xref: /openbmc/linux/mm/slab_common.c (revision 5085e036)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27 #include <linux/stackdepot.h>
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/kmem.h>
31 
32 #include "internal.h"
33 
34 #include "slab.h"
35 
36 enum slab_state slab_state;
37 LIST_HEAD(slab_caches);
38 DEFINE_MUTEX(slab_mutex);
39 struct kmem_cache *kmem_cache;
40 
41 static LIST_HEAD(slab_caches_to_rcu_destroy);
42 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
43 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
44 		    slab_caches_to_rcu_destroy_workfn);
45 
46 /*
47  * Set of flags that will prevent slab merging
48  */
49 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
50 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
51 		SLAB_FAILSLAB | kasan_never_merge())
52 
53 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
54 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
55 
56 /*
57  * Merge control. If this is set then no merging of slab caches will occur.
58  */
59 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
60 
61 static int __init setup_slab_nomerge(char *str)
62 {
63 	slab_nomerge = true;
64 	return 1;
65 }
66 
67 static int __init setup_slab_merge(char *str)
68 {
69 	slab_nomerge = false;
70 	return 1;
71 }
72 
73 #ifdef CONFIG_SLUB
74 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
75 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
76 #endif
77 
78 __setup("slab_nomerge", setup_slab_nomerge);
79 __setup("slab_merge", setup_slab_merge);
80 
81 /*
82  * Determine the size of a slab object
83  */
84 unsigned int kmem_cache_size(struct kmem_cache *s)
85 {
86 	return s->object_size;
87 }
88 EXPORT_SYMBOL(kmem_cache_size);
89 
90 #ifdef CONFIG_DEBUG_VM
91 static int kmem_cache_sanity_check(const char *name, unsigned int size)
92 {
93 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
94 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 		return -EINVAL;
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
103 {
104 	return 0;
105 }
106 #endif
107 
108 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109 {
110 	size_t i;
111 
112 	for (i = 0; i < nr; i++) {
113 		if (s)
114 			kmem_cache_free(s, p[i]);
115 		else
116 			kfree(p[i]);
117 	}
118 }
119 
120 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
121 								void **p)
122 {
123 	size_t i;
124 
125 	for (i = 0; i < nr; i++) {
126 		void *x = p[i] = kmem_cache_alloc(s, flags);
127 		if (!x) {
128 			__kmem_cache_free_bulk(s, i, p);
129 			return 0;
130 		}
131 	}
132 	return i;
133 }
134 
135 /*
136  * Figure out what the alignment of the objects will be given a set of
137  * flags, a user specified alignment and the size of the objects.
138  */
139 static unsigned int calculate_alignment(slab_flags_t flags,
140 		unsigned int align, unsigned int size)
141 {
142 	/*
143 	 * If the user wants hardware cache aligned objects then follow that
144 	 * suggestion if the object is sufficiently large.
145 	 *
146 	 * The hardware cache alignment cannot override the specified
147 	 * alignment though. If that is greater then use it.
148 	 */
149 	if (flags & SLAB_HWCACHE_ALIGN) {
150 		unsigned int ralign;
151 
152 		ralign = cache_line_size();
153 		while (size <= ralign / 2)
154 			ralign /= 2;
155 		align = max(align, ralign);
156 	}
157 
158 	align = max(align, arch_slab_minalign());
159 
160 	return ALIGN(align, sizeof(void *));
161 }
162 
163 /*
164  * Find a mergeable slab cache
165  */
166 int slab_unmergeable(struct kmem_cache *s)
167 {
168 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
169 		return 1;
170 
171 	if (s->ctor)
172 		return 1;
173 
174 	if (s->usersize)
175 		return 1;
176 
177 	/*
178 	 * We may have set a slab to be unmergeable during bootstrap.
179 	 */
180 	if (s->refcount < 0)
181 		return 1;
182 
183 	return 0;
184 }
185 
186 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
187 		slab_flags_t flags, const char *name, void (*ctor)(void *))
188 {
189 	struct kmem_cache *s;
190 
191 	if (slab_nomerge)
192 		return NULL;
193 
194 	if (ctor)
195 		return NULL;
196 
197 	size = ALIGN(size, sizeof(void *));
198 	align = calculate_alignment(flags, align, size);
199 	size = ALIGN(size, align);
200 	flags = kmem_cache_flags(size, flags, name);
201 
202 	if (flags & SLAB_NEVER_MERGE)
203 		return NULL;
204 
205 	list_for_each_entry_reverse(s, &slab_caches, list) {
206 		if (slab_unmergeable(s))
207 			continue;
208 
209 		if (size > s->size)
210 			continue;
211 
212 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
213 			continue;
214 		/*
215 		 * Check if alignment is compatible.
