xref: /openbmc/linux/mm/slab_common.c (revision 4e5e4705)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 #include <trace/events/kmem.h>
23 
24 #include "slab.h"
25 
26 enum slab_state slab_state;
27 LIST_HEAD(slab_caches);
28 DEFINE_MUTEX(slab_mutex);
29 struct kmem_cache *kmem_cache;
30 
31 #ifdef CONFIG_DEBUG_VM
32 static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
33 				   size_t size)
34 {
35 	struct kmem_cache *s = NULL;
36 
37 	if (!name || in_interrupt() || size < sizeof(void *) ||
38 		size > KMALLOC_MAX_SIZE) {
39 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
40 		return -EINVAL;
41 	}
42 
43 	list_for_each_entry(s, &slab_caches, list) {
44 		char tmp;
45 		int res;
46 
47 		/*
48 		 * This happens when the module gets unloaded and doesn't
49 		 * destroy its slab cache and no-one else reuses the vmalloc
50 		 * area of the module.  Print a warning.
51 		 */
52 		res = probe_kernel_address(s->name, tmp);
53 		if (res) {
54 			pr_err("Slab cache with size %d has lost its name\n",
55 			       s->object_size);
56 			continue;
57 		}
58 
59 #if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
60 		/*
61 		 * For simplicity, we won't check this in the list of memcg
62 		 * caches. We have control over memcg naming, and if there
63 		 * aren't duplicates in the global list, there won't be any
64 		 * duplicates in the memcg lists as well.
65 		 */
66 		if (!memcg && !strcmp(s->name, name)) {
67 			pr_err("%s (%s): Cache name already exists.\n",
68 			       __func__, name);
69 			dump_stack();
70 			s = NULL;
71 			return -EINVAL;
72 		}
73 #endif
74 	}
75 
76 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
77 	return 0;
78 }
79 #else
80 static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
81 					  const char *name, size_t size)
82 {
83 	return 0;
84 }
85 #endif
86 
87 #ifdef CONFIG_MEMCG_KMEM
88 int memcg_update_all_caches(int num_memcgs)
89 {
90 	struct kmem_cache *s;
91 	int ret = 0;
92 	mutex_lock(&slab_mutex);
93 
94 	list_for_each_entry(s, &slab_caches, list) {
95 		if (!is_root_cache(s))
96 			continue;
97 
98 		ret = memcg_update_cache_size(s, num_memcgs);
99 		/*
100 		 * See comment in memcontrol.c, memcg_update_cache_size:
101 		 * Instead of freeing the memory, we'll just leave the caches
102 		 * up to this point in an updated state.
103 		 */
104 		if (ret)
105 			goto out;
106 	}
107 
108 	memcg_update_array_size(num_memcgs);
109 out:
110 	mutex_unlock(&slab_mutex);
111 	return ret;
112 }
113 #endif
114 
115 /*
116  * Figure out what the alignment of the objects will be given a set of
117  * flags, a user specified alignment and the size of the objects.
118  */
119 unsigned long calculate_alignment(unsigned long flags,
120 		unsigned long align, unsigned long size)
121 {
122 	/*
123 	 * If the user wants hardware cache aligned objects then follow that
124 	 * suggestion if the object is sufficiently large.
125 	 *
126 	 * The hardware cache alignment cannot override the specified
127 	 * alignment though. If that is greater then use it.
128 	 */
129 	if (flags & SLAB_HWCACHE_ALIGN) {
130 		unsigned long ralign = cache_line_size();
131 		while (size <= ralign / 2)
132 			ralign /= 2;
133 		align = max(align, ralign);
134 	}
135 
136 	if (align < ARCH_SLAB_MINALIGN)
137 		align = ARCH_SLAB_MINALIGN;
138 
139 	return ALIGN(align, sizeof(void *));
140 }
141 
142 
143 /*
144  * kmem_cache_create - Create a cache.
145  * @name: A string which is used in /proc/slabinfo to identify this cache.
146  * @size: The size of objects to be created in this cache.
147  * @align: The required alignment for the objects.
148  * @flags: SLAB flags
149  * @ctor: A constructor for the objects.
150  *
151  * Returns a ptr to the cache on success, NULL on failure.
152  * Cannot be called within a interrupt, but can be interrupted.
153  * The @ctor is run when new pages are allocated by the cache.
154  *
155  * The flags are
156  *
157  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
158  * to catch references to uninitialised memory.
159  *
160  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
161  * for buffer overruns.
162  *
163  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
164  * cacheline.  This can be beneficial if you're counting cycles as closely
165  * as davem.
