xref: /openbmc/linux/mm/slab_common.c (revision 0bf49ffb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/kmem.h>
30 
31 #include "internal.h"
32 
33 #include "slab.h"
34 
35 enum slab_state slab_state;
36 LIST_HEAD(slab_caches);
37 DEFINE_MUTEX(slab_mutex);
38 struct kmem_cache *kmem_cache;
39 
40 #ifdef CONFIG_HARDENED_USERCOPY
41 bool usercopy_fallback __ro_after_init =
42 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
43 module_param(usercopy_fallback, bool, 0400);
44 MODULE_PARM_DESC(usercopy_fallback,
45 		"WARN instead of reject usercopy whitelist violations");
46 #endif
47 
48 static LIST_HEAD(slab_caches_to_rcu_destroy);
49 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
50 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
51 		    slab_caches_to_rcu_destroy_workfn);
52 
53 /*
54  * Set of flags that will prevent slab merging
55  */
56 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
57 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
58 		SLAB_FAILSLAB | kasan_never_merge())
59 
60 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
61 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
62 
63 /*
64  * Merge control. If this is set then no merging of slab caches will occur.
65  */
66 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
67 
68 static int __init setup_slab_nomerge(char *str)
69 {
70 	slab_nomerge = true;
71 	return 1;
72 }
73 
74 #ifdef CONFIG_SLUB
75 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
76 #endif
77 
78 __setup("slab_nomerge", setup_slab_nomerge);
79 
80 /*
81  * Determine the size of a slab object
82  */
83 unsigned int kmem_cache_size(struct kmem_cache *s)
84 {
85 	return s->object_size;
86 }
87 EXPORT_SYMBOL(kmem_cache_size);
88 
89 #ifdef CONFIG_DEBUG_VM
90 static int kmem_cache_sanity_check(const char *name, unsigned int size)
91 {
92 	if (!name || in_interrupt() || size < sizeof(void *) ||
93 		size > KMALLOC_MAX_SIZE) {
94 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 		return -EINVAL;
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
103 {
104 	return 0;
105 }
106 #endif
107 
108 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109 {
110 	size_t i;
111 
112 	for (i = 0; i < nr; i++) {
113 		if (s)
114 			kmem_cache_free(s, p[i]);
115 		else
116 			kfree(p[i]);
117 	}
118 }
119 
120 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
121 								void **p)
122 {
123 	size_t i;
124 
125 	for (i = 0; i < nr; i++) {
126 		void *x = p[i] = kmem_cache_alloc(s, flags);
127 		if (!x) {
128 			__kmem_cache_free_bulk(s, i, p);
129 			return 0;
130 		}
131 	}
132 	return i;
133 }
134 
135 /*
136  * Figure out what the alignment of the objects will be given a set of
137  * flags, a user specified alignment and the size of the objects.
138  */
139 static unsigned int calculate_alignment(slab_flags_t flags,
140 		unsigned int align, unsigned int size)
141 {
142 	/*
143 	 * If the user wants hardware cache aligned objects then follow that
144 	 * suggestion if the object is sufficiently large.
145 	 *
146 	 * The hardware cache alignment cannot override the specified
147 	 * alignment though. If that is greater then use it.
148 	 */
149 	if (flags & SLAB_HWCACHE_ALIGN) {
150 		unsigned int ralign;
151 
152 		ralign = cache_line_size();
153 		while (size <= ralign / 2)
154 			ralign /= 2;
155 		align = max(align, ralign);
156 	}
157 
158 	if (align < ARCH_SLAB_MINALIGN)
159 		align = ARCH_SLAB_MINALIGN;
160 
161 	return ALIGN(align, sizeof(void *));
162 }
163 
164 /*
165  * Find a mergeable slab cache
166  */
167 int slab_unmergeable(struct kmem_cache *s)
168 {
169 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
170 		return 1;
171 
172 	if (s->ctor)
173 		return 1;
174 
175 	if (s->usersize)
176 		return 1;
177 
178 	/*
179 	 * We may have set a slab to be unmergeable during bootstrap.
