xref: /openbmc/linux/mm/slab_common.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/kmem.h>
30 
31 #include "internal.h"
32 
33 #include "slab.h"
34 
35 enum slab_state slab_state;
36 LIST_HEAD(slab_caches);
37 DEFINE_MUTEX(slab_mutex);
38 struct kmem_cache *kmem_cache;
39 
40 static LIST_HEAD(slab_caches_to_rcu_destroy);
41 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
42 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
43 		    slab_caches_to_rcu_destroy_workfn);
44 
45 /*
46  * Set of flags that will prevent slab merging
47  */
48 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
49 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
50 		SLAB_FAILSLAB | kasan_never_merge())
51 
52 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
53 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
54 
55 /*
56  * Merge control. If this is set then no merging of slab caches will occur.
57  */
58 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
59 
60 static int __init setup_slab_nomerge(char *str)
61 {
62 	slab_nomerge = true;
63 	return 1;
64 }
65 
66 static int __init setup_slab_merge(char *str)
67 {
68 	slab_nomerge = false;
69 	return 1;
70 }
71 
72 #ifdef CONFIG_SLUB
73 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
74 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
75 #endif
76 
77 __setup("slab_nomerge", setup_slab_nomerge);
78 __setup("slab_merge", setup_slab_merge);
79 
80 /*
81  * Determine the size of a slab object
82  */
83 unsigned int kmem_cache_size(struct kmem_cache *s)
84 {
85 	return s->object_size;
86 }
87 EXPORT_SYMBOL(kmem_cache_size);
88 
89 #ifdef CONFIG_DEBUG_VM
90 static int kmem_cache_sanity_check(const char *name, unsigned int size)
91 {
92 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
93 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
94 		return -EINVAL;
95 	}
96 
97 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
98 	return 0;
99 }
100 #else
101 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
102 {
103 	return 0;
104 }
105 #endif
106 
107 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
108 {
109 	size_t i;
110 
111 	for (i = 0; i < nr; i++) {
112 		if (s)
113 			kmem_cache_free(s, p[i]);
114 		else
115 			kfree(p[i]);
116 	}
117 }
118 
119 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
120 								void **p)
121 {
122 	size_t i;
123 
124 	for (i = 0; i < nr; i++) {
125 		void *x = p[i] = kmem_cache_alloc(s, flags);
126 		if (!x) {
127 			__kmem_cache_free_bulk(s, i, p);
128 			return 0;
129 		}
130 	}
131 	return i;
132 }
133 
134 /*
135  * Figure out what the alignment of the objects will be given a set of
136  * flags, a user specified alignment and the size of the objects.
137  */
138 static unsigned int calculate_alignment(slab_flags_t flags,
139 		unsigned int align, unsigned int size)
140 {
141 	/*
142 	 * If the user wants hardware cache aligned objects then follow that
143 	 * suggestion if the object is sufficiently large.
144 	 *
145 	 * The hardware cache alignment cannot override the specified
146 	 * alignment though. If that is greater then use it.
147 	 */
148 	if (flags & SLAB_HWCACHE_ALIGN) {
149 		unsigned int ralign;
150 
151 		ralign = cache_line_size();
152 		while (size <= ralign / 2)
153 			ralign /= 2;
154 		align = max(align, ralign);
155 	}
156 
157 	if (align < ARCH_SLAB_MINALIGN)
158 		align = ARCH_SLAB_MINALIGN;
159 
160 	return ALIGN(align, sizeof(void *));
161 }
162 
163 /*
164  * Find a mergeable slab cache
165  */
166 int slab_unmergeable(struct kmem_cache *s)
167 {
168 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
169 		return 1;
170 
171 	if (s->ctor)
172 		return 1;
173 
174 	if (s->usersize)
175 		return 1;
176 
177 	/*
178 	 * We may have set a slab to be unmergeable during bootstrap.
179 	 */
180 	if (s->refcount < 0)
181 		return 1;
182 
183 	return 0;
184 }
185 
186 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
187 		slab_flags_t flags, const char *name, void (*ctor)(void *))
188 {
189 	struct kmem_cache *s;
190 
191 	if (slab_nomerge)
192 		return NULL;
193 
194 	if (ctor)
195 		return NULL;
196 
197 	size = ALIGN(size, sizeof(void *));
198 	align = calculate_alignment(flags, align, size);
199 	size = ALIGN(size, align);
200 	flags = kmem_cache_flags(size, flags, name);
201 
202 	if (flags & SLAB_NEVER_MERGE)
203 		return NULL;
204 
205 	list_for_each_entry_reverse(s, &slab_caches, list) {
206 		if (slab_unmergeable(s))
207 			continue;
208 
209 		if (size > s->size)
210 			continue;
211 
212 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
213 			continue;
214 		/*
215 		 * Check if alignment is compatible.