216 		 * Courtesy of Adrian Drzewiecki
217 		 */
218 		if ((s->size & ~(align - 1)) != s->size)
219 			continue;
220 
221 		if (s->size - size >= sizeof(void *))
222 			continue;
223 
224 		if (IS_ENABLED(CONFIG_SLAB) && align &&
225 			(align > s->align || s->align % align))
226 			continue;
227 
228 		return s;
229 	}
230 	return NULL;
231 }
232 
233 static struct kmem_cache *create_cache(const char *name,
234 		unsigned int object_size, unsigned int align,
235 		slab_flags_t flags, unsigned int useroffset,
236 		unsigned int usersize, void (*ctor)(void *),
237 		struct kmem_cache *root_cache)
238 {
239 	struct kmem_cache *s;
240 	int err;
241 
242 	if (WARN_ON(useroffset + usersize > object_size))
243 		useroffset = usersize = 0;
244 
245 	err = -ENOMEM;
246 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
247 	if (!s)
248 		goto out;
249 
250 	s->name = name;
251 	s->size = s->object_size = object_size;
252 	s->align = align;
253 	s->ctor = ctor;
254 	s->useroffset = useroffset;
255 	s->usersize = usersize;
256 
257 	err = __kmem_cache_create(s, flags);
258 	if (err)
259 		goto out_free_cache;
260 
261 	s->refcount = 1;
262 	list_add(&s->list, &slab_caches);
263 out:
264 	if (err)
265 		return ERR_PTR(err);
266 	return s;
267 
268 out_free_cache:
269 	kmem_cache_free(kmem_cache, s);
270 	goto out;
271 }
272 
273 /**
274  * kmem_cache_create_usercopy - Create a cache with a region suitable
275  * for copying to userspace
276  * @name: A string which is used in /proc/slabinfo to identify this cache.
277  * @size: The size of objects to be created in this cache.
278  * @align: The required alignment for the objects.
279  * @flags: SLAB flags
280  * @useroffset: Usercopy region offset
281  * @usersize: Usercopy region size
282  * @ctor: A constructor for the objects.
283  *
284  * Cannot be called within a interrupt, but can be interrupted.
285  * The @ctor is run when new pages are allocated by the cache.
286  *
287  * The flags are
288  *
289  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
290  * to catch references to uninitialised memory.
291  *
292  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
293  * for buffer overruns.
294  *
295  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
296  * cacheline.  This can be beneficial if you're counting cycles as closely
297  * as davem.
298  *
299  * Return: a pointer to the cache on success, NULL on failure.
300  */
301 struct kmem_cache *
302 kmem_cache_create_usercopy(const char *name,
303 		  unsigned int size, unsigned int align,
304 		  slab_flags_t flags,
305 		  unsigned int useroffset, unsigned int usersize,
306 		  void (*ctor)(void *))
307 {
308 	struct kmem_cache *s = NULL;
309 	const char *cache_name;
310 	int err;
311 
312 #ifdef CONFIG_SLUB_DEBUG
313 	/*
314 	 * If no slub_debug was enabled globally, the static key is not yet
315 	 * enabled by setup_slub_debug(). Enable it if the cache is being
316 	 * created with any of the debugging flags passed explicitly.
317 	 * It's also possible that this is the first cache created with
318 	 * SLAB_STORE_USER and we should init stack_depot for it.
319 	 */
320 	if (flags & SLAB_DEBUG_FLAGS)
321 		static_branch_enable(&slub_debug_enabled);
322 	if (flags & SLAB_STORE_USER)
323 		stack_depot_init();
324 #endif
325 
326 	mutex_lock(&slab_mutex);
327 
328 	err = kmem_cache_sanity_check(name, size);
329 	if (err) {
330 		goto out_unlock;
331 	}
332 
333 	/* Refuse requests with allocator specific flags */
334 	if (flags & ~SLAB_FLAGS_PERMITTED) {
335 		err = -EINVAL;
336 		goto out_unlock;
337 	}
338 
339 	/*
340 	 * Some allocators will constraint the set of valid flags to a subset
341 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
342 	 * case, and we'll just provide them with a sanitized version of the
343 	 * passed flags.
344 	 */
345 	flags &= CACHE_CREATE_MASK;
346 
347 	/* Fail closed on bad usersize of useroffset values. */
348 	if (WARN_ON(!usersize && useroffset) ||
349 	    WARN_ON(size < usersize || size - usersize < useroffset))
350 		usersize = useroffset = 0;
351 
352 	if (!usersize)
353 		s = __kmem_cache_alias(name, size, align, flags, ctor);
354 	if (s)
355 		goto out_unlock;
356 
357 	cache_name = kstrdup_const(name, GFP_KERNEL);
358 	if (!cache_name) {
359 		err = -ENOMEM;
360 		goto out_unlock;
361 	}
362 
363 	s = create_cache(cache_name, size,
364 			 calculate_alignment(flags, align, size),
365 			 flags, useroffset, usersize, ctor, NULL);
366 	if (IS_ERR(s)) {
367 		err = PTR_ERR(s);
368 		kfree_const(cache_name);
369 	}
370 
371 out_unlock:
372 	mutex_unlock(&slab_mutex);
373 
374 	if (err) {
375 		if (flags & SLAB_PANIC)
376 			panic("%s: Failed to create slab '%s'. Error %d\n",
377 				__func__, name, err);
378 		else {
379 			pr_warn("%s(%s) failed with error %d\n",
380 				__func__, name, err);
381 			dump_stack();
382 		}
383 		return NULL;
384 	}
385 	return s;
386 }
387 EXPORT_SYMBOL(kmem_cache_create_usercopy);
388 
389 /**
390  * kmem_cache_create - Create a cache.
