xref: /openbmc/linux/mm/slab_common.c (revision 976fa9a3)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25 
26 #include "slab.h"
27 
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32 
33 /*
34  * Set of flags that will prevent slab merging
35  */
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 		SLAB_FAILSLAB)
39 
40 #define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
41 		SLAB_CACHE_DMA | SLAB_NOTRACK)
42 
43 /*
44  * Merge control. If this is set then no merging of slab caches will occur.
45  * (Could be removed. This was introduced to pacify the merge skeptics.)
46  */
47 static int slab_nomerge;
48 
49 static int __init setup_slab_nomerge(char *str)
50 {
51 	slab_nomerge = 1;
52 	return 1;
53 }
54 
55 #ifdef CONFIG_SLUB
56 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57 #endif
58 
59 __setup("slab_nomerge", setup_slab_nomerge);
60 
61 /*
62  * Determine the size of a slab object
63  */
64 unsigned int kmem_cache_size(struct kmem_cache *s)
65 {
66 	return s->object_size;
67 }
68 EXPORT_SYMBOL(kmem_cache_size);
69 
70 #ifdef CONFIG_DEBUG_VM
71 static int kmem_cache_sanity_check(const char *name, size_t size)
72 {
73 	struct kmem_cache *s = NULL;
74 
75 	if (!name || in_interrupt() || size < sizeof(void *) ||
76 		size > KMALLOC_MAX_SIZE) {
77 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 		return -EINVAL;
79 	}
80 
81 	list_for_each_entry(s, &slab_caches, list) {
82 		char tmp;
83 		int res;
84 
85 		/*
86 		 * This happens when the module gets unloaded and doesn't
87 		 * destroy its slab cache and no-one else reuses the vmalloc
88 		 * area of the module.  Print a warning.
89 		 */
90 		res = probe_kernel_address(s->name, tmp);
91 		if (res) {
92 			pr_err("Slab cache with size %d has lost its name\n",
93 			       s->object_size);
94 			continue;
95 		}
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, size_t size)
103 {
104 	return 0;
105 }
106 #endif
107 
108 #ifdef CONFIG_MEMCG_KMEM
109 void slab_init_memcg_params(struct kmem_cache *s)
110 {
111 	s->memcg_params.is_root_cache = true;
112 	INIT_LIST_HEAD(&s->memcg_params.list);
113 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
114 }
115 
116 static int init_memcg_params(struct kmem_cache *s,
117 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
118 {
119 	struct memcg_cache_array *arr;
120 
121 	if (memcg) {
122 		s->memcg_params.is_root_cache = false;
123 		s->memcg_params.memcg = memcg;
124 		s->memcg_params.root_cache = root_cache;
125 		return 0;
126 	}
127 
128 	slab_init_memcg_params(s);
129 
130 	if (!memcg_nr_cache_ids)
131 		return 0;
132 
133 	arr = kzalloc(sizeof(struct memcg_cache_array) +
134 		      memcg_nr_cache_ids * sizeof(void *),
135 		      GFP_KERNEL);
136 	if (!arr)
137 		return -ENOMEM;
138 
139 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
140 	return 0;
141 }
142 
143 static void destroy_memcg_params(struct kmem_cache *s)
144 {
145 	if (is_root_cache(s))
146 		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
147 }
148 
149 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
150 {
151 	struct memcg_cache_array *old, *new;
152 
153 	if (!is_root_cache(s))
154 		return 0;
155 
156 	new = kzalloc(sizeof(struct memcg_cache_array) +
157 		      new_array_size * sizeof(void *), GFP_KERNEL);
158 	if (!new)
159 		return -ENOMEM;
160 
161 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
162 					lockdep_is_held(&slab_mutex));
163 	if (old)
164 		memcpy(new->entries, old->entries,
165 		       memcg_nr_cache_ids * sizeof(void *));
166 
167 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
168 	if (old)
169 		kfree_rcu(old, rcu);
170 	return 0;
171 }
172 
173 int memcg_update_all_caches(int num_memcgs)
174 {
175 	struct kmem_cache *s;
176 	int ret = 0;
177 
178 	mutex_lock(&slab_mutex);
179 	list_for_each_entry(s, &slab_caches, list) {
180 		ret = update_memcg_params(s, num_memcgs);
181 		/*
182 		 * Instead of freeing the memory, we'll just leave the caches
183 		 * up to this point in an updated state.