216 		 * Courtesy of Adrian Drzewiecki
217 		 */
218 		if ((s->size & ~(align - 1)) != s->size)
219 			continue;
220 
221 		if (s->size - size >= sizeof(void *))
222 			continue;
223 
224 		if (IS_ENABLED(CONFIG_SLAB) && align &&
225 			(align > s->align || s->align % align))
226 			continue;
227 
228 		return s;
229 	}
230 	return NULL;
231 }
232 
233 static struct kmem_cache *create_cache(const char *name,
234 		unsigned int object_size, unsigned int align,
235 		slab_flags_t flags, unsigned int useroffset,
236 		unsigned int usersize, void (*ctor)(void *),
237 		struct kmem_cache *root_cache)
238 {
239 	struct kmem_cache *s;
240 	int err;
241 
242 	if (WARN_ON(useroffset + usersize > object_size))
243 		useroffset = usersize = 0;
244 
245 	err = -ENOMEM;
246 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
247 	if (!s)
248 		goto out;
249 
250 	s->name = name;
251 	s->size = s->object_size = object_size;
252 	s->align = align;
253 	s->ctor = ctor;
254 	s->useroffset = useroffset;
255 	s->usersize = usersize;
256 
257 	err = __kmem_cache_create(s, flags);
258 	if (err)
259 		goto out_free_cache;
260 
261 	s->refcount = 1;
262 	list_add(&s->list, &slab_caches);
263 out:
264 	if (err)
265 		return ERR_PTR(err);
266 	return s;
267 
268 out_free_cache:
269 	kmem_cache_free(kmem_cache, s);
270 	goto out;
271 }
272 
273 /**
274  * kmem_cache_create_usercopy - Create a cache with a region suitable
275  * for copying to userspace
276  * @name: A string which is used in /proc/slabinfo to identify this cache.
277  * @size: The size of objects to be created in this cache.
278  * @align: The required alignment for the objects.
279  * @flags: SLAB flags
280  * @useroffset: Usercopy region offset
281  * @usersize: Usercopy region size
282  * @ctor: A constructor for the objects.
283  *
284  * Cannot be called within a interrupt, but can be interrupted.
285  * The @ctor is run when new pages are allocated by the cache.
286  *
287  * The flags are
288  *
289  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
290  * to catch references to uninitialised memory.
291  *
292  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
293  * for buffer overruns.
294  *
295  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
296  * cacheline.  This can be beneficial if you're counting cycles as closely
297  * as davem.
298  *
299  * Return: a pointer to the cache on success, NULL on failure.
300  */
301 struct kmem_cache *
302 kmem_cache_create_usercopy(const char *name,
303 		  unsigned int size, unsigned int align,
304 		  slab_flags_t flags,
305 		  unsigned int useroffset, unsigned int usersize,
306 		  void (*ctor)(void *))
307 {
308 	struct kmem_cache *s = NULL;
309 	const char *cache_name;
310 	int err;
311 
312 #ifdef CONFIG_SLUB_DEBUG
313 	/*
314 	 * If no slub_debug was enabled globally, the static key is not yet
315 	 * enabled by setup_slub_debug(). Enable it if the cache is being
316 	 * created with any of the debugging flags passed explicitly.
317 	 */
318 	if (flags & SLAB_DEBUG_FLAGS)
319 		static_branch_enable(&slub_debug_enabled);
320 #endif
321 
322 	mutex_lock(&slab_mutex);
323 
324 	err = kmem_cache_sanity_check(name, size);
325 	if (err) {
326 		goto out_unlock;
327 	}
328 
329 	/* Refuse requests with allocator specific flags */
330 	if (flags & ~SLAB_FLAGS_PERMITTED) {
331 		err = -EINVAL;
332 		goto out_unlock;
333 	}
334 
335 	/*
336 	 * Some allocators will constraint the set of valid flags to a subset
337 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
338 	 * case, and we'll just provide them with a sanitized version of the
339 	 * passed flags.
340 	 */
341 	flags &= CACHE_CREATE_MASK;
342 
343 	/* Fail closed on bad usersize of useroffset values. */
344 	if (WARN_ON(!usersize && useroffset) ||
345 	    WARN_ON(size < usersize || size - usersize < useroffset))
346 		usersize = useroffset = 0;
347 
348 	if (!usersize)
349 		s = __kmem_cache_alias(name, size, align, flags, ctor);
350 	if (s)
351 		goto out_unlock;
352 
353 	cache_name = kstrdup_const(name, GFP_KERNEL);
354 	if (!cache_name) {
355 		err = -ENOMEM;
356 		goto out_unlock;
357 	}
358 
359 	s = create_cache(cache_name, size,
360 			 calculate_alignment(flags, align, size),
361 			 flags, useroffset, usersize, ctor, NULL);
362 	if (IS_ERR(s)) {
363 		err = PTR_ERR(s);
364 		kfree_const(cache_name);
365 	}
366 
367 out_unlock:
368 	mutex_unlock(&slab_mutex);
369 
370 	if (err) {
371 		if (flags & SLAB_PANIC)
372 			panic("%s: Failed to create slab '%s'. Error %d\n",
373 				__func__, name, err);
374 		else {
375 			pr_warn("%s(%s) failed with error %d\n",
376 				__func__, name, err);
377 			dump_stack();
378 		}
379 		return NULL;
380 	}
381 	return s;
382 }
383 EXPORT_SYMBOL(kmem_cache_create_usercopy);
384 
385 /**
386  * kmem_cache_create - Create a cache.
