xref: /openbmc/linux/mm/slab_common.c (revision 31368ce8)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25 
26 #include "slab.h"
27 
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32 
33 static LIST_HEAD(slab_caches_to_rcu_destroy);
34 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
35 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
36 		    slab_caches_to_rcu_destroy_workfn);
37 
38 /*
39  * Set of flags that will prevent slab merging
40  */
41 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
42 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
43 		SLAB_FAILSLAB | SLAB_KASAN)
44 
45 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
46 			 SLAB_NOTRACK | SLAB_ACCOUNT)
47 
48 /*
49  * Merge control. If this is set then no merging of slab caches will occur.
50  */
51 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
52 
53 static int __init setup_slab_nomerge(char *str)
54 {
55 	slab_nomerge = true;
56 	return 1;
57 }
58 
59 #ifdef CONFIG_SLUB
60 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
61 #endif
62 
63 __setup("slab_nomerge", setup_slab_nomerge);
64 
65 /*
66  * Determine the size of a slab object
67  */
68 unsigned int kmem_cache_size(struct kmem_cache *s)
69 {
70 	return s->object_size;
71 }
72 EXPORT_SYMBOL(kmem_cache_size);
73 
74 #ifdef CONFIG_DEBUG_VM
75 static int kmem_cache_sanity_check(const char *name, size_t size)
76 {
77 	struct kmem_cache *s = NULL;
78 
79 	if (!name || in_interrupt() || size < sizeof(void *) ||
80 		size > KMALLOC_MAX_SIZE) {
81 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
82 		return -EINVAL;
83 	}
84 
85 	list_for_each_entry(s, &slab_caches, list) {
86 		char tmp;
87 		int res;
88 
89 		/*
90 		 * This happens when the module gets unloaded and doesn't
91 		 * destroy its slab cache and no-one else reuses the vmalloc
92 		 * area of the module.  Print a warning.
93 		 */
94 		res = probe_kernel_address(s->name, tmp);
95 		if (res) {
96 			pr_err("Slab cache with size %d has lost its name\n",
97 			       s->object_size);
98 			continue;
99 		}
100 	}
101 
102 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
103 	return 0;
104 }
105 #else
106 static inline int kmem_cache_sanity_check(const char *name, size_t size)
107 {
108 	return 0;
109 }
110 #endif
111 
112 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
113 {
114 	size_t i;
115 
116 	for (i = 0; i < nr; i++) {
117 		if (s)
118 			kmem_cache_free(s, p[i]);
119 		else
120 			kfree(p[i]);
121 	}
122 }
123 
124 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
125 								void **p)
126 {
127 	size_t i;
128 
129 	for (i = 0; i < nr; i++) {
130 		void *x = p[i] = kmem_cache_alloc(s, flags);
131 		if (!x) {
132 			__kmem_cache_free_bulk(s, i, p);
133 			return 0;
134 		}
135 	}
136 	return i;
137 }
138 
139 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
140 
141 LIST_HEAD(slab_root_caches);
142 
143 void slab_init_memcg_params(struct kmem_cache *s)
144 {
145 	s->memcg_params.root_cache = NULL;
146 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
147 	INIT_LIST_HEAD(&s->memcg_params.children);
148 }
149 
150 static int init_memcg_params(struct kmem_cache *s,
151 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
152 {
153 	struct memcg_cache_array *arr;
154 
155 	if (root_cache) {
156 		s->memcg_params.root_cache = root_cache;
157 		s->memcg_params.memcg = memcg;
158 		INIT_LIST_HEAD(&s->memcg_params.children_node);
159 		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
160 		return 0;
161 	}
162 
163 	slab_init_memcg_params(s);
164 
165 	if (!memcg_nr_cache_ids)
166 		return 0;
167 
168 	arr = kzalloc(sizeof(struct memcg_cache_array) +
169 		      memcg_nr_cache_ids * sizeof(void *),
170 		      GFP_KERNEL);
171 	if (!arr)
172 		return -ENOMEM;
173 
174 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
175 	return 0;
176 }
177 
178 static void destroy_memcg_params(struct kmem_cache *s)
179 {
180 	if (is_root_cache(s))
181 		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
182 }
183 
184 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
185 {
186 	struct memcg_cache_array *old, *new;
187 
188 	new = kzalloc(sizeof(struct memcg_cache_array) +
189 		      new_array_size * sizeof(void *), GFP_KERNEL);
190 	if (!new)
191 		return -ENOMEM;
192 
193 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
194 					lockdep_is_held(&slab_mutex));
195 	if (old)
196 		memcpy(new->entries, old->entries,
197 		       memcg_nr_cache_ids * sizeof(void *));
198 
199 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
200 	if (old)
201 		kfree_rcu(old, rcu);
202 	return 0;
203 }
204 
205 int memcg_update_all_caches(int num_memcgs)
206 {
207 	struct kmem_cache *s;
208 	int ret = 0;
209 
210 	mutex_lock(&slab_mutex);
211 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
212 		ret = update_memcg_params(s, num_memcgs);
213 		/*
214 		 * Instead of freeing the memory, we'll just leave the caches
215 		 * up to this point in an updated state.
