xref: /openbmc/linux/mm/slab_common.c (revision 2f190ac2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27 #include <linux/stackdepot.h>
28 
29 #include "internal.h"
30 #include "slab.h"
31 
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/kmem.h>
34 
35 enum slab_state slab_state;
36 LIST_HEAD(slab_caches);
37 DEFINE_MUTEX(slab_mutex);
38 struct kmem_cache *kmem_cache;
39 
40 static LIST_HEAD(slab_caches_to_rcu_destroy);
41 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
42 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
43 		    slab_caches_to_rcu_destroy_workfn);
44 
45 /*
46  * Set of flags that will prevent slab merging
47  */
48 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
49 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
50 		SLAB_FAILSLAB | kasan_never_merge())
51 
52 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
53 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
54 
55 /*
56  * Merge control. If this is set then no merging of slab caches will occur.
57  */
58 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
59 
60 static int __init setup_slab_nomerge(char *str)
61 {
62 	slab_nomerge = true;
63 	return 1;
64 }
65 
66 static int __init setup_slab_merge(char *str)
67 {
68 	slab_nomerge = false;
69 	return 1;
70 }
71 
72 #ifdef CONFIG_SLUB
73 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
74 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
75 #endif
76 
77 __setup("slab_nomerge", setup_slab_nomerge);
78 __setup("slab_merge", setup_slab_merge);
79 
80 /*
81  * Determine the size of a slab object
82  */
83 unsigned int kmem_cache_size(struct kmem_cache *s)
84 {
85 	return s->object_size;
86 }
87 EXPORT_SYMBOL(kmem_cache_size);
88 
89 #ifdef CONFIG_DEBUG_VM
90 static int kmem_cache_sanity_check(const char *name, unsigned int size)
91 {
92 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
93 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
94 		return -EINVAL;
95 	}
96 
97 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
98 	return 0;
99 }
100 #else
101 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
102 {
103 	return 0;
104 }
105 #endif
106 
107 /*
108  * Figure out what the alignment of the objects will be given a set of
109  * flags, a user specified alignment and the size of the objects.
110  */
111 static unsigned int calculate_alignment(slab_flags_t flags,
112 		unsigned int align, unsigned int size)
113 {
114 	/*
115 	 * If the user wants hardware cache aligned objects then follow that
116 	 * suggestion if the object is sufficiently large.
117 	 *
118 	 * The hardware cache alignment cannot override the specified
119 	 * alignment though. If that is greater then use it.
120 	 */
121 	if (flags & SLAB_HWCACHE_ALIGN) {
122 		unsigned int ralign;
123 
124 		ralign = cache_line_size();
125 		while (size <= ralign / 2)
126 			ralign /= 2;
127 		align = max(align, ralign);
128 	}
129 
130 	align = max(align, arch_slab_minalign());
131 
132 	return ALIGN(align, sizeof(void *));
133 }
134 
135 /*
136  * Find a mergeable slab cache
137  */
138 int slab_unmergeable(struct kmem_cache *s)
139 {
140 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
141 		return 1;
142 
143 	if (s->ctor)
144 		return 1;
145 
146 	if (s->usersize)
147 		return 1;
148 
149 	/*
150 	 * We may have set a slab to be unmergeable during bootstrap.
151 	 */
152 	if (s->refcount < 0)
153 		return 1;
154 
155 	return 0;
156 }
157 
158 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
159 		slab_flags_t flags, const char *name, void (*ctor)(void *))
160 {
161 	struct kmem_cache *s;
162 
163 	if (slab_nomerge)
164 		return NULL;
165 
166 	if (ctor)
167 		return NULL;
168 
169 	size = ALIGN(size, sizeof(void *));
170 	align = calculate_alignment(flags, align, size);
171 	size = ALIGN(size, align);
172 	flags = kmem_cache_flags(size, flags, name);
173 
174 	if (flags & SLAB_NEVER_MERGE)
175 		return NULL;
176 
177 	list_for_each_entry_reverse(s, &slab_caches, list) {
178 		if (slab_unmergeable(s))
179 			continue;
180 
181 		if (size > s->size)
182 			continue;
183 
184 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
185 			continue;
186 		/*
187 		 * Check if alignment is compatible.