184 		 */
185 		if (ret)
186 			break;
187 	}
188 	mutex_unlock(&slab_mutex);
189 	return ret;
190 }
191 #else
192 static inline int init_memcg_params(struct kmem_cache *s,
193 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
194 {
195 	return 0;
196 }
197 
198 static inline void destroy_memcg_params(struct kmem_cache *s)
199 {
200 }
201 #endif /* CONFIG_MEMCG_KMEM */
202 
203 /*
204  * Find a mergeable slab cache
205  */
206 int slab_unmergeable(struct kmem_cache *s)
207 {
208 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
209 		return 1;
210 
211 	if (!is_root_cache(s))
212 		return 1;
213 
214 	if (s->ctor)
215 		return 1;
216 
217 	/*
218 	 * We may have set a slab to be unmergeable during bootstrap.
219 	 */
220 	if (s->refcount < 0)
221 		return 1;
222 
223 	return 0;
224 }
225 
226 struct kmem_cache *find_mergeable(size_t size, size_t align,
227 		unsigned long flags, const char *name, void (*ctor)(void *))
228 {
229 	struct kmem_cache *s;
230 
231 	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
232 		return NULL;
233 
234 	if (ctor)
235 		return NULL;
236 
237 	size = ALIGN(size, sizeof(void *));
238 	align = calculate_alignment(flags, align, size);
239 	size = ALIGN(size, align);
240 	flags = kmem_cache_flags(size, flags, name, NULL);
241 
242 	list_for_each_entry_reverse(s, &slab_caches, list) {
243 		if (slab_unmergeable(s))
244 			continue;
245 
246 		if (size > s->size)
247 			continue;
248 
249 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
250 			continue;
251 		/*
252 		 * Check if alignment is compatible.
253 		 * Courtesy of Adrian Drzewiecki
254 		 */
255 		if ((s->size & ~(align - 1)) != s->size)
256 			continue;
257 
258 		if (s->size - size >= sizeof(void *))
259 			continue;
260 
261 		if (IS_ENABLED(CONFIG_SLAB) && align &&
262 			(align > s->align || s->align % align))
263 			continue;
264 
265 		return s;
266 	}
267 	return NULL;
268 }
269 
270 /*
271  * Figure out what the alignment of the objects will be given a set of
272  * flags, a user specified alignment and the size of the objects.
273  */
274 unsigned long calculate_alignment(unsigned long flags,
275 		unsigned long align, unsigned long size)
276 {
277 	/*
278 	 * If the user wants hardware cache aligned objects then follow that
279 	 * suggestion if the object is sufficiently large.
280 	 *
281 	 * The hardware cache alignment cannot override the specified
282 	 * alignment though. If that is greater then use it.
283 	 */
284 	if (flags & SLAB_HWCACHE_ALIGN) {
285 		unsigned long ralign = cache_line_size();
286 		while (size <= ralign / 2)
287 			ralign /= 2;
288 		align = max(align, ralign);
289 	}
290 
291 	if (align < ARCH_SLAB_MINALIGN)
292 		align = ARCH_SLAB_MINALIGN;
293 
294 	return ALIGN(align, sizeof(void *));
295 }
296 
297 static struct kmem_cache *
298 do_kmem_cache_create(const char *name, size_t object_size, size_t size,
299 		     size_t align, unsigned long flags, void (*ctor)(void *),
300 		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
301 {
302 	struct kmem_cache *s;
303 	int err;
304 
305 	err = -ENOMEM;
306 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
307 	if (!s)
308 		goto out;
309 
310 	s->name = name;
311 	s->object_size = object_size;
312 	s->size = size;
313 	s->align = align;
314 	s->ctor = ctor;
315 
316 	err = init_memcg_params(s, memcg, root_cache);
317 	if (err)
318 		goto out_free_cache;
319 
320 	err = __kmem_cache_create(s, flags);
321 	if (err)
322 		goto out_free_cache;
323 
324 	s->refcount = 1;
325 	list_add(&s->list, &slab_caches);
326 out:
327 	if (err)
328 		return ERR_PTR(err);
329 	return s;
330 
331 out_free_cache:
332 	destroy_memcg_params(s);
333 	kmem_cache_free(kmem_cache, s);
334 	goto out;
335 }
336 
337 /*
338  * kmem_cache_create - Create a cache.
