xref: /openbmc/linux/mm/slab_common.c (revision 93d90ad7)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25 
26 #include "slab.h"
27 
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32 
33 /*
34  * Set of flags that will prevent slab merging
35  */
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 		SLAB_FAILSLAB)
39 
40 #define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
41 		SLAB_CACHE_DMA | SLAB_NOTRACK)
42 
43 /*
44  * Merge control. If this is set then no merging of slab caches will occur.
45  * (Could be removed. This was introduced to pacify the merge skeptics.)
46  */
47 static int slab_nomerge;
48 
49 static int __init setup_slab_nomerge(char *str)
50 {
51 	slab_nomerge = 1;
52 	return 1;
53 }
54 
55 #ifdef CONFIG_SLUB
56 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57 #endif
58 
59 __setup("slab_nomerge", setup_slab_nomerge);
60 
61 /*
62  * Determine the size of a slab object
63  */
64 unsigned int kmem_cache_size(struct kmem_cache *s)
65 {
66 	return s->object_size;
67 }
68 EXPORT_SYMBOL(kmem_cache_size);
69 
70 #ifdef CONFIG_DEBUG_VM
71 static int kmem_cache_sanity_check(const char *name, size_t size)
72 {
73 	struct kmem_cache *s = NULL;
74 
75 	if (!name || in_interrupt() || size < sizeof(void *) ||
76 		size > KMALLOC_MAX_SIZE) {
77 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 		return -EINVAL;
79 	}
80 
81 	list_for_each_entry(s, &slab_caches, list) {
82 		char tmp;
83 		int res;
84 
85 		/*
86 		 * This happens when the module gets unloaded and doesn't
87 		 * destroy its slab cache and no-one else reuses the vmalloc
88 		 * area of the module.  Print a warning.
89 		 */
90 		res = probe_kernel_address(s->name, tmp);
91 		if (res) {
92 			pr_err("Slab cache with size %d has lost its name\n",
93 			       s->object_size);
94 			continue;
95 		}
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, size_t size)
103 {
104 	return 0;
105 }
106 #endif
107 
108 #ifdef CONFIG_MEMCG_KMEM
109 static int memcg_alloc_cache_params(struct mem_cgroup *memcg,
110 		struct kmem_cache *s, struct kmem_cache *root_cache)
111 {
112 	size_t size;
113 
114 	if (!memcg_kmem_enabled())
115 		return 0;
116 
117 	if (!memcg) {
118 		size = offsetof(struct memcg_cache_params, memcg_caches);
119 		size += memcg_limited_groups_array_size * sizeof(void *);
120 	} else
121 		size = sizeof(struct memcg_cache_params);
122 
123 	s->memcg_params = kzalloc(size, GFP_KERNEL);
124 	if (!s->memcg_params)
125 		return -ENOMEM;
126 
127 	if (memcg) {
128 		s->memcg_params->memcg = memcg;
129 		s->memcg_params->root_cache = root_cache;
130 	} else
131 		s->memcg_params->is_root_cache = true;
132 
133 	return 0;
134 }
135 
136 static void memcg_free_cache_params(struct kmem_cache *s)
137 {
138 	kfree(s->memcg_params);
139 }
140 
141 static int memcg_update_cache_params(struct kmem_cache *s, int num_memcgs)
142 {
143 	int size;
144 	struct memcg_cache_params *new_params, *cur_params;
145 
146 	BUG_ON(!is_root_cache(s));
147 
148 	size = offsetof(struct memcg_cache_params, memcg_caches);
149 	size += num_memcgs * sizeof(void *);
150 
151 	new_params = kzalloc(size, GFP_KERNEL);
152 	if (!new_params)
153 		return -ENOMEM;
154 
155 	cur_params = s->memcg_params;
156 	memcpy(new_params->memcg_caches, cur_params->memcg_caches,
157 	       memcg_limited_groups_array_size * sizeof(void *));
158 
159 	new_params->is_root_cache = true;
160 
161 	rcu_assign_pointer(s->memcg_params, new_params);
162 	if (cur_params)
163 		kfree_rcu(cur_params, rcu_head);
164 
165 	return 0;
166 }
167 
168 int memcg_update_all_caches(int num_memcgs)
169 {
170 	struct kmem_cache *s;
171 	int ret = 0;
172 	mutex_lock(&slab_mutex);
173 
174 	list_for_each_entry(s, &slab_caches, list) {
175 		if (!is_root_cache(s))
176 			continue;
177 
178 		ret = memcg_update_cache_params(s, num_memcgs);
179 		/*
180 		 * Instead of freeing the memory, we'll just leave the caches
181 		 * up to this point in an updated state.