188 		 * Courtesy of Adrian Drzewiecki
189 		 */
190 		if ((s->size & ~(align - 1)) != s->size)
191 			continue;
192 
193 		if (s->size - size >= sizeof(void *))
194 			continue;
195 
196 		if (IS_ENABLED(CONFIG_SLAB) && align &&
197 			(align > s->align || s->align % align))
198 			continue;
199 
200 		return s;
201 	}
202 	return NULL;
203 }
204 
205 static struct kmem_cache *create_cache(const char *name,
206 		unsigned int object_size, unsigned int align,
207 		slab_flags_t flags, unsigned int useroffset,
208 		unsigned int usersize, void (*ctor)(void *),
209 		struct kmem_cache *root_cache)
210 {
211 	struct kmem_cache *s;
212 	int err;
213 
214 	if (WARN_ON(useroffset + usersize > object_size))
215 		useroffset = usersize = 0;
216 
217 	err = -ENOMEM;
218 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
219 	if (!s)
220 		goto out;
221 
222 	s->name = name;
223 	s->size = s->object_size = object_size;
224 	s->align = align;
225 	s->ctor = ctor;
226 	s->useroffset = useroffset;
227 	s->usersize = usersize;
228 
229 	err = __kmem_cache_create(s, flags);
230 	if (err)
231 		goto out_free_cache;
232 
233 	s->refcount = 1;
234 	list_add(&s->list, &slab_caches);
235 out:
236 	if (err)
237 		return ERR_PTR(err);
238 	return s;
239 
240 out_free_cache:
241 	kmem_cache_free(kmem_cache, s);
242 	goto out;
243 }
244 
245 /**
246  * kmem_cache_create_usercopy - Create a cache with a region suitable
247  * for copying to userspace
248  * @name: A string which is used in /proc/slabinfo to identify this cache.
249  * @size: The size of objects to be created in this cache.
250  * @align: The required alignment for the objects.
251  * @flags: SLAB flags
252  * @useroffset: Usercopy region offset
253  * @usersize: Usercopy region size
254  * @ctor: A constructor for the objects.
255  *
256  * Cannot be called within a interrupt, but can be interrupted.
257  * The @ctor is run when new pages are allocated by the cache.
258  *
259  * The flags are
260  *
261  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
262  * to catch references to uninitialised memory.
263  *
264  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
265  * for buffer overruns.
266  *
267  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
268  * cacheline.  This can be beneficial if you're counting cycles as closely
269  * as davem.
270  *
271  * Return: a pointer to the cache on success, NULL on failure.
272  */
273 struct kmem_cache *
274 kmem_cache_create_usercopy(const char *name,
275 		  unsigned int size, unsigned int align,
276 		  slab_flags_t flags,
277 		  unsigned int useroffset, unsigned int usersize,
278 		  void (*ctor)(void *))
279 {
280 	struct kmem_cache *s = NULL;
281 	const char *cache_name;
282 	int err;
283 
284 #ifdef CONFIG_SLUB_DEBUG
285 	/*
286 	 * If no slub_debug was enabled globally, the static key is not yet
287 	 * enabled by setup_slub_debug(). Enable it if the cache is being
288 	 * created with any of the debugging flags passed explicitly.
289 	 * It's also possible that this is the first cache created with
290 	 * SLAB_STORE_USER and we should init stack_depot for it.
291 	 */
292 	if (flags & SLAB_DEBUG_FLAGS)
293 		static_branch_enable(&slub_debug_enabled);
294 	if (flags & SLAB_STORE_USER)
295 		stack_depot_init();
296 #endif
297 
298 	mutex_lock(&slab_mutex);
299 
300 	err = kmem_cache_sanity_check(name, size);
301 	if (err) {
302 		goto out_unlock;
303 	}
304 
305 	/* Refuse requests with allocator specific flags */
306 	if (flags & ~SLAB_FLAGS_PERMITTED) {
307 		err = -EINVAL;
308 		goto out_unlock;
309 	}
310 
311 	/*
312 	 * Some allocators will constraint the set of valid flags to a subset
313 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
314 	 * case, and we'll just provide them with a sanitized version of the
315 	 * passed flags.
316 	 */
317 	flags &= CACHE_CREATE_MASK;
318 
319 	/* Fail closed on bad usersize of useroffset values. */
320 	if (WARN_ON(!usersize && useroffset) ||
321 	    WARN_ON(size < usersize || size - usersize < useroffset))
322 		usersize = useroffset = 0;
323 
324 	if (!usersize)
325 		s = __kmem_cache_alias(name, size, align, flags, ctor);
326 	if (s)
327 		goto out_unlock;
328 
329 	cache_name = kstrdup_const(name, GFP_KERNEL);
330 	if (!cache_name) {
331 		err = -ENOMEM;
332 		goto out_unlock;
333 	}
334 
335 	s = create_cache(cache_name, size,
336 			 calculate_alignment(flags, align, size),
337 			 flags, useroffset, usersize, ctor, NULL);
338 	if (IS_ERR(s)) {
339 		err = PTR_ERR(s);
340 		kfree_const(cache_name);
341 	}
342 
343 out_unlock:
344 	mutex_unlock(&slab_mutex);
345 
346 	if (err) {
347 		if (flags & SLAB_PANIC)
348 			panic("%s: Failed to create slab '%s'. Error %d\n",
349 				__func__, name, err);
350 		else {
351 			pr_warn("%s(%s) failed with error %d\n",
352 				__func__, name, err);
353 			dump_stack();
354 		}
355 		return NULL;
356 	}
357 	return s;
358 }
359 EXPORT_SYMBOL(kmem_cache_create_usercopy);
360 
361 /**
362  * kmem_cache_create - Create a cache.