391  * @name: A string which is used in /proc/slabinfo to identify this cache.
392  * @size: The size of objects to be created in this cache.
393  * @align: The required alignment for the objects.
394  * @flags: SLAB flags
395  * @ctor: A constructor for the objects.
396  *
397  * Cannot be called within a interrupt, but can be interrupted.
398  * The @ctor is run when new pages are allocated by the cache.
399  *
400  * The flags are
401  *
402  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
403  * to catch references to uninitialised memory.
404  *
405  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
406  * for buffer overruns.
407  *
408  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
409  * cacheline.  This can be beneficial if you're counting cycles as closely
410  * as davem.
411  *
412  * Return: a pointer to the cache on success, NULL on failure.
413  */
414 struct kmem_cache *
415 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
416 		slab_flags_t flags, void (*ctor)(void *))
417 {
418 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
419 					  ctor);
420 }
421 EXPORT_SYMBOL(kmem_cache_create);
422 
423 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
424 {
425 	LIST_HEAD(to_destroy);
426 	struct kmem_cache *s, *s2;
427 
428 	/*
429 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
430 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
431 	 * through RCU and the associated kmem_cache are dereferenced
432 	 * while freeing the pages, so the kmem_caches should be freed only
433 	 * after the pending RCU operations are finished.  As rcu_barrier()
434 	 * is a pretty slow operation, we batch all pending destructions
435 	 * asynchronously.
436 	 */
437 	mutex_lock(&slab_mutex);
438 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
439 	mutex_unlock(&slab_mutex);
440 
441 	if (list_empty(&to_destroy))
442 		return;
443 
444 	rcu_barrier();
445 
446 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
447 		debugfs_slab_release(s);
448 		kfence_shutdown_cache(s);
449 #ifdef SLAB_SUPPORTS_SYSFS
450 		sysfs_slab_release(s);
451 #else
452 		slab_kmem_cache_release(s);
453 #endif
454 	}
455 }
456 
457 static int shutdown_cache(struct kmem_cache *s)
458 {
459 	/* free asan quarantined objects */
460 	kasan_cache_shutdown(s);
461 
462 	if (__kmem_cache_shutdown(s) != 0)
463 		return -EBUSY;
464 
465 	list_del(&s->list);
466 
467 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
468 #ifdef SLAB_SUPPORTS_SYSFS
469 		sysfs_slab_unlink(s);
470 #endif
471 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
472 		schedule_work(&slab_caches_to_rcu_destroy_work);
473 	} else {
474 		kfence_shutdown_cache(s);
475 		debugfs_slab_release(s);
476 #ifdef SLAB_SUPPORTS_SYSFS
477 		sysfs_slab_unlink(s);
478 		sysfs_slab_release(s);
479 #else
480 		slab_kmem_cache_release(s);
481 #endif
482 	}
483 
484 	return 0;
485 }
486 
487 void slab_kmem_cache_release(struct kmem_cache *s)
488 {
489 	__kmem_cache_release(s);
490 	kfree_const(s->name);
491 	kmem_cache_free(kmem_cache, s);
492 }
493 
494 void kmem_cache_destroy(struct kmem_cache *s)
495 {
496 	if (unlikely(!s) || !kasan_check_byte(s))
497 		return;
498 
499 	cpus_read_lock();
500 	mutex_lock(&slab_mutex);
501 
502 	s->refcount--;
503 	if (s->refcount)
504 		goto out_unlock;
505 
506 	WARN(shutdown_cache(s),
507 	     "%s %s: Slab cache still has objects when called from %pS",
508 	     __func__, s->name, (void *)_RET_IP_);
509 out_unlock:
510 	mutex_unlock(&slab_mutex);
511 	cpus_read_unlock();
512 }
513 EXPORT_SYMBOL(kmem_cache_destroy);
514 
515 /**
516  * kmem_cache_shrink - Shrink a cache.
517  * @cachep: The cache to shrink.
518  *
519  * Releases as many slabs as possible for a cache.
520  * To help debugging, a zero exit status indicates all slabs were released.
521  *
522  * Return: %0 if all slabs were released, non-zero otherwise
523  */
524 int kmem_cache_shrink(struct kmem_cache *cachep)
525 {
526 	int ret;
527 
528 
529 	kasan_cache_shrink(cachep);
530 	ret = __kmem_cache_shrink(cachep);
531 
532 	return ret;
533 }
534 EXPORT_SYMBOL(kmem_cache_shrink);
535 
536 bool slab_is_available(void)
537 {
538 	return slab_state >= UP;
539 }
540 
541 #ifdef CONFIG_PRINTK
542 /**
543  * kmem_valid_obj - does the pointer reference a valid slab object?
