xref: /openbmc/linux/mm/slab_common.c (revision 726ccdba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/swiotlb.h>
22 #include <linux/proc_fs.h>
23 #include <linux/debugfs.h>
24 #include <linux/kasan.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/page.h>
28 #include <linux/memcontrol.h>
29 #include <linux/stackdepot.h>
30 
31 #include "internal.h"
32 #include "slab.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/kmem.h>
36 
37 enum slab_state slab_state;
38 LIST_HEAD(slab_caches);
39 DEFINE_MUTEX(slab_mutex);
40 struct kmem_cache *kmem_cache;
41 
42 static LIST_HEAD(slab_caches_to_rcu_destroy);
43 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
44 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
45 		    slab_caches_to_rcu_destroy_workfn);
46 
47 /*
48  * Set of flags that will prevent slab merging
49  */
50 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
51 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
52 		SLAB_FAILSLAB | kasan_never_merge())
53 
54 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
55 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
56 
57 /*
58  * Merge control. If this is set then no merging of slab caches will occur.
59  */
60 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
61 
62 static int __init setup_slab_nomerge(char *str)
63 {
64 	slab_nomerge = true;
65 	return 1;
66 }
67 
68 static int __init setup_slab_merge(char *str)
69 {
70 	slab_nomerge = false;
71 	return 1;
72 }
73 
74 #ifdef CONFIG_SLUB
75 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
76 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
77 #endif
78 
79 __setup("slab_nomerge", setup_slab_nomerge);
80 __setup("slab_merge", setup_slab_merge);
81 
82 /*
83  * Determine the size of a slab object
84  */
85 unsigned int kmem_cache_size(struct kmem_cache *s)
86 {
87 	return s->object_size;
88 }
89 EXPORT_SYMBOL(kmem_cache_size);
90 
91 #ifdef CONFIG_DEBUG_VM
92 static int kmem_cache_sanity_check(const char *name, unsigned int size)
93 {
94 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
95 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
96 		return -EINVAL;
97 	}
98 
99 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
100 	return 0;
101 }
102 #else
103 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
104 {
105 	return 0;
106 }
107 #endif
108 
109 /*
110  * Figure out what the alignment of the objects will be given a set of
111  * flags, a user specified alignment and the size of the objects.
112  */
113 static unsigned int calculate_alignment(slab_flags_t flags,
114 		unsigned int align, unsigned int size)
115 {
116 	/*
117 	 * If the user wants hardware cache aligned objects then follow that
118 	 * suggestion if the object is sufficiently large.
119 	 *
120 	 * The hardware cache alignment cannot override the specified
121 	 * alignment though. If that is greater then use it.
122 	 */
123 	if (flags & SLAB_HWCACHE_ALIGN) {
124 		unsigned int ralign;
125 
126 		ralign = cache_line_size();
127 		while (size <= ralign / 2)
128 			ralign /= 2;
129 		align = max(align, ralign);
130 	}
131 
132 	align = max(align, arch_slab_minalign());
133 
134 	return ALIGN(align, sizeof(void *));
135 }
136 
137 /*
138  * Find a mergeable slab cache
139  */
140 int slab_unmergeable(struct kmem_cache *s)
141 {
142 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
143 		return 1;
144 
145 	if (s->ctor)
146 		return 1;
147 
148 #ifdef CONFIG_HARDENED_USERCOPY
149 	if (s->usersize)
150 		return 1;
151 #endif
152 
153 	/*
154 	 * We may have set a slab to be unmergeable during bootstrap.
155 	 */
156 	if (s->refcount < 0)
157 		return 1;
158 
159 	return 0;
160 }
161 
162 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
163 		slab_flags_t flags, const char *name, void (*ctor)(void *))
164 {
165 	struct kmem_cache *s;
166 
167 	if (slab_nomerge)
168 		return NULL;
169 
170 	if (ctor)
171 		return NULL;
172 
173 	size = ALIGN(size, sizeof(void *));
174 	align = calculate_alignment(flags, align, size);
175 	size = ALIGN(size, align);
176 	flags = kmem_cache_flags(size, flags, name);
177 
178 	if (flags & SLAB_NEVER_MERGE)
179 		return NULL;
180 
181 	list_for_each_entry_reverse(s, &slab_caches, list) {
182 		if (slab_unmergeable(s))
183 			continue;
184 
185 		if (size > s->size)
186 			continue;
187 
188 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
189 			continue;
190 		/*
191 		 * Check if alignment is compatible.
192 		 * Courtesy of Adrian Drzewiecki
193 		 */
194 		if ((s->size & ~(align - 1)) != s->size)
195 			continue;
196 
197 		if (s->size - size >= sizeof(void *))
198 			continue;
199 
200 		if (IS_ENABLED(CONFIG_SLAB) && align &&
201 			(align > s->align || s->align % align))
202 			continue;
203 
204 		return s;
205 	}
206 	return NULL;
207 }
208 
209 static struct kmem_cache *create_cache(const char *name,
210 		unsigned int object_size, unsigned int align,
211 		slab_flags_t flags, unsigned int useroffset,
212 		unsigned int usersize, void (*ctor)(void *),
213 		struct kmem_cache *root_cache)
214 {
215 	struct kmem_cache *s;
216 	int err;
217 
218 	if (WARN_ON(useroffset + usersize > object_size))
219 		useroffset = usersize = 0;
220 
221 	err = -ENOMEM;
222 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
223 	if (!s)
224 		goto out;
225 
226 	s->name = name;
227 	s->size = s->object_size = object_size;
228 	s->align = align;
229 	s->ctor = ctor;
230 #ifdef CONFIG_HARDENED_USERCOPY
231 	s->useroffset = useroffset;
232 	s->usersize = usersize;
233 #endif
234 
235 	err = __kmem_cache_create(s, flags);
236 	if (err)
237 		goto out_free_cache;
238 
239 	s->refcount = 1;
240 	list_add(&s->list, &slab_caches);
241 out:
242 	if (err)
243 		return ERR_PTR(err);
244 	return s;
245 
246 out_free_cache:
247 	kmem_cache_free(kmem_cache, s);
248 	goto out;
249 }
250 
251 /**
252  * kmem_cache_create_usercopy - Create a cache with a region suitable
253  * for copying to userspace
254  * @name: A string which is used in /proc/slabinfo to identify this cache.
