1 /* 2 * Slab allocator functions that are independent of the allocator strategy 3 * 4 * (C) 2012 Christoph Lameter <cl@linux.com> 5 */ 6 #include <linux/slab.h> 7 8 #include <linux/mm.h> 9 #include <linux/poison.h> 10 #include <linux/interrupt.h> 11 #include <linux/memory.h> 12 #include <linux/compiler.h> 13 #include <linux/module.h> 14 #include <linux/cpu.h> 15 #include <linux/uaccess.h> 16 #include <linux/seq_file.h> 17 #include <linux/proc_fs.h> 18 #include <asm/cacheflush.h> 19 #include <asm/tlbflush.h> 20 #include <asm/page.h> 21 #include <linux/memcontrol.h> 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/kmem.h> 25 26 #include "slab.h" 27 28 enum slab_state slab_state; 29 LIST_HEAD(slab_caches); 30 DEFINE_MUTEX(slab_mutex); 31 struct kmem_cache *kmem_cache; 32 33 /* 34 * Set of flags that will prevent slab merging 35 */ 36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 38 SLAB_FAILSLAB) 39 40 #define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 41 SLAB_CACHE_DMA | SLAB_NOTRACK) 42 43 /* 44 * Merge control. If this is set then no merging of slab caches will occur. 45 * (Could be removed. This was introduced to pacify the merge skeptics.) 46 */ 47 static int slab_nomerge; 48 49 static int __init setup_slab_nomerge(char *str) 50 { 51 slab_nomerge = 1; 52 return 1; 53 } 54 55 #ifdef CONFIG_SLUB 56 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 57 #endif 58 59 __setup("slab_nomerge", setup_slab_nomerge); 60 61 /* 62 * Determine the size of a slab object 63 */ 64 unsigned int kmem_cache_size(struct kmem_cache *s) 65 { 66 return s->object_size; 67 } 68 EXPORT_SYMBOL(kmem_cache_size); 69 70 #ifdef CONFIG_DEBUG_VM 71 static int kmem_cache_sanity_check(const char *name, size_t size) 72 { 73 struct kmem_cache *s = NULL; 74 75 if (!name || in_interrupt() || size < sizeof(void *) || 76 size > KMALLOC_MAX_SIZE) { 77 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 78 return -EINVAL; 79 } 80 81 list_for_each_entry(s, &slab_caches, list) { 82 char tmp; 83 int res; 84 85 /* 86 * This happens when the module gets unloaded and doesn't 87 * destroy its slab cache and no-one else reuses the vmalloc 88 * area of the module. Print a warning. 89 */ 90 res = probe_kernel_address(s->name, tmp); 91 if (res) { 92 pr_err("Slab cache with size %d has lost its name\n", 93 s->object_size); 94 continue; 95 } 96 97 #if !defined(CONFIG_SLUB) 98 if (!strcmp(s->name, name)) { 99 pr_err("%s (%s): Cache name already exists.\n", 100 __func__, name); 101 dump_stack(); 102 s = NULL; 103 return -EINVAL; 104 } 105 #endif 106 } 107 108 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 109 return 0; 110 } 111 #else 112 static inline int kmem_cache_sanity_check(const char *name, size_t size) 113 { 114 return 0; 115 } 116 #endif 117 118 #ifdef CONFIG_MEMCG_KMEM 119 static int memcg_alloc_cache_params(struct mem_cgroup *memcg, 120 struct kmem_cache *s, struct kmem_cache *root_cache) 121 { 122 size_t size; 123 124 if (!memcg_kmem_enabled()) 125 return 0; 126 127 if (!memcg) { 128 size = offsetof(struct memcg_cache_params, memcg_caches); 129 size += memcg_limited_groups_array_size * sizeof(void *); 130 } else 131 size = sizeof(struct memcg_cache_params); 132 133 s->memcg_params = kzalloc(size, GFP_KERNEL); 134 if (!s->memcg_params) 135 return -ENOMEM; 136 137 if (memcg) { 138 s->memcg_params->memcg = memcg; 139 s->memcg_params->root_cache = root_cache; 140 } else 141 s->memcg_params->is_root_cache = true; 142 143 return 0; 144 } 145 146 static void memcg_free_cache_params(struct kmem_cache *s) 147 { 148 kfree(s->memcg_params); 149 } 150 151 static int memcg_update_cache_params(struct kmem_cache *s, int num_memcgs) 152 { 153 int size; 154 struct memcg_cache_params *new_params, *cur_params; 155 156 BUG_ON(!is_root_cache(s)); 157 158 size = offsetof(struct memcg_cache_params, memcg_caches); 