544  * @object: pointer to query.
545  *
546  * Return: %true if the pointer is to a not-yet-freed object from
547  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
548  * is to an already-freed object, and %false otherwise.
549  */
550 bool kmem_valid_obj(void *object)
551 {
552 	struct folio *folio;
553 
554 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
555 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
556 		return false;
557 	folio = virt_to_folio(object);
558 	return folio_test_slab(folio);
559 }
560 EXPORT_SYMBOL_GPL(kmem_valid_obj);
561 
562 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
563 {
564 	if (__kfence_obj_info(kpp, object, slab))
565 		return;
566 	__kmem_obj_info(kpp, object, slab);
567 }
568 
569 /**
570  * kmem_dump_obj - Print available slab provenance information
571  * @object: slab object for which to find provenance information.
572  *
573  * This function uses pr_cont(), so that the caller is expected to have
574  * printed out whatever preamble is appropriate.  The provenance information
575  * depends on the type of object and on how much debugging is enabled.
576  * For a slab-cache object, the fact that it is a slab object is printed,
577  * and, if available, the slab name, return address, and stack trace from
578  * the allocation and last free path of that object.
579  *
580  * This function will splat if passed a pointer to a non-slab object.
581  * If you are not sure what type of object you have, you should instead
582  * use mem_dump_obj().
583  */
584 void kmem_dump_obj(void *object)
585 {
586 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
587 	int i;
588 	struct slab *slab;
589 	unsigned long ptroffset;
590 	struct kmem_obj_info kp = { };
591 
592 	if (WARN_ON_ONCE(!virt_addr_valid(object)))
593 		return;
594 	slab = virt_to_slab(object);
595 	if (WARN_ON_ONCE(!slab)) {
596 		pr_cont(" non-slab memory.\n");
597 		return;
598 	}
599 	kmem_obj_info(&kp, object, slab);
600 	if (kp.kp_slab_cache)
601 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
602 	else
603 		pr_cont(" slab%s", cp);
604 	if (is_kfence_address(object))
605 		pr_cont(" (kfence)");
606 	if (kp.kp_objp)
607 		pr_cont(" start %px", kp.kp_objp);
608 	if (kp.kp_data_offset)
609 		pr_cont(" data offset %lu", kp.kp_data_offset);
610 	if (kp.kp_objp) {
611 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
612 		pr_cont(" pointer offset %lu", ptroffset);
613 	}
614 	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
615 		pr_cont(" size %u", kp.kp_slab_cache->usersize);
616 	if (kp.kp_ret)
617 		pr_cont(" allocated at %pS\n", kp.kp_ret);
618 	else
619 		pr_cont("\n");
620 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
621 		if (!kp.kp_stack[i])
622 			break;
623 		pr_info("    %pS\n", kp.kp_stack[i]);
624 	}
625 
626 	if (kp.kp_free_stack[0])
627 		pr_cont(" Free path:\n");
628 
629 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
630 		if (!kp.kp_free_stack[i])
631 			break;
632 		pr_info("    %pS\n", kp.kp_free_stack[i]);
633 	}
634 
635 }
636 EXPORT_SYMBOL_GPL(kmem_dump_obj);
637 #endif
638 
639 #ifndef CONFIG_SLOB
640 /* Create a cache during boot when no slab services are available yet */
641 void __init create_boot_cache(struct kmem_cache *s, const char *name,
642 		unsigned int size, slab_flags_t flags,
643 		unsigned int useroffset, unsigned int usersize)
644 {
645 	int err;
646 	unsigned int align = ARCH_KMALLOC_MINALIGN;
647 
648 	s->name = name;
649 	s->size = s->object_size = size;
650 
651 	/*
652 	 * For power of two sizes, guarantee natural alignment for kmalloc
653 	 * caches, regardless of SL*B debugging options.
654 	 */
655 	if (is_power_of_2(size))
656 		align = max(align, size);
657 	s->align = calculate_alignment(flags, align, size);
658 
659 	s->useroffset = useroffset;
660 	s->usersize = usersize;
661 
662 	err = __kmem_cache_create(s, flags);
663 
664 	if (err)
665 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
666 					name, size, err);
667 
668 	s->refcount = -1;	/* Exempt from merging for now */
669 }
670 
671 struct kmem_cache *__init create_kmalloc_cache(const char *name,
672 		unsigned int size, slab_flags_t flags,
673 		unsigned int useroffset, unsigned int usersize)
674 {
675 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
676 
677 	if (!s)
678 		panic("Out of memory when creating slab %s\n", name);
679 
680 	create_boot_cache(s, name, size, flags, useroffset, usersize);
681 	kasan_cache_create_kmalloc(s);
682 	list_add(&s->list, &slab_caches);
683 	s->refcount = 1;
684 	return s;
685 }
686 
687 struct kmem_cache *
688 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
689 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
690 EXPORT_SYMBOL(kmalloc_caches);
691 
692 /*
693  * Conversion table for small slabs sizes / 8 to the index in the
694  * kmalloc array. This is necessary for slabs < 192 since we have non power
695  * of two cache sizes there. The size of larger slabs can be determined using
696  * fls.