182 		 */
183 		if (ret)
184 			goto out;
185 	}
186 
187 	memcg_update_array_size(num_memcgs);
188 out:
189 	mutex_unlock(&slab_mutex);
190 	return ret;
191 }
192 #else
193 static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg,
194 		struct kmem_cache *s, struct kmem_cache *root_cache)
195 {
196 	return 0;
197 }
198 
199 static inline void memcg_free_cache_params(struct kmem_cache *s)
200 {
201 }
202 #endif /* CONFIG_MEMCG_KMEM */
203 
204 /*
205  * Find a mergeable slab cache
206  */
207 int slab_unmergeable(struct kmem_cache *s)
208 {
209 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
210 		return 1;
211 
212 	if (!is_root_cache(s))
213 		return 1;
214 
215 	if (s->ctor)
216 		return 1;
217 
218 	/*
219 	 * We may have set a slab to be unmergeable during bootstrap.
220 	 */
221 	if (s->refcount < 0)
222 		return 1;
223 
224 	return 0;
225 }
226 
227 struct kmem_cache *find_mergeable(size_t size, size_t align,
228 		unsigned long flags, const char *name, void (*ctor)(void *))
229 {
230 	struct kmem_cache *s;
231 
232 	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
233 		return NULL;
234 
235 	if (ctor)
236 		return NULL;
237 
238 	size = ALIGN(size, sizeof(void *));
239 	align = calculate_alignment(flags, align, size);
240 	size = ALIGN(size, align);
241 	flags = kmem_cache_flags(size, flags, name, NULL);
242 
243 	list_for_each_entry_reverse(s, &slab_caches, list) {
244 		if (slab_unmergeable(s))
245 			continue;
246 
247 		if (size > s->size)
248 			continue;
249 
250 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
251 			continue;
252 		/*
253 		 * Check if alignment is compatible.
254 		 * Courtesy of Adrian Drzewiecki
255 		 */
256 		if ((s->size & ~(align - 1)) != s->size)
257 			continue;
258 
259 		if (s->size - size >= sizeof(void *))
260 			continue;
261 
262 		if (IS_ENABLED(CONFIG_SLAB) && align &&
263 			(align > s->align || s->align % align))
264 			continue;
265 
266 		return s;
267 	}
268 	return NULL;
269 }
270 
271 /*
272  * Figure out what the alignment of the objects will be given a set of
273  * flags, a user specified alignment and the size of the objects.
274  */
275 unsigned long calculate_alignment(unsigned long flags,
276 		unsigned long align, unsigned long size)
277 {
278 	/*
279 	 * If the user wants hardware cache aligned objects then follow that
280 	 * suggestion if the object is sufficiently large.
281 	 *
282 	 * The hardware cache alignment cannot override the specified
283 	 * alignment though. If that is greater then use it.
284 	 */
285 	if (flags & SLAB_HWCACHE_ALIGN) {
286 		unsigned long ralign = cache_line_size();
287 		while (size <= ralign / 2)
288 			ralign /= 2;
289 		align = max(align, ralign);
290 	}
291 
292 	if (align < ARCH_SLAB_MINALIGN)
293 		align = ARCH_SLAB_MINALIGN;
294 
295 	return ALIGN(align, sizeof(void *));
296 }
297 
298 static struct kmem_cache *
299 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
300 		     unsigned long flags, void (*ctor)(void *),
301 		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
302 {
303 	struct kmem_cache *s;
304 	int err;
305 
306 	err = -ENOMEM;
307 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
308 	if (!s)
309 		goto out;
310 
311 	s->name = name;
312 	s->object_size = object_size;
313 	s->size = size;
314 	s->align = align;
315 	s->ctor = ctor;
316 
317 	err = memcg_alloc_cache_params(memcg, s, root_cache);
318 	if (err)
319 		goto out_free_cache;
320 
321 	err = __kmem_cache_create(s, flags);
322 	if (err)
323 		goto out_free_cache;
324 
325 	s->refcount = 1;
326 	list_add(&s->list, &slab_caches);
327 out:
328 	if (err)
329 		return ERR_PTR(err);
330 	return s;
331 
332 out_free_cache:
333 	memcg_free_cache_params(s);
334 	kfree(s);
335 	goto out;
336 }
337 
338 /*
339  * kmem_cache_create - Create a cache.