159 size += num_memcgs * sizeof(void *); 160 161 new_params = kzalloc(size, GFP_KERNEL); 162 if (!new_params) 163 return -ENOMEM; 164 165 cur_params = s->memcg_params; 166 memcpy(new_params->memcg_caches, cur_params->memcg_caches, 167 memcg_limited_groups_array_size * sizeof(void *)); 168 169 new_params->is_root_cache = true; 170 171 rcu_assign_pointer(s->memcg_params, new_params); 172 if (cur_params) 173 kfree_rcu(cur_params, rcu_head); 174 175 return 0; 176 } 177 178 int memcg_update_all_caches(int num_memcgs) 179 { 180 struct kmem_cache *s; 181 int ret = 0; 182 mutex_lock(&slab_mutex); 183 184 list_for_each_entry(s, &slab_caches, list) { 185 if (!is_root_cache(s)) 186 continue; 187 188 ret = memcg_update_cache_params(s, num_memcgs); 189 /* 190 * Instead of freeing the memory, we'll just leave the caches 191 * up to this point in an updated state. 192 */ 193 if (ret) 194 goto out; 195 } 196 197 memcg_update_array_size(num_memcgs); 198 out: 199 mutex_unlock(&slab_mutex); 200 return ret; 201 } 202 #else 203 static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg, 204 struct kmem_cache *s, struct kmem_cache *root_cache) 205 { 206 return 0; 207 } 208 209 static inline void memcg_free_cache_params(struct kmem_cache *s) 210 { 211 } 212 #endif /* CONFIG_MEMCG_KMEM */ 213 214 /* 215 * Find a mergeable slab cache 216 */ 217 int slab_unmergeable(struct kmem_cache *s) 218 { 219 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 220 return 1; 221 222 if (!is_root_cache(s)) 223 return 1; 224 225 if (s->ctor) 226 return 1; 227 228 /* 229 * We may have set a slab to be unmergeable during bootstrap. 230 */ 231 if (s->refcount < 0) 232 return 1; 233 234 return 0; 235 } 236 237 struct kmem_cache *find_mergeable(size_t size, size_t align, 238 unsigned long flags, const char *name, void (*ctor)(void *)) 239 { 240 struct kmem_cache *s; 241 242 if (slab_nomerge || (flags & SLAB_NEVER_MERGE)) 243 return NULL; 244 245 if (ctor) 246 return NULL; 247 248 size = ALIGN(size, sizeof(void *)); 249 align = calculate_alignment(flags, align, size); 250 size = ALIGN(size, align); 251 flags = kmem_cache_flags(size, flags, name, NULL); 252 253 list_for_each_entry(s, &slab_caches, list) { 254 if (slab_unmergeable(s)) 255 continue; 256 257 if (size > s->size) 258 continue; 259 260 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 261 continue; 262 /* 263 * Check if alignment is compatible. 264 * Courtesy of Adrian Drzewiecki 265 */ 266 if ((s->size & ~(align - 1)) != s->size) 267 continue; 268 269 if (s->size - size >= sizeof(void *)) 270 continue; 271 272 return s; 273 } 274 return NULL; 275 } 276 277 /* 278 * Figure out what the alignment of the objects will be given a set of 279 * flags, a user specified alignment and the size of the objects. 280 */ 281 unsigned long calculate_alignment(unsigned long flags, 282 unsigned long align, unsigned long size) 283 { 284 /* 285 * If the user wants hardware cache aligned objects then follow that 286 * suggestion if the object is sufficiently large. 287 * 288 * The hardware cache alignment cannot override the specified 289 * alignment though. If that is greater then use it. 290 */ 291 if (flags & SLAB_HWCACHE_ALIGN) { 292 unsigned long ralign = cache_line_size(); 293 while (size <= ralign / 2) 294 ralign /= 2; 295 align = max(align, ralign); 296 } 297 298 if (align < ARCH_SLAB_MINALIGN) 299 align = ARCH_SLAB_MINALIGN; 300 301 return ALIGN(align, sizeof(void *)); 302 } 303 304 static struct kmem_cache * 305 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align, 306 unsigned long flags, void (*ctor)(void *), 307 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 308 { 309 struct kmem_cache *s; 310 int err; 311 312 err = -ENOMEM; 313 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 314 if (!s) 315 goto out; 316 317 s->name = name; 318 s->object_size = object_size; 319 s->size = size; 320 s->align = align; 321 s->ctor = ctor; 322 323 err = memcg_alloc_cache_params(memcg, s, root_cache); 324 if (err) 325 goto out_free_cache; 326 327 err = __kmem_cache_create(s, flags); 328 if (err) 329 goto out_free_cache; 330 331 s->refcount = 1; 332 list_add(&s->list, &slab_caches); 333 out: 334 if (err) 335 return ERR_PTR(err); 336 return s; 337 338 out_free_cache: 339 memcg_free_cache_params(s); 340 kfree(s); 341 goto out; 342 } 343 344 /* 345 * kmem_cache_create - Create a cache. 