255  * @size: The size of objects to be created in this cache.
256  * @align: The required alignment for the objects.
257  * @flags: SLAB flags
258  * @useroffset: Usercopy region offset
259  * @usersize: Usercopy region size
260  * @ctor: A constructor for the objects.
261  *
262  * Cannot be called within a interrupt, but can be interrupted.
263  * The @ctor is run when new pages are allocated by the cache.
264  *
265  * The flags are
266  *
267  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
268  * to catch references to uninitialised memory.
269  *
270  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
271  * for buffer overruns.
272  *
273  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
274  * cacheline.  This can be beneficial if you're counting cycles as closely
275  * as davem.
276  *
277  * Return: a pointer to the cache on success, NULL on failure.
278  */
279 struct kmem_cache *
280 kmem_cache_create_usercopy(const char *name,
281 		  unsigned int size, unsigned int align,
282 		  slab_flags_t flags,
283 		  unsigned int useroffset, unsigned int usersize,
284 		  void (*ctor)(void *))
285 {
286 	struct kmem_cache *s = NULL;
287 	const char *cache_name;
288 	int err;
289 
290 #ifdef CONFIG_SLUB_DEBUG
291 	/*
292 	 * If no slub_debug was enabled globally, the static key is not yet
293 	 * enabled by setup_slub_debug(). Enable it if the cache is being
294 	 * created with any of the debugging flags passed explicitly.
295 	 * It's also possible that this is the first cache created with
296 	 * SLAB_STORE_USER and we should init stack_depot for it.
297 	 */
298 	if (flags & SLAB_DEBUG_FLAGS)
299 		static_branch_enable(&slub_debug_enabled);
300 	if (flags & SLAB_STORE_USER)
301 		stack_depot_init();
302 #endif
303 
304 	mutex_lock(&slab_mutex);
305 
306 	err = kmem_cache_sanity_check(name, size);
307 	if (err) {
308 		goto out_unlock;
309 	}
310 
311 	/* Refuse requests with allocator specific flags */
312 	if (flags & ~SLAB_FLAGS_PERMITTED) {
313 		err = -EINVAL;
314 		goto out_unlock;
315 	}
316 
317 	/*
318 	 * Some allocators will constraint the set of valid flags to a subset
319 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
320 	 * case, and we'll just provide them with a sanitized version of the
321 	 * passed flags.
322 	 */
323 	flags &= CACHE_CREATE_MASK;
324 
325 	/* Fail closed on bad usersize of useroffset values. */
326 	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
327 	    WARN_ON(!usersize && useroffset) ||
328 	    WARN_ON(size < usersize || size - usersize < useroffset))
329 		usersize = useroffset = 0;
330 
331 	if (!usersize)
332 		s = __kmem_cache_alias(name, size, align, flags, ctor);
333 	if (s)
334 		goto out_unlock;
335 
336 	cache_name = kstrdup_const(name, GFP_KERNEL);
337 	if (!cache_name) {
338 		err = -ENOMEM;
339 		goto out_unlock;
340 	}
341 
342 	s = create_cache(cache_name, size,
343 			 calculate_alignment(flags, align, size),
344 			 flags, useroffset, usersize, ctor, NULL);
345 	if (IS_ERR(s)) {
346 		err = PTR_ERR(s);
347 		kfree_const(cache_name);
348 	}
349 
350 out_unlock:
351 	mutex_unlock(&slab_mutex);
352 
353 	if (err) {
354 		if (flags & SLAB_PANIC)
355 			panic("%s: Failed to create slab '%s'. Error %d\n",
356 				__func__, name, err);
357 		else {
358 			pr_warn("%s(%s) failed with error %d\n",
359 				__func__, name, err);
360 			dump_stack();
361 		}
362 		return NULL;
363 	}
364 	return s;
365 }
366 EXPORT_SYMBOL(kmem_cache_create_usercopy);
367 
368 /**
369  * kmem_cache_create - Create a cache.
370  * @name: A string which is used in /proc/slabinfo to identify this cache.
371  * @size: The size of objects to be created in this cache.
372  * @align: The required alignment for the objects.
373  * @flags: SLAB flags
374  * @ctor: A constructor for the objects.
375  *
376  * Cannot be called within a interrupt, but can be interrupted.
377  * The @ctor is run when new pages are allocated by the cache.
378  *
379  * The flags are
380  *
381  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
382  * to catch references to uninitialised memory.
383  *
384  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
385  * for buffer overruns.
386  *
387  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
388  * cacheline.  This can be beneficial if you're counting cycles as closely
389  * as davem.
390  *
391  * Return: a pointer to the cache on success, NULL on failure.
392  */
393 struct kmem_cache *
394 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
395 		slab_flags_t flags, void (*ctor)(void *))
396 {
397 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
398 					  ctor);
399 }
400 EXPORT_SYMBOL(kmem_cache_create);
401 
402 #ifdef SLAB_SUPPORTS_SYSFS
403 /*
404  * For a given kmem_cache, kmem_cache_destroy() should only be called
405  * once or there will be a use-after-free problem. The actual deletion
406  * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
407  * protection. So they are now done without holding those locks.