340  * @name: A string which is used in /proc/slabinfo to identify this cache.
341  * @size: The size of objects to be created in this cache.
342  * @align: The required alignment for the objects.
343  * @flags: SLAB flags
344  * @ctor: A constructor for the objects.
345  *
346  * Returns a ptr to the cache on success, NULL on failure.
347  * Cannot be called within a interrupt, but can be interrupted.
348  * The @ctor is run when new pages are allocated by the cache.
349  *
350  * The flags are
351  *
352  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
353  * to catch references to uninitialised memory.
354  *
355  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
356  * for buffer overruns.
357  *
358  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
359  * cacheline.  This can be beneficial if you're counting cycles as closely
360  * as davem.
361  */
362 struct kmem_cache *
363 kmem_cache_create(const char *name, size_t size, size_t align,
364 		  unsigned long flags, void (*ctor)(void *))
365 {
366 	struct kmem_cache *s;
367 	char *cache_name;
368 	int err;
369 
370 	get_online_cpus();
371 	get_online_mems();
372 
373 	mutex_lock(&slab_mutex);
374 
375 	err = kmem_cache_sanity_check(name, size);
376 	if (err) {
377 		s = NULL;	/* suppress uninit var warning */
378 		goto out_unlock;
379 	}
380 
381 	/*
382 	 * Some allocators will constraint the set of valid flags to a subset
383 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
384 	 * case, and we'll just provide them with a sanitized version of the
385 	 * passed flags.
386 	 */
387 	flags &= CACHE_CREATE_MASK;
388 
389 	s = __kmem_cache_alias(name, size, align, flags, ctor);
390 	if (s)
391 		goto out_unlock;
392 
393 	cache_name = kstrdup(name, GFP_KERNEL);
394 	if (!cache_name) {
395 		err = -ENOMEM;
396 		goto out_unlock;
397 	}
398 
399 	s = do_kmem_cache_create(cache_name, size, size,
400 				 calculate_alignment(flags, align, size),
401 				 flags, ctor, NULL, NULL);
402 	if (IS_ERR(s)) {
403 		err = PTR_ERR(s);
404 		kfree(cache_name);
405 	}
406 
407 out_unlock:
408 	mutex_unlock(&slab_mutex);
409 
410 	put_online_mems();
411 	put_online_cpus();
412 
413 	if (err) {
414 		if (flags & SLAB_PANIC)
415 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
416 				name, err);
417 		else {
418 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
419 				name, err);
420 			dump_stack();
421 		}
422 		return NULL;
423 	}
424 	return s;
425 }
426 EXPORT_SYMBOL(kmem_cache_create);
427 
428 #ifdef CONFIG_MEMCG_KMEM
429 /*
430  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
431  * @memcg: The memory cgroup the new cache is for.
432  * @root_cache: The parent of the new cache.
433  * @memcg_name: The name of the memory cgroup (used for naming the new cache).
434  *
435  * This function attempts to create a kmem cache that will serve allocation
436  * requests going from @memcg to @root_cache. The new cache inherits properties
437  * from its parent.