363  * @name: A string which is used in /proc/slabinfo to identify this cache.
364  * @size: The size of objects to be created in this cache.
365  * @align: The required alignment for the objects.
366  * @flags: SLAB flags
367  * @ctor: A constructor for the objects.
368  *
369  * Cannot be called within a interrupt, but can be interrupted.
370  * The @ctor is run when new pages are allocated by the cache.
371  *
372  * The flags are
373  *
374  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375  * to catch references to uninitialised memory.
376  *
377  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
378  * for buffer overruns.
379  *
380  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381  * cacheline.  This can be beneficial if you're counting cycles as closely
382  * as davem.
383  *
384  * Return: a pointer to the cache on success, NULL on failure.
385  */
386 struct kmem_cache *
387 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
388 		slab_flags_t flags, void (*ctor)(void *))
389 {
390 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
391 					  ctor);
392 }
393 EXPORT_SYMBOL(kmem_cache_create);
394 
395 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
396 {
397 	LIST_HEAD(to_destroy);
398 	struct kmem_cache *s, *s2;
399 
400 	/*
401 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
402 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
403 	 * through RCU and the associated kmem_cache are dereferenced
404 	 * while freeing the pages, so the kmem_caches should be freed only
405 	 * after the pending RCU operations are finished.  As rcu_barrier()
406 	 * is a pretty slow operation, we batch all pending destructions
407 	 * asynchronously.
408 	 */
409 	mutex_lock(&slab_mutex);
410 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
411 	mutex_unlock(&slab_mutex);
412 
413 	if (list_empty(&to_destroy))
414 		return;
415 
416 	rcu_barrier();
417 
418 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
419 		debugfs_slab_release(s);
420 		kfence_shutdown_cache(s);
421 #ifdef SLAB_SUPPORTS_SYSFS
422 		sysfs_slab_release(s);
423 #else
424 		slab_kmem_cache_release(s);
425 #endif
426 	}
427 }
428 
429 static int shutdown_cache(struct kmem_cache *s)
430 {
431 	/* free asan quarantined objects */
432 	kasan_cache_shutdown(s);
433 
434 	if (__kmem_cache_shutdown(s) != 0)
435 		return -EBUSY;
436 
437 	list_del(&s->list);
438 
439 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
440 #ifdef SLAB_SUPPORTS_SYSFS
441 		sysfs_slab_unlink(s);
442 #endif
443 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
444 		schedule_work(&slab_caches_to_rcu_destroy_work);
445 	} else {
446 		kfence_shutdown_cache(s);
447 		debugfs_slab_release(s);
448 #ifdef SLAB_SUPPORTS_SYSFS
449 		sysfs_slab_unlink(s);
450 		sysfs_slab_release(s);
451 #else
452 		slab_kmem_cache_release(s);
453 #endif
454 	}
455 
456 	return 0;
457 }
458 
459 void slab_kmem_cache_release(struct kmem_cache *s)
460 {
461 	__kmem_cache_release(s);
462 	kfree_const(s->name);
463 	kmem_cache_free(kmem_cache, s);
464 }
465 
466 void kmem_cache_destroy(struct kmem_cache *s)
467 {
468 	if (unlikely(!s) || !kasan_check_byte(s))
469 		return;
470 
471 	cpus_read_lock();
472 	mutex_lock(&slab_mutex);
473 
474 	s->refcount--;
475 	if (s->refcount)
476 		goto out_unlock;
477 
478 	WARN(shutdown_cache(s),
479 	     "%s %s: Slab cache still has objects when called from %pS",
480 	     __func__, s->name, (void *)_RET_IP_);
481 out_unlock:
482 	mutex_unlock(&slab_mutex);
483 	cpus_read_unlock();
484 }
485 EXPORT_SYMBOL(kmem_cache_destroy);
486 
487 /**
488  * kmem_cache_shrink - Shrink a cache.
489  * @cachep: The cache to shrink.
490  *
491  * Releases as many slabs as possible for a cache.
492  * To help debugging, a zero exit status indicates all slabs were released.
493  *
494  * Return: %0 if all slabs were released, non-zero otherwise
495  */
496 int kmem_cache_shrink(struct kmem_cache *cachep)
497 {
498 	int ret;
499 
500 
501 	kasan_cache_shrink(cachep);
502 	ret = __kmem_cache_shrink(cachep);
503 
504 	return ret;
505 }
506 EXPORT_SYMBOL(kmem_cache_shrink);
507 
508 bool slab_is_available(void)
509 {
510 	return slab_state >= UP;
511 }
512 
513 #ifdef CONFIG_PRINTK
514 /**
515  * kmem_valid_obj - does the pointer reference a valid slab object?
516  * @object: pointer to query.