697  */
698 static u8 size_index[24] __ro_after_init = {
699 	3,	/* 8 */
700 	4,	/* 16 */
701 	5,	/* 24 */
702 	5,	/* 32 */
703 	6,	/* 40 */
704 	6,	/* 48 */
705 	6,	/* 56 */
706 	6,	/* 64 */
707 	1,	/* 72 */
708 	1,	/* 80 */
709 	1,	/* 88 */
710 	1,	/* 96 */
711 	7,	/* 104 */
712 	7,	/* 112 */
713 	7,	/* 120 */
714 	7,	/* 128 */
715 	2,	/* 136 */
716 	2,	/* 144 */
717 	2,	/* 152 */
718 	2,	/* 160 */
719 	2,	/* 168 */
720 	2,	/* 176 */
721 	2,	/* 184 */
722 	2	/* 192 */
723 };
724 
725 static inline unsigned int size_index_elem(unsigned int bytes)
726 {
727 	return (bytes - 1) / 8;
728 }
729 
730 /*
731  * Find the kmem_cache structure that serves a given size of
732  * allocation
733  */
734 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
735 {
736 	unsigned int index;
737 
738 	if (size <= 192) {
739 		if (!size)
740 			return ZERO_SIZE_PTR;
741 
742 		index = size_index[size_index_elem(size)];
743 	} else {
744 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
745 			return NULL;
746 		index = fls(size - 1);
747 	}
748 
749 	return kmalloc_caches[kmalloc_type(flags)][index];
750 }
751 
752 #ifdef CONFIG_ZONE_DMA
753 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
754 #else
755 #define KMALLOC_DMA_NAME(sz)
756 #endif
757 
758 #ifdef CONFIG_MEMCG_KMEM
759 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
760 #else
761 #define KMALLOC_CGROUP_NAME(sz)
762 #endif
763 
764 #define INIT_KMALLOC_INFO(__size, __short_size)			\
765 {								\
766 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
767 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
768 	KMALLOC_CGROUP_NAME(__short_size)			\
769 	KMALLOC_DMA_NAME(__short_size)				\
770 	.size = __size,						\
771 }
772 
773 /*
774  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
775  * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
776  * kmalloc-32M.
777  */
778 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
779 	INIT_KMALLOC_INFO(0, 0),
780 	INIT_KMALLOC_INFO(96, 96),
781 	INIT_KMALLOC_INFO(192, 192),
782 	INIT_KMALLOC_INFO(8, 8),
783 	INIT_KMALLOC_INFO(16, 16),
784 	INIT_KMALLOC_INFO(32, 32),
785 	INIT_KMALLOC_INFO(64, 64),
786 	INIT_KMALLOC_INFO(128, 128),
787 	INIT_KMALLOC_INFO(256, 256),
788 	INIT_KMALLOC_INFO(512, 512),
789 	INIT_KMALLOC_INFO(1024, 1k),
790 	INIT_KMALLOC_INFO(2048, 2k),
791 	INIT_KMALLOC_INFO(4096, 4k),
792 	INIT_KMALLOC_INFO(8192, 8k),
793 	INIT_KMALLOC_INFO(16384, 16k),
794 	INIT_KMALLOC_INFO(32768, 32k),
795 	INIT_KMALLOC_INFO(65536, 64k),
796 	INIT_KMALLOC_INFO(131072, 128k),
797 	INIT_KMALLOC_INFO(262144, 256k),
798 	INIT_KMALLOC_INFO(524288, 512k),
799 	INIT_KMALLOC_INFO(1048576, 1M),
800 	INIT_KMALLOC_INFO(2097152, 2M),
801 	INIT_KMALLOC_INFO(4194304, 4M),
802 	INIT_KMALLOC_INFO(8388608, 8M),
803 	INIT_KMALLOC_INFO(16777216, 16M),
804 	INIT_KMALLOC_INFO(33554432, 32M)
805 };
806 
807 /*
808  * Patch up the size_index table if we have strange large alignment
809  * requirements for the kmalloc array. This is only the case for
810  * MIPS it seems. The standard arches will not generate any code here.
811  *
812  * Largest permitted alignment is 256 bytes due to the way we
813  * handle the index determination for the smaller caches.