346 * @name: A string which is used in /proc/slabinfo to identify this cache. 347 * @size: The size of objects to be created in this cache. 348 * @align: The required alignment for the objects. 349 * @flags: SLAB flags 350 * @ctor: A constructor for the objects. 351 * 352 * Returns a ptr to the cache on success, NULL on failure. 353 * Cannot be called within a interrupt, but can be interrupted. 354 * The @ctor is run when new pages are allocated by the cache. 355 * 356 * The flags are 357 * 358 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 359 * to catch references to uninitialised memory. 360 * 361 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 362 * for buffer overruns. 363 * 364 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 365 * cacheline. This can be beneficial if you're counting cycles as closely 366 * as davem. 367 */ 368 struct kmem_cache * 369 kmem_cache_create(const char *name, size_t size, size_t align, 370 unsigned long flags, void (*ctor)(void *)) 371 { 372 struct kmem_cache *s; 373 char *cache_name; 374 int err; 375 376 get_online_cpus(); 377 get_online_mems(); 378 379 mutex_lock(&slab_mutex); 380 381 err = kmem_cache_sanity_check(name, size); 382 if (err) { 383 s = NULL; /* suppress uninit var warning */ 384 goto out_unlock; 385 } 386 387 /* 388 * Some allocators will constraint the set of valid flags to a subset 389 * of all flags. We expect them to define CACHE_CREATE_MASK in this 390 * case, and we'll just provide them with a sanitized version of the 391 * passed flags. 392 */ 393 flags &= CACHE_CREATE_MASK; 394 395 s = __kmem_cache_alias(name, size, align, flags, ctor); 396 if (s) 397 goto out_unlock; 398 399 cache_name = kstrdup(name, GFP_KERNEL); 400 if (!cache_name) { 401 err = -ENOMEM; 402 goto out_unlock; 403 } 404 405 s = do_kmem_cache_create(cache_name, size, size, 406 calculate_alignment(flags, align, size), 407 flags, ctor, NULL, NULL); 408 if (IS_ERR(s)) { 409 err = PTR_ERR(s); 410 kfree(cache_name); 411 } 412 413 out_unlock: 414 mutex_unlock(&slab_mutex); 415 416 put_online_mems(); 417 put_online_cpus(); 418 419 if (err) { 420 if (flags & SLAB_PANIC) 421 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", 422 name, err); 423 else { 424 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", 425 name, err); 426 dump_stack(); 427 } 428 return NULL; 429 } 430 return s; 431 } 432 EXPORT_SYMBOL(kmem_cache_create); 433 434 #ifdef CONFIG_MEMCG_KMEM 435 /* 436 * memcg_create_kmem_cache - Create a cache for a memory cgroup. 437 * @memcg: The memory cgroup the new cache is for. 438 * @root_cache: The parent of the new cache. 439 * @memcg_name: The name of the memory cgroup (used for naming the new cache). 440 * 441 * This function attempts to create a kmem cache that will serve allocation 442 * requests going from @memcg to @root_cache. The new cache inherits properties 443 * from its parent. 