339  * @name: A string which is used in /proc/slabinfo to identify this cache.
340  * @size: The size of objects to be created in this cache.
341  * @align: The required alignment for the objects.
342  * @flags: SLAB flags
343  * @ctor: A constructor for the objects.
344  *
345  * Returns a ptr to the cache on success, NULL on failure.
346  * Cannot be called within a interrupt, but can be interrupted.
347  * The @ctor is run when new pages are allocated by the cache.
348  *
349  * The flags are
350  *
351  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
352  * to catch references to uninitialised memory.
353  *
354  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
355  * for buffer overruns.
356  *
357  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
358  * cacheline.  This can be beneficial if you're counting cycles as closely
359  * as davem.
360  */
361 struct kmem_cache *
362 kmem_cache_create(const char *name, size_t size, size_t align,
363 		  unsigned long flags, void (*ctor)(void *))
364 {
365 	struct kmem_cache *s;
366 	const char *cache_name;
367 	int err;
368 
369 	get_online_cpus();
370 	get_online_mems();
371 	memcg_get_cache_ids();
372 
373 	mutex_lock(&slab_mutex);
374 
375 	err = kmem_cache_sanity_check(name, size);
376 	if (err) {
377 		s = NULL;	/* suppress uninit var warning */
378 		goto out_unlock;
379 	}
380 
381 	/*
382 	 * Some allocators will constraint the set of valid flags to a subset
383 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
384 	 * case, and we'll just provide them with a sanitized version of the
385 	 * passed flags.
386 	 */
387 	flags &= CACHE_CREATE_MASK;
388 
389 	s = __kmem_cache_alias(name, size, align, flags, ctor);
390 	if (s)
391 		goto out_unlock;
392 
393 	cache_name = kstrdup_const(name, GFP_KERNEL);
394 	if (!cache_name) {
395 		err = -ENOMEM;
396 		goto out_unlock;
397 	}
398 
399 	s = do_kmem_cache_create(cache_name, size, size,
400 				 calculate_alignment(flags, align, size),
401 				 flags, ctor, NULL, NULL);
402 	if (IS_ERR(s)) {
403 		err = PTR_ERR(s);
404 		kfree_const(cache_name);
405 	}
406 
407 out_unlock:
408 	mutex_unlock(&slab_mutex);
409 
410 	memcg_put_cache_ids();
411 	put_online_mems();
412 	put_online_cpus();
413 
414 	if (err) {
415 		if (flags & SLAB_PANIC)
416 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
417 				name, err);
418 		else {
419 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
420 				name, err);
421 			dump_stack();
422 		}
423 		return NULL;
424 	}
425 	return s;
426 }
427 EXPORT_SYMBOL(kmem_cache_create);
428 
429 static int do_kmem_cache_shutdown(struct kmem_cache *s,
430 		struct list_head *release, bool *need_rcu_barrier)
431 {
432 	if (__kmem_cache_shutdown(s) != 0) {
433 		printk(KERN_ERR "kmem_cache_destroy %s: "
434 		       "Slab cache still has objects\n", s->name);
435 		dump_stack();
436 		return -EBUSY;
437 	}
438 
439 	if (s->flags & SLAB_DESTROY_BY_RCU)
440 		*need_rcu_barrier = true;
441 
442 #ifdef CONFIG_MEMCG_KMEM
443 	if (!is_root_cache(s))
444 		list_del(&s->memcg_params.list);
445 #endif
446 	list_move(&s->list, release);
447 	return 0;
448 }
449 
450 static void do_kmem_cache_release(struct list_head *release,
451 				  bool need_rcu_barrier)
452 {
453 	struct kmem_cache *s, *s2;
454 
455 	if (need_rcu_barrier)
456 		rcu_barrier();
457 
458 	list_for_each_entry_safe(s, s2, release, list) {
459 #ifdef SLAB_SUPPORTS_SYSFS
460 		sysfs_slab_remove(s);
461 #else
462 		slab_kmem_cache_release(s);
463 #endif
464 	}
465 }
466 
467 #ifdef CONFIG_MEMCG_KMEM
468 /*
469  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
470  * @memcg: The memory cgroup the new cache is for.