408  *
409  * Note that there will be a slight delay in the deletion of sysfs files
410  * if kmem_cache_release() is called indrectly from a work function.
411  */
412 static void kmem_cache_release(struct kmem_cache *s)
413 {
414 	sysfs_slab_unlink(s);
415 	sysfs_slab_release(s);
416 }
417 #else
418 static void kmem_cache_release(struct kmem_cache *s)
419 {
420 	slab_kmem_cache_release(s);
421 }
422 #endif
423 
424 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
425 {
426 	LIST_HEAD(to_destroy);
427 	struct kmem_cache *s, *s2;
428 
429 	/*
430 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
431 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
432 	 * through RCU and the associated kmem_cache are dereferenced
433 	 * while freeing the pages, so the kmem_caches should be freed only
434 	 * after the pending RCU operations are finished.  As rcu_barrier()
435 	 * is a pretty slow operation, we batch all pending destructions
436 	 * asynchronously.
437 	 */
438 	mutex_lock(&slab_mutex);
439 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
440 	mutex_unlock(&slab_mutex);
441 
442 	if (list_empty(&to_destroy))
443 		return;
444 
445 	rcu_barrier();
446 
447 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
448 		debugfs_slab_release(s);
449 		kfence_shutdown_cache(s);
450 		kmem_cache_release(s);
451 	}
452 }
453 
454 static int shutdown_cache(struct kmem_cache *s)
455 {
456 	/* free asan quarantined objects */
457 	kasan_cache_shutdown(s);
458 
459 	if (__kmem_cache_shutdown(s) != 0)
460 		return -EBUSY;
461 
462 	list_del(&s->list);
463 
464 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
465 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
466 		schedule_work(&slab_caches_to_rcu_destroy_work);
467 	} else {
468 		kfence_shutdown_cache(s);
469 		debugfs_slab_release(s);
470 	}
471 
472 	return 0;
473 }
474 
475 void slab_kmem_cache_release(struct kmem_cache *s)
476 {
477 	__kmem_cache_release(s);
478 	kfree_const(s->name);
479 	kmem_cache_free(kmem_cache, s);
480 }
481 
482 void kmem_cache_destroy(struct kmem_cache *s)
483 {
484 	int refcnt;
485 	bool rcu_set;
486 
487 	if (unlikely(!s) || !kasan_check_byte(s))
488 		return;
489 
490 	cpus_read_lock();
491 	mutex_lock(&slab_mutex);
492 
493 	rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
494 
495 	refcnt = --s->refcount;
496 	if (refcnt)
497 		goto out_unlock;
498 
499 	WARN(shutdown_cache(s),
500 	     "%s %s: Slab cache still has objects when called from %pS",
501 	     __func__, s->name, (void *)_RET_IP_);
502 out_unlock:
503 	mutex_unlock(&slab_mutex);
504 	cpus_read_unlock();
505 	if (!refcnt && !rcu_set)
506 		kmem_cache_release(s);
507 }
508 EXPORT_SYMBOL(kmem_cache_destroy);
509 
510 /**
511  * kmem_cache_shrink - Shrink a cache.
512  * @cachep: The cache to shrink.
513  *
514  * Releases as many slabs as possible for a cache.
515  * To help debugging, a zero exit status indicates all slabs were released.
516  *
517  * Return: %0 if all slabs were released, non-zero otherwise
518  */
519 int kmem_cache_shrink(struct kmem_cache *cachep)
520 {
521 	kasan_cache_shrink(cachep);
522 
523 	return __kmem_cache_shrink(cachep);
524 }
525 EXPORT_SYMBOL(kmem_cache_shrink);
526 
527 bool slab_is_available(void)
528 {
529 	return slab_state >= UP;
530 }
531 
532 #ifdef CONFIG_PRINTK
533 /**
534  * kmem_valid_obj - does the pointer reference a valid slab object?
535  * @object: pointer to query.
536  *
537  * Return: %true if the pointer is to a not-yet-freed object from
538  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
539  * is to an already-freed object, and %false otherwise.
540  */
541 bool kmem_valid_obj(void *object)
542 {
543 	struct folio *folio;
544 
545 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
546 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
547 		return false;
548 	folio = virt_to_folio(object);
549 	return folio_test_slab(folio);
550 }
551 EXPORT_SYMBOL_GPL(kmem_valid_obj);
552 
553 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
554 {
555 	if (__kfence_obj_info(kpp, object, slab))
556 		return;
557 	__kmem_obj_info(kpp, object, slab);
558 }
559 
560 /**
561  * kmem_dump_obj - Print available slab provenance information
562  * @object: slab object for which to find provenance information.
563  *
564  * This function uses pr_cont(), so that the caller is expected to have
565  * printed out whatever preamble is appropriate.  The provenance information
566  * depends on the type of object and on how much debugging is enabled.
567  * For a slab-cache object, the fact that it is a slab object is printed,
568  * and, if available, the slab name, return address, and stack trace from
569  * the allocation and last free path of that object.
570  *
571  * This function will splat if passed a pointer to a non-slab object.
572  * If you are not sure what type of object you have, you should instead
573  * use mem_dump_obj().