216 		 */
217 		if (ret)
218 			break;
219 	}
220 	mutex_unlock(&slab_mutex);
221 	return ret;
222 }
223 
224 void memcg_link_cache(struct kmem_cache *s)
225 {
226 	if (is_root_cache(s)) {
227 		list_add(&s->root_caches_node, &slab_root_caches);
228 	} else {
229 		list_add(&s->memcg_params.children_node,
230 			 &s->memcg_params.root_cache->memcg_params.children);
231 		list_add(&s->memcg_params.kmem_caches_node,
232 			 &s->memcg_params.memcg->kmem_caches);
233 	}
234 }
235 
236 static void memcg_unlink_cache(struct kmem_cache *s)
237 {
238 	if (is_root_cache(s)) {
239 		list_del(&s->root_caches_node);
240 	} else {
241 		list_del(&s->memcg_params.children_node);
242 		list_del(&s->memcg_params.kmem_caches_node);
243 	}
244 }
245 #else
246 static inline int init_memcg_params(struct kmem_cache *s,
247 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
248 {
249 	return 0;
250 }
251 
252 static inline void destroy_memcg_params(struct kmem_cache *s)
253 {
254 }
255 
256 static inline void memcg_unlink_cache(struct kmem_cache *s)
257 {
258 }
259 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
260 
261 /*
262  * Find a mergeable slab cache
263  */
264 int slab_unmergeable(struct kmem_cache *s)
265 {
266 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
267 		return 1;
268 
269 	if (!is_root_cache(s))
270 		return 1;
271 
272 	if (s->ctor)
273 		return 1;
274 
275 	/*
276 	 * We may have set a slab to be unmergeable during bootstrap.
277 	 */
278 	if (s->refcount < 0)
279 		return 1;
280 
281 	return 0;
282 }
283 
284 struct kmem_cache *find_mergeable(size_t size, size_t align,
285 		unsigned long flags, const char *name, void (*ctor)(void *))
286 {
287 	struct kmem_cache *s;
288 
289 	if (slab_nomerge)
290 		return NULL;
291 
292 	if (ctor)
293 		return NULL;
294 
295 	size = ALIGN(size, sizeof(void *));
296 	align = calculate_alignment(flags, align, size);
297 	size = ALIGN(size, align);
298 	flags = kmem_cache_flags(size, flags, name, NULL);
299 
300 	if (flags & SLAB_NEVER_MERGE)
301 		return NULL;
302 
303 	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
304 		if (slab_unmergeable(s))
305 			continue;
306 
307 		if (size > s->size)
308 			continue;
309 
310 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
311 			continue;
312 		/*
313 		 * Check if alignment is compatible.
314 		 * Courtesy of Adrian Drzewiecki
315 		 */
316 		if ((s->size & ~(align - 1)) != s->size)
317 			continue;
318 
319 		if (s->size - size >= sizeof(void *))
320 			continue;
321 
322 		if (IS_ENABLED(CONFIG_SLAB) && align &&
323 			(align > s->align || s->align % align))
324 			continue;
325 
326 		return s;
327 	}
328 	return NULL;
329 }
330 
331 /*
332  * Figure out what the alignment of the objects will be given a set of
333  * flags, a user specified alignment and the size of the objects.
334  */
335 unsigned long calculate_alignment(unsigned long flags,
336 		unsigned long align, unsigned long size)
337 {
338 	/*
339 	 * If the user wants hardware cache aligned objects then follow that
340 	 * suggestion if the object is sufficiently large.
341 	 *
342 	 * The hardware cache alignment cannot override the specified
343 	 * alignment though. If that is greater then use it.
344 	 */
345 	if (flags & SLAB_HWCACHE_ALIGN) {
346 		unsigned long ralign = cache_line_size();
347 		while (size <= ralign / 2)
348 			ralign /= 2;
349 		align = max(align, ralign);
350 	}
351 
352 	if (align < ARCH_SLAB_MINALIGN)
353 		align = ARCH_SLAB_MINALIGN;
354 
355 	return ALIGN(align, sizeof(void *));
356 }
357 
358 static struct kmem_cache *create_cache(const char *name,
359 		size_t object_size, size_t size, size_t align,
360 		unsigned long flags, void (*ctor)(void *),
361 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
362 {
363 	struct kmem_cache *s;
364 	int err;
365 
366 	err = -ENOMEM;
367 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
368 	if (!s)
369 		goto out;
370 
371 	s->name = name;
372 	s->object_size = object_size;
373 	s->size = size;
374 	s->align = align;
375 	s->ctor = ctor;
376 
377 	err = init_memcg_params(s, memcg, root_cache);
378 	if (err)
379 		goto out_free_cache;
380 
381 	err = __kmem_cache_create(s, flags);
382 	if (err)
383 		goto out_free_cache;
384 
385 	s->refcount = 1;
386 	list_add(&s->list, &slab_caches);
387 	memcg_link_cache(s);
388 out:
389 	if (err)
390 		return ERR_PTR(err);
391 	return s;
392 
393 out_free_cache:
394 	destroy_memcg_params(s);
395 	kmem_cache_free(kmem_cache, s);
396 	goto out;
397 }
398 
399 /*
400  * kmem_cache_create - Create a cache.