471  * @root_cache: The parent of the new cache.
472  *
473  * This function attempts to create a kmem cache that will serve allocation
474  * requests going from @memcg to @root_cache. The new cache inherits properties
475  * from its parent.
476  */
477 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
478 			     struct kmem_cache *root_cache)
479 {
480 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
481 	struct cgroup_subsys_state *css = mem_cgroup_css(memcg);
482 	struct memcg_cache_array *arr;
483 	struct kmem_cache *s = NULL;
484 	char *cache_name;
485 	int idx;
486 
487 	get_online_cpus();
488 	get_online_mems();
489 
490 	mutex_lock(&slab_mutex);
491 
492 	/*
493 	 * The memory cgroup could have been deactivated while the cache
494 	 * creation work was pending.
495 	 */
496 	if (!memcg_kmem_is_active(memcg))
497 		goto out_unlock;
498 
499 	idx = memcg_cache_id(memcg);
500 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
501 					lockdep_is_held(&slab_mutex));
502 
503 	/*
504 	 * Since per-memcg caches are created asynchronously on first
505 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
506 	 * create the same cache, but only one of them may succeed.
507 	 */
508 	if (arr->entries[idx])
509 		goto out_unlock;
510 
511 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
512 	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
513 			       css->id, memcg_name_buf);
514 	if (!cache_name)
515 		goto out_unlock;
516 
517 	s = do_kmem_cache_create(cache_name, root_cache->object_size,
518 				 root_cache->size, root_cache->align,
519 				 root_cache->flags, root_cache->ctor,
520 				 memcg, root_cache);
521 	/*
522 	 * If we could not create a memcg cache, do not complain, because
523 	 * that's not critical at all as we can always proceed with the root
524 	 * cache.
525 	 */
526 	if (IS_ERR(s)) {
527 		kfree(cache_name);
528 		goto out_unlock;
529 	}
530 
531 	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
532 
533 	/*
534 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
535 	 * barrier here to ensure nobody will see the kmem_cache partially
536 	 * initialized.
537 	 */
538 	smp_wmb();
539 	arr->entries[idx] = s;
540 
541 out_unlock:
542 	mutex_unlock(&slab_mutex);
543 
544 	put_online_mems();
545 	put_online_cpus();
546 }
547 
548 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
549 {
550 	int idx;
551 	struct memcg_cache_array *arr;
552 	struct kmem_cache *s, *c;
553 
554 	idx = memcg_cache_id(memcg);
555 
556 	get_online_cpus();
557 	get_online_mems();
558 
559 	mutex_lock(&slab_mutex);
560 	list_for_each_entry(s, &slab_caches, list) {
561 		if (!is_root_cache(s))
562 			continue;
563 
564 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
565 						lockdep_is_held(&slab_mutex));
566 		c = arr->entries[idx];
567 		if (!c)
568 			continue;
569 
570 		__kmem_cache_shrink(c, true);
571 		arr->entries[idx] = NULL;
572 	}
573 	mutex_unlock(&slab_mutex);
574 
575 	put_online_mems();
576 	put_online_cpus();
577 }
578 
579 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
580 {
581 	LIST_HEAD(release);
582 	bool need_rcu_barrier = false;
583 	struct kmem_cache *s, *s2;
584 
585 	get_online_cpus();
586 	get_online_mems();
587 
588 	mutex_lock(&slab_mutex);
589 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
590 		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
591 			continue;
592 		/*
593 		 * The cgroup is about to be freed and therefore has no charges
594 		 * left. Hence, all its caches must be empty by now.