574  */
575 void kmem_dump_obj(void *object)
576 {
577 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
578 	int i;
579 	struct slab *slab;
580 	unsigned long ptroffset;
581 	struct kmem_obj_info kp = { };
582 
583 	if (WARN_ON_ONCE(!virt_addr_valid(object)))
584 		return;
585 	slab = virt_to_slab(object);
586 	if (WARN_ON_ONCE(!slab)) {
587 		pr_cont(" non-slab memory.\n");
588 		return;
589 	}
590 	kmem_obj_info(&kp, object, slab);
591 	if (kp.kp_slab_cache)
592 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
593 	else
594 		pr_cont(" slab%s", cp);
595 	if (is_kfence_address(object))
596 		pr_cont(" (kfence)");
597 	if (kp.kp_objp)
598 		pr_cont(" start %px", kp.kp_objp);
599 	if (kp.kp_data_offset)
600 		pr_cont(" data offset %lu", kp.kp_data_offset);
601 	if (kp.kp_objp) {
602 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
603 		pr_cont(" pointer offset %lu", ptroffset);
604 	}
605 	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
606 		pr_cont(" size %u", kp.kp_slab_cache->object_size);
607 	if (kp.kp_ret)
608 		pr_cont(" allocated at %pS\n", kp.kp_ret);
609 	else
610 		pr_cont("\n");
611 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
612 		if (!kp.kp_stack[i])
613 			break;
614 		pr_info("    %pS\n", kp.kp_stack[i]);
615 	}
616 
617 	if (kp.kp_free_stack[0])
618 		pr_cont(" Free path:\n");
619 
620 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
621 		if (!kp.kp_free_stack[i])
622 			break;
623 		pr_info("    %pS\n", kp.kp_free_stack[i]);
624 	}
625 
626 }
627 EXPORT_SYMBOL_GPL(kmem_dump_obj);
628 #endif
629 
630 /* Create a cache during boot when no slab services are available yet */
631 void __init create_boot_cache(struct kmem_cache *s, const char *name,
632 		unsigned int size, slab_flags_t flags,
633 		unsigned int useroffset, unsigned int usersize)
634 {
635 	int err;
636 	unsigned int align = ARCH_KMALLOC_MINALIGN;
637 
638 	s->name = name;
639 	s->size = s->object_size = size;
640 
641 	/*
642 	 * For power of two sizes, guarantee natural alignment for kmalloc
643 	 * caches, regardless of SL*B debugging options.
644 	 */
645 	if (is_power_of_2(size))
646 		align = max(align, size);
647 	s->align = calculate_alignment(flags, align, size);
648 
649 #ifdef CONFIG_HARDENED_USERCOPY
650 	s->useroffset = useroffset;
651 	s->usersize = usersize;
652 #endif
653 
654 	err = __kmem_cache_create(s, flags);
655 
656 	if (err)
657 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
658 					name, size, err);
659 
660 	s->refcount = -1;	/* Exempt from merging for now */
661 }
662 
663 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
664 						      unsigned int size,
665 						      slab_flags_t flags)
666 {
667 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
668 
669 	if (!s)
670 		panic("Out of memory when creating slab %s\n", name);
671 
672 	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
673 	list_add(&s->list, &slab_caches);
674 	s->refcount = 1;
675 	return s;
676 }
677 
678 struct kmem_cache *
679 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
680 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
681 EXPORT_SYMBOL(kmalloc_caches);
682 
683 /*
684  * Conversion table for small slabs sizes / 8 to the index in the
685  * kmalloc array. This is necessary for slabs < 192 since we have non power
686  * of two cache sizes there. The size of larger slabs can be determined using
687  * fls.
688  */
689 static u8 size_index[24] __ro_after_init = {
690 	3,	/* 8 */
691 	4,	/* 16 */
692 	5,	/* 24 */
693 	5,	/* 32 */
694 	6,	/* 40 */
695 	6,	/* 48 */
696 	6,	/* 56 */
697 	6,	/* 64 */
698 	1,	/* 72 */
699 	1,	/* 80 */
700 	1,	/* 88 */
701 	1,	/* 96 */
702 	7,	/* 104 */
703 	7,	/* 112 */
704 	7,	/* 120 */
705 	7,	/* 128 */
706 	2,	/* 136 */
707 	2,	/* 144 */
708 	2,	/* 152 */
709 	2,	/* 160 */
710 	2,	/* 168 */
711 	2,	/* 176 */
712 	2,	/* 184 */
713 	2	/* 192 */
714 };
715 
716 static inline unsigned int size_index_elem(unsigned int bytes)
717 {
718 	return (bytes - 1) / 8;
719 }
720 
721 /*
722  * Find the kmem_cache structure that serves a given size of
723  * allocation
724  */
725 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
726 {
727 	unsigned int index;
728 
729 	if (size <= 192) {
730 		if (!size)
731 			return ZERO_SIZE_PTR;
732 
733 		index = size_index[size_index_elem(size)];
734 	} else {
735 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
736 			return NULL;
737 		index = fls(size - 1);
738 	}
739 
740 	return kmalloc_caches[kmalloc_type(flags)][index];
741 }
742 
743 size_t kmalloc_size_roundup(size_t size)
744 {
745 	struct kmem_cache *c;
746 
747 	/* Short-circuit the 0 size case. */
748 	if (unlikely(size == 0))
749 		return 0;
750 	/* Short-circuit saturated "too-large" case. */
751 	if (unlikely(size == SIZE_MAX))
752 		return SIZE_MAX;
753 	/* Above the smaller buckets, size is a multiple of page size. */
754 	if (size > KMALLOC_MAX_CACHE_SIZE)
755 		return PAGE_SIZE << get_order(size);
756 
757 	/* The flags don't matter since size_index is common to all. */
758 	c = kmalloc_slab(size, GFP_KERNEL);
759 	return c ? c->object_size : 0;
760 }
761 EXPORT_SYMBOL(kmalloc_size_roundup);
762 
763 #ifdef CONFIG_ZONE_DMA
764 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
765 #else
766 #define KMALLOC_DMA_NAME(sz)
767 #endif
768 
769 #ifdef CONFIG_MEMCG_KMEM
770 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
771 #else
772 #define KMALLOC_CGROUP_NAME(sz)
773 #endif
774 
775 #ifndef CONFIG_SLUB_TINY
776 #define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
777 #else
778 #define KMALLOC_RCL_NAME(sz)
779 #endif
780 
781 #define INIT_KMALLOC_INFO(__size, __short_size)			\
782 {								\
783 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
784 	KMALLOC_RCL_NAME(__short_size)				\
785 	KMALLOC_CGROUP_NAME(__short_size)			\
786 	KMALLOC_DMA_NAME(__short_size)				\
787 	.size = __size,						\
788 }
789 
790 /*
791  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
792  * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
793  * kmalloc-2M.