401  * @name: A string which is used in /proc/slabinfo to identify this cache.
402  * @size: The size of objects to be created in this cache.
403  * @align: The required alignment for the objects.
404  * @flags: SLAB flags
405  * @ctor: A constructor for the objects.
406  *
407  * Returns a ptr to the cache on success, NULL on failure.
408  * Cannot be called within a interrupt, but can be interrupted.
409  * The @ctor is run when new pages are allocated by the cache.
410  *
411  * The flags are
412  *
413  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
414  * to catch references to uninitialised memory.
415  *
416  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
417  * for buffer overruns.
418  *
419  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
420  * cacheline.  This can be beneficial if you're counting cycles as closely
421  * as davem.
422  */
423 struct kmem_cache *
424 kmem_cache_create(const char *name, size_t size, size_t align,
425 		  unsigned long flags, void (*ctor)(void *))
426 {
427 	struct kmem_cache *s = NULL;
428 	const char *cache_name;
429 	int err;
430 
431 	get_online_cpus();
432 	get_online_mems();
433 	memcg_get_cache_ids();
434 
435 	mutex_lock(&slab_mutex);
436 
437 	err = kmem_cache_sanity_check(name, size);
438 	if (err) {
439 		goto out_unlock;
440 	}
441 
442 	/* Refuse requests with allocator specific flags */
443 	if (flags & ~SLAB_FLAGS_PERMITTED) {
444 		err = -EINVAL;
445 		goto out_unlock;
446 	}
447 
448 	/*
449 	 * Some allocators will constraint the set of valid flags to a subset
450 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
451 	 * case, and we'll just provide them with a sanitized version of the
452 	 * passed flags.
453 	 */
454 	flags &= CACHE_CREATE_MASK;
455 
456 	s = __kmem_cache_alias(name, size, align, flags, ctor);
457 	if (s)
458 		goto out_unlock;
459 
460 	cache_name = kstrdup_const(name, GFP_KERNEL);
461 	if (!cache_name) {
462 		err = -ENOMEM;
463 		goto out_unlock;
464 	}
465 
466 	s = create_cache(cache_name, size, size,
467 			 calculate_alignment(flags, align, size),
468 			 flags, ctor, NULL, NULL);
469 	if (IS_ERR(s)) {
470 		err = PTR_ERR(s);
471 		kfree_const(cache_name);
472 	}
473 
474 out_unlock:
475 	mutex_unlock(&slab_mutex);
476 
477 	memcg_put_cache_ids();
478 	put_online_mems();
479 	put_online_cpus();
480 
481 	if (err) {
482 		if (flags & SLAB_PANIC)
483 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
484 				name, err);
485 		else {
486 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
487 				name, err);
488 			dump_stack();
489 		}
490 		return NULL;
491 	}
492 	return s;
493 }
494 EXPORT_SYMBOL(kmem_cache_create);
495 
496 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
497 {
498 	LIST_HEAD(to_destroy);
499 	struct kmem_cache *s, *s2;
500 
501 	/*
502 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
503 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
504 	 * through RCU and and the associated kmem_cache are dereferenced
505 	 * while freeing the pages, so the kmem_caches should be freed only
506 	 * after the pending RCU operations are finished.  As rcu_barrier()
507 	 * is a pretty slow operation, we batch all pending destructions
508 	 * asynchronously.
509 	 */
510 	mutex_lock(&slab_mutex);
511 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
512 	mutex_unlock(&slab_mutex);
513 
514 	if (list_empty(&to_destroy))
515 		return;
516 
517 	rcu_barrier();
518 
519 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
520 #ifdef SLAB_SUPPORTS_SYSFS
521 		sysfs_slab_release(s);
522 #else
523 		slab_kmem_cache_release(s);
524 #endif
525 	}
526 }
527 
528 static int shutdown_cache(struct kmem_cache *s)
529 {
530 	/* free asan quarantined objects */
531 	kasan_cache_shutdown(s);
532 
533 	if (__kmem_cache_shutdown(s) != 0)
534 		return -EBUSY;
535 
536 	memcg_unlink_cache(s);
537 	list_del(&s->list);
538 
539 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
540 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
541 		schedule_work(&slab_caches_to_rcu_destroy_work);
542 	} else {
543 #ifdef SLAB_SUPPORTS_SYSFS
544 		sysfs_slab_release(s);
545 #else
546 		slab_kmem_cache_release(s);
547 #endif
548 	}
549 
550 	return 0;
551 }
552 
553 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
554 /*
555  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
556  * @memcg: The memory cgroup the new cache is for.
557  * @root_cache: The parent of the new cache.
558  *
559  * This function attempts to create a kmem cache that will serve allocation
560  * requests going from @memcg to @root_cache. The new cache inherits properties
561  * from its parent.
562  */
563 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
564 			     struct kmem_cache *root_cache)
565 {
566 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
567 	struct cgroup_subsys_state *css = &memcg->css;
568 	struct memcg_cache_array *arr;
569 	struct kmem_cache *s = NULL;
570 	char *cache_name;
571 	int idx;
572 
573 	get_online_cpus();
574 	get_online_mems();
575 
576 	mutex_lock(&slab_mutex);
577 
578 	/*
579 	 * The memory cgroup could have been offlined while the cache
580 	 * creation work was pending.