814  *
815  * Make sure that nothing crazy happens if someone starts tinkering
816  * around with ARCH_KMALLOC_MINALIGN
817  */
818 void __init setup_kmalloc_cache_index_table(void)
819 {
820 	unsigned int i;
821 
822 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
823 		!is_power_of_2(KMALLOC_MIN_SIZE));
824 
825 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
826 		unsigned int elem = size_index_elem(i);
827 
828 		if (elem >= ARRAY_SIZE(size_index))
829 			break;
830 		size_index[elem] = KMALLOC_SHIFT_LOW;
831 	}
832 
833 	if (KMALLOC_MIN_SIZE >= 64) {
834 		/*
835 		 * The 96 byte sized cache is not used if the alignment
836 		 * is 64 byte.
837 		 */
838 		for (i = 64 + 8; i <= 96; i += 8)
839 			size_index[size_index_elem(i)] = 7;
840 
841 	}
842 
843 	if (KMALLOC_MIN_SIZE >= 128) {
844 		/*
845 		 * The 192 byte sized cache is not used if the alignment
846 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
847 		 * instead.
848 		 */
849 		for (i = 128 + 8; i <= 192; i += 8)
850 			size_index[size_index_elem(i)] = 8;
851 	}
852 }
853 
854 static void __init
855 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
856 {
857 	if (type == KMALLOC_RECLAIM) {
858 		flags |= SLAB_RECLAIM_ACCOUNT;
859 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
860 		if (mem_cgroup_kmem_disabled()) {
861 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
862 			return;
863 		}
864 		flags |= SLAB_ACCOUNT;
865 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
866 		flags |= SLAB_CACHE_DMA;
867 	}
868 
869 	kmalloc_caches[type][idx] = create_kmalloc_cache(
870 					kmalloc_info[idx].name[type],
871 					kmalloc_info[idx].size, flags, 0,
872 					kmalloc_info[idx].size);
873 
874 	/*
875 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
876 	 * KMALLOC_NORMAL caches.
877 	 */
878 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
879 		kmalloc_caches[type][idx]->refcount = -1;
880 }
881 
882 /*
883  * Create the kmalloc array. Some of the regular kmalloc arrays
884  * may already have been created because they were needed to
885  * enable allocations for slab creation.
886  */
887 void __init create_kmalloc_caches(slab_flags_t flags)
888 {
889 	int i;
890 	enum kmalloc_cache_type type;
891 
892 	/*
893 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
894 	 */
895 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
896 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
897 			if (!kmalloc_caches[type][i])
898 				new_kmalloc_cache(i, type, flags);
899 
900 			/*
901 			 * Caches that are not of the two-to-the-power-of size.
902 			 * These have to be created immediately after the
903 			 * earlier power of two caches
904 			 */
905 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
906 					!kmalloc_caches[type][1])
907 				new_kmalloc_cache(1, type, flags);
908 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
909 					!kmalloc_caches[type][2])
910 				new_kmalloc_cache(2, type, flags);
911 		}
912 	}
913 
914 	/* Kmalloc array is now usable */
915 	slab_state = UP;
916 }
917 #endif /* !CONFIG_SLOB */
918 
919 gfp_t kmalloc_fix_flags(gfp_t flags)
920 {
921 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
922 
923 	flags &= ~GFP_SLAB_BUG_MASK;
924 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
925 			invalid_mask, &invalid_mask, flags, &flags);
926 	dump_stack();
927 
928 	return flags;
929 }
930 
931 /*
932  * To avoid unnecessary overhead, we pass through large allocation requests
933  * directly to the page allocator. We use __GFP_COMP, because we will need to
934  * know the allocation order to free the pages properly in kfree.
935  */
936 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
937 {
938 	void *ret = NULL;
939 	struct page *page;
940 
941 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
942 		flags = kmalloc_fix_flags(flags);
943 
944 	flags |= __GFP_COMP;
945 	page = alloc_pages(flags, order);
946 	if (likely(page)) {
947 		ret = page_address(page);
948 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
949 				      PAGE_SIZE << order);
950 	}
951 	ret = kasan_kmalloc_large(ret, size, flags);
952 	/* As ret might get tagged, call kmemleak hook after KASAN. */
953 	kmemleak_alloc(ret, size, 1, flags);
954 	return ret;
955 }
956 EXPORT_SYMBOL(kmalloc_order);
957 
958 #ifdef CONFIG_TRACING
959 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
960 {
961 	void *ret = kmalloc_order(size, flags, order);
962 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
963 	return ret;
964 }
965 EXPORT_SYMBOL(kmalloc_order_trace);
966 #endif
967 
968 #ifdef CONFIG_SLAB_FREELIST_RANDOM
969 /* Randomize a generic freelist */
970 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
971 			       unsigned int count)
972 {
973 	unsigned int rand;
974 	unsigned int i;
975 
976 	for (i = 0; i < count; i++)
977 		list[i] = i;
978 
979 	/* Fisher-Yates shuffle */
980 	for (i = count - 1; i > 0; i--) {
981 		rand = prandom_u32_state(state);
982 		rand %= (i + 1);
983 		swap(list[i], list[rand]);
984 	}
985 }
986 
987 /* Create a random sequence per cache */
988 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
989 				    gfp_t gfp)
990 {
991 	struct rnd_state state;
992 
993 	if (count < 2 || cachep->random_seq)
994 		return 0;
995 
996 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
997 	if (!cachep->random_seq)
998 		return -ENOMEM;
999 
1000 	/* Get best entropy at this stage of boot */
1001 	prandom_seed_state(&state, get_random_long());
1002 
1003 	freelist_randomize(&state, cachep->random_seq, count);
1004 	return 0;
1005 }
1006 
1007 /* Destroy the per-cache random freelist sequence */
1008 void cache_random_seq_destroy(struct kmem_cache *cachep)
1009 {
1010 	kfree(cachep->random_seq);
1011 	cachep->random_seq = NULL;
1012 }
1013 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1014 
1015 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1016 #ifdef CONFIG_SLAB
1017 #define SLABINFO_RIGHTS (0600)
1018 #else
1019 #define SLABINFO_RIGHTS (0400)
1020 #endif
1021 
1022 static void print_slabinfo_header(struct seq_file *m)
1023 {
1024 	/*
1025 	 * Output format version, so at least we can change it
1026 	 * without _too_ many complaints.