517  *
518  * Return: %true if the pointer is to a not-yet-freed object from
519  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
520  * is to an already-freed object, and %false otherwise.
521  */
522 bool kmem_valid_obj(void *object)
523 {
524 	struct folio *folio;
525 
526 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
527 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
528 		return false;
529 	folio = virt_to_folio(object);
530 	return folio_test_slab(folio);
531 }
532 EXPORT_SYMBOL_GPL(kmem_valid_obj);
533 
534 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
535 {
536 	if (__kfence_obj_info(kpp, object, slab))
537 		return;
538 	__kmem_obj_info(kpp, object, slab);
539 }
540 
541 /**
542  * kmem_dump_obj - Print available slab provenance information
543  * @object: slab object for which to find provenance information.
544  *
545  * This function uses pr_cont(), so that the caller is expected to have
546  * printed out whatever preamble is appropriate.  The provenance information
547  * depends on the type of object and on how much debugging is enabled.
548  * For a slab-cache object, the fact that it is a slab object is printed,
549  * and, if available, the slab name, return address, and stack trace from
550  * the allocation and last free path of that object.
551  *
552  * This function will splat if passed a pointer to a non-slab object.
553  * If you are not sure what type of object you have, you should instead
554  * use mem_dump_obj().
555  */
556 void kmem_dump_obj(void *object)
557 {
558 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
559 	int i;
560 	struct slab *slab;
561 	unsigned long ptroffset;
562 	struct kmem_obj_info kp = { };
563 
564 	if (WARN_ON_ONCE(!virt_addr_valid(object)))
565 		return;
566 	slab = virt_to_slab(object);
567 	if (WARN_ON_ONCE(!slab)) {
568 		pr_cont(" non-slab memory.\n");
569 		return;
570 	}
571 	kmem_obj_info(&kp, object, slab);
572 	if (kp.kp_slab_cache)
573 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
574 	else
575 		pr_cont(" slab%s", cp);
576 	if (is_kfence_address(object))
577 		pr_cont(" (kfence)");
578 	if (kp.kp_objp)
579 		pr_cont(" start %px", kp.kp_objp);
580 	if (kp.kp_data_offset)
581 		pr_cont(" data offset %lu", kp.kp_data_offset);
582 	if (kp.kp_objp) {
583 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
584 		pr_cont(" pointer offset %lu", ptroffset);
585 	}
586 	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
587 		pr_cont(" size %u", kp.kp_slab_cache->usersize);
588 	if (kp.kp_ret)
589 		pr_cont(" allocated at %pS\n", kp.kp_ret);
590 	else
591 		pr_cont("\n");
592 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
593 		if (!kp.kp_stack[i])
594 			break;
595 		pr_info("    %pS\n", kp.kp_stack[i]);
596 	}
597 
598 	if (kp.kp_free_stack[0])
599 		pr_cont(" Free path:\n");
600 
601 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
602 		if (!kp.kp_free_stack[i])
603 			break;
604 		pr_info("    %pS\n", kp.kp_free_stack[i]);
605 	}
606 
607 }
608 EXPORT_SYMBOL_GPL(kmem_dump_obj);
609 #endif
610 
611 #ifndef CONFIG_SLOB
612 /* Create a cache during boot when no slab services are available yet */
613 void __init create_boot_cache(struct kmem_cache *s, const char *name,
614 		unsigned int size, slab_flags_t flags,
615 		unsigned int useroffset, unsigned int usersize)
616 {
617 	int err;
618 	unsigned int align = ARCH_KMALLOC_MINALIGN;
619 
620 	s->name = name;
621 	s->size = s->object_size = size;
622 
623 	/*
624 	 * For power of two sizes, guarantee natural alignment for kmalloc
625 	 * caches, regardless of SL*B debugging options.
626 	 */
627 	if (is_power_of_2(size))
628 		align = max(align, size);
629 	s->align = calculate_alignment(flags, align, size);
630 
631 	s->useroffset = useroffset;
632 	s->usersize = usersize;
633 
634 	err = __kmem_cache_create(s, flags);
635 
636 	if (err)
637 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
638 					name, size, err);
639 
640 	s->refcount = -1;	/* Exempt from merging for now */
641 }
642 
643 struct kmem_cache *__init create_kmalloc_cache(const char *name,
644 		unsigned int size, slab_flags_t flags,
645 		unsigned int useroffset, unsigned int usersize)
646 {
647 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
648 
649 	if (!s)
650 		panic("Out of memory when creating slab %s\n", name);
651 
652 	create_boot_cache(s, name, size, flags, useroffset, usersize);
653 	kasan_cache_create_kmalloc(s);
654 	list_add(&s->list, &slab_caches);
655 	s->refcount = 1;
656 	return s;
657 }
658 
659 struct kmem_cache *
660 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
661 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
662 EXPORT_SYMBOL(kmalloc_caches);
663 
664 /*
665  * Conversion table for small slabs sizes / 8 to the index in the
666  * kmalloc array. This is necessary for slabs < 192 since we have non power
667  * of two cache sizes there. The size of larger slabs can be determined using
668  * fls.