581 	 */
582 	if (memcg->kmem_state != KMEM_ONLINE)
583 		goto out_unlock;
584 
585 	idx = memcg_cache_id(memcg);
586 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
587 					lockdep_is_held(&slab_mutex));
588 
589 	/*
590 	 * Since per-memcg caches are created asynchronously on first
591 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
592 	 * create the same cache, but only one of them may succeed.
593 	 */
594 	if (arr->entries[idx])
595 		goto out_unlock;
596 
597 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
598 	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
599 			       css->serial_nr, memcg_name_buf);
600 	if (!cache_name)
601 		goto out_unlock;
602 
603 	s = create_cache(cache_name, root_cache->object_size,
604 			 root_cache->size, root_cache->align,
605 			 root_cache->flags & CACHE_CREATE_MASK,
606 			 root_cache->ctor, memcg, root_cache);
607 	/*
608 	 * If we could not create a memcg cache, do not complain, because
609 	 * that's not critical at all as we can always proceed with the root
610 	 * cache.
611 	 */
612 	if (IS_ERR(s)) {
613 		kfree(cache_name);
614 		goto out_unlock;
615 	}
616 
617 	/*
618 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
619 	 * barrier here to ensure nobody will see the kmem_cache partially
620 	 * initialized.
621 	 */
622 	smp_wmb();
623 	arr->entries[idx] = s;
624 
625 out_unlock:
626 	mutex_unlock(&slab_mutex);
627 
628 	put_online_mems();
629 	put_online_cpus();
630 }
631 
632 static void kmemcg_deactivate_workfn(struct work_struct *work)
633 {
634 	struct kmem_cache *s = container_of(work, struct kmem_cache,
635 					    memcg_params.deact_work);
636 
637 	get_online_cpus();
638 	get_online_mems();
639 
640 	mutex_lock(&slab_mutex);
641 
642 	s->memcg_params.deact_fn(s);
643 
644 	mutex_unlock(&slab_mutex);
645 
646 	put_online_mems();
647 	put_online_cpus();
648 
649 	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
650 	css_put(&s->memcg_params.memcg->css);
651 }
652 
653 static void kmemcg_deactivate_rcufn(struct rcu_head *head)
654 {
655 	struct kmem_cache *s = container_of(head, struct kmem_cache,
656 					    memcg_params.deact_rcu_head);
657 
658 	/*
659 	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
660 	 * work item shares the space with the RCU head and can't be
661 	 * initialized eariler.
662 	 */
663 	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
664 	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
665 }
666 
667 /**
668  * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
669  *					   sched RCU grace period
670  * @s: target kmem_cache
671  * @deact_fn: deactivation function to call
672  *
673  * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
674  * held after a sched RCU grace period.  The slab is guaranteed to stay
675  * alive until @deact_fn is finished.  This is to be used from
676  * __kmemcg_cache_deactivate().
677  */
678 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
679 					   void (*deact_fn)(struct kmem_cache *))
680 {
681 	if (WARN_ON_ONCE(is_root_cache(s)) ||
682 	    WARN_ON_ONCE(s->memcg_params.deact_fn))
683 		return;
684 
685 	/* pin memcg so that @s doesn't get destroyed in the middle */
686 	css_get(&s->memcg_params.memcg->css);
687 
688 	s->memcg_params.deact_fn = deact_fn;
689 	call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
690 }
691 
692 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
693 {
694 	int idx;
695 	struct memcg_cache_array *arr;
696 	struct kmem_cache *s, *c;
697 
698 	idx = memcg_cache_id(memcg);
699 
700 	get_online_cpus();
701 	get_online_mems();
702 
703 	mutex_lock(&slab_mutex);
704 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
705 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
706 						lockdep_is_held(&slab_mutex));
707 		c = arr->entries[idx];
708 		if (!c)
709 			continue;
710 
711 		__kmemcg_cache_deactivate(c);
712 		arr->entries[idx] = NULL;
713 	}
714 	mutex_unlock(&slab_mutex);
715 
716 	put_online_mems();
717 	put_online_cpus();
718 }
719 
720 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
721 {
722 	struct kmem_cache *s, *s2;
723 
724 	get_online_cpus();
725 	get_online_mems();
726 
727 	mutex_lock(&slab_mutex);
728 	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
729 				 memcg_params.kmem_caches_node) {
730 		/*
731 		 * The cgroup is about to be freed and therefore has no charges
732 		 * left. Hence, all its caches must be empty by now.
733 		 */
734 		BUG_ON(shutdown_cache(s));
735 	}
736 	mutex_unlock(&slab_mutex);
737 
738 	put_online_mems();
739 	put_online_cpus();
740 }
741 
742 static int shutdown_memcg_caches(struct kmem_cache *s)
743 {
744 	struct memcg_cache_array *arr;
745 	struct kmem_cache *c, *c2;
746 	LIST_HEAD(busy);
747 	int i;
748 
749 	BUG_ON(!is_root_cache(s));
750 
751 	/*
752 	 * First, shutdown active caches, i.e. caches that belong to online
753 	 * memory cgroups.