794  */
795 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
796 	INIT_KMALLOC_INFO(0, 0),
797 	INIT_KMALLOC_INFO(96, 96),
798 	INIT_KMALLOC_INFO(192, 192),
799 	INIT_KMALLOC_INFO(8, 8),
800 	INIT_KMALLOC_INFO(16, 16),
801 	INIT_KMALLOC_INFO(32, 32),
802 	INIT_KMALLOC_INFO(64, 64),
803 	INIT_KMALLOC_INFO(128, 128),
804 	INIT_KMALLOC_INFO(256, 256),
805 	INIT_KMALLOC_INFO(512, 512),
806 	INIT_KMALLOC_INFO(1024, 1k),
807 	INIT_KMALLOC_INFO(2048, 2k),
808 	INIT_KMALLOC_INFO(4096, 4k),
809 	INIT_KMALLOC_INFO(8192, 8k),
810 	INIT_KMALLOC_INFO(16384, 16k),
811 	INIT_KMALLOC_INFO(32768, 32k),
812 	INIT_KMALLOC_INFO(65536, 64k),
813 	INIT_KMALLOC_INFO(131072, 128k),
814 	INIT_KMALLOC_INFO(262144, 256k),
815 	INIT_KMALLOC_INFO(524288, 512k),
816 	INIT_KMALLOC_INFO(1048576, 1M),
817 	INIT_KMALLOC_INFO(2097152, 2M)
818 };
819 
820 /*
821  * Patch up the size_index table if we have strange large alignment
822  * requirements for the kmalloc array. This is only the case for
823  * MIPS it seems. The standard arches will not generate any code here.
824  *
825  * Largest permitted alignment is 256 bytes due to the way we
826  * handle the index determination for the smaller caches.
827  *
828  * Make sure that nothing crazy happens if someone starts tinkering
829  * around with ARCH_KMALLOC_MINALIGN
830  */
831 void __init setup_kmalloc_cache_index_table(void)
832 {
833 	unsigned int i;
834 
835 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
836 		!is_power_of_2(KMALLOC_MIN_SIZE));
837 
838 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
839 		unsigned int elem = size_index_elem(i);
840 
841 		if (elem >= ARRAY_SIZE(size_index))
842 			break;
843 		size_index[elem] = KMALLOC_SHIFT_LOW;
844 	}
845 
846 	if (KMALLOC_MIN_SIZE >= 64) {
847 		/*
848 		 * The 96 byte sized cache is not used if the alignment
849 		 * is 64 byte.
850 		 */
851 		for (i = 64 + 8; i <= 96; i += 8)
852 			size_index[size_index_elem(i)] = 7;
853 
854 	}
855 
856 	if (KMALLOC_MIN_SIZE >= 128) {
857 		/*
858 		 * The 192 byte sized cache is not used if the alignment
859 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
860 		 * instead.
861 		 */
862 		for (i = 128 + 8; i <= 192; i += 8)
863 			size_index[size_index_elem(i)] = 8;
864 	}
865 }
866 
867 static unsigned int __kmalloc_minalign(void)
868 {
869 #ifdef CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC
870 	if (io_tlb_default_mem.nslabs)
871 		return ARCH_KMALLOC_MINALIGN;
872 #endif
873 	return dma_get_cache_alignment();
874 }
875 
876 void __init
877 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
878 {
879 	unsigned int minalign = __kmalloc_minalign();
880 	unsigned int aligned_size = kmalloc_info[idx].size;
881 	int aligned_idx = idx;
882 
883 	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
884 		flags |= SLAB_RECLAIM_ACCOUNT;
885 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
886 		if (mem_cgroup_kmem_disabled()) {
887 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
888 			return;
889 		}
890 		flags |= SLAB_ACCOUNT;
891 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
892 		flags |= SLAB_CACHE_DMA;
893 	}
894 
895 	if (minalign > ARCH_KMALLOC_MINALIGN) {
896 		aligned_size = ALIGN(aligned_size, minalign);
897 		aligned_idx = __kmalloc_index(aligned_size, false);
898 	}
899 
900 	if (!kmalloc_caches[type][aligned_idx])
901 		kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
902 					kmalloc_info[aligned_idx].name[type],
903 					aligned_size, flags);
904 	if (idx != aligned_idx)
905 		kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
906 
907 	/*
908 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
909 	 * KMALLOC_NORMAL caches.
910 	 */
911 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
912 		kmalloc_caches[type][idx]->refcount = -1;
913 }
914 
915 /*
916  * Create the kmalloc array. Some of the regular kmalloc arrays
917  * may already have been created because they were needed to
918  * enable allocations for slab creation.
