xref: /openbmc/linux/mm/slab_common.c (revision 275876e2)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25 
26 #include "slab.h"
27 
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32 
33 #ifdef CONFIG_DEBUG_VM
34 static int kmem_cache_sanity_check(const char *name, size_t size)
35 {
36 	struct kmem_cache *s = NULL;
37 
38 	if (!name || in_interrupt() || size < sizeof(void *) ||
39 		size > KMALLOC_MAX_SIZE) {
40 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
41 		return -EINVAL;
42 	}
43 
44 	list_for_each_entry(s, &slab_caches, list) {
45 		char tmp;
46 		int res;
47 
48 		/*
49 		 * This happens when the module gets unloaded and doesn't
50 		 * destroy its slab cache and no-one else reuses the vmalloc
51 		 * area of the module.  Print a warning.
52 		 */
53 		res = probe_kernel_address(s->name, tmp);
54 		if (res) {
55 			pr_err("Slab cache with size %d has lost its name\n",
56 			       s->object_size);
57 			continue;
58 		}
59 
60 #if !defined(CONFIG_SLUB)
61 		if (!strcmp(s->name, name)) {
62 			pr_err("%s (%s): Cache name already exists.\n",
63 			       __func__, name);
64 			dump_stack();
65 			s = NULL;
66 			return -EINVAL;
67 		}
68 #endif
69 	}
70 
71 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
72 	return 0;
73 }
74 #else
75 static inline int kmem_cache_sanity_check(const char *name, size_t size)
76 {
77 	return 0;
78 }
79 #endif
80 
81 #ifdef CONFIG_MEMCG_KMEM
82 int memcg_update_all_caches(int num_memcgs)
83 {
84 	struct kmem_cache *s;
85 	int ret = 0;
86 	mutex_lock(&slab_mutex);
87 
88 	list_for_each_entry(s, &slab_caches, list) {
89 		if (!is_root_cache(s))
90 			continue;
91 
92 		ret = memcg_update_cache_size(s, num_memcgs);
93 		/*
94 		 * See comment in memcontrol.c, memcg_update_cache_size:
95 		 * Instead of freeing the memory, we'll just leave the caches
96 		 * up to this point in an updated state.
97 		 */
98 		if (ret)
99 			goto out;
100 	}
101 
102 	memcg_update_array_size(num_memcgs);
103 out:
104 	mutex_unlock(&slab_mutex);
105 	return ret;
106 }
107 #endif
108 
109 /*
110  * Figure out what the alignment of the objects will be given a set of
111  * flags, a user specified alignment and the size of the objects.
112  */
113 unsigned long calculate_alignment(unsigned long flags,
114 		unsigned long align, unsigned long size)
115 {
116 	/*
117 	 * If the user wants hardware cache aligned objects then follow that
118 	 * suggestion if the object is sufficiently large.
119 	 *
120 	 * The hardware cache alignment cannot override the specified
121 	 * alignment though. If that is greater then use it.
122 	 */
123 	if (flags & SLAB_HWCACHE_ALIGN) {
124 		unsigned long ralign = cache_line_size();
125 		while (size <= ralign / 2)
126 			ralign /= 2;
127 		align = max(align, ralign);
128 	}
129 
130 	if (align < ARCH_SLAB_MINALIGN)
131 		align = ARCH_SLAB_MINALIGN;
132 
133 	return ALIGN(align, sizeof(void *));
134 }
135 
136 static struct kmem_cache *
137 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
138 		     unsigned long flags, void (*ctor)(void *),
139 		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
140 {
141 	struct kmem_cache *s;
142 	int err;
143 
144 	err = -ENOMEM;
145 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
146 	if (!s)
147 		goto out;
148 
149 	s->name = name;
150 	s->object_size = object_size;
151 	s->size = size;
152 	s->align = align;
153 	s->ctor = ctor;
154 
155 	err = memcg_alloc_cache_params(memcg, s, root_cache);
156 	if (err)
157 		goto out_free_cache;
158 
159 	err = __kmem_cache_create(s, flags);
160 	if (err)
161 		goto out_free_cache;
162 
163 	s->refcount = 1;
164 	list_add(&s->list, &slab_caches);
165 out:
166 	if (err)
167 		return ERR_PTR(err);
168 	return s;
169 
170 out_free_cache:
171 	memcg_free_cache_params(s);
172 	kfree(s);
173 	goto out;
174 }
175 
176 /*
177  * kmem_cache_create - Create a cache.
