
820 
821 		kmemcg_cache_deactivate(c);
822 		arr->entries[idx] = NULL;
823 	}
824 	nr_reparented = 0;
825 	list_for_each_entry(s, &memcg->kmem_caches,
826 			    memcg_params.kmem_caches_node) {
827 		WRITE_ONCE(s->memcg_params.memcg, parent);
828 		css_put(&memcg->css);
829 		nr_reparented++;
830 	}
831 	if (nr_reparented) {
832 		list_splice_init(&memcg->kmem_caches,
833 				 &parent->kmem_caches);
834 		css_get_many(&parent->css, nr_reparented);
835 	}
836 	mutex_unlock(&slab_mutex);
837 
838 	put_online_mems();
839 	put_online_cpus();
840 }
841 
842 static int shutdown_memcg_caches(struct kmem_cache *s)
843 {
844 	struct memcg_cache_array *arr;
845 	struct kmem_cache *c, *c2;
846 	LIST_HEAD(busy);
847 	int i;
848 
849 	BUG_ON(!is_root_cache(s));
850 
851 	/*
852 	 * First, shutdown active caches, i.e. caches that belong to online
853 	 * memory cgroups.
854 	 */
855 	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
856 					lockdep_is_held(&slab_mutex));
857 	for_each_memcg_cache_index(i) {
858 		c = arr->entries[i];
859 		if (!c)
860 			continue;
861 		if (shutdown_cache(c))
862 			/*
863 			 * The cache still has objects. Move it to a temporary
864 			 * list so as not to try to destroy it for a second
865 			 * time while iterating over inactive caches below.
866 			 */
867 			list_move(&c->memcg_params.children_node, &busy);
868 		else
869 			/*
870 			 * The cache is empty and will be destroyed soon. Clear
871 			 * the pointer to it in the memcg_caches array so that
872 			 * it will never be accessed even if the root cache
873 			 * stays alive.
874 			 */
875 			arr->entries[i] = NULL;
876 	}
877 
878 	/*
879 	 * Second, shutdown all caches left from memory cgroups that are now
880 	 * offline.
881 	 */
882 	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
883 				 memcg_params.children_node)
884 		shutdown_cache(c);
885 
886 	list_splice(&busy, &s->memcg_params.children);
887 
888 	/*
889 	 * A cache being destroyed must be empty. In particular, this means
890 	 * that all per memcg caches attached to it must be empty too.
891 	 */
892 	if (!list_empty(&s->memcg_params.children))
893 		return -EBUSY;
894 	return 0;
895 }
896 
897 static void memcg_set_kmem_cache_dying(struct kmem_cache *s)
898 {
899 	spin_lock_irq(&memcg_kmem_wq_lock);
900 	s->memcg_params.dying = true;
901 	spin_unlock_irq(&memcg_kmem_wq_lock);
902 }
903 
904 static void flush_memcg_workqueue(struct kmem_cache *s)
905 {
906 	/*
907 	 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
908 	 * sure all registered rcu callbacks have been invoked.
909 	 */
910 	rcu_barrier();
911 
912 	/*
913 	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
914 	 * deactivates the memcg kmem_caches through workqueue. Make sure all
915 	 * previous workitems on workqueue are processed.
916 	 */
917 	if (likely(memcg_kmem_cache_wq))
918 		flush_workqueue(memcg_kmem_cache_wq);
919 
920 	/*
921 	 * If we're racing with children kmem_cache deactivation, it might
922 	 * take another rcu grace period to complete their destruction.
923 	 * At this moment the corresponding percpu_ref_kill() call should be
924 	 * done, but it might take another rcu grace period to complete
925 	 * switching to the atomic mode.
926 	 * Please, note that we check without grabbing the slab_mutex. It's safe
927 	 * because at this moment the children list can't grow.