438  */
439 struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
440 					   struct kmem_cache *root_cache,
441 					   const char *memcg_name)
442 {
443 	struct kmem_cache *s = NULL;
444 	char *cache_name;
445 
446 	get_online_cpus();
447 	get_online_mems();
448 
449 	mutex_lock(&slab_mutex);
450 
451 	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
452 			       memcg_cache_id(memcg), memcg_name);
453 	if (!cache_name)
454 		goto out_unlock;
455 
456 	s = do_kmem_cache_create(cache_name, root_cache->object_size,
457 				 root_cache->size, root_cache->align,
458 				 root_cache->flags, root_cache->ctor,
459 				 memcg, root_cache);
460 	if (IS_ERR(s)) {
461 		kfree(cache_name);
462 		s = NULL;
463 	}
464 
465 out_unlock:
466 	mutex_unlock(&slab_mutex);
467 
468 	put_online_mems();
469 	put_online_cpus();
470 
471 	return s;
472 }
473 
474 static int memcg_cleanup_cache_params(struct kmem_cache *s)
475 {
476 	int rc;
477 
478 	if (!s->memcg_params ||
479 	    !s->memcg_params->is_root_cache)
480 		return 0;
481 
482 	mutex_unlock(&slab_mutex);
483 	rc = __memcg_cleanup_cache_params(s);
484 	mutex_lock(&slab_mutex);
485 
486 	return rc;
487 }
488 #else
489 static int memcg_cleanup_cache_params(struct kmem_cache *s)
490 {
491 	return 0;
492 }
493 #endif /* CONFIG_MEMCG_KMEM */
494 
495 void slab_kmem_cache_release(struct kmem_cache *s)
496 {
497 	kfree(s->name);
498 	kmem_cache_free(kmem_cache, s);
499 }
500 
501 void kmem_cache_destroy(struct kmem_cache *s)
502 {
503 	get_online_cpus();
504 	get_online_mems();
505 
506 	mutex_lock(&slab_mutex);
507 
508 	s->refcount--;
509 	if (s->refcount)
510 		goto out_unlock;
511 
512 	if (memcg_cleanup_cache_params(s) != 0)
513 		goto out_unlock;
514 
515 	if (__kmem_cache_shutdown(s) != 0) {
516 		printk(KERN_ERR "kmem_cache_destroy %s: "
517 		       "Slab cache still has objects\n", s->name);
518 		dump_stack();
519 		goto out_unlock;
520 	}
521 
522 	list_del(&s->list);
523 
524 	mutex_unlock(&slab_mutex);
525 	if (s->flags & SLAB_DESTROY_BY_RCU)
526 		rcu_barrier();
527 
528 	memcg_free_cache_params(s);
529 #ifdef SLAB_SUPPORTS_SYSFS
530 	sysfs_slab_remove(s);
531 #else
532 	slab_kmem_cache_release(s);
533 #endif
534 	goto out;
535 
536 out_unlock:
537 	mutex_unlock(&slab_mutex);
538 out:
539 	put_online_mems();
540 	put_online_cpus();
541 }
542 EXPORT_SYMBOL(kmem_cache_destroy);
543 
544 /**
545  * kmem_cache_shrink - Shrink a cache.
546  * @cachep: The cache to shrink.
547  *
548  * Releases as many slabs as possible for a cache.
549  * To help debugging, a zero exit status indicates all slabs were released.
550  */
551 int kmem_cache_shrink(struct kmem_cache *cachep)
552 {
553 	int ret;
554 
555 	get_online_cpus();
556 	get_online_mems();
557 	ret = __kmem_cache_shrink(cachep);
558 	put_online_mems();
559 	put_online_cpus();
560 	return ret;
561 }
562 EXPORT_SYMBOL(kmem_cache_shrink);
563 
564 int slab_is_available(void)
565 {
566 	return slab_state >= UP;
567 }
568 
569 #ifndef CONFIG_SLOB
570 /* Create a cache during boot when no slab services are available yet */
571 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
572 		unsigned long flags)
573 {
574 	int err;
575 
576 	s->name = name;
577 	s->size = s->object_size = size;
578 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
579 	err = __kmem_cache_create(s, flags);
580 
581 	if (err)
582 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
583 					name, size, err);
584 
585 	s->refcount = -1;	/* Exempt from merging for now */
586 }
587 
588 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
589 				unsigned long flags)
590 {
591 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
592 
593 	if (!s)
594 		panic("Out of memory when creating slab %s\n", name);
595 
596 	create_boot_cache(s, name, size, flags);
597 	list_add(&s->list, &slab_caches);
598 	s->refcount = 1;
599 	return s;
600 }
601 
602 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
603 EXPORT_SYMBOL(kmalloc_caches);
604 
605 #ifdef CONFIG_ZONE_DMA
606 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
607 EXPORT_SYMBOL(kmalloc_dma_caches);
608 #endif
609 
610 /*
611  * Conversion table for small slabs sizes / 8 to the index in the
612  * kmalloc array. This is necessary for slabs < 192 since we have non power
613  * of two cache sizes there. The size of larger slabs can be determined using
614  * fls.