444 */ 445 struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 446 struct kmem_cache *root_cache, 447 const char *memcg_name) 448 { 449 struct kmem_cache *s = NULL; 450 char *cache_name; 451 452 get_online_cpus(); 453 get_online_mems(); 454 455 mutex_lock(&slab_mutex); 456 457 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name, 458 memcg_cache_id(memcg), memcg_name); 459 if (!cache_name) 460 goto out_unlock; 461 462 s = do_kmem_cache_create(cache_name, root_cache->object_size, 463 root_cache->size, root_cache->align, 464 root_cache->flags, root_cache->ctor, 465 memcg, root_cache); 466 if (IS_ERR(s)) { 467 kfree(cache_name); 468 s = NULL; 469 } 470 471 out_unlock: 472 mutex_unlock(&slab_mutex); 473 474 put_online_mems(); 475 put_online_cpus(); 476 477 return s; 478 } 479 480 static int memcg_cleanup_cache_params(struct kmem_cache *s) 481 { 482 int rc; 483 484 if (!s->memcg_params || 485 !s->memcg_params->is_root_cache) 486 return 0; 487 488 mutex_unlock(&slab_mutex); 489 rc = __memcg_cleanup_cache_params(s); 490 mutex_lock(&slab_mutex); 491 492 return rc; 493 } 494 #else 495 static int memcg_cleanup_cache_params(struct kmem_cache *s) 496 { 497 return 0; 498 } 499 #endif /* CONFIG_MEMCG_KMEM */ 500 501 void slab_kmem_cache_release(struct kmem_cache *s) 502 { 503 kfree(s->name); 504 kmem_cache_free(kmem_cache, s); 505 } 506 507 void kmem_cache_destroy(struct kmem_cache *s) 508 { 509 get_online_cpus(); 510 get_online_mems(); 511 512 mutex_lock(&slab_mutex); 513 514 s->refcount--; 515 if (s->refcount) 516 goto out_unlock; 517 518 if (memcg_cleanup_cache_params(s) != 0) 519 goto out_unlock; 520 521 if (__kmem_cache_shutdown(s) != 0) { 522 printk(KERN_ERR "kmem_cache_destroy %s: " 523 "Slab cache still has objects\n", s->name); 524 dump_stack(); 525 goto out_unlock; 526 } 527 528 list_del(&s->list); 529 530 mutex_unlock(&slab_mutex); 531 if (s->flags & SLAB_DESTROY_BY_RCU) 532 rcu_barrier(); 533 534 memcg_free_cache_params(s); 535 #ifdef SLAB_SUPPORTS_SYSFS 536 sysfs_slab_remove(s); 537 #else 538 slab_kmem_cache_release(s); 539 #endif 540 goto out; 541 542 out_unlock: 543 mutex_unlock(&slab_mutex); 544 out: 545 put_online_mems(); 546 put_online_cpus(); 547 } 548 EXPORT_SYMBOL(kmem_cache_destroy); 549 550 /** 551 * kmem_cache_shrink - Shrink a cache. 552 * @cachep: The cache to shrink. 553 * 554 * Releases as many slabs as possible for a cache. 555 * To help debugging, a zero exit status indicates all slabs were released. 556 */ 557 int kmem_cache_shrink(struct kmem_cache *cachep) 558 { 559 int ret; 560 561 get_online_cpus(); 562 get_online_mems(); 563 ret = __kmem_cache_shrink(cachep); 564 put_online_mems(); 565 put_online_cpus(); 566 return ret; 567 } 568 EXPORT_SYMBOL(kmem_cache_shrink); 569 570 int slab_is_available(void) 571 { 572 return slab_state >= UP; 573 } 574 575 #ifndef CONFIG_SLOB 576 /* Create a cache during boot when no slab services are available yet */ 577 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, 578 unsigned long flags) 579 { 580 int err; 581 582 s->name = name; 583 s->size = s->object_size = size; 584 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); 585 err = __kmem_cache_create(s, flags); 586 587 if (err) 588 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", 589 name, size, err); 590 591 s->refcount = -1; /* Exempt from merging for now */ 592 } 593 594 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, 595 unsigned long flags) 596 { 597 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 598 599 if (!s) 600 panic("Out of memory when creating slab %s\n", name); 601 602 create_boot_cache(s, name, size, flags); 603 list_add(&s->list, &slab_caches); 604 s->refcount = 1; 605 return s; 606 } 607 608 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 609 EXPORT_SYMBOL(kmalloc_caches); 610 611 #ifdef CONFIG_ZONE_DMA 612 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 613 EXPORT_SYMBOL(kmalloc_dma_caches); 614 #endif 615 616 /* 617 * Conversion table for small slabs sizes / 8 to the index in the 618 * kmalloc array. This is necessary for slabs < 192 since we have non power 619 * of two cache sizes there. The size of larger slabs can be determined using 620 * fls. 621 */ 622 static s8 size_index[24] = { 623 3, /* 8 */ 624 4, /* 16 */ 625 5, /* 