166  */
167 
168 struct kmem_cache *
169 kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
170 			size_t align, unsigned long flags, void (*ctor)(void *),
171 			struct kmem_cache *parent_cache)
172 {
173 	struct kmem_cache *s = NULL;
174 	int err = 0;
175 
176 	get_online_cpus();
177 	mutex_lock(&slab_mutex);
178 
179 	if (!kmem_cache_sanity_check(memcg, name, size) == 0)
180 		goto out_locked;
181 
182 	/*
183 	 * Some allocators will constraint the set of valid flags to a subset
184 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
185 	 * case, and we'll just provide them with a sanitized version of the
186 	 * passed flags.
187 	 */
188 	flags &= CACHE_CREATE_MASK;
189 
190 	s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
191 	if (s)
192 		goto out_locked;
193 
194 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
195 	if (s) {
196 		s->object_size = s->size = size;
197 		s->align = calculate_alignment(flags, align, size);
198 		s->ctor = ctor;
199 
200 		if (memcg_register_cache(memcg, s, parent_cache)) {
201 			kmem_cache_free(kmem_cache, s);
202 			err = -ENOMEM;
203 			goto out_locked;
204 		}
205 
206 		s->name = kstrdup(name, GFP_KERNEL);
207 		if (!s->name) {
208 			kmem_cache_free(kmem_cache, s);
209 			err = -ENOMEM;
210 			goto out_locked;
211 		}
212 
213 		err = __kmem_cache_create(s, flags);
214 		if (!err) {
215 			s->refcount = 1;
216 			list_add(&s->list, &slab_caches);
217 			memcg_cache_list_add(memcg, s);
218 		} else {
219 			kfree(s->name);
220 			kmem_cache_free(kmem_cache, s);
221 		}
222 	} else
223 		err = -ENOMEM;
224 
225 out_locked:
226 	mutex_unlock(&slab_mutex);
227 	put_online_cpus();
228 
229 	if (err) {
230 
231 		if (flags & SLAB_PANIC)
232 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
233 				name, err);
234 		else {
235 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
236 				name, err);
237 			dump_stack();
238 		}
239 
240 		return NULL;
241 	}
242 
243 	return s;
244 }
245 
246 struct kmem_cache *
247 kmem_cache_create(const char *name, size_t size, size_t align,
248 		  unsigned long flags, void (*ctor)(void *))
249 {
250 	return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
251 }
252 EXPORT_SYMBOL(kmem_cache_create);
253 
254 void kmem_cache_destroy(struct kmem_cache *s)
255 {
256 	/* Destroy all the children caches if we aren't a memcg cache */
257 	kmem_cache_destroy_memcg_children(s);
258 
259 	get_online_cpus();
260 	mutex_lock(&slab_mutex);
261 	s->refcount--;
262 	if (!s->refcount) {
263 		list_del(&s->list);
264 
265 		if (!__kmem_cache_shutdown(s)) {
266 			mutex_unlock(&slab_mutex);
267 			if (s->flags & SLAB_DESTROY_BY_RCU)
268 				rcu_barrier();
269 
270 			memcg_release_cache(s);
271 			kfree(s->name);
272 			kmem_cache_free(kmem_cache, s);
273 		} else {
274 			list_add(&s->list, &slab_caches);
275 			mutex_unlock(&slab_mutex);
276 			printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
277 				s->name);
278 			dump_stack();
279 		}
280 	} else {
281 		mutex_unlock(&slab_mutex);
282 	}
283 	put_online_cpus();
284 }
285 EXPORT_SYMBOL(kmem_cache_destroy);
286 
287 int slab_is_available(void)
288 {
289 	return slab_state >= UP;
290 }
291 
292 #ifndef CONFIG_SLOB
293 /* Create a cache during boot when no slab services are available yet */
294 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
295 		unsigned long flags)
296 {
297 	int err;
298 
299 	s->name = name;
300 	s->size = s->object_size = size;
301 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
302 	err = __kmem_cache_create(s, flags);
303 
304 	if (err)
305 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
306 					name, size, err);
307 
308 	s->refcount = -1;	/* Exempt from merging for now */
309 }
310 
311 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
312 				unsigned long flags)
313 {
314 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
315 
316 	if (!s)
317 		panic("Out of memory when creating slab %s\n", name);
318 
319 	create_boot_cache(s, name, size, flags);
320 	list_add(&s->list, &slab_caches);
321 	s->refcount = 1;
322 	return s;
323 }
324 
325 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
326 EXPORT_SYMBOL(kmalloc_caches);
327 
328 #ifdef CONFIG_ZONE_DMA
329 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
330 EXPORT_SYMBOL(kmalloc_dma_caches);
331 #endif
332 
333 /*
334  * Conversion table for small slabs sizes / 8 to the index in the
335  * kmalloc array. This is necessary for slabs < 192 since we have non power
336  * of two cache sizes there. The size of larger slabs can be determined using
337  * fls.