615  */
616 static s8 size_index[24] = {
617 	3,	/* 8 */
618 	4,	/* 16 */
619 	5,	/* 24 */
620 	5,	/* 32 */
621 	6,	/* 40 */
622 	6,	/* 48 */
623 	6,	/* 56 */
624 	6,	/* 64 */
625 	1,	/* 72 */
626 	1,	/* 80 */
627 	1,	/* 88 */
628 	1,	/* 96 */
629 	7,	/* 104 */
630 	7,	/* 112 */
631 	7,	/* 120 */
632 	7,	/* 128 */
633 	2,	/* 136 */
634 	2,	/* 144 */
635 	2,	/* 152 */
636 	2,	/* 160 */
637 	2,	/* 168 */
638 	2,	/* 176 */
639 	2,	/* 184 */
640 	2	/* 192 */
641 };
642 
643 static inline int size_index_elem(size_t bytes)
644 {
645 	return (bytes - 1) / 8;
646 }
647 
648 /*
649  * Find the kmem_cache structure that serves a given size of
650  * allocation
651  */
652 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
653 {
654 	int index;
655 
656 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
657 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
658 		return NULL;
659 	}
660 
661 	if (size <= 192) {
662 		if (!size)
663 			return ZERO_SIZE_PTR;
664 
665 		index = size_index[size_index_elem(size)];
666 	} else
667 		index = fls(size - 1);
668 
669 #ifdef CONFIG_ZONE_DMA
670 	if (unlikely((flags & GFP_DMA)))
671 		return kmalloc_dma_caches[index];
672 
673 #endif
674 	return kmalloc_caches[index];
675 }
676 
677 /*
678  * Create the kmalloc array. Some of the regular kmalloc arrays
679  * may already have been created because they were needed to
680  * enable allocations for slab creation.
681  */
682 void __init create_kmalloc_caches(unsigned long flags)
683 {
684 	int i;
685 
686 	/*
687 	 * Patch up the size_index table if we have strange large alignment
688 	 * requirements for the kmalloc array. This is only the case for
689 	 * MIPS it seems. The standard arches will not generate any code here.
690 	 *
691 	 * Largest permitted alignment is 256 bytes due to the way we
692 	 * handle the index determination for the smaller caches.
693 	 *
694 	 * Make sure that nothing crazy happens if someone starts tinkering
695 	 * around with ARCH_KMALLOC_MINALIGN
696 	 */
697 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
698 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
699 
700 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
701 		int elem = size_index_elem(i);
702 
703 		if (elem >= ARRAY_SIZE(size_index))
704 			break;
705 		size_index[elem] = KMALLOC_SHIFT_LOW;
706 	}
707 
708 	if (KMALLOC_MIN_SIZE >= 64) {
709 		/*
710 		 * The 96 byte size cache is not used if the alignment
711 		 * is 64 byte.
712 		 */
713 		for (i = 64 + 8; i <= 96; i += 8)
714 			size_index[size_index_elem(i)] = 7;
715 
716 	}
717 
718 	if (KMALLOC_MIN_SIZE >= 128) {
719 		/*
720 		 * The 192 byte sized cache is not used if the alignment
721 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
722 		 * instead.
723 		 */
724 		for (i = 128 + 8; i <= 192; i += 8)
725 			size_index[size_index_elem(i)] = 8;
726 	}
727 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
728 		if (!kmalloc_caches[i]) {
729 			kmalloc_caches[i] = create_kmalloc_cache(NULL,
730 							1 << i, flags);
731 		}
732 
733 		/*
734 		 * Caches that are not of the two-to-the-power-of size.
735 		 * These have to be created immediately after the
736 		 * earlier power of two caches
737 		 */
738 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
739 			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
740 
741 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
742 			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
743 	}
744 
745 	/* Kmalloc array is now usable */
746 	slab_state = UP;
747 
748 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
749 		struct kmem_cache *s = kmalloc_caches[i];
750 		char *n;
751 
752 		if (s) {
753 			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
754 
755 			BUG_ON(!n);
756 			s->name = n;
757 		}
758 	}
759 
760 #ifdef CONFIG_ZONE_DMA
761 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
762 		struct kmem_cache *s = kmalloc_caches[i];
763 
764 		if (s) {
765 			int size = kmalloc_size(i);
766 			char *n = kasprintf(GFP_NOWAIT,
767 				 "dma-kmalloc-%d", size);
768 
769 			BUG_ON(!n);
770 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
771 				size, SLAB_CACHE_DMA | flags);
772 		}
773 	}
774 #endif
775 }
776 #endif /* !CONFIG_SLOB */
777 
778 /*
779  * To avoid unnecessary overhead, we pass through large allocation requests
780  * directly to the page allocator. We use __GFP_COMP, because we will need to
781  * know the allocation order to free the pages properly in kfree.