387  * @name: A string which is used in /proc/slabinfo to identify this cache.
388  * @size: The size of objects to be created in this cache.
389  * @align: The required alignment for the objects.
390  * @flags: SLAB flags
391  * @ctor: A constructor for the objects.
392  *
393  * Cannot be called within a interrupt, but can be interrupted.
394  * The @ctor is run when new pages are allocated by the cache.
395  *
396  * The flags are
397  *
398  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
399  * to catch references to uninitialised memory.
400  *
401  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
402  * for buffer overruns.
403  *
404  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
405  * cacheline.  This can be beneficial if you're counting cycles as closely
406  * as davem.
407  *
408  * Return: a pointer to the cache on success, NULL on failure.
409  */
410 struct kmem_cache *
411 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
412 		slab_flags_t flags, void (*ctor)(void *))
413 {
414 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
415 					  ctor);
416 }
417 EXPORT_SYMBOL(kmem_cache_create);
418 
419 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
420 {
421 	LIST_HEAD(to_destroy);
422 	struct kmem_cache *s, *s2;
423 
424 	/*
425 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
426 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
427 	 * through RCU and the associated kmem_cache are dereferenced
428 	 * while freeing the pages, so the kmem_caches should be freed only
429 	 * after the pending RCU operations are finished.  As rcu_barrier()
430 	 * is a pretty slow operation, we batch all pending destructions
431 	 * asynchronously.
432 	 */
433 	mutex_lock(&slab_mutex);
434 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
435 	mutex_unlock(&slab_mutex);
436 
437 	if (list_empty(&to_destroy))
438 		return;
439 
440 	rcu_barrier();
441 
442 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
443 		debugfs_slab_release(s);
444 		kfence_shutdown_cache(s);
445 #ifdef SLAB_SUPPORTS_SYSFS
446 		sysfs_slab_release(s);
447 #else
448 		slab_kmem_cache_release(s);
449 #endif
450 	}
451 }
452 
453 static int shutdown_cache(struct kmem_cache *s)
454 {
455 	/* free asan quarantined objects */
456 	kasan_cache_shutdown(s);
457 
458 	if (__kmem_cache_shutdown(s) != 0)
459 		return -EBUSY;
460 
461 	list_del(&s->list);
462 
463 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
464 #ifdef SLAB_SUPPORTS_SYSFS
465 		sysfs_slab_unlink(s);
466 #endif
467 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
468 		schedule_work(&slab_caches_to_rcu_destroy_work);
469 	} else {
470 		kfence_shutdown_cache(s);
471 		debugfs_slab_release(s);
472 #ifdef SLAB_SUPPORTS_SYSFS
473 		sysfs_slab_unlink(s);
474 		sysfs_slab_release(s);
475 #else
476 		slab_kmem_cache_release(s);
477 #endif
478 	}
479 
480 	return 0;
481 }
482 
483 void slab_kmem_cache_release(struct kmem_cache *s)
484 {
485 	__kmem_cache_release(s);
486 	kfree_const(s->name);
487 	kmem_cache_free(kmem_cache, s);
488 }
489 
490 void kmem_cache_destroy(struct kmem_cache *s)
491 {
492 	if (unlikely(!s) || !kasan_check_byte(s))
493 		return;
494 
495 	cpus_read_lock();
496 	mutex_lock(&slab_mutex);
497 
498 	s->refcount--;
499 	if (s->refcount)
500 		goto out_unlock;
501 
502 	WARN(shutdown_cache(s),
503 	     "%s %s: Slab cache still has objects when called from %pS",
504 	     __func__, s->name, (void *)_RET_IP_);
505 out_unlock:
506 	mutex_unlock(&slab_mutex);
507 	cpus_read_unlock();
508 }
509 EXPORT_SYMBOL(kmem_cache_destroy);
510 
511 /**
512  * kmem_cache_shrink - Shrink a cache.
513  * @cachep: The cache to shrink.
514  *
515  * Releases as many slabs as possible for a cache.
516  * To help debugging, a zero exit status indicates all slabs were released.
517  *
518  * Return: %0 if all slabs were released, non-zero otherwise
519  */
520 int kmem_cache_shrink(struct kmem_cache *cachep)
521 {
522 	int ret;
523 
524 
525 	kasan_cache_shrink(cachep);
526 	ret = __kmem_cache_shrink(cachep);
527 
528 	return ret;
529 }
530 EXPORT_SYMBOL(kmem_cache_shrink);
531 
532 bool slab_is_available(void)
533 {
534 	return slab_state >= UP;
535 }
536 
537 #ifdef CONFIG_PRINTK
538 /**
539  * kmem_valid_obj - does the pointer reference a valid slab object?