928 	 */
929 	if (!list_empty(&s->memcg_params.children))
930 		rcu_barrier();
931 }
932 #else
933 static inline int shutdown_memcg_caches(struct kmem_cache *s)
934 {
935 	return 0;
936 }
937 #endif /* CONFIG_MEMCG_KMEM */
938 
939 void slab_kmem_cache_release(struct kmem_cache *s)
940 {
941 	__kmem_cache_release(s);
942 	destroy_memcg_params(s);
943 	kfree_const(s->name);
944 	kmem_cache_free(kmem_cache, s);
945 }
946 
947 void kmem_cache_destroy(struct kmem_cache *s)
948 {
949 	int err;
950 
951 	if (unlikely(!s))
952 		return;
953 
954 	get_online_cpus();
955 	get_online_mems();
956 
957 	mutex_lock(&slab_mutex);
958 
959 	s->refcount--;
960 	if (s->refcount)
961 		goto out_unlock;
962 
963 #ifdef CONFIG_MEMCG_KMEM
964 	memcg_set_kmem_cache_dying(s);
965 
966 	mutex_unlock(&slab_mutex);
967 
968 	put_online_mems();
969 	put_online_cpus();
970 
971 	flush_memcg_workqueue(s);
972 
973 	get_online_cpus();
974 	get_online_mems();
975 
976 	mutex_lock(&slab_mutex);
977 #endif
978 
979 	err = shutdown_memcg_caches(s);
980 	if (!err)
981 		err = shutdown_cache(s);
982 
983 	if (err) {
984 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
985 		       s->name);
986 		dump_stack();
987 	}
988 out_unlock:
989 	mutex_unlock(&slab_mutex);
990 
991 	put_online_mems();
992 	put_online_cpus();
993 }
994 EXPORT_SYMBOL(kmem_cache_destroy);
995 
996 /**
997  * kmem_cache_shrink - Shrink a cache.
998  * @cachep: The cache to shrink.
999  *
1000  * Releases as many slabs as possible for a cache.
1001  * To help debugging, a zero exit status indicates all slabs were released.
1002  *
1003  * Return: %0 if all slabs were released, non-zero otherwise
1004  */
1005 int kmem_cache_shrink(struct kmem_cache *cachep)
1006 {
1007 	int ret;
1008 
1009 	get_online_cpus();
1010 	get_online_mems();
1011 	kasan_cache_shrink(cachep);
1012 	ret = __kmem_cache_shrink(cachep);
1013 	put_online_mems();
1014 	put_online_cpus();
1015 	return ret;
1016 }
1017 EXPORT_SYMBOL(kmem_cache_shrink);
1018 
1019 /**
1020  * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
1021  * @s: The cache pointer
1022  */
1023 void kmem_cache_shrink_all(struct kmem_cache *s)
1024 {
1025 	struct kmem_cache *c;
1026 
1027 	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
1028 		kmem_cache_shrink(s);
1029 		return;
1030 	}
1031 
1032 	get_online_cpus();
1033 	get_online_mems();
1034 	kasan_cache_shrink(s);
1035 	__kmem_cache_shrink(s);
1036 
1037 	/*
1038 	 * We have to take the slab_mutex to protect from the memcg list
1039 	 * modification.
1040 	 */
1041 	mutex_lock(&slab_mutex);
1042 	for_each_memcg_cache(c, s) {
1043 		/*
1044 		 * Don't need to shrink deactivated memcg caches.
1045 		 */
1046 		if (s->flags & SLAB_DEACTIVATED)
1047 			continue;
1048 		kasan_cache_shrink(c);
1049 		__kmem_cache_shrink(c);
1050 	}
1051 	mutex_unlock(&slab_mutex);
1052 	put_online_mems();
1053 	put_online_cpus();
1054 }
1055 
1056 bool slab_is_available(void)
1057 {
1058 	return slab_state >= UP;
1059 }
1060 
1061 #ifndef CONFIG_SLOB
1062 /* Create a cache during boot when no slab services are available yet */
1063 void __init create_boot_cache(struct kmem_cache *s, const char *name,
1064 		unsigned int size, slab_flags_t flags,
1065 		unsigned int useroffset, unsigned int usersize)
1066 {
1067 	int err;
1068 	unsigned int align = ARCH_KMALLOC_MINALIGN;
1069 
1070 	s->name = name;
1071 	s->size = s->object_size = size;
1072 
1073 	/*
1074 	 * For power of two sizes, guarantee natural alignment for kmalloc
1075 	 * caches, regardless of SL*B debugging options.