782  */
783 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
784 {
785 	void *ret;
786 	struct page *page;
787 
788 	flags |= __GFP_COMP;
789 	page = alloc_kmem_pages(flags, order);
790 	ret = page ? page_address(page) : NULL;
791 	kmemleak_alloc(ret, size, 1, flags);
792 	return ret;
793 }
794 EXPORT_SYMBOL(kmalloc_order);
795 
796 #ifdef CONFIG_TRACING
797 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
798 {
799 	void *ret = kmalloc_order(size, flags, order);
800 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
801 	return ret;
802 }
803 EXPORT_SYMBOL(kmalloc_order_trace);
804 #endif
805 
806 #ifdef CONFIG_SLABINFO
807 
808 #ifdef CONFIG_SLAB
809 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
810 #else
811 #define SLABINFO_RIGHTS S_IRUSR
812 #endif
813 
814 static void print_slabinfo_header(struct seq_file *m)
815 {
816 	/*
817 	 * Output format version, so at least we can change it
818 	 * without _too_ many complaints.
819 	 */
820 #ifdef CONFIG_DEBUG_SLAB
821 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
822 #else
823 	seq_puts(m, "slabinfo - version: 2.1\n");
824 #endif
825 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
826 		 "<objperslab> <pagesperslab>");
827 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
828 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
829 #ifdef CONFIG_DEBUG_SLAB
830 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
831 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
832 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
833 #endif
834 	seq_putc(m, '\n');
835 }
836 
837 void *slab_start(struct seq_file *m, loff_t *pos)
838 {
839 	mutex_lock(&slab_mutex);
840 	return seq_list_start(&slab_caches, *pos);
841 }
842 
843 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
844 {
845 	return seq_list_next(p, &slab_caches, pos);
846 }
847 
848 void slab_stop(struct seq_file *m, void *p)
849 {
850 	mutex_unlock(&slab_mutex);
851 }
852 
853 static void
854 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
855 {
856 	struct kmem_cache *c;
857 	struct slabinfo sinfo;
858 	int i;
859 
860 	if (!is_root_cache(s))
861 		return;
862 
863 	for_each_memcg_cache_index(i) {
864 		c = cache_from_memcg_idx(s, i);
865 		if (!c)
866 			continue;
867 
868 		memset(&sinfo, 0, sizeof(sinfo));
869 		get_slabinfo(c, &sinfo);
870 
871 		info->active_slabs += sinfo.active_slabs;
872 		info->num_slabs += sinfo.num_slabs;
873 		info->shared_avail += sinfo.shared_avail;
874 		info->active_objs += sinfo.active_objs;
875 		info->num_objs += sinfo.num_objs;
876 	}
877 }
878 
879 static void cache_show(struct kmem_cache *s, struct seq_file *m)
880 {
881 	struct slabinfo sinfo;
882 
883 	memset(&sinfo, 0, sizeof(sinfo));
884 	get_slabinfo(s, &sinfo);
885 
886 	memcg_accumulate_slabinfo(s, &sinfo);
887 
888 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
889 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
890 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
891 
892 	seq_printf(m, " : tunables %4u %4u %4u",
893 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
894 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
895 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
896 	slabinfo_show_stats(m, s);
897 	seq_putc(m, '\n');
898 }
899 
900 static int slab_show(struct seq_file *m, void *p)
901 {
902 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
903 
904 	if (p == slab_caches.next)
905 		print_slabinfo_header(m);
906 	if (is_root_cache(s))
907 		cache_show(s, m);
908 	return 0;
909 }
910 
911 #ifdef CONFIG_MEMCG_KMEM
912 int memcg_slab_show(struct seq_file *m, void *p)
913 {
914 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
915 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
916 
917 	if (p == slab_caches.next)
918 		print_slabinfo_header(m);
919 	if (!is_root_cache(s) && s->memcg_params->memcg == memcg)
920 		cache_show(s, m);
921 	return 0;
922 }
923 #endif
924 
925 /*