540  * @object: pointer to query.
541  *
542  * Return: %true if the pointer is to a not-yet-freed object from
543  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
544  * is to an already-freed object, and %false otherwise.
545  */
546 bool kmem_valid_obj(void *object)
547 {
548 	struct folio *folio;
549 
550 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
551 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
552 		return false;
553 	folio = virt_to_folio(object);
554 	return folio_test_slab(folio);
555 }
556 EXPORT_SYMBOL_GPL(kmem_valid_obj);
557 
558 /**
559  * kmem_dump_obj - Print available slab provenance information
560  * @object: slab object for which to find provenance information.
561  *
562  * This function uses pr_cont(), so that the caller is expected to have
563  * printed out whatever preamble is appropriate.  The provenance information
564  * depends on the type of object and on how much debugging is enabled.
565  * For a slab-cache object, the fact that it is a slab object is printed,
566  * and, if available, the slab name, return address, and stack trace from
567  * the allocation and last free path of that object.
568  *
569  * This function will splat if passed a pointer to a non-slab object.
570  * If you are not sure what type of object you have, you should instead
571  * use mem_dump_obj().
572  */
573 void kmem_dump_obj(void *object)
574 {
575 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
576 	int i;
577 	struct slab *slab;
578 	unsigned long ptroffset;
579 	struct kmem_obj_info kp = { };
580 
581 	if (WARN_ON_ONCE(!virt_addr_valid(object)))
582 		return;
583 	slab = virt_to_slab(object);
584 	if (WARN_ON_ONCE(!slab)) {
585 		pr_cont(" non-slab memory.\n");
586 		return;
587 	}
588 	kmem_obj_info(&kp, object, slab);
589 	if (kp.kp_slab_cache)
590 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
591 	else
592 		pr_cont(" slab%s", cp);
593 	if (kp.kp_objp)
594 		pr_cont(" start %px", kp.kp_objp);
595 	if (kp.kp_data_offset)
596 		pr_cont(" data offset %lu", kp.kp_data_offset);
597 	if (kp.kp_objp) {
598 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
599 		pr_cont(" pointer offset %lu", ptroffset);
600 	}
601 	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
602 		pr_cont(" size %u", kp.kp_slab_cache->usersize);
603 	if (kp.kp_ret)
604 		pr_cont(" allocated at %pS\n", kp.kp_ret);
605 	else
606 		pr_cont("\n");
607 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
608 		if (!kp.kp_stack[i])
609 			break;
610 		pr_info("    %pS\n", kp.kp_stack[i]);
611 	}
612 
613 	if (kp.kp_free_stack[0])
614 		pr_cont(" Free path:\n");
615 
616 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
617 		if (!kp.kp_free_stack[i])
618 			break;
619 		pr_info("    %pS\n", kp.kp_free_stack[i]);
620 	}
621 
622 }
623 EXPORT_SYMBOL_GPL(kmem_dump_obj);
624 #endif
625 
626 #ifndef CONFIG_SLOB
627 /* Create a cache during boot when no slab services are available yet */
628 void __init create_boot_cache(struct kmem_cache *s, const char *name,
629 		unsigned int size, slab_flags_t flags,
630 		unsigned int useroffset, unsigned int usersize)
631 {
632 	int err;
633 	unsigned int align = ARCH_KMALLOC_MINALIGN;
634 
635 	s->name = name;
636 	s->size = s->object_size = size;
637 
638 	/*
639 	 * For power of two sizes, guarantee natural alignment for kmalloc
640 	 * caches, regardless of SL*B debugging options.
641 	 */
642 	if (is_power_of_2(size))
643 		align = max(align, size);
644 	s->align = calculate_alignment(flags, align, size);
645 
646 	s->useroffset = useroffset;
647 	s->usersize = usersize;
648 
649 	err = __kmem_cache_create(s, flags);
650 
651 	if (err)
652 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
653 					name, size, err);
654 
655 	s->refcount = -1;	/* Exempt from merging for now */
656 }
657 
658 struct kmem_cache *__init create_kmalloc_cache(const char *name,
659 		unsigned int size, slab_flags_t flags,
660 		unsigned int useroffset, unsigned int usersize)
661 {
662 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
663 
664 	if (!s)
665 		panic("Out of memory when creating slab %s\n", name);
666 
667 	create_boot_cache(s, name, size, flags, useroffset, usersize);
668 	kasan_cache_create_kmalloc(s);
669 	list_add(&s->list, &slab_caches);
670 	s->refcount = 1;
671 	return s;
672 }
673 
674 struct kmem_cache *
675 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
676 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
677 EXPORT_SYMBOL(kmalloc_caches);
678 
679 /*
680  * Conversion table for small slabs sizes / 8 to the index in the
681  * kmalloc array. This is necessary for slabs < 192 since we have non power
682  * of two cache sizes there. The size of larger slabs can be determined using
683  * fls.