669  */
670 static u8 size_index[24] __ro_after_init = {
671 	3,	/* 8 */
672 	4,	/* 16 */
673 	5,	/* 24 */
674 	5,	/* 32 */
675 	6,	/* 40 */
676 	6,	/* 48 */
677 	6,	/* 56 */
678 	6,	/* 64 */
679 	1,	/* 72 */
680 	1,	/* 80 */
681 	1,	/* 88 */
682 	1,	/* 96 */
683 	7,	/* 104 */
684 	7,	/* 112 */
685 	7,	/* 120 */
686 	7,	/* 128 */
687 	2,	/* 136 */
688 	2,	/* 144 */
689 	2,	/* 152 */
690 	2,	/* 160 */
691 	2,	/* 168 */
692 	2,	/* 176 */
693 	2,	/* 184 */
694 	2	/* 192 */
695 };
696 
697 static inline unsigned int size_index_elem(unsigned int bytes)
698 {
699 	return (bytes - 1) / 8;
700 }
701 
702 /*
703  * Find the kmem_cache structure that serves a given size of
704  * allocation
705  */
706 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
707 {
708 	unsigned int index;
709 
710 	if (size <= 192) {
711 		if (!size)
712 			return ZERO_SIZE_PTR;
713 
714 		index = size_index[size_index_elem(size)];
715 	} else {
716 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
717 			return NULL;
718 		index = fls(size - 1);
719 	}
720 
721 	return kmalloc_caches[kmalloc_type(flags)][index];
722 }
723 
724 #ifdef CONFIG_ZONE_DMA
725 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
726 #else
727 #define KMALLOC_DMA_NAME(sz)
728 #endif
729 
730 #ifdef CONFIG_MEMCG_KMEM
731 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
732 #else
733 #define KMALLOC_CGROUP_NAME(sz)
734 #endif
735 
736 #define INIT_KMALLOC_INFO(__size, __short_size)			\
737 {								\
738 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
739 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
740 	KMALLOC_CGROUP_NAME(__short_size)			\
741 	KMALLOC_DMA_NAME(__short_size)				\
742 	.size = __size,						\
743 }
744 
745 /*
746  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
747  * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
748  * kmalloc-32M.
749  */
750 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
751 	INIT_KMALLOC_INFO(0, 0),
752 	INIT_KMALLOC_INFO(96, 96),
753 	INIT_KMALLOC_INFO(192, 192),
754 	INIT_KMALLOC_INFO(8, 8),
755 	INIT_KMALLOC_INFO(16, 16),
756 	INIT_KMALLOC_INFO(32, 32),
757 	INIT_KMALLOC_INFO(64, 64),
758 	INIT_KMALLOC_INFO(128, 128),
759 	INIT_KMALLOC_INFO(256, 256),
760 	INIT_KMALLOC_INFO(512, 512),
761 	INIT_KMALLOC_INFO(1024, 1k),
762 	INIT_KMALLOC_INFO(2048, 2k),
763 	INIT_KMALLOC_INFO(4096, 4k),
764 	INIT_KMALLOC_INFO(8192, 8k),
765 	INIT_KMALLOC_INFO(16384, 16k),
766 	INIT_KMALLOC_INFO(32768, 32k),
767 	INIT_KMALLOC_INFO(65536, 64k),
768 	INIT_KMALLOC_INFO(131072, 128k),
769 	INIT_KMALLOC_INFO(262144, 256k),
770 	INIT_KMALLOC_INFO(524288, 512k),
771 	INIT_KMALLOC_INFO(1048576, 1M),
772 	INIT_KMALLOC_INFO(2097152, 2M),
773 	INIT_KMALLOC_INFO(4194304, 4M),
774 	INIT_KMALLOC_INFO(8388608, 8M),
775 	INIT_KMALLOC_INFO(16777216, 16M),
776 	INIT_KMALLOC_INFO(33554432, 32M)
777 };
778 
779 /*
780  * Patch up the size_index table if we have strange large alignment
781  * requirements for the kmalloc array. This is only the case for
782  * MIPS it seems. The standard arches will not generate any code here.
783  *
784  * Largest permitted alignment is 256 bytes due to the way we
785  * handle the index determination for the smaller caches.
786  *
787  * Make sure that nothing crazy happens if someone starts tinkering
788  * around with ARCH_KMALLOC_MINALIGN
789  */
790 void __init setup_kmalloc_cache_index_table(void)
791 {
792 	unsigned int i;
793 
794 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
795 		!is_power_of_2(KMALLOC_MIN_SIZE));
796 
797 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
798 		unsigned int elem = size_index_elem(i);
799 
800 		if (elem >= ARRAY_SIZE(size_index))
801 			break;
802 		size_index[elem] = KMALLOC_SHIFT_LOW;
803 	}
804 
805 	if (KMALLOC_MIN_SIZE >= 64) {
806 		/*
807 		 * The 96 byte sized cache is not used if the alignment
808 		 * is 64 byte.