1076 	 */
1077 	if (is_power_of_2(size))
1078 		align = max(align, size);
1079 	s->align = calculate_alignment(flags, align, size);
1080 
1081 	s->useroffset = useroffset;
1082 	s->usersize = usersize;
1083 
1084 	slab_init_memcg_params(s);
1085 
1086 	err = __kmem_cache_create(s, flags);
1087 
1088 	if (err)
1089 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1090 					name, size, err);
1091 
1092 	s->refcount = -1;	/* Exempt from merging for now */
1093 }
1094 
1095 struct kmem_cache *__init create_kmalloc_cache(const char *name,
1096 		unsigned int size, slab_flags_t flags,
1097 		unsigned int useroffset, unsigned int usersize)
1098 {
1099 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1100 
1101 	if (!s)
1102 		panic("Out of memory when creating slab %s\n", name);
1103 
1104 	create_boot_cache(s, name, size, flags, useroffset, usersize);
1105 	list_add(&s->list, &slab_caches);
1106 	memcg_link_cache(s, NULL);
1107 	s->refcount = 1;
1108 	return s;
1109 }
1110 
1111 struct kmem_cache *
1112 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
1113 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1114 EXPORT_SYMBOL(kmalloc_caches);
1115 
1116 /*
1117  * Conversion table for small slabs sizes / 8 to the index in the
1118  * kmalloc array. This is necessary for slabs < 192 since we have non power
1119  * of two cache sizes there. The size of larger slabs can be determined using
1120  * fls.
1121  */
1122 static u8 size_index[24] __ro_after_init = {
1123 	3,	/* 8 */
1124 	4,	/* 16 */
1125 	5,	/* 24 */
1126 	5,	/* 32 */
1127 	6,	/* 40 */
1128 	6,	/* 48 */
1129 	6,	/* 56 */
1130 	6,	/* 64 */
1131 	1,	/* 72 */
1132 	1,	/* 80 */
1133 	1,	/* 88 */
1134 	1,	/* 96 */
1135 	7,	/* 104 */
1136 	7,	/* 112 */
1137 	7,	/* 120 */
1138 	7,	/* 128 */
1139 	2,	/* 136 */
1140 	2,	/* 144 */
1141 	2,	/* 152 */
1142 	2,	/* 160 */
1143 	2,	/* 168 */
1144 	2,	/* 176 */
1145 	2,	/* 184 */
1146 	2	/* 192 */
1147 };
1148 
1149 static inline unsigned int size_index_elem(unsigned int bytes)
1150 {
1151 	return (bytes - 1) / 8;
1152 }
1153 
1154 /*
1155  * Find the kmem_cache structure that serves a given size of
1156  * allocation
1157  */
1158 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1159 {
1160 	unsigned int index;
1161 
1162 	if (size <= 192) {
1163 		if (!size)
1164 			return ZERO_SIZE_PTR;
1165 
1166 		index = size_index[size_index_elem(size)];
1167 	} else {
1168 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1169 			return NULL;
1170 		index = fls(size - 1);
1171 	}
1172 
1173 	return kmalloc_caches[kmalloc_type(flags)][index];
1174 }
1175 
1176 #ifdef CONFIG_ZONE_DMA
1177 #define INIT_KMALLOC_INFO(__size, __short_size)			\
1178 {								\
1179 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
1180 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
1181 	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
1182 	.size = __size,						\
1183 }
1184 #else
1185 #define INIT_KMALLOC_INFO(__size, __short_size)			\
1186 {								\
1187 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
1188 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
1189 	.size = __size,						\
1190 }
1191 #endif
1192 
1193 /*
1194  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1195  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1196  * kmalloc-67108864.