684  */
685 static u8 size_index[24] __ro_after_init = {
686 	3,	/* 8 */
687 	4,	/* 16 */
688 	5,	/* 24 */
689 	5,	/* 32 */
690 	6,	/* 40 */
691 	6,	/* 48 */
692 	6,	/* 56 */
693 	6,	/* 64 */
694 	1,	/* 72 */
695 	1,	/* 80 */
696 	1,	/* 88 */
697 	1,	/* 96 */
698 	7,	/* 104 */
699 	7,	/* 112 */
700 	7,	/* 120 */
701 	7,	/* 128 */
702 	2,	/* 136 */
703 	2,	/* 144 */
704 	2,	/* 152 */
705 	2,	/* 160 */
706 	2,	/* 168 */
707 	2,	/* 176 */
708 	2,	/* 184 */
709 	2	/* 192 */
710 };
711 
712 static inline unsigned int size_index_elem(unsigned int bytes)
713 {
714 	return (bytes - 1) / 8;
715 }
716 
717 /*
718  * Find the kmem_cache structure that serves a given size of
719  * allocation
720  */
721 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
722 {
723 	unsigned int index;
724 
725 	if (size <= 192) {
726 		if (!size)
727 			return ZERO_SIZE_PTR;
728 
729 		index = size_index[size_index_elem(size)];
730 	} else {
731 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
732 			return NULL;
733 		index = fls(size - 1);
734 	}
735 
736 	return kmalloc_caches[kmalloc_type(flags)][index];
737 }
738 
739 #ifdef CONFIG_ZONE_DMA
740 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
741 #else
742 #define KMALLOC_DMA_NAME(sz)
743 #endif
744 
745 #ifdef CONFIG_MEMCG_KMEM
746 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
747 #else
748 #define KMALLOC_CGROUP_NAME(sz)
749 #endif
750 
751 #define INIT_KMALLOC_INFO(__size, __short_size)			\
752 {								\
753 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
754 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
755 	KMALLOC_CGROUP_NAME(__short_size)			\
756 	KMALLOC_DMA_NAME(__short_size)				\
757 	.size = __size,						\
758 }
759 
760 /*
761  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
762  * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
763  * kmalloc-32M.
764  */
765 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
766 	INIT_KMALLOC_INFO(0, 0),
767 	INIT_KMALLOC_INFO(96, 96),
768 	INIT_KMALLOC_INFO(192, 192),
769 	INIT_KMALLOC_INFO(8, 8),
770 	INIT_KMALLOC_INFO(16, 16),
771 	INIT_KMALLOC_INFO(32, 32),
772 	INIT_KMALLOC_INFO(64, 64),
773 	INIT_KMALLOC_INFO(128, 128),
774 	INIT_KMALLOC_INFO(256, 256),
775 	INIT_KMALLOC_INFO(512, 512),
776 	INIT_KMALLOC_INFO(1024, 1k),
777 	INIT_KMALLOC_INFO(2048, 2k),
778 	INIT_KMALLOC_INFO(4096, 4k),
779 	INIT_KMALLOC_INFO(8192, 8k),
780 	INIT_KMALLOC_INFO(16384, 16k),
781 	INIT_KMALLOC_INFO(32768, 32k),
782 	INIT_KMALLOC_INFO(65536, 64k),
783 	INIT_KMALLOC_INFO(131072, 128k),
784 	INIT_KMALLOC_INFO(262144, 256k),
785 	INIT_KMALLOC_INFO(524288, 512k),
786 	INIT_KMALLOC_INFO(1048576, 1M),
787 	INIT_KMALLOC_INFO(2097152, 2M),
788 	INIT_KMALLOC_INFO(4194304, 4M),
789 	INIT_KMALLOC_INFO(8388608, 8M),
790 	INIT_KMALLOC_INFO(16777216, 16M),
791 	INIT_KMALLOC_INFO(33554432, 32M)
792 };
793 
794 /*
795  * Patch up the size_index table if we have strange large alignment
796  * requirements for the kmalloc array. This is only the case for
797  * MIPS it seems. The standard arches will not generate any code here.
798  *
799  * Largest permitted alignment is 256 bytes due to the way we
800  * handle the index determination for the smaller caches.
801  *
802  * Make sure that nothing crazy happens if someone starts tinkering
803  * around with ARCH_KMALLOC_MINALIGN
804  */
805 void __init setup_kmalloc_cache_index_table(void)
806 {
807 	unsigned int i;
808 
809 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
810 		!is_power_of_2(KMALLOC_MIN_SIZE));
811 
812 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
813 		unsigned int elem = size_index_elem(i);
814 
815 		if (elem >= ARRAY_SIZE(size_index))
816 			break;
817 		size_index[elem] = KMALLOC_SHIFT_LOW;
818 	}
819 
820 	if (KMALLOC_MIN_SIZE >= 64) {
821 		/*
822 		 * The 96 byte sized cache is not used if the alignment
823 		 * is 64 byte.