754 	 */
755 	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
756 					lockdep_is_held(&slab_mutex));
757 	for_each_memcg_cache_index(i) {
758 		c = arr->entries[i];
759 		if (!c)
760 			continue;
761 		if (shutdown_cache(c))
762 			/*
763 			 * The cache still has objects. Move it to a temporary
764 			 * list so as not to try to destroy it for a second
765 			 * time while iterating over inactive caches below.
766 			 */
767 			list_move(&c->memcg_params.children_node, &busy);
768 		else
769 			/*
770 			 * The cache is empty and will be destroyed soon. Clear
771 			 * the pointer to it in the memcg_caches array so that
772 			 * it will never be accessed even if the root cache
773 			 * stays alive.
774 			 */
775 			arr->entries[i] = NULL;
776 	}
777 
778 	/*
779 	 * Second, shutdown all caches left from memory cgroups that are now
780 	 * offline.
781 	 */
782 	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
783 				 memcg_params.children_node)
784 		shutdown_cache(c);
785 
786 	list_splice(&busy, &s->memcg_params.children);
787 
788 	/*
789 	 * A cache being destroyed must be empty. In particular, this means
790 	 * that all per memcg caches attached to it must be empty too.
791 	 */
792 	if (!list_empty(&s->memcg_params.children))
793 		return -EBUSY;
794 	return 0;
795 }
796 #else
797 static inline int shutdown_memcg_caches(struct kmem_cache *s)
798 {
799 	return 0;
800 }
801 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
802 
803 void slab_kmem_cache_release(struct kmem_cache *s)
804 {
805 	__kmem_cache_release(s);
806 	destroy_memcg_params(s);
807 	kfree_const(s->name);
808 	kmem_cache_free(kmem_cache, s);
809 }
810 
811 void kmem_cache_destroy(struct kmem_cache *s)
812 {
813 	int err;
814 
815 	if (unlikely(!s))
816 		return;
817 
818 	get_online_cpus();
819 	get_online_mems();
820 
821 	mutex_lock(&slab_mutex);
822 
823 	s->refcount--;
824 	if (s->refcount)
825 		goto out_unlock;
826 
827 	err = shutdown_memcg_caches(s);
828 	if (!err)
829 		err = shutdown_cache(s);
830 
831 	if (err) {
832 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
833 		       s->name);
834 		dump_stack();
835 	}
836 out_unlock:
837 	mutex_unlock(&slab_mutex);
838 
839 	put_online_mems();
840 	put_online_cpus();
841 }
842 EXPORT_SYMBOL(kmem_cache_destroy);
843 
844 /**
845  * kmem_cache_shrink - Shrink a cache.
846  * @cachep: The cache to shrink.
847  *
848  * Releases as many slabs as possible for a cache.
849  * To help debugging, a zero exit status indicates all slabs were released.
850  */
851 int kmem_cache_shrink(struct kmem_cache *cachep)
852 {
853 	int ret;
854 
855 	get_online_cpus();
856 	get_online_mems();
857 	kasan_cache_shrink(cachep);
858 	ret = __kmem_cache_shrink(cachep);
859 	put_online_mems();
860 	put_online_cpus();
861 	return ret;
862 }
863 EXPORT_SYMBOL(kmem_cache_shrink);
864 
865 bool slab_is_available(void)
866 {
867 	return slab_state >= UP;
868 }
869 
870 #ifndef CONFIG_SLOB
871 /* Create a cache during boot when no slab services are available yet */
872 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
873 		unsigned long flags)
874 {
875 	int err;
876 
877 	s->name = name;
878 	s->size = s->object_size = size;
879 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
880 
881 	slab_init_memcg_params(s);
882 
883 	err = __kmem_cache_create(s, flags);
884 
885 	if (err)
886 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
887 					name, size, err);
888 
889 	s->refcount = -1;	/* Exempt from merging for now */
890 }
891 
892 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
893 				unsigned long flags)
894 {
895 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
896 
897 	if (!s)
898 		panic("Out of memory when creating slab %s\n", name);
899 
900 	create_boot_cache(s, name, size, flags);
901 	list_add(&s->list, &slab_caches);
902 	memcg_link_cache(s);
903 	s->refcount = 1;
904 	return s;
905 }
906 
907 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
908 EXPORT_SYMBOL(kmalloc_caches);
909 
910 #ifdef CONFIG_ZONE_DMA
911 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
912 EXPORT_SYMBOL(kmalloc_dma_caches);
913 #endif
914 
915 /*
916  * Conversion table for small slabs sizes / 8 to the index in the
917  * kmalloc array. This is necessary for slabs < 192 since we have non power
918  * of two cache sizes there. The size of larger slabs can be determined using
919  * fls.