180 	 */
181 	if (s->refcount < 0)
182 		return 1;
183 
184 	return 0;
185 }
186 
187 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
188 		slab_flags_t flags, const char *name, void (*ctor)(void *))
189 {
190 	struct kmem_cache *s;
191 
192 	if (slab_nomerge)
193 		return NULL;
194 
195 	if (ctor)
196 		return NULL;
197 
198 	size = ALIGN(size, sizeof(void *));
199 	align = calculate_alignment(flags, align, size);
200 	size = ALIGN(size, align);
201 	flags = kmem_cache_flags(size, flags, name);
202 
203 	if (flags & SLAB_NEVER_MERGE)
204 		return NULL;
205 
206 	list_for_each_entry_reverse(s, &slab_caches, list) {
207 		if (slab_unmergeable(s))
208 			continue;
209 
210 		if (size > s->size)
211 			continue;
212 
213 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
214 			continue;
215 		/*
216 		 * Check if alignment is compatible.
217 		 * Courtesy of Adrian Drzewiecki
218 		 */
219 		if ((s->size & ~(align - 1)) != s->size)
220 			continue;
221 
222 		if (s->size - size >= sizeof(void *))
223 			continue;
224 
225 		if (IS_ENABLED(CONFIG_SLAB) && align &&
226 			(align > s->align || s->align % align))
227 			continue;
228 
229 		return s;
230 	}
231 	return NULL;
232 }
233 
234 static struct kmem_cache *create_cache(const char *name,
235 		unsigned int object_size, unsigned int align,
236 		slab_flags_t flags, unsigned int useroffset,
237 		unsigned int usersize, void (*ctor)(void *),
238 		struct kmem_cache *root_cache)
239 {
240 	struct kmem_cache *s;
241 	int err;
242 
243 	if (WARN_ON(useroffset + usersize > object_size))
244 		useroffset = usersize = 0;
245 
246 	err = -ENOMEM;
247 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
248 	if (!s)
249 		goto out;
250 
251 	s->name = name;
252 	s->size = s->object_size = object_size;
253 	s->align = align;
254 	s->ctor = ctor;
255 	s->useroffset = useroffset;
256 	s->usersize = usersize;
257 
258 	err = __kmem_cache_create(s, flags);
259 	if (err)
260 		goto out_free_cache;
261 
262 	s->refcount = 1;
263 	list_add(&s->list, &slab_caches);
264 out:
265 	if (err)
266 		return ERR_PTR(err);
267 	return s;
268 
269 out_free_cache:
270 	kmem_cache_free(kmem_cache, s);
271 	goto out;
272 }
273 
274 /**
275  * kmem_cache_create_usercopy - Create a cache with a region suitable
276  * for copying to userspace
277  * @name: A string which is used in /proc/slabinfo to identify this cache.
278  * @size: The size of objects to be created in this cache.
279  * @align: The required alignment for the objects.
280  * @flags: SLAB flags
281  * @useroffset: Usercopy region offset
282  * @usersize: Usercopy region size
283  * @ctor: A constructor for the objects.
284  *
285  * Cannot be called within a interrupt, but can be interrupted.
286  * The @ctor is run when new pages are allocated by the cache.
287  *
288  * The flags are
289  *
290  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
291  * to catch references to uninitialised memory.
292  *
293  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
294  * for buffer overruns.
295  *
296  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
297  * cacheline.  This can be beneficial if you're counting cycles as closely
298  * as davem.
299  *
300  * Return: a pointer to the cache on success, NULL on failure.
301  */
302 struct kmem_cache *
303 kmem_cache_create_usercopy(const char *name,
304 		  unsigned int size, unsigned int align,
305 		  slab_flags_t flags,
306 		  unsigned int useroffset, unsigned int usersize,
307 		  void (*ctor)(void *))
308 {
309 	struct kmem_cache *s = NULL;
310 	const char *cache_name;
311 	int err;
312 
313 	mutex_lock(&slab_mutex);
314 
315 	err = kmem_cache_sanity_check(name, size);
316 	if (err) {
317 		goto out_unlock;
318 	}
319 
320 	/* Refuse requests with allocator specific flags */
321 	if (flags & ~SLAB_FLAGS_PERMITTED) {
322 		err = -EINVAL;
323 		goto out_unlock;
324 	}
325 
326 	/*
327 	 * Some allocators will constraint the set of valid flags to a subset
328 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
329 	 * case, and we'll just provide them with a sanitized version of the
330 	 * passed flags.