1027 	 */
1028 #ifdef CONFIG_DEBUG_SLAB
1029 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1030 #else
1031 	seq_puts(m, "slabinfo - version: 2.1\n");
1032 #endif
1033 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1034 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1035 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1036 #ifdef CONFIG_DEBUG_SLAB
1037 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1038 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1039 #endif
1040 	seq_putc(m, '\n');
1041 }
1042 
1043 static void *slab_start(struct seq_file *m, loff_t *pos)
1044 {
1045 	mutex_lock(&slab_mutex);
1046 	return seq_list_start(&slab_caches, *pos);
1047 }
1048 
1049 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1050 {
1051 	return seq_list_next(p, &slab_caches, pos);
1052 }
1053 
1054 static void slab_stop(struct seq_file *m, void *p)
1055 {
1056 	mutex_unlock(&slab_mutex);
1057 }
1058 
1059 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1060 {
1061 	struct slabinfo sinfo;
1062 
1063 	memset(&sinfo, 0, sizeof(sinfo));
1064 	get_slabinfo(s, &sinfo);
1065 
1066 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1067 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1068 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1069 
1070 	seq_printf(m, " : tunables %4u %4u %4u",
1071 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1072 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1073 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1074 	slabinfo_show_stats(m, s);
1075 	seq_putc(m, '\n');
1076 }
1077 
1078 static int slab_show(struct seq_file *m, void *p)
1079 {
1080 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1081 
1082 	if (p == slab_caches.next)
1083 		print_slabinfo_header(m);
1084 	cache_show(s, m);
1085 	return 0;
1086 }
1087 
1088 void dump_unreclaimable_slab(void)
1089 {
1090 	struct kmem_cache *s;
1091 	struct slabinfo sinfo;
1092 
1093 	/*
1094 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1095 	 * sleep in oom path. But, without mutex hold, it may introduce a
1096 	 * risk of crash.
1097 	 * Use mutex_trylock to protect the list traverse, dump nothing
1098 	 * without acquiring the mutex.
1099 	 */
1100 	if (!mutex_trylock(&slab_mutex)) {
1101 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1102 		return;
1103 	}
1104 
1105 	pr_info("Unreclaimable slab info:\n");
1106 	pr_info("Name                      Used          Total\n");
1107 
1108 	list_for_each_entry(s, &slab_caches, list) {
1109 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1110 			continue;
1111 
1112 		get_slabinfo(s, &sinfo);
1113 
1114 		if (sinfo.num_objs > 0)
1115 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1116 				(sinfo.active_objs * s->size) / 1024,
1117 				(sinfo.num_objs * s->size) / 1024);
1118 	}
1119 	mutex_unlock(&slab_mutex);
1120 }
1121 
1122 /*
1123  * slabinfo_op - iterator that generates /proc/slabinfo
1124  *
1125  * Output layout:
1126  * cache-name
1127  * num-active-objs
1128  * total-objs
1129  * object size
1130  * num-active-slabs
1131  * total-slabs
1132  * num-pages-per-slab
1133  * + further values on SMP and with statistics enabled
1134  */
1135 static const struct seq_operations slabinfo_op = {
1136 	.start = slab_start,
1137 	.next = slab_next,
1138 	.stop = slab_stop,
1139 	.show = slab_show,
1140 };
1141 
1142 static int slabinfo_open(struct inode *inode, struct file *file)
1143 {
1144 	return seq_open(file, &slabinfo_op);
1145 }
1146 
1147 static const struct proc_ops slabinfo_proc_ops = {
1148 	.proc_flags	= PROC_ENTRY_PERMANENT,
1149 	.proc_open	= slabinfo_open,
1150 	.proc_read	= seq_read,
1151 	.proc_write	= slabinfo_write,
1152 	.proc_lseek	= seq_lseek,
1153 	.proc_release	= seq_release,
1154 };
1155 
1156 static int __init slab_proc_init(void)
1157 {
1158 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1159 	return 0;
1160 }
1161 module_init(slab_proc_init);
1162 
1163 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1164 
1165 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1166 					   gfp_t flags)
1167 {
1168 	void *ret;
1169 	size_t ks;
1170 
1171 	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
1172 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1173 		if (!kasan_check_byte(p))
1174 			return NULL;
1175 		ks = kfence_ksize(p) ?: __ksize(p);
1176 	} else
1177 		ks = 0;
1178 
1179 	/* If the object still fits, repoison it precisely. */
1180 	if (ks >= new_size) {
1181 		p = kasan_krealloc((void *)p, new_size, flags);
1182 		return (void *)p;
1183 	}
1184 
1185 	ret = kmalloc_track_caller(new_size, flags);
1186 	if (ret && p) {
1187 		/* Disable KASAN checks as the object's redzone is accessed. */
1188 		kasan_disable_current();
1189 		memcpy(ret, kasan_reset_tag(p), ks);
1190 		kasan_enable_current();
1191 	}
1192 
1193 	return ret;
1194 }
1195 
1196 /**
1197  * krealloc - reallocate memory. The contents will remain unchanged.