809 		 */
810 		for (i = 64 + 8; i <= 96; i += 8)
811 			size_index[size_index_elem(i)] = 7;
812 
813 	}
814 
815 	if (KMALLOC_MIN_SIZE >= 128) {
816 		/*
817 		 * The 192 byte sized cache is not used if the alignment
818 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
819 		 * instead.
820 		 */
821 		for (i = 128 + 8; i <= 192; i += 8)
822 			size_index[size_index_elem(i)] = 8;
823 	}
824 }
825 
826 static void __init
827 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
828 {
829 	if (type == KMALLOC_RECLAIM) {
830 		flags |= SLAB_RECLAIM_ACCOUNT;
831 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
832 		if (mem_cgroup_kmem_disabled()) {
833 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
834 			return;
835 		}
836 		flags |= SLAB_ACCOUNT;
837 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
838 		flags |= SLAB_CACHE_DMA;
839 	}
840 
841 	kmalloc_caches[type][idx] = create_kmalloc_cache(
842 					kmalloc_info[idx].name[type],
843 					kmalloc_info[idx].size, flags, 0,
844 					kmalloc_info[idx].size);
845 
846 	/*
847 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
848 	 * KMALLOC_NORMAL caches.
849 	 */
850 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
851 		kmalloc_caches[type][idx]->refcount = -1;
852 }
853 
854 /*
855  * Create the kmalloc array. Some of the regular kmalloc arrays
856  * may already have been created because they were needed to
857  * enable allocations for slab creation.
858  */
859 void __init create_kmalloc_caches(slab_flags_t flags)
860 {
861 	int i;
862 	enum kmalloc_cache_type type;
863 
864 	/*
865 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
866 	 */
867 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
868 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
869 			if (!kmalloc_caches[type][i])
870 				new_kmalloc_cache(i, type, flags);
871 
872 			/*
873 			 * Caches that are not of the two-to-the-power-of size.
874 			 * These have to be created immediately after the
875 			 * earlier power of two caches
876 			 */
877 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
878 					!kmalloc_caches[type][1])
879 				new_kmalloc_cache(1, type, flags);
880 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
881 					!kmalloc_caches[type][2])
882 				new_kmalloc_cache(2, type, flags);
883 		}
884 	}
885 
886 	/* Kmalloc array is now usable */
887 	slab_state = UP;
888 }
889 #endif /* !CONFIG_SLOB */
890 
891 gfp_t kmalloc_fix_flags(gfp_t flags)
892 {
893 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
894 
895 	flags &= ~GFP_SLAB_BUG_MASK;
896 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
897 			invalid_mask, &invalid_mask, flags, &flags);
898 	dump_stack();
899 
900 	return flags;
901 }
902 
903 /*
904  * To avoid unnecessary overhead, we pass through large allocation requests
905  * directly to the page allocator. We use __GFP_COMP, because we will need to
906  * know the allocation order to free the pages properly in kfree.
907  */
908 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
909 {
910 	void *ret = NULL;
911 	struct page *page;
912 
913 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
914 		flags = kmalloc_fix_flags(flags);
915 
916 	flags |= __GFP_COMP;
917 	page = alloc_pages(flags, order);
918 	if (likely(page)) {
919 		ret = page_address(page);
920 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
921 				      PAGE_SIZE << order);
922 	}
923 	ret = kasan_kmalloc_large(ret, size, flags);
924 	/* As ret might get tagged, call kmemleak hook after KASAN. */
925 	kmemleak_alloc(ret, size, 1, flags);
926 	return ret;
927 }
928 EXPORT_SYMBOL(kmalloc_order);
929 
930 #ifdef CONFIG_TRACING
931 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
932 {
933 	void *ret = kmalloc_order(size, flags, order);
934 	trace_kmalloc(_RET_IP_, ret, NULL, size, PAGE_SIZE << order, flags);
935 	return ret;
936 }
937 EXPORT_SYMBOL(kmalloc_order_trace);
938 #endif
939 
940 #ifdef CONFIG_SLAB_FREELIST_RANDOM
941 /* Randomize a generic freelist */
942 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
943 			       unsigned int count)
944 {
945 	unsigned int rand;
946 	unsigned int i;
947 
948 	for (i = 0; i < count; i++)
949 		list[i] = i;
950 
951 	/* Fisher-Yates shuffle */
952 	for (i = count - 1; i > 0; i--) {
953 		rand = prandom_u32_state(state);
954 		rand %= (i + 1);
955 		swap(list[i], list[rand]);
956 	}
957 }
958 
959 /* Create a random sequence per cache */
960 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
961 				    gfp_t gfp)
962 {
963 	struct rnd_state state;
964 
965 	if (count < 2 || cachep->random_seq)
966 		return 0;
967 
968 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
969 	if (!cachep->random_seq)
970 		return -ENOMEM;
971 
972 	/* Get best entropy at this stage of boot */
973 	prandom_seed_state(&state, get_random_long());
974 
975 	freelist_randomize(&state, cachep->random_seq, count);
976 	return 0;
977 }
978 
979 /* Destroy the per-cache random freelist sequence */
980 void cache_random_seq_destroy(struct kmem_cache *cachep)
981 {
982 	kfree(cachep->random_seq);
983 	cachep->random_seq = NULL;
984 }
985 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
986 
987 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
988 #ifdef CONFIG_SLAB
989 #define SLABINFO_RIGHTS (0600)
990 #else
991 #define SLABINFO_RIGHTS (0400)
992 #endif
993 
994 static void print_slabinfo_header(struct seq_file *m)
995 {
996 	/*
997 	 * Output format version, so at least we can change it
998 	 * without _too_ many complaints.