178  * @name: A string which is used in /proc/slabinfo to identify this cache.
179  * @size: The size of objects to be created in this cache.
180  * @align: The required alignment for the objects.
181  * @flags: SLAB flags
182  * @ctor: A constructor for the objects.
183  *
184  * Returns a ptr to the cache on success, NULL on failure.
185  * Cannot be called within a interrupt, but can be interrupted.
186  * The @ctor is run when new pages are allocated by the cache.
187  *
188  * The flags are
189  *
190  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
191  * to catch references to uninitialised memory.
192  *
193  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
194  * for buffer overruns.
195  *
196  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
197  * cacheline.  This can be beneficial if you're counting cycles as closely
198  * as davem.
199  */
200 struct kmem_cache *
201 kmem_cache_create(const char *name, size_t size, size_t align,
202 		  unsigned long flags, void (*ctor)(void *))
203 {
204 	struct kmem_cache *s;
205 	char *cache_name;
206 	int err;
207 
208 	get_online_cpus();
209 	get_online_mems();
210 
211 	mutex_lock(&slab_mutex);
212 
213 	err = kmem_cache_sanity_check(name, size);
214 	if (err)
215 		goto out_unlock;
216 
217 	/*
218 	 * Some allocators will constraint the set of valid flags to a subset
219 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
220 	 * case, and we'll just provide them with a sanitized version of the
221 	 * passed flags.
222 	 */
223 	flags &= CACHE_CREATE_MASK;
224 
225 	s = __kmem_cache_alias(name, size, align, flags, ctor);
226 	if (s)
227 		goto out_unlock;
228 
229 	cache_name = kstrdup(name, GFP_KERNEL);
230 	if (!cache_name) {
231 		err = -ENOMEM;
232 		goto out_unlock;
233 	}
234 
235 	s = do_kmem_cache_create(cache_name, size, size,
236 				 calculate_alignment(flags, align, size),
237 				 flags, ctor, NULL, NULL);
238 	if (IS_ERR(s)) {
239 		err = PTR_ERR(s);
240 		kfree(cache_name);
241 	}
242 
243 out_unlock:
244 	mutex_unlock(&slab_mutex);
245 
246 	put_online_mems();
247 	put_online_cpus();
248 
249 	if (err) {
250 		if (flags & SLAB_PANIC)
251 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
252 				name, err);
253 		else {
254 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
255 				name, err);
256 			dump_stack();
257 		}
258 		return NULL;
259 	}
260 	return s;
261 }
262 EXPORT_SYMBOL(kmem_cache_create);
263 
264 #ifdef CONFIG_MEMCG_KMEM
265 /*
266  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
267  * @memcg: The memory cgroup the new cache is for.
268  * @root_cache: The parent of the new cache.
269  * @memcg_name: The name of the memory cgroup (used for naming the new cache).
270  *
271  * This function attempts to create a kmem cache that will serve allocation
272  * requests going from @memcg to @root_cache. The new cache inherits properties
273  * from its parent.