1197  */
1198 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1199 	INIT_KMALLOC_INFO(0, 0),
1200 	INIT_KMALLOC_INFO(96, 96),
1201 	INIT_KMALLOC_INFO(192, 192),
1202 	INIT_KMALLOC_INFO(8, 8),
1203 	INIT_KMALLOC_INFO(16, 16),
1204 	INIT_KMALLOC_INFO(32, 32),
1205 	INIT_KMALLOC_INFO(64, 64),
1206 	INIT_KMALLOC_INFO(128, 128),
1207 	INIT_KMALLOC_INFO(256, 256),
1208 	INIT_KMALLOC_INFO(512, 512),
1209 	INIT_KMALLOC_INFO(1024, 1k),
1210 	INIT_KMALLOC_INFO(2048, 2k),
1211 	INIT_KMALLOC_INFO(4096, 4k),
1212 	INIT_KMALLOC_INFO(8192, 8k),
1213 	INIT_KMALLOC_INFO(16384, 16k),
1214 	INIT_KMALLOC_INFO(32768, 32k),
1215 	INIT_KMALLOC_INFO(65536, 64k),
1216 	INIT_KMALLOC_INFO(131072, 128k),
1217 	INIT_KMALLOC_INFO(262144, 256k),
1218 	INIT_KMALLOC_INFO(524288, 512k),
1219 	INIT_KMALLOC_INFO(1048576, 1M),
1220 	INIT_KMALLOC_INFO(2097152, 2M),
1221 	INIT_KMALLOC_INFO(4194304, 4M),
1222 	INIT_KMALLOC_INFO(8388608, 8M),
1223 	INIT_KMALLOC_INFO(16777216, 16M),
1224 	INIT_KMALLOC_INFO(33554432, 32M),
1225 	INIT_KMALLOC_INFO(67108864, 64M)
1226 };
1227 
1228 /*
1229  * Patch up the size_index table if we have strange large alignment
1230  * requirements for the kmalloc array. This is only the case for
1231  * MIPS it seems. The standard arches will not generate any code here.
1232  *
1233  * Largest permitted alignment is 256 bytes due to the way we
1234  * handle the index determination for the smaller caches.
1235  *
1236  * Make sure that nothing crazy happens if someone starts tinkering
1237  * around with ARCH_KMALLOC_MINALIGN
1238  */
1239 void __init setup_kmalloc_cache_index_table(void)
1240 {
1241 	unsigned int i;
1242 
1243 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1244 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1245 
1246 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1247 		unsigned int elem = size_index_elem(i);
1248 
1249 		if (elem >= ARRAY_SIZE(size_index))
1250 			break;
1251 		size_index[elem] = KMALLOC_SHIFT_LOW;
1252 	}
1253 
1254 	if (KMALLOC_MIN_SIZE >= 64) {
1255 		/*
1256 		 * The 96 byte size cache is not used if the alignment
1257 		 * is 64 byte.
1258 		 */
1259 		for (i = 64 + 8; i <= 96; i += 8)
1260 			size_index[size_index_elem(i)] = 7;
1261 
1262 	}
1263 
1264 	if (KMALLOC_MIN_SIZE >= 128) {
1265 		/*
1266 		 * The 192 byte sized cache is not used if the alignment
1267 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1268 		 * instead.
1269 		 */
1270 		for (i = 128 + 8; i <= 192; i += 8)
1271 			size_index[size_index_elem(i)] = 8;
1272 	}
1273 }
1274 
1275 static void __init
1276 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
1277 {
1278 	if (type == KMALLOC_RECLAIM)
1279 		flags |= SLAB_RECLAIM_ACCOUNT;
1280 
1281 	kmalloc_caches[type][idx] = create_kmalloc_cache(
1282 					kmalloc_info[idx].name[type],
1283 					kmalloc_info[idx].size, flags, 0,
1284 					kmalloc_info[idx].size);
1285 }
1286 
1287 /*
1288  * Create the kmalloc array. Some of the regular kmalloc arrays
1289  * may already have been created because they were needed to
1290  * enable allocations for slab creation.