999 	 */
1000 #ifdef CONFIG_DEBUG_SLAB
1001 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1002 #else
1003 	seq_puts(m, "slabinfo - version: 2.1\n");
1004 #endif
1005 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1006 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1007 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1008 #ifdef CONFIG_DEBUG_SLAB
1009 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1010 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1011 #endif
1012 	seq_putc(m, '\n');
1013 }
1014 
1015 static void *slab_start(struct seq_file *m, loff_t *pos)
1016 {
1017 	mutex_lock(&slab_mutex);
1018 	return seq_list_start(&slab_caches, *pos);
1019 }
1020 
1021 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1022 {
1023 	return seq_list_next(p, &slab_caches, pos);
1024 }
1025 
1026 static void slab_stop(struct seq_file *m, void *p)
1027 {
1028 	mutex_unlock(&slab_mutex);
1029 }
1030 
1031 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1032 {
1033 	struct slabinfo sinfo;
1034 
1035 	memset(&sinfo, 0, sizeof(sinfo));
1036 	get_slabinfo(s, &sinfo);
1037 
1038 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1039 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1040 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1041 
1042 	seq_printf(m, " : tunables %4u %4u %4u",
1043 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1044 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1045 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1046 	slabinfo_show_stats(m, s);
1047 	seq_putc(m, '\n');
1048 }
1049 
1050 static int slab_show(struct seq_file *m, void *p)
1051 {
1052 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1053 
1054 	if (p == slab_caches.next)
1055 		print_slabinfo_header(m);
1056 	cache_show(s, m);
1057 	return 0;
1058 }
1059 
1060 void dump_unreclaimable_slab(void)
1061 {
1062 	struct kmem_cache *s;
1063 	struct slabinfo sinfo;
1064 
1065 	/*
1066 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1067 	 * sleep in oom path. But, without mutex hold, it may introduce a
1068 	 * risk of crash.
1069 	 * Use mutex_trylock to protect the list traverse, dump nothing
1070 	 * without acquiring the mutex.
1071 	 */
1072 	if (!mutex_trylock(&slab_mutex)) {
1073 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1074 		return;
1075 	}
1076 
1077 	pr_info("Unreclaimable slab info:\n");
1078 	pr_info("Name                      Used          Total\n");
1079 
1080 	list_for_each_entry(s, &slab_caches, list) {
1081 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1082 			continue;
1083 
1084 		get_slabinfo(s, &sinfo);
1085 
1086 		if (sinfo.num_objs > 0)
1087 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1088 				(sinfo.active_objs * s->size) / 1024,
1089 				(sinfo.num_objs * s->size) / 1024);
1090 	}
1091 	mutex_unlock(&slab_mutex);
1092 }
1093 
1094 /*
1095  * slabinfo_op - iterator that generates /proc/slabinfo
1096  *
1097  * Output layout:
1098  * cache-name
1099  * num-active-objs
1100  * total-objs
1101  * object size
1102  * num-active-slabs
1103  * total-slabs
1104  * num-pages-per-slab
1105  * + further values on SMP and with statistics enabled
1106  */
1107 static const struct seq_operations slabinfo_op = {
1108 	.start = slab_start,
1109 	.next = slab_next,
1110 	.stop = slab_stop,
1111 	.show = slab_show,
1112 };
1113 
1114 static int slabinfo_open(struct inode *inode, struct file *file)
1115 {
1116 	return seq_open(file, &slabinfo_op);
1117 }
1118 
1119 static const struct proc_ops slabinfo_proc_ops = {
1120 	.proc_flags	= PROC_ENTRY_PERMANENT,
1121 	.proc_open	= slabinfo_open,
1122 	.proc_read	= seq_read,
1123 	.proc_write	= slabinfo_write,
1124 	.proc_lseek	= seq_lseek,
1125 	.proc_release	= seq_release,
1126 };
1127 
1128 static int __init slab_proc_init(void)
1129 {
1130 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1131 	return 0;
1132 }
1133 module_init(slab_proc_init);
1134 
1135 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1136 
1137 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1138 					   gfp_t flags)
1139 {
1140 	void *ret;
1141 	size_t ks;
1142 
1143 	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
1144 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1145 		if (!kasan_check_byte(p))
1146 			return NULL;
1147 		ks = kfence_ksize(p) ?: __ksize(p);
1148 	} else
1149 		ks = 0;
1150 
1151 	/* If the object still fits, repoison it precisely. */
1152 	if (ks >= new_size) {
1153 		p = kasan_krealloc((void *)p, new_size, flags);
1154 		return (void *)p;
1155 	}
1156 
1157 	ret = kmalloc_track_caller(new_size, flags);
1158 	if (ret && p) {
1159 		/* Disable KASAN checks as the object's redzone is accessed. */
1160 		kasan_disable_current();
1161 		memcpy(ret, kasan_reset_tag(p), ks);
1162 		kasan_enable_current();
1163 	}
1164 
1165 	return ret;
1166 }
1167 
1168 /**
1169  * krealloc - reallocate memory. The contents will remain unchanged.