274  */
275 struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
276 					   struct kmem_cache *root_cache,
277 					   const char *memcg_name)
278 {
279 	struct kmem_cache *s = NULL;
280 	char *cache_name;
281 
282 	get_online_cpus();
283 	get_online_mems();
284 
285 	mutex_lock(&slab_mutex);
286 
287 	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
288 			       memcg_cache_id(memcg), memcg_name);
289 	if (!cache_name)
290 		goto out_unlock;
291 
292 	s = do_kmem_cache_create(cache_name, root_cache->object_size,
293 				 root_cache->size, root_cache->align,
294 				 root_cache->flags, root_cache->ctor,
295 				 memcg, root_cache);
296 	if (IS_ERR(s)) {
297 		kfree(cache_name);
298 		s = NULL;
299 	}
300 
301 out_unlock:
302 	mutex_unlock(&slab_mutex);
303 
304 	put_online_mems();
305 	put_online_cpus();
306 
307 	return s;
308 }
309 
310 static int memcg_cleanup_cache_params(struct kmem_cache *s)
311 {
312 	int rc;
313 
314 	if (!s->memcg_params ||
315 	    !s->memcg_params->is_root_cache)
316 		return 0;
317 
318 	mutex_unlock(&slab_mutex);
319 	rc = __memcg_cleanup_cache_params(s);
320 	mutex_lock(&slab_mutex);
321 
322 	return rc;
323 }
324 #else
325 static int memcg_cleanup_cache_params(struct kmem_cache *s)
326 {
327 	return 0;
328 }
329 #endif /* CONFIG_MEMCG_KMEM */
330 
331 void slab_kmem_cache_release(struct kmem_cache *s)
332 {
333 	kfree(s->name);
334 	kmem_cache_free(kmem_cache, s);
335 }
336 
337 void kmem_cache_destroy(struct kmem_cache *s)
338 {
339 	get_online_cpus();
340 	get_online_mems();
341 
342 	mutex_lock(&slab_mutex);
343 
344 	s->refcount--;
345 	if (s->refcount)
346 		goto out_unlock;
347 
348 	if (memcg_cleanup_cache_params(s) != 0)
349 		goto out_unlock;
350 
351 	if (__kmem_cache_shutdown(s) != 0) {
352 		printk(KERN_ERR "kmem_cache_destroy %s: "
353 		       "Slab cache still has objects\n", s->name);
354 		dump_stack();
355 		goto out_unlock;
356 	}
357 
358 	list_del(&s->list);
359 
360 	mutex_unlock(&slab_mutex);
361 	if (s->flags & SLAB_DESTROY_BY_RCU)
362 		rcu_barrier();
363 
364 	memcg_free_cache_params(s);
365 #ifdef SLAB_SUPPORTS_SYSFS
366 	sysfs_slab_remove(s);
367 #else
368 	slab_kmem_cache_release(s);
369 #endif
370 	goto out;
371 
372 out_unlock:
373 	mutex_unlock(&slab_mutex);
374 out:
375 	put_online_mems();
376 	put_online_cpus();
377 }
378 EXPORT_SYMBOL(kmem_cache_destroy);
379 
380 /**
381  * kmem_cache_shrink - Shrink a cache.
382  * @cachep: The cache to shrink.
383  *
384  * Releases as many slabs as possible for a cache.
385  * To help debugging, a zero exit status indicates all slabs were released.
386  */
387 int kmem_cache_shrink(struct kmem_cache *cachep)
388 {
389 	int ret;
390 
391 	get_online_cpus();
392 	get_online_mems();
393 	ret = __kmem_cache_shrink(cachep);
394 	put_online_mems();
395 	put_online_cpus();
396 	return ret;
397 }
398 EXPORT_SYMBOL(kmem_cache_shrink);
399 
400 int slab_is_available(void)
401 {
402 	return slab_state >= UP;
403 }
404 
405 #ifndef CONFIG_SLOB
406 /* Create a cache during boot when no slab services are available yet */
407 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
408 		unsigned long flags)
409 {
410 	int err;
411 
412 	s->name = name;
413 	s->size = s->object_size = size;
414 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
415 	err = __kmem_cache_create(s, flags);
416 
417 	if (err)
418 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
419 					name, size, err);
420 
421 	s->refcount = -1;	/* Exempt from merging for now */
422 }
423 
424 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
425 				unsigned long flags)
426 {
427 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
428 
429 	if (!s)
430 		panic("Out of memory when creating slab %s\n", name);
431 
432 	create_boot_cache(s, name, size, flags);
433 	list_add(&s->list, &slab_caches);
434 	s->refcount = 1;
435 	return s;
436 }
437 
438 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
439 EXPORT_SYMBOL(kmalloc_caches);
440 
441 #ifdef CONFIG_ZONE_DMA
442 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
443 EXPORT_SYMBOL(kmalloc_dma_caches);
444 #endif
445 
446 /*
447  * Conversion table for small slabs sizes / 8 to the index in the
448  * kmalloc array. This is necessary for slabs < 192 since we have non power
449  * of two cache sizes there. The size of larger slabs can be determined using
450  * fls.