824 		 */
825 		for (i = 64 + 8; i <= 96; i += 8)
826 			size_index[size_index_elem(i)] = 7;
827 
828 	}
829 
830 	if (KMALLOC_MIN_SIZE >= 128) {
831 		/*
832 		 * The 192 byte sized cache is not used if the alignment
833 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
834 		 * instead.
835 		 */
836 		for (i = 128 + 8; i <= 192; i += 8)
837 			size_index[size_index_elem(i)] = 8;
838 	}
839 }
840 
841 static void __init
842 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
843 {
844 	if (type == KMALLOC_RECLAIM) {
845 		flags |= SLAB_RECLAIM_ACCOUNT;
846 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
847 		if (mem_cgroup_kmem_disabled()) {
848 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
849 			return;
850 		}
851 		flags |= SLAB_ACCOUNT;
852 	}
853 
854 	kmalloc_caches[type][idx] = create_kmalloc_cache(
855 					kmalloc_info[idx].name[type],
856 					kmalloc_info[idx].size, flags, 0,
857 					kmalloc_info[idx].size);
858 
859 	/*
860 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
861 	 * KMALLOC_NORMAL caches.
862 	 */
863 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
864 		kmalloc_caches[type][idx]->refcount = -1;
865 }
866 
867 /*
868  * Create the kmalloc array. Some of the regular kmalloc arrays
869  * may already have been created because they were needed to
870  * enable allocations for slab creation.
871  */
872 void __init create_kmalloc_caches(slab_flags_t flags)
873 {
874 	int i;
875 	enum kmalloc_cache_type type;
876 
877 	/*
878 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
879 	 */
880 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
881 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
882 			if (!kmalloc_caches[type][i])
883 				new_kmalloc_cache(i, type, flags);
884 
885 			/*
886 			 * Caches that are not of the two-to-the-power-of size.
887 			 * These have to be created immediately after the
888 			 * earlier power of two caches
889 			 */
890 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
891 					!kmalloc_caches[type][1])
892 				new_kmalloc_cache(1, type, flags);
893 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
894 					!kmalloc_caches[type][2])
895 				new_kmalloc_cache(2, type, flags);
896 		}
897 	}
898 
899 	/* Kmalloc array is now usable */
900 	slab_state = UP;
901 
902 #ifdef CONFIG_ZONE_DMA
903 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
904 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
905 
906 		if (s) {
907 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
908 				kmalloc_info[i].name[KMALLOC_DMA],
909 				kmalloc_info[i].size,
910 				SLAB_CACHE_DMA | flags, 0,
911 				kmalloc_info[i].size);
912 		}
913 	}
914 #endif
915 }
916 #endif /* !CONFIG_SLOB */
917 
918 gfp_t kmalloc_fix_flags(gfp_t flags)
919 {
920 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
921 
922 	flags &= ~GFP_SLAB_BUG_MASK;
923 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
924 			invalid_mask, &invalid_mask, flags, &flags);
925 	dump_stack();
926 
927 	return flags;
928 }
929 
930 /*
931  * To avoid unnecessary overhead, we pass through large allocation requests
932  * directly to the page allocator. We use __GFP_COMP, because we will need to
933  * know the allocation order to free the pages properly in kfree.
934  */
935 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
936 {
937 	void *ret = NULL;
938 	struct page *page;
939 
940 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
941 		flags = kmalloc_fix_flags(flags);
942 
943 	flags |= __GFP_COMP;
944 	page = alloc_pages(flags, order);
945 	if (likely(page)) {
946 		ret = page_address(page);
947 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
948 				      PAGE_SIZE << order);
949 	}
950 	ret = kasan_kmalloc_large(ret, size, flags);
951 	/* As ret might get tagged, call kmemleak hook after KASAN. */
952 	kmemleak_alloc(ret, size, 1, flags);
953 	return ret;
954 }
955 EXPORT_SYMBOL(kmalloc_order);
956 
957 #ifdef CONFIG_TRACING
958 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
959 {
960 	void *ret = kmalloc_order(size, flags, order);
961 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
962 	return ret;
963 }
964 EXPORT_SYMBOL(kmalloc_order_trace);
965 #endif
966 
967 #ifdef CONFIG_SLAB_FREELIST_RANDOM
968 /* Randomize a generic freelist */
969 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
970 			       unsigned int count)
971 {
972 	unsigned int rand;
973 	unsigned int i;
974 
975 	for (i = 0; i < count; i++)
976 		list[i] = i;
977 
978 	/* Fisher-Yates shuffle */
979 	for (i = count - 1; i > 0; i--) {
980 		rand = prandom_u32_state(state);
981 		rand %= (i + 1);
982 		swap(list[i], list[rand]);
983 	}
984 }
985 
986 /* Create a random sequence per cache */
987 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
988 				    gfp_t gfp)
989 {
990 	struct rnd_state state;
991 
992 	if (count < 2 || cachep->random_seq)
993 		return 0;
994 
995 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
996 	if (!cachep->random_seq)
997 		return -ENOMEM;
998 
999 	/* Get best entropy at this stage of boot */
1000 	prandom_seed_state(&state, get_random_long());
1001 
1002 	freelist_randomize(&state, cachep->random_seq, count);
1003 	return 0;
1004 }
1005 
1006 /* Destroy the per-cache random freelist sequence */
1007 void cache_random_seq_destroy(struct kmem_cache *cachep)
1008 {
1009 	kfree(cachep->random_seq);
1010 	cachep->random_seq = NULL;
1011 }
1012 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1013 
1014 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1015 #ifdef CONFIG_SLAB
1016 #define SLABINFO_RIGHTS (0600)
1017 #else
1018 #define SLABINFO_RIGHTS (0400)
1019 #endif
1020 
1021 static void print_slabinfo_header(struct seq_file *m)
1022 {
1023 	/*
1024 	 * Output format version, so at least we can change it
1025 	 * without _too_ many complaints.