24 */ 626 5, /* 32 */ 627 6, /* 40 */ 628 6, /* 48 */ 629 6, /* 56 */ 630 6, /* 64 */ 631 1, /* 72 */ 632 1, /* 80 */ 633 1, /* 88 */ 634 1, /* 96 */ 635 7, /* 104 */ 636 7, /* 112 */ 637 7, /* 120 */ 638 7, /* 128 */ 639 2, /* 136 */ 640 2, /* 144 */ 641 2, /* 152 */ 642 2, /* 160 */ 643 2, /* 168 */ 644 2, /* 176 */ 645 2, /* 184 */ 646 2 /* 192 */ 647 }; 648 649 static inline int size_index_elem(size_t bytes) 650 { 651 return (bytes - 1) / 8; 652 } 653 654 /* 655 * Find the kmem_cache structure that serves a given size of 656 * allocation 657 */ 658 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) 659 { 660 int index; 661 662 if (unlikely(size > KMALLOC_MAX_SIZE)) { 663 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 664 return NULL; 665 } 666 667 if (size <= 192) { 668 if (!size) 669 return ZERO_SIZE_PTR; 670 671 index = size_index[size_index_elem(size)]; 672 } else 673 index = fls(size - 1); 674 675 #ifdef CONFIG_ZONE_DMA 676 if (unlikely((flags & GFP_DMA))) 677 return kmalloc_dma_caches[index]; 678 679 #endif 680 return kmalloc_caches[index]; 681 } 682 683 /* 684 * Create the kmalloc array. Some of the regular kmalloc arrays 685 * may already have been created because they were needed to 686 * enable allocations for slab creation. 687 */ 688 void __init create_kmalloc_caches(unsigned long flags) 689 { 690 int i; 691 692 /* 693 * Patch up the size_index table if we have strange large alignment 694 * requirements for the kmalloc array. This is only the case for 695 * MIPS it seems. The standard arches will not generate any code here. 696 * 697 * Largest permitted alignment is 256 bytes due to the way we 698 * handle the index determination for the smaller caches. 699 * 700 * Make sure that nothing crazy happens if someone starts tinkering 701 * around with ARCH_KMALLOC_MINALIGN 702 */ 703 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 704 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 705 706 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 707 int elem = size_index_elem(i); 708 709 if (elem >= ARRAY_SIZE(size_index)) 710 break; 711 size_index[elem] = KMALLOC_SHIFT_LOW; 712 } 713 714 if (KMALLOC_MIN_SIZE >= 64) { 715 /* 716 * The 96 byte size cache is not used if the alignment 717 * is 64 byte. 718 */ 719 for (i = 64 + 8; i <= 96; i += 8) 720 size_index[size_index_elem(i)] = 7; 721 722 } 723 724 if (KMALLOC_MIN_SIZE >= 128) { 725 /* 726 * The 192 byte sized cache is not used if the alignment 727 * is 128 byte. Redirect kmalloc to use the 256 byte cache 728 * instead. 729 */ 730 for (i = 128 + 8; i <= 192; i += 8) 731 size_index[size_index_elem(i)] = 8; 732 } 733 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 734 if (!kmalloc_caches[i]) { 735 kmalloc_caches[i] = create_kmalloc_cache(NULL, 736 1 << i, flags); 737 } 738 739 /* 740 * Caches that are not of the two-to-the-power-of size. 741 * These have to be created immediately after the 742 * earlier power of two caches 743 */ 744 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) 745 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags); 746 747 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) 748 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags); 749 } 750 751 /* Kmalloc array is now usable */ 752 slab_state = UP; 753 754 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 755 struct kmem_cache *s = kmalloc_caches[i]; 756 char *n; 757 758 if (s) { 759 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i)); 760 761 BUG_ON(!n); 762 s->name = n; 763 } 764 } 765 766 #ifdef CONFIG_ZONE_DMA 767 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 768 struct kmem_cache *s = kmalloc_caches[i]; 769 770 if (s) { 771 int size = kmalloc_size(i); 772 char *n = kasprintf(GFP_NOWAIT, 773 "dma-kmalloc-%d", size); 774 775 BUG_ON(!n); 776 kmalloc_dma_caches[i] = create_kmalloc_cache(n, 777 size, SLAB_CACHE_DMA | flags); 778 } 779 } 780 #endif 781 } 782 #endif /* !CONFIG_SLOB */ 783 784 /* 785 * To avoid unnecessary overhead, we pass through large allocation requests 786 * directly to the page allocator. We use __GFP_COMP, because we will need to 787 * know the allocation order to free the pages properly in kfree. 