919  */
920 void __init create_kmalloc_caches(slab_flags_t flags)
921 {
922 	int i;
923 	enum kmalloc_cache_type type;
924 
925 	/*
926 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
927 	 */
928 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
929 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
930 			if (!kmalloc_caches[type][i])
931 				new_kmalloc_cache(i, type, flags);
932 
933 			/*
934 			 * Caches that are not of the two-to-the-power-of size.
935 			 * These have to be created immediately after the
936 			 * earlier power of two caches
937 			 */
938 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
939 					!kmalloc_caches[type][1])
940 				new_kmalloc_cache(1, type, flags);
941 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
942 					!kmalloc_caches[type][2])
943 				new_kmalloc_cache(2, type, flags);
944 		}
945 	}
946 
947 	/* Kmalloc array is now usable */
948 	slab_state = UP;
949 }
950 
951 void free_large_kmalloc(struct folio *folio, void *object)
952 {
953 	unsigned int order = folio_order(folio);
954 
955 	if (WARN_ON_ONCE(order == 0))
956 		pr_warn_once("object pointer: 0x%p\n", object);
957 
958 	kmemleak_free(object);
959 	kasan_kfree_large(object);
960 	kmsan_kfree_large(object);
961 
962 	mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
963 			      -(PAGE_SIZE << order));
964 	__free_pages(folio_page(folio, 0), order);
965 }
966 
967 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
968 static __always_inline
969 void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
970 {
971 	struct kmem_cache *s;
972 	void *ret;
973 
974 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
975 		ret = __kmalloc_large_node(size, flags, node);
976 		trace_kmalloc(caller, ret, size,
977 			      PAGE_SIZE << get_order(size), flags, node);
978 		return ret;
979 	}
980 
981 	s = kmalloc_slab(size, flags);
982 
983 	if (unlikely(ZERO_OR_NULL_PTR(s)))
984 		return s;
985 
986 	ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
987 	ret = kasan_kmalloc(s, ret, size, flags);
988 	trace_kmalloc(caller, ret, size, s->size, flags, node);
989 	return ret;
990 }
991 
992 void *__kmalloc_node(size_t size, gfp_t flags, int node)
993 {
994 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
995 }
996 EXPORT_SYMBOL(__kmalloc_node);
997 
998 void *__kmalloc(size_t size, gfp_t flags)
999 {
1000 	return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
1001 }
1002 EXPORT_SYMBOL(__kmalloc);
1003 
1004 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
1005 				  int node, unsigned long caller)
1006 {
1007 	return __do_kmalloc_node(size, flags, node, caller);
1008 }
1009 EXPORT_SYMBOL(__kmalloc_node_track_caller);
1010 
1011 /**
1012  * kfree - free previously allocated memory
1013  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
1014  *
1015  * If @object is NULL, no operation is performed.
1016  */
1017 void kfree(const void *object)
1018 {
1019 	struct folio *folio;
1020 	struct slab *slab;
1021 	struct kmem_cache *s;
1022 
1023 	trace_kfree(_RET_IP_, object);
1024 
1025 	if (unlikely(ZERO_OR_NULL_PTR(object)))
1026 		return;
1027 
1028 	folio = virt_to_folio(object);
1029 	if (unlikely(!folio_test_slab(folio))) {
1030 		free_large_kmalloc(folio, (void *)object);
1031 		return;
1032 	}
1033 
1034 	slab = folio_slab(folio);
1035 	s = slab->slab_cache;
1036 	__kmem_cache_free(s, (void *)object, _RET_IP_);
1037 }
1038 EXPORT_SYMBOL(kfree);
1039 
1040 /**
1041  * __ksize -- Report full size of underlying allocation
1042  * @object: pointer to the object
1043  *
1044  * This should only be used internally to query the true size of allocations.
1045  * It is not meant to be a way to discover the usable size of an allocation
1046  * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1047  * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1048  * and/or FORTIFY_SOURCE.
1049  *
1050  * Return: size of the actual memory used by @object in bytes
1051  */
1052 size_t __ksize(const void *object)
1053 {
1054 	struct folio *folio;
1055 
1056 	if (unlikely(object == ZERO_SIZE_PTR))
1057 		return 0;
1058 
1059 	folio = virt_to_folio(object);
1060 
1061 	if (unlikely(!folio_test_slab(folio))) {
1062 		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1063 			return 0;
1064 		if (WARN_ON(object != folio_address(folio)))
1065 			return 0;
1066 		return folio_size(folio);
1067 	}
1068 
1069 #ifdef CONFIG_SLUB_DEBUG
1070 	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1071 #endif
1072 
1073 	return slab_ksize(folio_slab(folio)->slab_cache);
1074 }
1075 
1076 void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1077 {
1078 	void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
1079 					    size, _RET_IP_);
1080 
1081 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
1082 
1083 	ret = kasan_kmalloc(s, ret, size, gfpflags);
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL(kmalloc_trace);
1087 
1088 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
1089 			 int node, size_t size)
1090 {
1091 	void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
1092 
1093 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
1094 
1095 	ret = kasan_kmalloc(s, ret, size, gfpflags);
1096 	return ret;
1097 }
1098 EXPORT_SYMBOL(kmalloc_node_trace);
1099 
1100 gfp_t kmalloc_fix_flags(gfp_t flags)
1101 {
1102 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1103 
1104 	flags &= ~GFP_SLAB_BUG_MASK;
1105 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1106 			invalid_mask, &invalid_mask, flags, &flags);
1107 	dump_stack();
1108 
1109 	return flags;
1110 }
1111 
1112 /*
1113  * To avoid unnecessary overhead, we pass through large allocation requests
1114  * directly to the page allocator. We use __GFP_COMP, because we will need to
1115  * know the allocation order to free the pages properly in kfree.