1291  */
1292 void __init create_kmalloc_caches(slab_flags_t flags)
1293 {
1294 	int i;
1295 	enum kmalloc_cache_type type;
1296 
1297 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1298 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1299 			if (!kmalloc_caches[type][i])
1300 				new_kmalloc_cache(i, type, flags);
1301 
1302 			/*
1303 			 * Caches that are not of the two-to-the-power-of size.
1304 			 * These have to be created immediately after the
1305 			 * earlier power of two caches
1306 			 */
1307 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1308 					!kmalloc_caches[type][1])
1309 				new_kmalloc_cache(1, type, flags);
1310 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1311 					!kmalloc_caches[type][2])
1312 				new_kmalloc_cache(2, type, flags);
1313 		}
1314 	}
1315 
1316 	/* Kmalloc array is now usable */
1317 	slab_state = UP;
1318 
1319 #ifdef CONFIG_ZONE_DMA
1320 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1321 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1322 
1323 		if (s) {
1324 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1325 				kmalloc_info[i].name[KMALLOC_DMA],
1326 				kmalloc_info[i].size,
1327 				SLAB_CACHE_DMA | flags, 0,
1328 				kmalloc_info[i].size);
1329 		}
1330 	}
1331 #endif
1332 }
1333 #endif /* !CONFIG_SLOB */
1334 
1335 /*
1336  * To avoid unnecessary overhead, we pass through large allocation requests
1337  * directly to the page allocator. We use __GFP_COMP, because we will need to
1338  * know the allocation order to free the pages properly in kfree.
1339  */
1340 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1341 {
1342 	void *ret = NULL;
1343 	struct page *page;
1344 
1345 	flags |= __GFP_COMP;
1346 	page = alloc_pages(flags, order);
1347 	if (likely(page)) {
1348 		ret = page_address(page);
1349 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
1350 				    1 << order);
1351 	}
1352 	ret = kasan_kmalloc_large(ret, size, flags);
1353 	/* As ret might get tagged, call kmemleak hook after KASAN. */
1354 	kmemleak_alloc(ret, size, 1, flags);
1355 	return ret;
1356 }
1357 EXPORT_SYMBOL(kmalloc_order);
1358 
1359 #ifdef CONFIG_TRACING
1360 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1361 {
1362 	void *ret = kmalloc_order(size, flags, order);
1363 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1364 	return ret;
1365 }
1366 EXPORT_SYMBOL(kmalloc_order_trace);
1367 #endif
1368 
1369 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1370 /* Randomize a generic freelist */
1371 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1372 			       unsigned int count)
1373 {
1374 	unsigned int rand;
1375 	unsigned int i;
1376 
1377 	for (i = 0; i < count; i++)
1378 		list[i] = i;
1379 
1380 	/* Fisher-Yates shuffle */
1381 	for (i = count - 1; i > 0; i--) {
1382 		rand = prandom_u32_state(state);
1383 		rand %= (i + 1);
1384 		swap(list[i], list[rand]);
1385 	}
1386 }
1387 
1388 /* Create a random sequence per cache */
1389 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1390 				    gfp_t gfp)
1391 {
1392 	struct rnd_state state;
1393 
1394 	if (count < 2 || cachep->random_seq)
1395 		return 0;
1396 
1397 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1398 	if (!cachep->random_seq)
1399 		return -ENOMEM;
1400 
1401 	/* Get best entropy at this stage of boot */
1402 	prandom_seed_state(&state, get_random_long());
1403 
1404 	freelist_randomize(&state, cachep->random_seq, count);
1405 	return 0;
1406 }
1407 
1408 /* Destroy the per-cache random freelist sequence */
1409 void cache_random_seq_destroy(struct kmem_cache *cachep)
1410 {
1411 	kfree(cachep->random_seq);
1412 	cachep->random_seq = NULL;
1413 }
1414 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1415 
1416 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1417 #ifdef CONFIG_SLAB
1418 #define SLABINFO_RIGHTS (0600)
1419 #else
1420 #define SLABINFO_RIGHTS (0400)
1421 #endif
1422 
1423 static void print_slabinfo_header(struct seq_file *m)
1424 {
1425 	/*
1426 	 * Output format version, so at least we can change it
1427 	 * without _too_ many complaints.