595 		 */
596 		BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier));
597 	}
598 	mutex_unlock(&slab_mutex);
599 
600 	put_online_mems();
601 	put_online_cpus();
602 
603 	do_kmem_cache_release(&release, need_rcu_barrier);
604 }
605 #endif /* CONFIG_MEMCG_KMEM */
606 
607 void slab_kmem_cache_release(struct kmem_cache *s)
608 {
609 	destroy_memcg_params(s);
610 	kfree_const(s->name);
611 	kmem_cache_free(kmem_cache, s);
612 }
613 
614 void kmem_cache_destroy(struct kmem_cache *s)
615 {
616 	struct kmem_cache *c, *c2;
617 	LIST_HEAD(release);
618 	bool need_rcu_barrier = false;
619 	bool busy = false;
620 
621 	BUG_ON(!is_root_cache(s));
622 
623 	get_online_cpus();
624 	get_online_mems();
625 
626 	mutex_lock(&slab_mutex);
627 
628 	s->refcount--;
629 	if (s->refcount)
630 		goto out_unlock;
631 
632 	for_each_memcg_cache_safe(c, c2, s) {
633 		if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
634 			busy = true;
635 	}
636 
637 	if (!busy)
638 		do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
639 
640 out_unlock:
641 	mutex_unlock(&slab_mutex);
642 
643 	put_online_mems();
644 	put_online_cpus();
645 
646 	do_kmem_cache_release(&release, need_rcu_barrier);
647 }
648 EXPORT_SYMBOL(kmem_cache_destroy);
649 
650 /**
651  * kmem_cache_shrink - Shrink a cache.
652  * @cachep: The cache to shrink.
653  *
654  * Releases as many slabs as possible for a cache.
655  * To help debugging, a zero exit status indicates all slabs were released.
656  */
657 int kmem_cache_shrink(struct kmem_cache *cachep)
658 {
659 	int ret;
660 
661 	get_online_cpus();
662 	get_online_mems();
663 	ret = __kmem_cache_shrink(cachep, false);
664 	put_online_mems();
665 	put_online_cpus();
666 	return ret;
667 }
668 EXPORT_SYMBOL(kmem_cache_shrink);
669 
670 int slab_is_available(void)
671 {
672 	return slab_state >= UP;
673 }
674 
675 #ifndef CONFIG_SLOB
676 /* Create a cache during boot when no slab services are available yet */
677 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
678 		unsigned long flags)
679 {
680 	int err;
681 
682 	s->name = name;
683 	s->size = s->object_size = size;
684 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
685 
686 	slab_init_memcg_params(s);
687 
688 	err = __kmem_cache_create(s, flags);
689 
690 	if (err)
691 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
692 					name, size, err);
693 
694 	s->refcount = -1;	/* Exempt from merging for now */
695 }
696 
697 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
698 				unsigned long flags)
699 {
700 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
701 
702 	if (!s)
703 		panic("Out of memory when creating slab %s\n", name);
704 
705 	create_boot_cache(s, name, size, flags);
706 	list_add(&s->list, &slab_caches);
707 	s->refcount = 1;
708 	return s;
709 }
710 
711 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
712 EXPORT_SYMBOL(kmalloc_caches);
713 
714 #ifdef CONFIG_ZONE_DMA
715 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
716 EXPORT_SYMBOL(kmalloc_dma_caches);
717 #endif
718 
719 /*
720  * Conversion table for small slabs sizes / 8 to the index in the
721  * kmalloc array. This is necessary for slabs < 192 since we have non power
722  * of two cache sizes there. The size of larger slabs can be determined using
723  * fls.