920  */
921 static s8 size_index[24] = {
922 	3,	/* 8 */
923 	4,	/* 16 */
924 	5,	/* 24 */
925 	5,	/* 32 */
926 	6,	/* 40 */
927 	6,	/* 48 */
928 	6,	/* 56 */
929 	6,	/* 64 */
930 	1,	/* 72 */
931 	1,	/* 80 */
932 	1,	/* 88 */
933 	1,	/* 96 */
934 	7,	/* 104 */
935 	7,	/* 112 */
936 	7,	/* 120 */
937 	7,	/* 128 */
938 	2,	/* 136 */
939 	2,	/* 144 */
940 	2,	/* 152 */
941 	2,	/* 160 */
942 	2,	/* 168 */
943 	2,	/* 176 */
944 	2,	/* 184 */
945 	2	/* 192 */
946 };
947 
948 static inline int size_index_elem(size_t bytes)
949 {
950 	return (bytes - 1) / 8;
951 }
952 
953 /*
954  * Find the kmem_cache structure that serves a given size of
955  * allocation
956  */
957 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
958 {
959 	int index;
960 
961 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
962 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
963 		return NULL;
964 	}
965 
966 	if (size <= 192) {
967 		if (!size)
968 			return ZERO_SIZE_PTR;
969 
970 		index = size_index[size_index_elem(size)];
971 	} else
972 		index = fls(size - 1);
973 
974 #ifdef CONFIG_ZONE_DMA
975 	if (unlikely((flags & GFP_DMA)))
976 		return kmalloc_dma_caches[index];
977 
978 #endif
979 	return kmalloc_caches[index];
980 }
981 
982 /*
983  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
984  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
985  * kmalloc-67108864.
986  */
987 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
988 	{NULL,                      0},		{"kmalloc-96",             96},
989 	{"kmalloc-192",           192},		{"kmalloc-8",               8},
990 	{"kmalloc-16",             16},		{"kmalloc-32",             32},
991 	{"kmalloc-64",             64},		{"kmalloc-128",           128},
992 	{"kmalloc-256",           256},		{"kmalloc-512",           512},
993 	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
994 	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
995 	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
996 	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
997 	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
998 	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
999 	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
1000 	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
1001 	{"kmalloc-67108864", 67108864}
1002 };
1003 
1004 /*
1005  * Patch up the size_index table if we have strange large alignment
1006  * requirements for the kmalloc array. This is only the case for
1007  * MIPS it seems. The standard arches will not generate any code here.
1008  *
1009  * Largest permitted alignment is 256 bytes due to the way we
1010  * handle the index determination for the smaller caches.
1011  *
1012  * Make sure that nothing crazy happens if someone starts tinkering
1013  * around with ARCH_KMALLOC_MINALIGN
1014  */
1015 void __init setup_kmalloc_cache_index_table(void)
1016 {
1017 	int i;
1018 
1019 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1020 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1021 
1022 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1023 		int elem = size_index_elem(i);
1024 
1025 		if (elem >= ARRAY_SIZE(size_index))
1026 			break;
1027 		size_index[elem] = KMALLOC_SHIFT_LOW;
1028 	}
1029 
1030 	if (KMALLOC_MIN_SIZE >= 64) {
1031 		/*
1032 		 * The 96 byte size cache is not used if the alignment
1033 		 * is 64 byte.
1034 		 */
1035 		for (i = 64 + 8; i <= 96; i += 8)
1036 			size_index[size_index_elem(i)] = 7;
1037 
1038 	}
1039 
1040 	if (KMALLOC_MIN_SIZE >= 128) {
1041 		/*
1042 		 * The 192 byte sized cache is not used if the alignment
1043 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1044 		 * instead.
1045 		 */
1046 		for (i = 128 + 8; i <= 192; i += 8)
1047 			size_index[size_index_elem(i)] = 8;
1048 	}
1049 }
1050 
1051 static void __init new_kmalloc_cache(int idx, unsigned long flags)
1052 {
1053 	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1054 					kmalloc_info[idx].size, flags);
1055 }
1056 
1057 /*
1058  * Create the kmalloc array. Some of the regular kmalloc arrays
1059  * may already have been created because they were needed to
1060  * enable allocations for slab creation.
1061  */
1062 void __init create_kmalloc_caches(unsigned long flags)
1063 {
1064 	int i;
1065 
1066 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1067 		if (!kmalloc_caches[i])
1068 			new_kmalloc_cache(i, flags);
1069 
1070 		/*
1071 		 * Caches that are not of the two-to-the-power-of size.
1072 		 * These have to be created immediately after the
1073 		 * earlier power of two caches
1074 		 */
1075 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1076 			new_kmalloc_cache(1, flags);
1077 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1078 			new_kmalloc_cache(2, flags);
1079 	}
1080 
1081 	/* Kmalloc array is now usable */
1082 	slab_state = UP;
1083 
1084 #ifdef CONFIG_ZONE_DMA
1085 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1086 		struct kmem_cache *s = kmalloc_caches[i];
1087 
1088 		if (s) {
1089 			int size = kmalloc_size(i);
1090 			char *n = kasprintf(GFP_NOWAIT,
1091 				 "dma-kmalloc-%d", size);
1092 
1093 			BUG_ON(!n);
1094 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1095 				size, SLAB_CACHE_DMA | flags);
1096 		}
1097 	}
1098 #endif
1099 }
1100 #endif /* !CONFIG_SLOB */
1101 
1102 /*
1103  * To avoid unnecessary overhead, we pass through large allocation requests
1104  * directly to the page allocator. We use __GFP_COMP, because we will need to
1105  * know the allocation order to free the pages properly in kfree.