1428 	 */
1429 #ifdef CONFIG_DEBUG_SLAB
1430 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1431 #else
1432 	seq_puts(m, "slabinfo - version: 2.1\n");
1433 #endif
1434 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1435 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1436 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1437 #ifdef CONFIG_DEBUG_SLAB
1438 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1439 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1440 #endif
1441 	seq_putc(m, '\n');
1442 }
1443 
1444 void *slab_start(struct seq_file *m, loff_t *pos)
1445 {
1446 	mutex_lock(&slab_mutex);
1447 	return seq_list_start(&slab_root_caches, *pos);
1448 }
1449 
1450 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1451 {
1452 	return seq_list_next(p, &slab_root_caches, pos);
1453 }
1454 
1455 void slab_stop(struct seq_file *m, void *p)
1456 {
1457 	mutex_unlock(&slab_mutex);
1458 }
1459 
1460 static void
1461 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1462 {
1463 	struct kmem_cache *c;
1464 	struct slabinfo sinfo;
1465 
1466 	if (!is_root_cache(s))
1467 		return;
1468 
1469 	for_each_memcg_cache(c, s) {
1470 		memset(&sinfo, 0, sizeof(sinfo));
1471 		get_slabinfo(c, &sinfo);
1472 
1473 		info->active_slabs += sinfo.active_slabs;
1474 		info->num_slabs += sinfo.num_slabs;
1475 		info->shared_avail += sinfo.shared_avail;
1476 		info->active_objs += sinfo.active_objs;
1477 		info->num_objs += sinfo.num_objs;
1478 	}
1479 }
1480 
1481 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1482 {
1483 	struct slabinfo sinfo;
1484 
1485 	memset(&sinfo, 0, sizeof(sinfo));
1486 	get_slabinfo(s, &sinfo);
1487 
1488 	memcg_accumulate_slabinfo(s, &sinfo);
1489 
1490 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1491 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1492 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1493 
1494 	seq_printf(m, " : tunables %4u %4u %4u",
1495 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1496 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1497 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1498 	slabinfo_show_stats(m, s);
1499 	seq_putc(m, '\n');
1500 }
1501 
1502 static int slab_show(struct seq_file *m, void *p)
1503 {
1504 	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1505 
1506 	if (p == slab_root_caches.next)
1507 		print_slabinfo_header(m);
1508 	cache_show(s, m);
1509 	return 0;
1510 }
1511 
1512 void dump_unreclaimable_slab(void)
1513 {
1514 	struct kmem_cache *s, *s2;
1515 	struct slabinfo sinfo;
1516 
1517 	/*
1518 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1519 	 * sleep in oom path. But, without mutex hold, it may introduce a
1520 	 * risk of crash.
1521 	 * Use mutex_trylock to protect the list traverse, dump nothing
1522 	 * without acquiring the mutex.
1523 	 */
1524 	if (!mutex_trylock(&slab_mutex)) {
1525 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1526 		return;
1527 	}
1528 
1529 	pr_info("Unreclaimable slab info:\n");
1530 	pr_info("Name                      Used          Total\n");
1531 
1532 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
1533 		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1534 			continue;
1535 
1536 		get_slabinfo(s, &sinfo);
1537 
1538 		if (sinfo.num_objs > 0)
1539 			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1540 				(sinfo.active_objs * s->size) / 1024,
1541 				(sinfo.num_objs * s->size) / 1024);
1542 	}
1543 	mutex_unlock(&slab_mutex);
1544 }
1545 
1546 #if defined(CONFIG_MEMCG_KMEM)
1547 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1548 {
1549 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1550 
1551 	mutex_lock(&slab_mutex);
1552 	return seq_list_start(&memcg->kmem_caches, *pos);
1553 }
1554 
1555 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1556 {
1557 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1558 
1559 	return seq_list_next(p, &memcg->kmem_caches, pos);
1560 }
1561 
1562 void memcg_slab_stop(struct seq_file *m, void *p)