1026 	 */
1027 #ifdef CONFIG_DEBUG_SLAB
1028 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1029 #else
1030 	seq_puts(m, "slabinfo - version: 2.1\n");
1031 #endif
1032 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1033 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1034 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1035 #ifdef CONFIG_DEBUG_SLAB
1036 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1037 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1038 #endif
1039 	seq_putc(m, '\n');
1040 }
1041 
1042 static void *slab_start(struct seq_file *m, loff_t *pos)
1043 {
1044 	mutex_lock(&slab_mutex);
1045 	return seq_list_start(&slab_caches, *pos);
1046 }
1047 
1048 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1049 {
1050 	return seq_list_next(p, &slab_caches, pos);
1051 }
1052 
1053 static void slab_stop(struct seq_file *m, void *p)
1054 {
1055 	mutex_unlock(&slab_mutex);
1056 }
1057 
1058 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1059 {
1060 	struct slabinfo sinfo;
1061 
1062 	memset(&sinfo, 0, sizeof(sinfo));
1063 	get_slabinfo(s, &sinfo);
1064 
1065 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1066 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1067 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1068 
1069 	seq_printf(m, " : tunables %4u %4u %4u",
1070 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1071 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1072 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1073 	slabinfo_show_stats(m, s);
1074 	seq_putc(m, '\n');
1075 }
1076 
1077 static int slab_show(struct seq_file *m, void *p)
1078 {
1079 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1080 
1081 	if (p == slab_caches.next)
1082 		print_slabinfo_header(m);
1083 	cache_show(s, m);
1084 	return 0;
1085 }
1086 
1087 void dump_unreclaimable_slab(void)
1088 {
1089 	struct kmem_cache *s;
1090 	struct slabinfo sinfo;
1091 
1092 	/*
1093 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1094 	 * sleep in oom path. But, without mutex hold, it may introduce a
1095 	 * risk of crash.
1096 	 * Use mutex_trylock to protect the list traverse, dump nothing
1097 	 * without acquiring the mutex.
1098 	 */
1099 	if (!mutex_trylock(&slab_mutex)) {
1100 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1101 		return;
1102 	}
1103 
1104 	pr_info("Unreclaimable slab info:\n");
1105 	pr_info("Name                      Used          Total\n");
1106 
1107 	list_for_each_entry(s, &slab_caches, list) {
1108 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1109 			continue;
1110 
1111 		get_slabinfo(s, &sinfo);
1112 
1113 		if (sinfo.num_objs > 0)
1114 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1115 				(sinfo.active_objs * s->size) / 1024,
1116 				(sinfo.num_objs * s->size) / 1024);
1117 	}
1118 	mutex_unlock(&slab_mutex);
1119 }
1120 
1121 /*
1122  * slabinfo_op - iterator that generates /proc/slabinfo
1123  *
1124  * Output layout:
1125  * cache-name
1126  * num-active-objs
1127  * total-objs
1128  * object size
1129  * num-active-slabs
1130  * total-slabs
1131  * num-pages-per-slab
1132  * + further values on SMP and with statistics enabled
1133  */
1134 static const struct seq_operations slabinfo_op = {
1135 	.start = slab_start,
1136 	.next = slab_next,
1137 	.stop = slab_stop,
1138 	.show = slab_show,
1139 };
1140 
1141 static int slabinfo_open(struct inode *inode, struct file *file)
1142 {
1143 	return seq_open(file, &slabinfo_op);
1144 }
1145 
1146 static const struct proc_ops slabinfo_proc_ops = {
1147 	.proc_flags	= PROC_ENTRY_PERMANENT,
1148 	.proc_open	= slabinfo_open,
1149 	.proc_read	= seq_read,
1150 	.proc_write	= slabinfo_write,
1151 	.proc_lseek	= seq_lseek,
1152 	.proc_release	= seq_release,
1153 };
1154 
1155 static int __init slab_proc_init(void)
1156 {
1157 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1158 	return 0;
1159 }
1160 module_init(slab_proc_init);
1161 
1162 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1163 
1164 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1165 					   gfp_t flags)
1166 {
1167 	void *ret;
1168 	size_t ks;
1169 
1170 	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
1171 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1172 		if (!kasan_check_byte(p))
1173 			return NULL;
1174 		ks = kfence_ksize(p) ?: __ksize(p);
1175 	} else
1176 		ks = 0;
1177 
1178 	/* If the object still fits, repoison it precisely. */
1179 	if (ks >= new_size) {
1180 		p = kasan_krealloc((void *)p, new_size, flags);
1181 		return (void *)p;
1182 	}
1183 
1184 	ret = kmalloc_track_caller(new_size, flags);
1185 	if (ret && p) {
1186 		/* Disable KASAN checks as the object's redzone is accessed. */
1187 		kasan_disable_current();
1188 		memcpy(ret, kasan_reset_tag(p), ks);
1189 		kasan_enable_current();
1190 	}
1191 
1192 	return ret;
1193 }
1194 
1195 /**
1196  * krealloc - reallocate memory. The contents will remain unchanged.