724  */
725 static s8 size_index[24] = {
726 	3,	/* 8 */
727 	4,	/* 16 */
728 	5,	/* 24 */
729 	5,	/* 32 */
730 	6,	/* 40 */
731 	6,	/* 48 */
732 	6,	/* 56 */
733 	6,	/* 64 */
734 	1,	/* 72 */
735 	1,	/* 80 */
736 	1,	/* 88 */
737 	1,	/* 96 */
738 	7,	/* 104 */
739 	7,	/* 112 */
740 	7,	/* 120 */
741 	7,	/* 128 */
742 	2,	/* 136 */
743 	2,	/* 144 */
744 	2,	/* 152 */
745 	2,	/* 160 */
746 	2,	/* 168 */
747 	2,	/* 176 */
748 	2,	/* 184 */
749 	2	/* 192 */
750 };
751 
752 static inline int size_index_elem(size_t bytes)
753 {
754 	return (bytes - 1) / 8;
755 }
756 
757 /*
758  * Find the kmem_cache structure that serves a given size of
759  * allocation
760  */
761 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
762 {
763 	int index;
764 
765 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
766 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
767 		return NULL;
768 	}
769 
770 	if (size <= 192) {
771 		if (!size)
772 			return ZERO_SIZE_PTR;
773 
774 		index = size_index[size_index_elem(size)];
775 	} else
776 		index = fls(size - 1);
777 
778 #ifdef CONFIG_ZONE_DMA
779 	if (unlikely((flags & GFP_DMA)))
780 		return kmalloc_dma_caches[index];
781 
782 #endif
783 	return kmalloc_caches[index];
784 }
785 
786 /*
787  * Create the kmalloc array. Some of the regular kmalloc arrays
788  * may already have been created because they were needed to
789  * enable allocations for slab creation.
790  */
791 void __init create_kmalloc_caches(unsigned long flags)
792 {
793 	int i;
794 
795 	/*
796 	 * Patch up the size_index table if we have strange large alignment
797 	 * requirements for the kmalloc array. This is only the case for
798 	 * MIPS it seems. The standard arches will not generate any code here.
799 	 *
800 	 * Largest permitted alignment is 256 bytes due to the way we
801 	 * handle the index determination for the smaller caches.
802 	 *
803 	 * Make sure that nothing crazy happens if someone starts tinkering
804 	 * around with ARCH_KMALLOC_MINALIGN
805 	 */
806 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
807 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
808 
809 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
810 		int elem = size_index_elem(i);
811 
812 		if (elem >= ARRAY_SIZE(size_index))
813 			break;
814 		size_index[elem] = KMALLOC_SHIFT_LOW;
815 	}
816 
817 	if (KMALLOC_MIN_SIZE >= 64) {
818 		/*
819 		 * The 96 byte size cache is not used if the alignment
820 		 * is 64 byte.
821 		 */
822 		for (i = 64 + 8; i <= 96; i += 8)
823 			size_index[size_index_elem(i)] = 7;
824 
825 	}
826 
827 	if (KMALLOC_MIN_SIZE >= 128) {
828 		/*
829 		 * The 192 byte sized cache is not used if the alignment
830 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
831 		 * instead.
832 		 */
833 		for (i = 128 + 8; i <= 192; i += 8)
834 			size_index[size_index_elem(i)] = 8;
835 	}
836 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
837 		if (!kmalloc_caches[i]) {
838 			kmalloc_caches[i] = create_kmalloc_cache(NULL,
839 							1 << i, flags);
840 		}
841 
842 		/*
843 		 * Caches that are not of the two-to-the-power-of size.
844 		 * These have to be created immediately after the
845 		 * earlier power of two caches
846 		 */
847 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
848 			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
849 
850 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
851 			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
852 	}
853 
854 	/* Kmalloc array is now usable */
855 	slab_state = UP;
856 
857 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
858 		struct kmem_cache *s = kmalloc_caches[i];
859 		char *n;
860 
861 		if (s) {
862 			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
863 
864 			BUG_ON(!n);
865 			s->name = n;
866 		}
867 	}
868 
869 #ifdef CONFIG_ZONE_DMA
870 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
871 		struct kmem_cache *s = kmalloc_caches[i];
872 
873 		if (s) {
874 			int size = kmalloc_size(i);
875 			char *n = kasprintf(GFP_NOWAIT,
876 				 "dma-kmalloc-%d", size);
877 
878 			BUG_ON(!n);
879 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
880 				size, SLAB_CACHE_DMA | flags);
881 		}
882 	}
883 #endif
884 }
885 #endif /* !CONFIG_SLOB */
886 
887 /*
888  * To avoid unnecessary overhead, we pass through large allocation requests
889  * directly to the page allocator. We use __GFP_COMP, because we will need to
890  * know the allocation order to free the pages properly in kfree.