926  * slabinfo_op - iterator that generates /proc/slabinfo
927  *
928  * Output layout:
929  * cache-name
930  * num-active-objs
931  * total-objs
932  * object size
933  * num-active-slabs
934  * total-slabs
935  * num-pages-per-slab
936  * + further values on SMP and with statistics enabled
937  */
938 static const struct seq_operations slabinfo_op = {
939 	.start = slab_start,
940 	.next = slab_next,
941 	.stop = slab_stop,
942 	.show = slab_show,
943 };
944 
945 static int slabinfo_open(struct inode *inode, struct file *file)
946 {
947 	return seq_open(file, &slabinfo_op);
948 }
949 
950 static const struct file_operations proc_slabinfo_operations = {
951 	.open		= slabinfo_open,
952 	.read		= seq_read,
953 	.write          = slabinfo_write,
954 	.llseek		= seq_lseek,
955 	.release	= seq_release,
956 };
957 
958 static int __init slab_proc_init(void)
959 {
960 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
961 						&proc_slabinfo_operations);
962 	return 0;
963 }
964 module_init(slab_proc_init);
965 #endif /* CONFIG_SLABINFO */
966 
967 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
968 					   gfp_t flags)
969 {
970 	void *ret;
971 	size_t ks = 0;
972 
973 	if (p)
974 		ks = ksize(p);
975 
976 	if (ks >= new_size)
977 		return (void *)p;
978 
979 	ret = kmalloc_track_caller(new_size, flags);
980 	if (ret && p)
981 		memcpy(ret, p, ks);
982 
983 	return ret;
984 }
985 
986 /**
987  * __krealloc - like krealloc() but don't free @p.
988  * @p: object to reallocate memory for.
989  * @new_size: how many bytes of memory are required.
990  * @flags: the type of memory to allocate.
991  *
992  * This function is like krealloc() except it never frees the originally
993  * allocated buffer. Use this if you don't want to free the buffer immediately
994  * like, for example, with RCU.
995  */
996 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
997 {
998 	if (unlikely(!new_size))
999 		return ZERO_SIZE_PTR;
1000 
1001 	return __do_krealloc(p, new_size, flags);
1002 
1003 }
1004 EXPORT_SYMBOL(__krealloc);
1005 
1006 /**
1007  * krealloc - reallocate memory. The contents will remain unchanged.
1008  * @p: object to reallocate memory for.
1009  * @new_size: how many bytes of memory are required.
1010  * @flags: the type of memory to allocate.
1011  *
1012  * The contents of the object pointed to are preserved up to the
1013  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1014  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1015  * %NULL pointer, the object pointed to is freed.
1016  */
1017 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1018 {
1019 	void *ret;
1020 
1021 	if (unlikely(!new_size)) {
1022 		kfree(p);
1023 		return ZERO_SIZE_PTR;
1024 	}
1025 
1026 	ret = __do_krealloc(p, new_size, flags);
1027 	if (ret && p != ret)
1028 		kfree(p);
1029 
1030 	return ret;
1031 }
1032 EXPORT_SYMBOL(krealloc);
1033 
1034 /**
1035  * kzfree - like kfree but zero memory
1036  * @p: object to free memory of
1037  *
1038  * The memory of the object @p points to is zeroed before freed.
1039  * If @p is %NULL, kzfree() does nothing.
1040  *
1041  * Note: this function zeroes the whole allocated buffer which can be a good
1042  * deal bigger than the requested buffer size passed to kmalloc(). So be
1043  * careful when using this function in performance sensitive code.
1044  */
1045 void kzfree(const void *p)
1046 {
1047 	size_t ks;
1048 	void *mem = (void *)p;
1049 
1050 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1051 		return;
1052 	ks = ksize(mem);
1053 	memset(mem, 0, ks);
1054 	kfree(mem);
1055 }
1056 EXPORT_SYMBOL(kzfree);
1057 
1058 /* Tracepoints definitions. */
1059 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1060 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1061 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1062 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1063 EXPORT_TRACEPOINT_SYMBOL(kfree);
1064 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1065