1170  * @p: object to reallocate memory for.
1171  * @new_size: how many bytes of memory are required.
1172  * @flags: the type of memory to allocate.
1173  *
1174  * The contents of the object pointed to are preserved up to the
1175  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1176  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1177  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1178  *
1179  * Return: pointer to the allocated memory or %NULL in case of error
1180  */
1181 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1182 {
1183 	void *ret;
1184 
1185 	if (unlikely(!new_size)) {
1186 		kfree(p);
1187 		return ZERO_SIZE_PTR;
1188 	}
1189 
1190 	ret = __do_krealloc(p, new_size, flags);
1191 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1192 		kfree(p);
1193 
1194 	return ret;
1195 }
1196 EXPORT_SYMBOL(krealloc);
1197 
1198 /**
1199  * kfree_sensitive - Clear sensitive information in memory before freeing
1200  * @p: object to free memory of
1201  *
1202  * The memory of the object @p points to is zeroed before freed.
1203  * If @p is %NULL, kfree_sensitive() does nothing.
1204  *
1205  * Note: this function zeroes the whole allocated buffer which can be a good
1206  * deal bigger than the requested buffer size passed to kmalloc(). So be
1207  * careful when using this function in performance sensitive code.
1208  */
1209 void kfree_sensitive(const void *p)
1210 {
1211 	size_t ks;
1212 	void *mem = (void *)p;
1213 
1214 	ks = ksize(mem);
1215 	if (ks)
1216 		memzero_explicit(mem, ks);
1217 	kfree(mem);
1218 }
1219 EXPORT_SYMBOL(kfree_sensitive);
1220 
1221 /**
1222  * ksize - get the actual amount of memory allocated for a given object
1223  * @objp: Pointer to the object
1224  *
1225  * kmalloc may internally round up allocations and return more memory
1226  * than requested. ksize() can be used to determine the actual amount of
1227  * memory allocated. The caller may use this additional memory, even though
1228  * a smaller amount of memory was initially specified with the kmalloc call.
1229  * The caller must guarantee that objp points to a valid object previously
1230  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1231  * must not be freed during the duration of the call.
1232  *
1233  * Return: size of the actual memory used by @objp in bytes
1234  */
1235 size_t ksize(const void *objp)
1236 {
1237 	size_t size;
1238 
1239 	/*
1240 	 * We need to first check that the pointer to the object is valid, and
1241 	 * only then unpoison the memory. The report printed from ksize() is
1242 	 * more useful, then when it's printed later when the behaviour could
1243 	 * be undefined due to a potential use-after-free or double-free.
1244 	 *
1245 	 * We use kasan_check_byte(), which is supported for the hardware
1246 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1247 	 *
1248 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1249 	 * ksize() writing to and potentially corrupting the memory region.
1250 	 *
1251 	 * We want to perform the check before __ksize(), to avoid potentially
1252 	 * crashing in __ksize() due to accessing invalid metadata.
1253 	 */
1254 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1255 		return 0;
1256 
1257 	size = kfence_ksize(objp) ?: __ksize(objp);
1258 	/*
1259 	 * We assume that ksize callers could use whole allocated area,
1260 	 * so we need to unpoison this area.
1261 	 */
1262 	kasan_unpoison_range(objp, size);
1263 	return size;
1264 }
1265 EXPORT_SYMBOL(ksize);
1266 
1267 /* Tracepoints definitions. */
1268 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1269 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1270 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1271 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1272 EXPORT_TRACEPOINT_SYMBOL(kfree);
1273 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1274 
1275 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1276 {
1277 	if (__should_failslab(s, gfpflags))
1278 		return -ENOMEM;
1279 	return 0;
1280 }
1281 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1282