338  */
339 static s8 size_index[24] = {
340 	3,	/* 8 */
341 	4,	/* 16 */
342 	5,	/* 24 */
343 	5,	/* 32 */
344 	6,	/* 40 */
345 	6,	/* 48 */
346 	6,	/* 56 */
347 	6,	/* 64 */
348 	1,	/* 72 */
349 	1,	/* 80 */
350 	1,	/* 88 */
351 	1,	/* 96 */
352 	7,	/* 104 */
353 	7,	/* 112 */
354 	7,	/* 120 */
355 	7,	/* 128 */
356 	2,	/* 136 */
357 	2,	/* 144 */
358 	2,	/* 152 */
359 	2,	/* 160 */
360 	2,	/* 168 */
361 	2,	/* 176 */
362 	2,	/* 184 */
363 	2	/* 192 */
364 };
365 
366 static inline int size_index_elem(size_t bytes)
367 {
368 	return (bytes - 1) / 8;
369 }
370 
371 /*
372  * Find the kmem_cache structure that serves a given size of
373  * allocation
374  */
375 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
376 {
377 	int index;
378 
379 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
380 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
381 		return NULL;
382 	}
383 
384 	if (size <= 192) {
385 		if (!size)
386 			return ZERO_SIZE_PTR;
387 
388 		index = size_index[size_index_elem(size)];
389 	} else
390 		index = fls(size - 1);
391 
392 #ifdef CONFIG_ZONE_DMA
393 	if (unlikely((flags & GFP_DMA)))
394 		return kmalloc_dma_caches[index];
395 
396 #endif
397 	return kmalloc_caches[index];
398 }
399 
400 /*
401  * Create the kmalloc array. Some of the regular kmalloc arrays
402  * may already have been created because they were needed to
403  * enable allocations for slab creation.
404  */
405 void __init create_kmalloc_caches(unsigned long flags)
406 {
407 	int i;
408 
409 	/*
410 	 * Patch up the size_index table if we have strange large alignment
411 	 * requirements for the kmalloc array. This is only the case for
412 	 * MIPS it seems. The standard arches will not generate any code here.
413 	 *
414 	 * Largest permitted alignment is 256 bytes due to the way we
415 	 * handle the index determination for the smaller caches.
416 	 *
417 	 * Make sure that nothing crazy happens if someone starts tinkering
418 	 * around with ARCH_KMALLOC_MINALIGN
419 	 */
420 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
421 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
422 
423 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
424 		int elem = size_index_elem(i);
425 
426 		if (elem >= ARRAY_SIZE(size_index))
427 			break;
428 		size_index[elem] = KMALLOC_SHIFT_LOW;
429 	}
430 
431 	if (KMALLOC_MIN_SIZE >= 64) {
432 		/*
433 		 * The 96 byte size cache is not used if the alignment
434 		 * is 64 byte.
435 		 */
436 		for (i = 64 + 8; i <= 96; i += 8)
437 			size_index[size_index_elem(i)] = 7;
438 
439 	}
440 
441 	if (KMALLOC_MIN_SIZE >= 128) {
442 		/*
443 		 * The 192 byte sized cache is not used if the alignment
444 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
445 		 * instead.
446 		 */
447 		for (i = 128 + 8; i <= 192; i += 8)
448 			size_index[size_index_elem(i)] = 8;
449 	}
450 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
451 		if (!kmalloc_caches[i]) {
452 			kmalloc_caches[i] = create_kmalloc_cache(NULL,
453 							1 << i, flags);
454 		}
455 
456 		/*
457 		 * Caches that are not of the two-to-the-power-of size.