1563 {
1564 	mutex_unlock(&slab_mutex);
1565 }
1566 
1567 int memcg_slab_show(struct seq_file *m, void *p)
1568 {
1569 	struct kmem_cache *s = list_entry(p, struct kmem_cache,
1570 					  memcg_params.kmem_caches_node);
1571 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1572 
1573 	if (p == memcg->kmem_caches.next)
1574 		print_slabinfo_header(m);
1575 	cache_show(s, m);
1576 	return 0;
1577 }
1578 #endif
1579 
1580 /*
1581  * slabinfo_op - iterator that generates /proc/slabinfo
1582  *
1583  * Output layout:
1584  * cache-name
1585  * num-active-objs
1586  * total-objs
1587  * object size
1588  * num-active-slabs
1589  * total-slabs
1590  * num-pages-per-slab
1591  * + further values on SMP and with statistics enabled
1592  */
1593 static const struct seq_operations slabinfo_op = {
1594 	.start = slab_start,
1595 	.next = slab_next,
1596 	.stop = slab_stop,
1597 	.show = slab_show,
1598 };
1599 
1600 static int slabinfo_open(struct inode *inode, struct file *file)
1601 {
1602 	return seq_open(file, &slabinfo_op);
1603 }
1604 
1605 static const struct proc_ops slabinfo_proc_ops = {
1606 	.proc_flags	= PROC_ENTRY_PERMANENT,
1607 	.proc_open	= slabinfo_open,
1608 	.proc_read	= seq_read,
1609 	.proc_write	= slabinfo_write,
1610 	.proc_lseek	= seq_lseek,
1611 	.proc_release	= seq_release,
1612 };
1613 
1614 static int __init slab_proc_init(void)
1615 {
1616 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1617 	return 0;
1618 }
1619 module_init(slab_proc_init);
1620 
1621 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
1622 /*
1623  * Display information about kmem caches that have child memcg caches.
1624  */
1625 static int memcg_slabinfo_show(struct seq_file *m, void *unused)
1626 {
1627 	struct kmem_cache *s, *c;
1628 	struct slabinfo sinfo;
1629 
1630 	mutex_lock(&slab_mutex);
1631 	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
1632 	seq_puts(m, " <active_slabs> <num_slabs>\n");
1633 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
1634 		/*
1635 		 * Skip kmem caches that don't have any memcg children.
1636 		 */
1637 		if (list_empty(&s->memcg_params.children))
1638 			continue;
1639 
1640 		memset(&sinfo, 0, sizeof(sinfo));
1641 		get_slabinfo(s, &sinfo);
1642 		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
1643 			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
1644 			   sinfo.active_slabs, sinfo.num_slabs);
1645 
1646 		for_each_memcg_cache(c, s) {
1647 			struct cgroup_subsys_state *css;
1648 			char *status = "";
1649 
1650 			css = &c->memcg_params.memcg->css;
1651 			if (!(css->flags & CSS_ONLINE))
1652 				status = ":dead";
1653 			else if (c->flags & SLAB_DEACTIVATED)
1654 				status = ":deact";
1655 
1656 			memset(&sinfo, 0, sizeof(sinfo));
1657 			get_slabinfo(c, &sinfo);
1658 			seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
1659 				   cache_name(c), css->id, status,
1660 				   sinfo.active_objs, sinfo.num_objs,
1661 				   sinfo.active_slabs, sinfo.num_slabs);
1662 		}
1663 	}
1664 	mutex_unlock(&slab_mutex);
1665 	return 0;
1666 }
1667 DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
1668 
1669 static int __init memcg_slabinfo_init(void)
1670 {
1671 	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
1672 			    NULL, NULL, &memcg_slabinfo_fops);
1673 	return 0;
1674 }
1675 
1676 late_initcall(memcg_slabinfo_init);
1677 #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
1678 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1679 
1680 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1681 					   gfp_t flags)
1682 {
1683 	void *ret;
1684 	size_t ks = 0;
1685 
1686 	if (p)
1687 		ks = ksize(p);
1688 
1689 	if (ks >= new_size) {
1690 		p = kasan_krealloc((void *)p, new_size, flags);
1691 		return (void *)p;
1692 	}
1693 
1694 	ret = kmalloc_track_caller(new_size, flags);
1695 	if (ret && p)
1696 		memcpy(ret, p, ks);
1697 
1698 	return ret;
1699 }
1700 
1701 /**
1702  * krealloc - reallocate memory. The contents will remain unchanged.