1197  * @p: object to reallocate memory for.
1198  * @new_size: how many bytes of memory are required.
1199  * @flags: the type of memory to allocate.
1200  *
1201  * The contents of the object pointed to are preserved up to the
1202  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1203  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1204  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1205  *
1206  * Return: pointer to the allocated memory or %NULL in case of error
1207  */
1208 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1209 {
1210 	void *ret;
1211 
1212 	if (unlikely(!new_size)) {
1213 		kfree(p);
1214 		return ZERO_SIZE_PTR;
1215 	}
1216 
1217 	ret = __do_krealloc(p, new_size, flags);
1218 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1219 		kfree(p);
1220 
1221 	return ret;
1222 }
1223 EXPORT_SYMBOL(krealloc);
1224 
1225 /**
1226  * kfree_sensitive - Clear sensitive information in memory before freeing
1227  * @p: object to free memory of
1228  *
1229  * The memory of the object @p points to is zeroed before freed.
1230  * If @p is %NULL, kfree_sensitive() does nothing.
1231  *
1232  * Note: this function zeroes the whole allocated buffer which can be a good
1233  * deal bigger than the requested buffer size passed to kmalloc(). So be
1234  * careful when using this function in performance sensitive code.
1235  */
1236 void kfree_sensitive(const void *p)
1237 {
1238 	size_t ks;
1239 	void *mem = (void *)p;
1240 
1241 	ks = ksize(mem);
1242 	if (ks)
1243 		memzero_explicit(mem, ks);
1244 	kfree(mem);
1245 }
1246 EXPORT_SYMBOL(kfree_sensitive);
1247 
1248 /**
1249  * ksize - get the actual amount of memory allocated for a given object
1250  * @objp: Pointer to the object
1251  *
1252  * kmalloc may internally round up allocations and return more memory
1253  * than requested. ksize() can be used to determine the actual amount of
1254  * memory allocated. The caller may use this additional memory, even though
1255  * a smaller amount of memory was initially specified with the kmalloc call.
1256  * The caller must guarantee that objp points to a valid object previously
1257  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1258  * must not be freed during the duration of the call.
1259  *
1260  * Return: size of the actual memory used by @objp in bytes
1261  */
1262 size_t ksize(const void *objp)
1263 {
1264 	size_t size;
1265 
1266 	/*
1267 	 * We need to first check that the pointer to the object is valid, and
1268 	 * only then unpoison the memory. The report printed from ksize() is
1269 	 * more useful, then when it's printed later when the behaviour could
1270 	 * be undefined due to a potential use-after-free or double-free.
1271 	 *
1272 	 * We use kasan_check_byte(), which is supported for the hardware
1273 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1274 	 *
1275 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1276 	 * ksize() writing to and potentially corrupting the memory region.
1277 	 *
1278 	 * We want to perform the check before __ksize(), to avoid potentially
1279 	 * crashing in __ksize() due to accessing invalid metadata.
1280 	 */
1281 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1282 		return 0;
1283 
1284 	size = kfence_ksize(objp) ?: __ksize(objp);
1285 	/*
1286 	 * We assume that ksize callers could use whole allocated area,
1287 	 * so we need to unpoison this area.
1288 	 */
1289 	kasan_unpoison_range(objp, size);
1290 	return size;
1291 }
1292 EXPORT_SYMBOL(ksize);
1293 
1294 /* Tracepoints definitions. */
1295 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1296 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1297 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1298 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1299 EXPORT_TRACEPOINT_SYMBOL(kfree);
1300 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1301 
1302 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1303 {
1304 	if (__should_failslab(s, gfpflags))
1305 		return -ENOMEM;
1306 	return 0;
1307 }
1308 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1309