891  */
892 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
893 {
894 	void *ret;
895 	struct page *page;
896 
897 	flags |= __GFP_COMP;
898 	page = alloc_kmem_pages(flags, order);
899 	ret = page ? page_address(page) : NULL;
900 	kmemleak_alloc(ret, size, 1, flags);
901 	kasan_kmalloc_large(ret, size);
902 	return ret;
903 }
904 EXPORT_SYMBOL(kmalloc_order);
905 
906 #ifdef CONFIG_TRACING
907 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
908 {
909 	void *ret = kmalloc_order(size, flags, order);
910 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
911 	return ret;
912 }
913 EXPORT_SYMBOL(kmalloc_order_trace);
914 #endif
915 
916 #ifdef CONFIG_SLABINFO
917 
918 #ifdef CONFIG_SLAB
919 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
920 #else
921 #define SLABINFO_RIGHTS S_IRUSR
922 #endif
923 
924 static void print_slabinfo_header(struct seq_file *m)
925 {
926 	/*
927 	 * Output format version, so at least we can change it
928 	 * without _too_ many complaints.
929 	 */
930 #ifdef CONFIG_DEBUG_SLAB
931 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
932 #else
933 	seq_puts(m, "slabinfo - version: 2.1\n");
934 #endif
935 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
936 		 "<objperslab> <pagesperslab>");
937 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
938 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
939 #ifdef CONFIG_DEBUG_SLAB
940 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
941 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
942 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
943 #endif
944 	seq_putc(m, '\n');
945 }
946 
947 void *slab_start(struct seq_file *m, loff_t *pos)
948 {
949 	mutex_lock(&slab_mutex);
950 	return seq_list_start(&slab_caches, *pos);
951 }
952 
953 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
954 {
955 	return seq_list_next(p, &slab_caches, pos);
956 }
957 
958 void slab_stop(struct seq_file *m, void *p)
959 {
960 	mutex_unlock(&slab_mutex);
961 }
962 
963 static void
964 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
965 {
966 	struct kmem_cache *c;
967 	struct slabinfo sinfo;
968 
969 	if (!is_root_cache(s))
970 		return;
971 
972 	for_each_memcg_cache(c, s) {
973 		memset(&sinfo, 0, sizeof(sinfo));
974 		get_slabinfo(c, &sinfo);
975 
976 		info->active_slabs += sinfo.active_slabs;
977 		info->num_slabs += sinfo.num_slabs;
978 		info->shared_avail += sinfo.shared_avail;
979 		info->active_objs += sinfo.active_objs;
980 		info->num_objs += sinfo.num_objs;
981 	}
982 }
983 
984 static void cache_show(struct kmem_cache *s, struct seq_file *m)
985 {
986 	struct slabinfo sinfo;
987 
988 	memset(&sinfo, 0, sizeof(sinfo));
989 	get_slabinfo(s, &sinfo);
990 
991 	memcg_accumulate_slabinfo(s, &sinfo);
992 
993 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
994 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
995 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
996 
997 	seq_printf(m, " : tunables %4u %4u %4u",
998 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
999 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1000 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1001 	slabinfo_show_stats(m, s);
1002 	seq_putc(m, '\n');
1003 }
1004 
1005 static int slab_show(struct seq_file *m, void *p)
1006 {
1007 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1008 
1009 	if (p == slab_caches.next)
1010 		print_slabinfo_header(m);
1011 	if (is_root_cache(s))
1012 		cache_show(s, m);
1013 	return 0;
1014 }
1015 
1016 #ifdef CONFIG_MEMCG_KMEM
1017 int memcg_slab_show(struct seq_file *m, void *p)
1018 {
1019 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1020 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1021 
1022 	if (p == slab_caches.next)
1023 		print_slabinfo_header(m);
1024 	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1025 		cache_show(s, m);
1026 	return 0;
1027 }
1028 #endif
1029 
1030 /*
1031  * slabinfo_op - iterator that generates /proc/slabinfo
1032  *
1033  * Output layout:
1034  * cache-name