788 */ 789 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) 790 { 791 void *ret; 792 struct page *page; 793 794 flags |= __GFP_COMP; 795 page = alloc_kmem_pages(flags, order); 796 ret = page ? page_address(page) : NULL; 797 kmemleak_alloc(ret, size, 1, flags); 798 return ret; 799 } 800 EXPORT_SYMBOL(kmalloc_order); 801 802 #ifdef CONFIG_TRACING 803 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 804 { 805 void *ret = kmalloc_order(size, flags, order); 806 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 807 return ret; 808 } 809 EXPORT_SYMBOL(kmalloc_order_trace); 810 #endif 811 812 #ifdef CONFIG_SLABINFO 813 814 #ifdef CONFIG_SLAB 815 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) 816 #else 817 #define SLABINFO_RIGHTS S_IRUSR 818 #endif 819 820 void print_slabinfo_header(struct seq_file *m) 821 { 822 /* 823 * Output format version, so at least we can change it 824 * without _too_ many complaints. 825 */ 826 #ifdef CONFIG_DEBUG_SLAB 827 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 828 #else 829 seq_puts(m, "slabinfo - version: 2.1\n"); 830 #endif 831 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 832 "<objperslab> <pagesperslab>"); 833 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 834 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 835 #ifdef CONFIG_DEBUG_SLAB 836 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " 837 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 838 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 839 #endif 840 seq_putc(m, '\n'); 841 } 842 843 static void *s_start(struct seq_file *m, loff_t *pos) 844 { 845 loff_t n = *pos; 846 847 mutex_lock(&slab_mutex); 848 if (!n) 849 print_slabinfo_header(m); 850 851 return seq_list_start(&slab_caches, *pos); 852 } 853 854 void *slab_next(struct seq_file *m, void *p, loff_t *pos) 855 { 856 return seq_list_next(p, &slab_caches, pos); 857 } 858 859 void slab_stop(struct seq_file *m, void *p) 860 { 861 mutex_unlock(&slab_mutex); 862 } 863 864 static void 865 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) 866 { 867 struct kmem_cache *c; 868 struct slabinfo sinfo; 869 int i; 870 871 if (!is_root_cache(s)) 872 return; 873 874 for_each_memcg_cache_index(i) { 875 c = cache_from_memcg_idx(s, i); 876 if (!c) 877 continue; 878 879 memset(&sinfo, 0, sizeof(sinfo)); 880 get_slabinfo(c, &sinfo); 881 882 info->active_slabs += sinfo.active_slabs; 883 info->num_slabs += sinfo.num_slabs; 884 info->shared_avail += sinfo.shared_avail; 885 info->active_objs += sinfo.active_objs; 886 info->num_objs += sinfo.num_objs; 887 } 888 } 889 890 int cache_show(struct kmem_cache *s, struct seq_file *m) 891 { 892 struct slabinfo sinfo; 893 894 memset(&sinfo, 0, sizeof(sinfo)); 895 get_slabinfo(s, &sinfo); 896 897 memcg_accumulate_slabinfo(s, &sinfo); 898 899 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 900 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, 901 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 902 903 seq_printf(m, " : tunables %4u %4u %4u", 904 sinfo.limit, sinfo.batchcount, sinfo.shared); 905 seq_printf(m, " : slabdata %6lu %6lu %6lu", 906 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 907 slabinfo_show_stats(m, s); 908 seq_putc(m, '\n'); 909 return 0; 910 } 911 912 static int s_show(struct seq_file *m, void *p) 913 { 914 struct kmem_cache *s = list_entry(p, struct kmem_cache, list); 915 916 if (!is_root_cache(s)) 917 return 0; 918 return cache_show(s, m); 919 } 920 921 /* 922 * slabinfo_op - iterator