1106  */
1107 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1108 {
1109 	void *ret;
1110 	struct page *page;
1111 
1112 	flags |= __GFP_COMP;
1113 	page = alloc_pages(flags, order);
1114 	ret = page ? page_address(page) : NULL;
1115 	kmemleak_alloc(ret, size, 1, flags);
1116 	kasan_kmalloc_large(ret, size, flags);
1117 	return ret;
1118 }
1119 EXPORT_SYMBOL(kmalloc_order);
1120 
1121 #ifdef CONFIG_TRACING
1122 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1123 {
1124 	void *ret = kmalloc_order(size, flags, order);
1125 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL(kmalloc_order_trace);
1129 #endif
1130 
1131 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1132 /* Randomize a generic freelist */
1133 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1134 			size_t count)
1135 {
1136 	size_t i;
1137 	unsigned int rand;
1138 
1139 	for (i = 0; i < count; i++)
1140 		list[i] = i;
1141 
1142 	/* Fisher-Yates shuffle */
1143 	for (i = count - 1; i > 0; i--) {
1144 		rand = prandom_u32_state(state);
1145 		rand %= (i + 1);
1146 		swap(list[i], list[rand]);
1147 	}
1148 }
1149 
1150 /* Create a random sequence per cache */
1151 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1152 				    gfp_t gfp)
1153 {
1154 	struct rnd_state state;
1155 
1156 	if (count < 2 || cachep->random_seq)
1157 		return 0;
1158 
1159 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1160 	if (!cachep->random_seq)
1161 		return -ENOMEM;
1162 
1163 	/* Get best entropy at this stage of boot */
1164 	prandom_seed_state(&state, get_random_long());
1165 
1166 	freelist_randomize(&state, cachep->random_seq, count);
1167 	return 0;
1168 }
1169 
1170 /* Destroy the per-cache random freelist sequence */
1171 void cache_random_seq_destroy(struct kmem_cache *cachep)
1172 {
1173 	kfree(cachep->random_seq);
1174 	cachep->random_seq = NULL;
1175 }
1176 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1177 
1178 #ifdef CONFIG_SLABINFO
1179 
1180 #ifdef CONFIG_SLAB
1181 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1182 #else
1183 #define SLABINFO_RIGHTS S_IRUSR
1184 #endif
1185 
1186 static void print_slabinfo_header(struct seq_file *m)
1187 {
1188 	/*
1189 	 * Output format version, so at least we can change it
1190 	 * without _too_ many complaints.
1191 	 */
1192 #ifdef CONFIG_DEBUG_SLAB
1193 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1194 #else
1195 	seq_puts(m, "slabinfo - version: 2.1\n");
1196 #endif
1197 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1198 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1199 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1200 #ifdef CONFIG_DEBUG_SLAB
1201 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1202 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1203 #endif
1204 	seq_putc(m, '\n');
1205 }
1206 
1207 void *slab_start(struct seq_file *m, loff_t *pos)
1208 {
1209 	mutex_lock(&slab_mutex);
1210 	return seq_list_start(&slab_root_caches, *pos);
1211 }
1212 
1213 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1214 {
1215 	return seq_list_next(p, &slab_root_caches, pos);
1216 }
1217 
1218 void slab_stop(struct seq_file *m, void *p)
1219 {
1220 	mutex_unlock(&slab_mutex);
1221 }
1222 
1223 static void
1224 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1225 {
1226 	struct kmem_cache *c;
1227 	struct slabinfo sinfo;
1228 
1229 	if (!is_root_cache(s))
1230 		return;
1231 
1232 	for_each_memcg_cache(c, s) {
1233 		memset(&sinfo, 0, sizeof(sinfo));
1234 		get_slabinfo(c, &sinfo);
1235 
1236 		info->active_slabs += sinfo.active_slabs;
1237 		info->num_slabs += sinfo.num_slabs;
1238 		info->shared_avail += sinfo.shared_avail;
1239 		info->active_objs += sinfo.active_objs;
1240 		info->num_objs += sinfo.num_objs;
1241 	}
1242 }
1243 
1244 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1245 {
1246 	struct slabinfo sinfo;
1247 
1248 	memset(&sinfo, 0, sizeof(sinfo));
1249 	get_slabinfo(s, &sinfo);
1250 
1251 	memcg_accumulate_slabinfo(s, &sinfo);
1252 
1253 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1254 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1255 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1256 
1257 	seq_printf(m, " : tunables %4u %4u %4u",
1258 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1259 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1260 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1261 	slabinfo_show_stats(m, s);
1262 	seq_putc(m, '\n');
1263 }
1264 
1265 static int slab_show(struct seq_file *m, void *p)
1266 {
1267 	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1268 
1269 	if (p == slab_root_caches.next)
1270 		print_slabinfo_header(m);
1271 	cache_show(s, m);
1272 	return 0;
1273 }
1274 
1275 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1276 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1277 {
1278 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1279 