1703  * @p: object to reallocate memory for.
1704  * @new_size: how many bytes of memory are required.
1705  * @flags: the type of memory to allocate.
1706  *
1707  * The contents of the object pointed to are preserved up to the
1708  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1709  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1710  * %NULL pointer, the object pointed to is freed.
1711  *
1712  * Return: pointer to the allocated memory or %NULL in case of error
1713  */
1714 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1715 {
1716 	void *ret;
1717 
1718 	if (unlikely(!new_size)) {
1719 		kfree(p);
1720 		return ZERO_SIZE_PTR;
1721 	}
1722 
1723 	ret = __do_krealloc(p, new_size, flags);
1724 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1725 		kfree(p);
1726 
1727 	return ret;
1728 }
1729 EXPORT_SYMBOL(krealloc);
1730 
1731 /**
1732  * kzfree - like kfree but zero memory
1733  * @p: object to free memory of
1734  *
1735  * The memory of the object @p points to is zeroed before freed.
1736  * If @p is %NULL, kzfree() does nothing.
1737  *
1738  * Note: this function zeroes the whole allocated buffer which can be a good
1739  * deal bigger than the requested buffer size passed to kmalloc(). So be
1740  * careful when using this function in performance sensitive code.
1741  */
1742 void kzfree(const void *p)
1743 {
1744 	size_t ks;
1745 	void *mem = (void *)p;
1746 
1747 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1748 		return;
1749 	ks = ksize(mem);
1750 	memzero_explicit(mem, ks);
1751 	kfree(mem);
1752 }
1753 EXPORT_SYMBOL(kzfree);
1754 
1755 /**
1756  * ksize - get the actual amount of memory allocated for a given object
1757  * @objp: Pointer to the object
1758  *
1759  * kmalloc may internally round up allocations and return more memory
1760  * than requested. ksize() can be used to determine the actual amount of
1761  * memory allocated. The caller may use this additional memory, even though
1762  * a smaller amount of memory was initially specified with the kmalloc call.
1763  * The caller must guarantee that objp points to a valid object previously
1764  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1765  * must not be freed during the duration of the call.
1766  *
1767  * Return: size of the actual memory used by @objp in bytes
1768  */
1769 size_t ksize(const void *objp)
1770 {
1771 	size_t size;
1772 
1773 	if (WARN_ON_ONCE(!objp))
1774 		return 0;
1775 	/*
1776 	 * We need to check that the pointed to object is valid, and only then
1777 	 * unpoison the shadow memory below. We use __kasan_check_read(), to
1778 	 * generate a more useful report at the time ksize() is called (rather
1779 	 * than later where behaviour is undefined due to potential
1780 	 * use-after-free or double-free).
1781 	 *
1782 	 * If the pointed to memory is invalid we return 0, to avoid users of
1783 	 * ksize() writing to and potentially corrupting the memory region.
1784 	 *
1785 	 * We want to perform the check before __ksize(), to avoid potentially
1786 	 * crashing in __ksize() due to accessing invalid metadata.
1787 	 */
1788 	if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1789 		return 0;
1790 
1791 	size = __ksize(objp);
1792 	/*
1793 	 * We assume that ksize callers could use whole allocated area,
1794 	 * so we need to unpoison this area.
1795 	 */
1796 	kasan_unpoison_shadow(objp, size);
1797 	return size;
1798 }
1799 EXPORT_SYMBOL(ksize);
1800 
1801 /* Tracepoints definitions. */
1802 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1803 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1804 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1805 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1806 EXPORT_TRACEPOINT_SYMBOL(kfree);
1807 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1808 
1809 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1810 {
1811 	if (__should_failslab(s, gfpflags))
1812 		return -ENOMEM;
1813 	return 0;
1814 }
1815 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1816