that generates /proc/slabinfo 923 * 924 * Output layout: 925 * cache-name 926 * num-active-objs 927 * total-objs 928 * object size 929 * num-active-slabs 930 * total-slabs 931 * num-pages-per-slab 932 * + further values on SMP and with statistics enabled 933 */ 934 static const struct seq_operations slabinfo_op = { 935 .start = s_start, 936 .next = slab_next, 937 .stop = slab_stop, 938 .show = s_show, 939 }; 940 941 static int slabinfo_open(struct inode *inode, struct file *file) 942 { 943 return seq_open(file, &slabinfo_op); 944 } 945 946 static const struct file_operations proc_slabinfo_operations = { 947 .open = slabinfo_open, 948 .read = seq_read, 949 .write = slabinfo_write, 950 .llseek = seq_lseek, 951 .release = seq_release, 952 }; 953 954 static int __init slab_proc_init(void) 955 { 956 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, 957 &proc_slabinfo_operations); 958 return 0; 959 } 960 module_init(slab_proc_init); 961 #endif /* CONFIG_SLABINFO */ 962 963 static __always_inline void *__do_krealloc(const void *p, size_t new_size, 964 gfp_t flags) 965 { 966 void *ret; 967 size_t ks = 0; 968 969 if (p) 970 ks = ksize(p); 971 972 if (ks >= new_size) 973 return (void *)p; 974 975 ret = kmalloc_track_caller(new_size, flags); 976 if (ret && p) 977 memcpy(ret, p, ks); 978 979 return ret; 980 } 981 982 /** 983 * __krealloc - like krealloc() but don't free @p. 984 * @p: object to reallocate memory for. 985 * @new_size: how many bytes of memory are required. 986 * @flags: the type of memory to allocate. 987 * 988 * This function is like krealloc() except it never frees the originally 989 * allocated buffer. Use this if you don't want to free the buffer immediately 990 * like, for example, with RCU. 991 */ 992 void *__krealloc(const void *p, size_t new_size, gfp_t flags) 993 { 994 if (unlikely(!new_size)) 995 return ZERO_SIZE_PTR; 996 997 return __do_krealloc(p, new_size, flags); 998 999 } 1000 EXPORT_SYMBOL(__krealloc); 1001 1002 /** 1003 * krealloc - reallocate memory. The contents will remain unchanged. 1004 * @p: object to reallocate memory for. 1005 * @new_size: how many bytes of memory are required. 1006 * @flags: the type of memory to allocate. 1007 * 1008 * The contents of the object pointed to are preserved up to the 1009 * lesser of the new and old sizes. If @p is %NULL, krealloc() 1010 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a 1011 * %NULL pointer, the object pointed to is freed. 1012 */ 1013 void *krealloc(const void *p, size_t new_size, gfp_t flags) 1014 { 1015 void *ret; 1016 1017 if (unlikely(!new_size)) { 1018 kfree(p); 1019 return ZERO_SIZE_PTR; 1020 } 1021 1022 ret = __do_krealloc(p, new_size, flags); 1023 if (ret && p != ret) 1024 kfree(p); 1025 1026 return ret; 1027 } 1028 EXPORT_SYMBOL(krealloc); 1029 1030 /** 1031 * kzfree - like kfree but zero memory 1032 * @p: object to free memory of 1033 * 1034 * The memory of the object @p points to is zeroed before freed. 1035 * If @p is %NULL, kzfree() does nothing. 1036 * 1037 * Note: this function zeroes the whole allocated buffer which can be a good 1038 * deal bigger than the requested buffer size passed to kmalloc(). So be 1039 * careful when using this function in performance sensitive code. 1040 */ 1041 void kzfree(const void *p) 1042 { 1043 size_t ks; 1044 void *mem = (void *)p; 1045 1046 if (unlikely(ZERO_OR_NULL_PTR(mem))) 1047 return; 1048 ks = ksize(mem); 1049 memset(mem, 0, ks); 1050 kfree(mem); 1051 } 1052 EXPORT_SYMBOL(kzfree); 1053 1054 /* Tracepoints definitions. */ 1055 EXPORT_TRACEPOINT_SYMBOL(kmalloc); 1056 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 1057 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); 1058 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); 1059 EXPORT_TRACEPOINT_SYMBOL(kfree); 1060 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 1061