1280 	mutex_lock(&slab_mutex);
1281 	return seq_list_start(&memcg->kmem_caches, *pos);
1282 }
1283 
1284 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1285 {
1286 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1287 
1288 	return seq_list_next(p, &memcg->kmem_caches, pos);
1289 }
1290 
1291 void memcg_slab_stop(struct seq_file *m, void *p)
1292 {
1293 	mutex_unlock(&slab_mutex);
1294 }
1295 
1296 int memcg_slab_show(struct seq_file *m, void *p)
1297 {
1298 	struct kmem_cache *s = list_entry(p, struct kmem_cache,
1299 					  memcg_params.kmem_caches_node);
1300 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1301 
1302 	if (p == memcg->kmem_caches.next)
1303 		print_slabinfo_header(m);
1304 	cache_show(s, m);
1305 	return 0;
1306 }
1307 #endif
1308 
1309 /*
1310  * slabinfo_op - iterator that generates /proc/slabinfo
1311  *
1312  * Output layout:
1313  * cache-name
1314  * num-active-objs
1315  * total-objs
1316  * object size
1317  * num-active-slabs
1318  * total-slabs
1319  * num-pages-per-slab
1320  * + further values on SMP and with statistics enabled
1321  */
1322 static const struct seq_operations slabinfo_op = {
1323 	.start = slab_start,
1324 	.next = slab_next,
1325 	.stop = slab_stop,
1326 	.show = slab_show,
1327 };
1328 
1329 static int slabinfo_open(struct inode *inode, struct file *file)
1330 {
1331 	return seq_open(file, &slabinfo_op);
1332 }
1333 
1334 static const struct file_operations proc_slabinfo_operations = {
1335 	.open		= slabinfo_open,
1336 	.read		= seq_read,
1337 	.write          = slabinfo_write,
1338 	.llseek		= seq_lseek,
1339 	.release	= seq_release,
1340 };
1341 
1342 static int __init slab_proc_init(void)
1343 {
1344 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1345 						&proc_slabinfo_operations);
1346 	return 0;
1347 }
1348 module_init(slab_proc_init);
1349 #endif /* CONFIG_SLABINFO */
1350 
1351 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1352 					   gfp_t flags)
1353 {
1354 	void *ret;
1355 	size_t ks = 0;
1356 
1357 	if (p)
1358 		ks = ksize(p);
1359 
1360 	if (ks >= new_size) {
1361 		kasan_krealloc((void *)p, new_size, flags);
1362 		return (void *)p;
1363 	}
1364 
1365 	ret = kmalloc_track_caller(new_size, flags);
1366 	if (ret && p)
1367 		memcpy(ret, p, ks);
1368 
1369 	return ret;
1370 }
1371 
1372 /**
1373  * __krealloc - like krealloc() but don't free @p.
1374  * @p: object to reallocate memory for.
1375  * @new_size: how many bytes of memory are required.
1376  * @flags: the type of memory to allocate.
1377  *
1378  * This function is like krealloc() except it never frees the originally
1379  * allocated buffer. Use this if you don't want to free the buffer immediately
1380  * like, for example, with RCU.
1381  */
1382 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1383 {
1384 	if (unlikely(!new_size))
1385 		return ZERO_SIZE_PTR;
1386 
1387 	return __do_krealloc(p, new_size, flags);
1388 
1389 }
1390 EXPORT_SYMBOL(__krealloc);
1391 
1392 /**
1393  * krealloc - reallocate memory. The contents will remain unchanged.
1394  * @p: object to reallocate memory for.
1395  * @new_size: how many bytes of memory are required.
1396  * @flags: the type of memory to allocate.
1397  *
1398  * The contents of the object pointed to are preserved up to the
1399  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1400  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1401  * %NULL pointer, the object pointed to is freed.
1402  */
1403 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1404 {
1405 	void *ret;
1406 
1407 	if (unlikely(!new_size)) {
1408 		kfree(p);
1409 		return ZERO_SIZE_PTR;
1410 	}
1411 
1412 	ret = __do_krealloc(p, new_size, flags);
1413 	if (ret && p != ret)
1414 		kfree(p);
1415 
1416 	return ret;
1417 }
1418 EXPORT_SYMBOL(krealloc);
1419 
1420 /**
1421  * kzfree - like kfree but zero memory
1422  * @p: object to free memory of
1423  *
1424  * The memory of the object @p points to is zeroed before freed.
1425  * If @p is %NULL, kzfree() does nothing.
1426  *
1427  * Note: this function zeroes the whole allocated buffer which can be a good
1428  * deal bigger than the requested buffer size passed to kmalloc(). So be
1429  * careful when using this function in performance sensitive code.
1430  */
1431 void kzfree(const void *p)
1432 {
1433 	size_t ks;
1434 	void *mem = (void *)p;
1435 
1436 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1437 		return;
1438 	ks = ksize(mem);
1439 	memset(mem, 0, ks);
1440 	kfree(mem);
1441 }
1442 EXPORT_SYMBOL(kzfree);
1443 
1444 /* Tracepoints definitions. */
1445 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1446 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1447 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1448 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1449 EXPORT_TRACEPOINT_SYMBOL(kfree);
1450 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1451