451  */
452 static s8 size_index[24] = {
453 	3,	/* 8 */
454 	4,	/* 16 */
455 	5,	/* 24 */
456 	5,	/* 32 */
457 	6,	/* 40 */
458 	6,	/* 48 */
459 	6,	/* 56 */
460 	6,	/* 64 */
461 	1,	/* 72 */
462 	1,	/* 80 */
463 	1,	/* 88 */
464 	1,	/* 96 */
465 	7,	/* 104 */
466 	7,	/* 112 */
467 	7,	/* 120 */
468 	7,	/* 128 */
469 	2,	/* 136 */
470 	2,	/* 144 */
471 	2,	/* 152 */
472 	2,	/* 160 */
473 	2,	/* 168 */
474 	2,	/* 176 */
475 	2,	/* 184 */
476 	2	/* 192 */
477 };
478 
479 static inline int size_index_elem(size_t bytes)
480 {
481 	return (bytes - 1) / 8;
482 }
483 
484 /*
485  * Find the kmem_cache structure that serves a given size of
486  * allocation
487  */
488 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
489 {
490 	int index;
491 
492 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
493 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
494 		return NULL;
495 	}
496 
497 	if (size <= 192) {
498 		if (!size)
499 			return ZERO_SIZE_PTR;
500 
501 		index = size_index[size_index_elem(size)];
502 	} else
503 		index = fls(size - 1);
504 
505 #ifdef CONFIG_ZONE_DMA
506 	if (unlikely((flags & GFP_DMA)))
507 		return kmalloc_dma_caches[index];
508 
509 #endif
510 	return kmalloc_caches[index];
511 }
512 
513 /*
514  * Create the kmalloc array. Some of the regular kmalloc arrays
515  * may already have been created because they were needed to
516  * enable allocations for slab creation.
517  */
518 void __init create_kmalloc_caches(unsigned long flags)
519 {
520 	int i;
521 
522 	/*
523 	 * Patch up the size_index table if we have strange large alignment
524 	 * requirements for the kmalloc array. This is only the case for
525 	 * MIPS it seems. The standard arches will not generate any code here.
526 	 *
527 	 * Largest permitted alignment is 256 bytes due to the way we
528 	 * handle the index determination for the smaller caches.
529 	 *
530 	 * Make sure that nothing crazy happens if someone starts tinkering
531 	 * around with ARCH_KMALLOC_MINALIGN
532 	 */
533 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
534 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
535 
536 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
537 		int elem = size_index_elem(i);
538 
539 		if (elem >= ARRAY_SIZE(size_index))
540 			break;
541 		size_index[elem] = KMALLOC_SHIFT_LOW;
542 	}
543 
544 	if (KMALLOC_MIN_SIZE >= 64) {
545 		/*
546 		 * The 96 byte size cache is not used if the alignment
547 		 * is 64 byte.
548 		 */
549 		for (i = 64 + 8; i <= 96; i += 8)
550 			size_index[size_index_elem(i)] = 7;
551 
552 	}
553 
554 	if (KMALLOC_MIN_SIZE >= 128) {
555 		/*
556 		 * The 192 byte sized cache is not used if the alignment
557 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
558 		 * instead.
559 		 */
560 		for (i = 128 + 8; i <= 192; i += 8)
561 			size_index[size_index_elem(i)] = 8;
562 	}
563 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
564 		if (!kmalloc_caches[i]) {
565 			kmalloc_caches[i] = create_kmalloc_cache(NULL,
566 							1 << i, flags);
567 		}
568 
569 		/*
570 		 * Caches that are not of the two-to-the-power-of size.