1198  * @p: object to reallocate memory for.
1199  * @new_size: how many bytes of memory are required.
1200  * @flags: the type of memory to allocate.
1201  *
1202  * The contents of the object pointed to are preserved up to the
1203  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1204  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1205  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1206  *
1207  * Return: pointer to the allocated memory or %NULL in case of error
1208  */
1209 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1210 {
1211 	void *ret;
1212 
1213 	if (unlikely(!new_size)) {
1214 		kfree(p);
1215 		return ZERO_SIZE_PTR;
1216 	}
1217 
1218 	ret = __do_krealloc(p, new_size, flags);
1219 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1220 		kfree(p);
1221 
1222 	return ret;
1223 }
1224 EXPORT_SYMBOL(krealloc);
1225 
1226 /**
1227  * kfree_sensitive - Clear sensitive information in memory before freeing
1228  * @p: object to free memory of
1229  *
1230  * The memory of the object @p points to is zeroed before freed.
1231  * If @p is %NULL, kfree_sensitive() does nothing.
1232  *
1233  * Note: this function zeroes the whole allocated buffer which can be a good
1234  * deal bigger than the requested buffer size passed to kmalloc(). So be
1235  * careful when using this function in performance sensitive code.
1236  */
1237 void kfree_sensitive(const void *p)
1238 {
1239 	size_t ks;
1240 	void *mem = (void *)p;
1241 
1242 	ks = ksize(mem);
1243 	if (ks)
1244 		memzero_explicit(mem, ks);
1245 	kfree(mem);
1246 }
1247 EXPORT_SYMBOL(kfree_sensitive);
1248 
1249 /**
1250  * ksize - get the actual amount of memory allocated for a given object
1251  * @objp: Pointer to the object
1252  *
1253  * kmalloc may internally round up allocations and return more memory
1254  * than requested. ksize() can be used to determine the actual amount of
1255  * memory allocated. The caller may use this additional memory, even though
1256  * a smaller amount of memory was initially specified with the kmalloc call.
1257  * The caller must guarantee that objp points to a valid object previously
1258  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1259  * must not be freed during the duration of the call.
1260  *
1261  * Return: size of the actual memory used by @objp in bytes
1262  */
1263 size_t ksize(const void *objp)
1264 {
1265 	size_t size;
1266 
1267 	/*
1268 	 * We need to first check that the pointer to the object is valid, and
1269 	 * only then unpoison the memory. The report printed from ksize() is
1270 	 * more useful, then when it's printed later when the behaviour could
1271 	 * be undefined due to a potential use-after-free or double-free.
1272 	 *
1273 	 * We use kasan_check_byte(), which is supported for the hardware
1274 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1275 	 *
1276 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1277 	 * ksize() writing to and potentially corrupting the memory region.
1278 	 *
1279 	 * We want to perform the check before __ksize(), to avoid potentially
1280 	 * crashing in __ksize() due to accessing invalid metadata.
1281 	 */
1282 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1283 		return 0;
1284 
1285 	size = kfence_ksize(objp) ?: __ksize(objp);
1286 	/*
1287 	 * We assume that ksize callers could use whole allocated area,
1288 	 * so we need to unpoison this area.
1289 	 */
1290 	kasan_unpoison_range(objp, size);
1291 	return size;
1292 }
1293 EXPORT_SYMBOL(ksize);
1294 
1295 /* Tracepoints definitions. */
1296 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1297 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1298 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1299 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1300 EXPORT_TRACEPOINT_SYMBOL(kfree);
1301 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1302 
1303 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1304 {
1305 	if (__should_failslab(s, gfpflags))
1306 		return -ENOMEM;
1307 	return 0;
1308 }
1309 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1310