1116  */
1117 
1118 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
1119 {
1120 	struct page *page;
1121 	void *ptr = NULL;
1122 	unsigned int order = get_order(size);
1123 
1124 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1125 		flags = kmalloc_fix_flags(flags);
1126 
1127 	flags |= __GFP_COMP;
1128 	page = alloc_pages_node(node, flags, order);
1129 	if (page) {
1130 		ptr = page_address(page);
1131 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
1132 				      PAGE_SIZE << order);
1133 	}
1134 
1135 	ptr = kasan_kmalloc_large(ptr, size, flags);
1136 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1137 	kmemleak_alloc(ptr, size, 1, flags);
1138 	kmsan_kmalloc_large(ptr, size, flags);
1139 
1140 	return ptr;
1141 }
1142 
1143 void *kmalloc_large(size_t size, gfp_t flags)
1144 {
1145 	void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
1146 
1147 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1148 		      flags, NUMA_NO_NODE);
1149 	return ret;
1150 }
1151 EXPORT_SYMBOL(kmalloc_large);
1152 
1153 void *kmalloc_large_node(size_t size, gfp_t flags, int node)
1154 {
1155 	void *ret = __kmalloc_large_node(size, flags, node);
1156 
1157 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1158 		      flags, node);
1159 	return ret;
1160 }
1161 EXPORT_SYMBOL(kmalloc_large_node);
1162 
1163 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1164 /* Randomize a generic freelist */
1165 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1166 			       unsigned int count)
1167 {
1168 	unsigned int rand;
1169 	unsigned int i;
1170 
1171 	for (i = 0; i < count; i++)
1172 		list[i] = i;
1173 
1174 	/* Fisher-Yates shuffle */
1175 	for (i = count - 1; i > 0; i--) {
1176 		rand = prandom_u32_state(state);
1177 		rand %= (i + 1);
1178 		swap(list[i], list[rand]);
1179 	}
1180 }
1181 
1182 /* Create a random sequence per cache */
1183 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1184 				    gfp_t gfp)
1185 {
1186 	struct rnd_state state;
1187 
1188 	if (count < 2 || cachep->random_seq)
1189 		return 0;
1190 
1191 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1192 	if (!cachep->random_seq)
1193 		return -ENOMEM;
1194 
1195 	/* Get best entropy at this stage of boot */
1196 	prandom_seed_state(&state, get_random_long());
1197 
1198 	freelist_randomize(&state, cachep->random_seq, count);
1199 	return 0;
1200 }
1201 
1202 /* Destroy the per-cache random freelist sequence */
1203 void cache_random_seq_destroy(struct kmem_cache *cachep)
1204 {
1205 	kfree(cachep->random_seq);
1206 	cachep->random_seq = NULL;
1207 }
1208 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1209 
1210 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1211 #ifdef CONFIG_SLAB
1212 #define SLABINFO_RIGHTS (0600)
1213 #else
1214 #define SLABINFO_RIGHTS (0400)
1215 #endif
1216 
1217 static void print_slabinfo_header(struct seq_file *m)
1218 {
1219 	/*
1220 	 * Output format version, so at least we can change it
1221 	 * without _too_ many complaints.
1222 	 */
1223 #ifdef CONFIG_DEBUG_SLAB
1224 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1225 #else
1226 	seq_puts(m, "slabinfo - version: 2.1\n");
1227 #endif
1228 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1229 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1230 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1231 #ifdef CONFIG_DEBUG_SLAB
1232 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1233 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1234 #endif
1235 	seq_putc(m, '\n');
1236 }
1237 
1238 static void *slab_start(struct seq_file *m, loff_t *pos)
1239 {
1240 	mutex_lock(&slab_mutex);
1241 	return seq_list_start(&slab_caches, *pos);
1242 }
1243 
1244 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1245 {
1246 	return seq_list_next(p, &slab_caches, pos);
1247 }
1248 
1249 static void slab_stop(struct seq_file *m, void *p)
1250 {
1251 	mutex_unlock(&slab_mutex);
1252 }
1253 
1254 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1255 {
1256 	struct slabinfo sinfo;
1257 
1258 	memset(&sinfo, 0, sizeof(sinfo));
1259 	get_slabinfo(s, &sinfo);
1260 
1261 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1262 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1263 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1264 
1265 	seq_printf(m, " : tunables %4u %4u %4u",
1266 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1267 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1268 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1269 	slabinfo_show_stats(m, s);
1270 	seq_putc(m, '\n');
1271 }
1272 
1273 static int slab_show(struct seq_file *m, void *p)
1274 {
1275 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1276 
1277 	if (p == slab_caches.next)
1278 		print_slabinfo_header(m);
1279 	cache_show(s, m);
1280 	return 0;
1281 }
1282 
1283 void dump_unreclaimable_slab(void)
1284 {
1285 	struct kmem_cache *s;
1286 	struct slabinfo sinfo;
1287 
1288 	/*
1289 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1290 	 * sleep in oom path. But, without mutex hold, it may introduce a
1291 	 * risk of crash.
1292 	 * Use mutex_trylock to protect the list traverse, dump nothing
1293 	 * without acquiring the mutex.