571 		 * These have to be created immediately after the
572 		 * earlier power of two caches
573 		 */
574 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
575 			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
576 
577 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
578 			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
579 	}
580 
581 	/* Kmalloc array is now usable */
582 	slab_state = UP;
583 
584 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
585 		struct kmem_cache *s = kmalloc_caches[i];
586 		char *n;
587 
588 		if (s) {
589 			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
590 
591 			BUG_ON(!n);
592 			s->name = n;
593 		}
594 	}
595 
596 #ifdef CONFIG_ZONE_DMA
597 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
598 		struct kmem_cache *s = kmalloc_caches[i];
599 
600 		if (s) {
601 			int size = kmalloc_size(i);
602 			char *n = kasprintf(GFP_NOWAIT,
603 				 "dma-kmalloc-%d", size);
604 
605 			BUG_ON(!n);
606 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
607 				size, SLAB_CACHE_DMA | flags);
608 		}
609 	}
610 #endif
611 }
612 #endif /* !CONFIG_SLOB */
613 
614 /*
615  * To avoid unnecessary overhead, we pass through large allocation requests
616  * directly to the page allocator. We use __GFP_COMP, because we will need to
617  * know the allocation order to free the pages properly in kfree.
618  */
619 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
620 {
621 	void *ret;
622 	struct page *page;
623 
624 	flags |= __GFP_COMP;
625 	page = alloc_kmem_pages(flags, order);
626 	ret = page ? page_address(page) : NULL;
627 	kmemleak_alloc(ret, size, 1, flags);
628 	return ret;
629 }
630 EXPORT_SYMBOL(kmalloc_order);
631 
632 #ifdef CONFIG_TRACING
633 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
634 {
635 	void *ret = kmalloc_order(size, flags, order);
636 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
637 	return ret;
638 }
639 EXPORT_SYMBOL(kmalloc_order_trace);
640 #endif
641 
642 #ifdef CONFIG_SLABINFO
643 
644 #ifdef CONFIG_SLAB
645 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
646 #else
647 #define SLABINFO_RIGHTS S_IRUSR
648 #endif
649 
650 void print_slabinfo_header(struct seq_file *m)
651 {
652 	/*
653 	 * Output format version, so at least we can change it
654 	 * without _too_ many complaints.
655 	 */
656 #ifdef CONFIG_DEBUG_SLAB
657 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
658 #else
659 	seq_puts(m, "slabinfo - version: 2.1\n");
660 #endif
661 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
662 		 "<objperslab> <pagesperslab>");
663 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
664 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
665 #ifdef CONFIG_DEBUG_SLAB
666 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
667 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
668 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
669 #endif
670 	seq_putc(m, '\n');
671 }
672 
673 static void *s_start(struct seq_file *m, loff_t *pos)
674 {
675 	loff_t n = *pos;
676 
677 	mutex_lock(&slab_mutex);
678 	if (!n)
679 		print_slabinfo_header(m);
680 
681 	return seq_list_start(&slab_caches, *pos);
682 }
683 
684 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
685 {
686 	return seq_list_next(p, &slab_caches, pos);
687 }
688 
689 void slab_stop(struct seq_file *m, void *p)
690 {
691 	mutex_unlock(&slab_mutex);
692 }
693 
694 static void
695 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
696 {
697 	struct kmem_cache *c;
698 	struct slabinfo sinfo;
699 	int i;
700 
701 	if (!is_root_cache(s))
702 		return;
703 
704 	for_each_memcg_cache_index(i) {
705 		c = cache_from_memcg_idx(s, i);
706 		if (!c)
707 			continue;
708 
709 		memset(&sinfo, 0, sizeof(sinfo));
710 		get_slabinfo(c, &sinfo);
711 
712 		info->active_slabs += sinfo.active_slabs;
713 		info->num_slabs += sinfo.num_slabs;
714 		info->shared_avail += sinfo.shared_avail;
715 		info->active_objs += sinfo.active_objs;
716 		info->num_objs += sinfo.num_objs;
717 	}
718 }
719 
720 int cache_show(struct kmem_cache *s, struct seq_file *m)
721 {
722 	struct slabinfo sinfo;
723 
724 	memset(&sinfo, 0, sizeof(sinfo));
725 	get_slabinfo(s, &sinfo);
726 
727 	memcg_accumulate_slabinfo(s, &sinfo);
728 
729 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
730 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
731 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
732 