1035  * num-active-objs
1036  * total-objs
1037  * object size
1038  * num-active-slabs
1039  * total-slabs
1040  * num-pages-per-slab
1041  * + further values on SMP and with statistics enabled
1042  */
1043 static const struct seq_operations slabinfo_op = {
1044 	.start = slab_start,
1045 	.next = slab_next,
1046 	.stop = slab_stop,
1047 	.show = slab_show,
1048 };
1049 
1050 static int slabinfo_open(struct inode *inode, struct file *file)
1051 {
1052 	return seq_open(file, &slabinfo_op);
1053 }
1054 
1055 static const struct file_operations proc_slabinfo_operations = {
1056 	.open		= slabinfo_open,
1057 	.read		= seq_read,
1058 	.write          = slabinfo_write,
1059 	.llseek		= seq_lseek,
1060 	.release	= seq_release,
1061 };
1062 
1063 static int __init slab_proc_init(void)
1064 {
1065 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1066 						&proc_slabinfo_operations);
1067 	return 0;
1068 }
1069 module_init(slab_proc_init);
1070 #endif /* CONFIG_SLABINFO */
1071 
1072 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1073 					   gfp_t flags)
1074 {
1075 	void *ret;
1076 	size_t ks = 0;
1077 
1078 	if (p)
1079 		ks = ksize(p);
1080 
1081 	if (ks >= new_size) {
1082 		kasan_krealloc((void *)p, new_size);
1083 		return (void *)p;
1084 	}
1085 
1086 	ret = kmalloc_track_caller(new_size, flags);
1087 	if (ret && p)
1088 		memcpy(ret, p, ks);
1089 
1090 	return ret;
1091 }
1092 
1093 /**
1094  * __krealloc - like krealloc() but don't free @p.
1095  * @p: object to reallocate memory for.
1096  * @new_size: how many bytes of memory are required.
1097  * @flags: the type of memory to allocate.
1098  *
1099  * This function is like krealloc() except it never frees the originally
1100  * allocated buffer. Use this if you don't want to free the buffer immediately
1101  * like, for example, with RCU.
1102  */
1103 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1104 {
1105 	if (unlikely(!new_size))
1106 		return ZERO_SIZE_PTR;
1107 
1108 	return __do_krealloc(p, new_size, flags);
1109 
1110 }
1111 EXPORT_SYMBOL(__krealloc);
1112 
1113 /**
1114  * krealloc - reallocate memory. The contents will remain unchanged.
1115  * @p: object to reallocate memory for.
1116  * @new_size: how many bytes of memory are required.
1117  * @flags: the type of memory to allocate.
1118  *
1119  * The contents of the object pointed to are preserved up to the
1120  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1121  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1122  * %NULL pointer, the object pointed to is freed.
1123  */
1124 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1125 {
1126 	void *ret;
1127 
1128 	if (unlikely(!new_size)) {
1129 		kfree(p);
1130 		return ZERO_SIZE_PTR;
1131 	}
1132 
1133 	ret = __do_krealloc(p, new_size, flags);
1134 	if (ret && p != ret)
1135 		kfree(p);
1136 
1137 	return ret;
1138 }
1139 EXPORT_SYMBOL(krealloc);
1140 
1141 /**
1142  * kzfree - like kfree but zero memory
1143  * @p: object to free memory of
1144  *
1145  * The memory of the object @p points to is zeroed before freed.
1146  * If @p is %NULL, kzfree() does nothing.
1147  *
1148  * Note: this function zeroes the whole allocated buffer which can be a good
1149  * deal bigger than the requested buffer size passed to kmalloc(). So be
1150  * careful when using this function in performance sensitive code.
1151  */
1152 void kzfree(const void *p)
1153 {
1154 	size_t ks;
1155 	void *mem = (void *)p;
1156 
1157 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1158 		return;
1159 	ks = ksize(mem);
1160 	memset(mem, 0, ks);
1161 	kfree(mem);
1162 }
1163 EXPORT_SYMBOL(kzfree);
1164 
1165 /* Tracepoints definitions. */
1166 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1167 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1168 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1169 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1170 EXPORT_TRACEPOINT_SYMBOL(kfree);
1171 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1172