1294 	 */
1295 	if (!mutex_trylock(&slab_mutex)) {
1296 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1297 		return;
1298 	}
1299 
1300 	pr_info("Unreclaimable slab info:\n");
1301 	pr_info("Name                      Used          Total\n");
1302 
1303 	list_for_each_entry(s, &slab_caches, list) {
1304 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1305 			continue;
1306 
1307 		get_slabinfo(s, &sinfo);
1308 
1309 		if (sinfo.num_objs > 0)
1310 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1311 				(sinfo.active_objs * s->size) / 1024,
1312 				(sinfo.num_objs * s->size) / 1024);
1313 	}
1314 	mutex_unlock(&slab_mutex);
1315 }
1316 
1317 /*
1318  * slabinfo_op - iterator that generates /proc/slabinfo
1319  *
1320  * Output layout:
1321  * cache-name
1322  * num-active-objs
1323  * total-objs
1324  * object size
1325  * num-active-slabs
1326  * total-slabs
1327  * num-pages-per-slab
1328  * + further values on SMP and with statistics enabled
1329  */
1330 static const struct seq_operations slabinfo_op = {
1331 	.start = slab_start,
1332 	.next = slab_next,
1333 	.stop = slab_stop,
1334 	.show = slab_show,
1335 };
1336 
1337 static int slabinfo_open(struct inode *inode, struct file *file)
1338 {
1339 	return seq_open(file, &slabinfo_op);
1340 }
1341 
1342 static const struct proc_ops slabinfo_proc_ops = {
1343 	.proc_flags	= PROC_ENTRY_PERMANENT,
1344 	.proc_open	= slabinfo_open,
1345 	.proc_read	= seq_read,
1346 	.proc_write	= slabinfo_write,
1347 	.proc_lseek	= seq_lseek,
1348 	.proc_release	= seq_release,
1349 };
1350 
1351 static int __init slab_proc_init(void)
1352 {
1353 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1354 	return 0;
1355 }
1356 module_init(slab_proc_init);
1357 
1358 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1359 
1360 static __always_inline __realloc_size(2) void *
1361 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
1362 {
1363 	void *ret;
1364 	size_t ks;
1365 
1366 	/* Check for double-free before calling ksize. */
1367 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1368 		if (!kasan_check_byte(p))
1369 			return NULL;
1370 		ks = ksize(p);
1371 	} else
1372 		ks = 0;
1373 
1374 	/* If the object still fits, repoison it precisely. */
1375 	if (ks >= new_size) {
1376 		p = kasan_krealloc((void *)p, new_size, flags);
1377 		return (void *)p;
1378 	}
1379 
1380 	ret = kmalloc_track_caller(new_size, flags);
1381 	if (ret && p) {
1382 		/* Disable KASAN checks as the object's redzone is accessed. */
1383 		kasan_disable_current();
1384 		memcpy(ret, kasan_reset_tag(p), ks);
1385 		kasan_enable_current();
1386 	}
1387 
1388 	return ret;
1389 }
1390 
1391 /**
1392  * krealloc - reallocate memory. The contents will remain unchanged.
1393  * @p: object to reallocate memory for.
1394  * @new_size: how many bytes of memory are required.
1395  * @flags: the type of memory to allocate.
1396  *
1397  * The contents of the object pointed to are preserved up to the
1398  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1399  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1400  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1401  *
1402  * Return: pointer to the allocated memory or %NULL in case of error
1403  */
1404 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1405 {
1406 	void *ret;
1407 
1408 	if (unlikely(!new_size)) {
1409 		kfree(p);
1410 		return ZERO_SIZE_PTR;
1411 	}
1412 
1413 	ret = __do_krealloc(p, new_size, flags);
1414 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1415 		kfree(p);
1416 
1417 	return ret;
1418 }
1419 EXPORT_SYMBOL(krealloc);
1420 
1421 /**
1422  * kfree_sensitive - Clear sensitive information in memory before freeing
1423  * @p: object to free memory of
1424  *
1425  * The memory of the object @p points to is zeroed before freed.
1426  * If @p is %NULL, kfree_sensitive() does nothing.
1427  *
1428  * Note: this function zeroes the whole allocated buffer which can be a good
1429  * deal bigger than the requested buffer size passed to kmalloc(). So be
1430  * careful when using this function in performance sensitive code.
1431  */
1432 void kfree_sensitive(const void *p)
1433 {
1434 	size_t ks;
1435 	void *mem = (void *)p;
1436 
1437 	ks = ksize(mem);
1438 	if (ks) {
1439 		kasan_unpoison_range(mem, ks);
1440 		memzero_explicit(mem, ks);
1441 	}
1442 	kfree(mem);
1443 }
1444 EXPORT_SYMBOL(kfree_sensitive);
1445 
1446 size_t ksize(const void *objp)
1447 {
1448 	/*
1449 	 * We need to first check that the pointer to the object is valid.
1450 	 * The KASAN report printed from ksize() is more useful, then when
1451 	 * it's printed later when the behaviour could be undefined due to
1452 	 * a potential use-after-free or double-free.
1453 	 *
1454 	 * We use kasan_check_byte(), which is supported for the hardware
1455 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1456 	 *
1457 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1458 	 * ksize() writing to and potentially corrupting the memory region.
1459 	 *
1460 	 * We want to perform the check before __ksize(), to avoid potentially
1461 	 * crashing in __ksize() due to accessing invalid metadata.
1462 	 */
1463 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1464 		return 0;
1465 
1466 	return kfence_ksize(objp) ?: __ksize(objp);
1467 }
1468 EXPORT_SYMBOL(ksize);
1469 
1470 /* Tracepoints definitions. */
1471 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1472 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1473 EXPORT_TRACEPOINT_SYMBOL(kfree);
1474 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1475 
1476 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1477 {
1478 	if (__should_failslab(s, gfpflags))
1479 		return -ENOMEM;
1480 	return 0;
1481 }
1482 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1483