733 	seq_printf(m, " : tunables %4u %4u %4u",
734 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
735 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
736 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
737 	slabinfo_show_stats(m, s);
738 	seq_putc(m, '\n');
739 	return 0;
740 }
741 
742 static int s_show(struct seq_file *m, void *p)
743 {
744 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
745 
746 	if (!is_root_cache(s))
747 		return 0;
748 	return cache_show(s, m);
749 }
750 
751 /*
752  * slabinfo_op - iterator that generates /proc/slabinfo
753  *
754  * Output layout:
755  * cache-name
756  * num-active-objs
757  * total-objs
758  * object size
759  * num-active-slabs
760  * total-slabs
761  * num-pages-per-slab
762  * + further values on SMP and with statistics enabled
763  */
764 static const struct seq_operations slabinfo_op = {
765 	.start = s_start,
766 	.next = slab_next,
767 	.stop = slab_stop,
768 	.show = s_show,
769 };
770 
771 static int slabinfo_open(struct inode *inode, struct file *file)
772 {
773 	return seq_open(file, &slabinfo_op);
774 }
775 
776 static const struct file_operations proc_slabinfo_operations = {
777 	.open		= slabinfo_open,
778 	.read		= seq_read,
779 	.write          = slabinfo_write,
780 	.llseek		= seq_lseek,
781 	.release	= seq_release,
782 };
783 
784 static int __init slab_proc_init(void)
785 {
786 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
787 						&proc_slabinfo_operations);
788 	return 0;
789 }
790 module_init(slab_proc_init);
791 #endif /* CONFIG_SLABINFO */
792 
793 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
794 					   gfp_t flags)
795 {
796 	void *ret;
797 	size_t ks = 0;
798 
799 	if (p)
800 		ks = ksize(p);
801 
802 	if (ks >= new_size)
803 		return (void *)p;
804 
805 	ret = kmalloc_track_caller(new_size, flags);
806 	if (ret && p)
807 		memcpy(ret, p, ks);
808 
809 	return ret;
810 }
811 
812 /**
813  * __krealloc - like krealloc() but don't free @p.
814  * @p: object to reallocate memory for.
815  * @new_size: how many bytes of memory are required.
816  * @flags: the type of memory to allocate.
817  *
818  * This function is like krealloc() except it never frees the originally
819  * allocated buffer. Use this if you don't want to free the buffer immediately
820  * like, for example, with RCU.
821  */
822 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
823 {
824 	if (unlikely(!new_size))
825 		return ZERO_SIZE_PTR;
826 
827 	return __do_krealloc(p, new_size, flags);
828 
829 }
830 EXPORT_SYMBOL(__krealloc);
831 
832 /**
833  * krealloc - reallocate memory. The contents will remain unchanged.
834  * @p: object to reallocate memory for.
835  * @new_size: how many bytes of memory are required.
836  * @flags: the type of memory to allocate.
837  *
838  * The contents of the object pointed to are preserved up to the
839  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
840  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
841  * %NULL pointer, the object pointed to is freed.
842  */
843 void *krealloc(const void *p, size_t new_size, gfp_t flags)
844 {
845 	void *ret;
846 
847 	if (unlikely(!new_size)) {
848 		kfree(p);
849 		return ZERO_SIZE_PTR;
850 	}
851 
852 	ret = __do_krealloc(p, new_size, flags);
853 	if (ret && p != ret)
854 		kfree(p);
855 
856 	return ret;
857 }
858 EXPORT_SYMBOL(krealloc);
859 
860 /**
861  * kzfree - like kfree but zero memory
862  * @p: object to free memory of
863  *
864  * The memory of the object @p points to is zeroed before freed.
865  * If @p is %NULL, kzfree() does nothing.
866  *
867  * Note: this function zeroes the whole allocated buffer which can be a good
868  * deal bigger than the requested buffer size passed to kmalloc(). So be
869  * careful when using this function in performance sensitive code.
870  */
871 void kzfree(const void *p)
872 {
873 	size_t ks;
874 	void *mem = (void *)p;
875 
876 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
877 		return;
878 	ks = ksize(mem);
879 	memset(mem, 0, ks);
880 	kfree(mem);
881 }
882 EXPORT_SYMBOL(kzfree);
883 
884 /* Tracepoints definitions. */
885 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
886 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
887 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
888 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
889 EXPORT_TRACEPOINT_SYMBOL(kfree);
890 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
891