458 		 * These have to be created immediately after the
459 		 * earlier power of two caches
460 		 */
461 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
462 			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
463 
464 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
465 			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
466 	}
467 
468 	/* Kmalloc array is now usable */
469 	slab_state = UP;
470 
471 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
472 		struct kmem_cache *s = kmalloc_caches[i];
473 		char *n;
474 
475 		if (s) {
476 			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
477 
478 			BUG_ON(!n);
479 			s->name = n;
480 		}
481 	}
482 
483 #ifdef CONFIG_ZONE_DMA
484 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
485 		struct kmem_cache *s = kmalloc_caches[i];
486 
487 		if (s) {
488 			int size = kmalloc_size(i);
489 			char *n = kasprintf(GFP_NOWAIT,
490 				 "dma-kmalloc-%d", size);
491 
492 			BUG_ON(!n);
493 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
494 				size, SLAB_CACHE_DMA | flags);
495 		}
496 	}
497 #endif
498 }
499 #endif /* !CONFIG_SLOB */
500 
501 #ifdef CONFIG_TRACING
502 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
503 {
504 	void *ret = kmalloc_order(size, flags, order);
505 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
506 	return ret;
507 }
508 EXPORT_SYMBOL(kmalloc_order_trace);
509 #endif
510 
511 #ifdef CONFIG_SLABINFO
512 
513 #ifdef CONFIG_SLAB
514 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
515 #else
516 #define SLABINFO_RIGHTS S_IRUSR
517 #endif
518 
519 void print_slabinfo_header(struct seq_file *m)
520 {
521 	/*
522 	 * Output format version, so at least we can change it
523 	 * without _too_ many complaints.
524 	 */
525 #ifdef CONFIG_DEBUG_SLAB
526 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
527 #else
528 	seq_puts(m, "slabinfo - version: 2.1\n");
529 #endif
530 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
531 		 "<objperslab> <pagesperslab>");
532 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
533 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
534 #ifdef CONFIG_DEBUG_SLAB
535 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
536 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
537 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
538 #endif
539 	seq_putc(m, '\n');
540 }
541 
542 static void *s_start(struct seq_file *m, loff_t *pos)
543 {
544 	loff_t n = *pos;
545 
546 	mutex_lock(&slab_mutex);
547 	if (!n)
548 		print_slabinfo_header(m);
549 
550 	return seq_list_start(&slab_caches, *pos);
551 }
552 
553 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
554 {
555 	return seq_list_next(p, &slab_caches, pos);
556 }
557 
558 void slab_stop(struct seq_file *m, void *p)
559 {
560 	mutex_unlock(&slab_mutex);
561 }
562 
563 static void
564 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
565 {
566 	struct kmem_cache *c;
567 	struct slabinfo sinfo;
568 	int i;
569 
570 	if (!is_root_cache(s))
571 		return;
572 
573 	for_each_memcg_cache_index(i) {
574 		c = cache_from_memcg_idx(s, i);
575 		if (!c)
576 			continue;
577 
578 		memset(&sinfo, 0, sizeof(sinfo));
579 		get_slabinfo(c, &sinfo);
580 
581 		info->active_slabs += sinfo.active_slabs;
582 		info->num_slabs += sinfo.num_slabs;
583 		info->shared_avail += sinfo.shared_avail;
584 		info->active_objs += sinfo.active_objs;
585 		info->num_objs += sinfo.num_objs;
586 	}
587 }
588 
589 int cache_show(struct kmem_cache *s, struct seq_file *m)
590 {
591 	struct slabinfo sinfo;
592 
593 	memset(&sinfo, 0, sizeof(sinfo));
594 	get_slabinfo(s, &sinfo);
595 
596 	memcg_accumulate_slabinfo(s, &sinfo);
597 
598 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
599 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
600 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
601 
602 	seq_printf(m, " : tunables %4u %4u %4u",
603 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
604 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
605 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
606 	slabinfo_show_stats(m, s);
607 	seq_putc(m, '\n');
608 	return 0;
609 }
610 
611 static int s_show(struct seq_file *m, void *p)
612 {
613 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
614 
615 	if (!is_root_cache(s))
616 		return 0;
617 	return cache_show(s, m);
618 }
619 
620 /*
621  * slabinfo_op - iterator that generates /proc/slabinfo
622  *
623  * Output layout:
624  * cache-name
625  * num-active-objs
626  * total-objs
627  * object size
628  * num-active-slabs
629  * total-slabs
630  * num-pages-per-slab
631  * + further values on SMP and with statistics enabled
632  */
633 static const struct seq_operations slabinfo_op = {
634 	.start = s_start,
635 	.next = slab_next,
636 	.stop = slab_stop,
637 	.show = s_show,
638 };
639 
640 static int slabinfo_open(struct inode *inode, struct file *file)
641 {
642 	return seq_open(file, &slabinfo_op);
643 }
644 
645 static const struct file_operations proc_slabinfo_operations = {
646 	.open		= slabinfo_open,
647 	.read		= seq_read,
648 	.write          = slabinfo_write,
649 	.llseek		= seq_lseek,
650 	.release	= seq_release,
651 };
652 
653 static int __init slab_proc_init(void)
654 {
655 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
656 						&proc_slabinfo_operations);
657 	return 0;
658 }
659 module_init(slab_proc_init);
660 #endif /* CONFIG_SLABINFO */
661