331 	 */
332 	flags &= CACHE_CREATE_MASK;
333 
334 	/* Fail closed on bad usersize of useroffset values. */
335 	if (WARN_ON(!usersize && useroffset) ||
336 	    WARN_ON(size < usersize || size - usersize < useroffset))
337 		usersize = useroffset = 0;
338 
339 	if (!usersize)
340 		s = __kmem_cache_alias(name, size, align, flags, ctor);
341 	if (s)
342 		goto out_unlock;
343 
344 	cache_name = kstrdup_const(name, GFP_KERNEL);
345 	if (!cache_name) {
346 		err = -ENOMEM;
347 		goto out_unlock;
348 	}
349 
350 	s = create_cache(cache_name, size,
351 			 calculate_alignment(flags, align, size),
352 			 flags, useroffset, usersize, ctor, NULL);
353 	if (IS_ERR(s)) {
354 		err = PTR_ERR(s);
355 		kfree_const(cache_name);
356 	}
357 
358 out_unlock:
359 	mutex_unlock(&slab_mutex);
360 
361 	if (err) {
362 		if (flags & SLAB_PANIC)
363 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
364 				name, err);
365 		else {
366 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
367 				name, err);
368 			dump_stack();
369 		}
370 		return NULL;
371 	}
372 	return s;
373 }
374 EXPORT_SYMBOL(kmem_cache_create_usercopy);
375 
376 /**
377  * kmem_cache_create - Create a cache.
378  * @name: A string which is used in /proc/slabinfo to identify this cache.
379  * @size: The size of objects to be created in this cache.
380  * @align: The required alignment for the objects.
381  * @flags: SLAB flags
382  * @ctor: A constructor for the objects.
383  *
384  * Cannot be called within a interrupt, but can be interrupted.
385  * The @ctor is run when new pages are allocated by the cache.
386  *
387  * The flags are
388  *
389  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
390  * to catch references to uninitialised memory.
391  *
392  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
393  * for buffer overruns.
394  *
395  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
396  * cacheline.  This can be beneficial if you're counting cycles as closely
397  * as davem.
398  *
399  * Return: a pointer to the cache on success, NULL on failure.
400  */
401 struct kmem_cache *
402 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
403 		slab_flags_t flags, void (*ctor)(void *))
404 {
405 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
406 					  ctor);
407 }
408 EXPORT_SYMBOL(kmem_cache_create);
409 
410 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
411 {
412 	LIST_HEAD(to_destroy);
413 	struct kmem_cache *s, *s2;
414 
415 	/*
416 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
417 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
418 	 * through RCU and the associated kmem_cache are dereferenced
419 	 * while freeing the pages, so the kmem_caches should be freed only
420 	 * after the pending RCU operations are finished.  As rcu_barrier()
421 	 * is a pretty slow operation, we batch all pending destructions
422 	 * asynchronously.
423 	 */
424 	mutex_lock(&slab_mutex);
425 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
426 	mutex_unlock(&slab_mutex);
427 
428 	if (list_empty(&to_destroy))
429 		return;
430 
431 	rcu_barrier();
432 
433 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
434 		kfence_shutdown_cache(s);
435 #ifdef SLAB_SUPPORTS_SYSFS
436 		sysfs_slab_release(s);
437 #else
438 		slab_kmem_cache_release(s);
439 #endif
440 	}
441 }
442 
443 static int shutdown_cache(struct kmem_cache *s)
444 {
445 	/* free asan quarantined objects */
446 	kasan_cache_shutdown(s);
447 
448 	if (__kmem_cache_shutdown(s) != 0)
449 		return -EBUSY;
450 
451 	list_del(&s->list);
452 
453 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
454 #ifdef SLAB_SUPPORTS_SYSFS
455 		sysfs_slab_unlink(s);
456 #endif
457 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
458 		schedule_work(&slab_caches_to_rcu_destroy_work);
459 	} else {
460 		kfence_shutdown_cache(s);
461 #ifdef SLAB_SUPPORTS_SYSFS
462 		sysfs_slab_unlink(s);
463 		sysfs_slab_release(s);
464 #else
465 		slab_kmem_cache_release(s);
466 #endif
467 	}
468 
469 	return 0;
470 }
471 
472 void slab_kmem_cache_release(struct kmem_cache *s)
473 {
474 	__kmem_cache_release(s);
475 	kfree_const(s->name);
476 	kmem_cache_free(kmem_cache, s);
477 }
478 
479 void kmem_cache_destroy(struct kmem_cache *s)
480 {
481 	int err;
482 
483 	if (unlikely(!s))
484 		return;
485 
486 	mutex_lock(&slab_mutex);
487 
488 	s->refcount--;
489 	if (s->refcount)
490 		goto out_unlock;
491 
492 	err = shutdown_cache(s);
493 	if (err) {
494 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
495 		       s->name);
496 		dump_stack();
497 	}
498 out_unlock:
499 	mutex_unlock(&slab_mutex);
500 }
501 EXPORT_SYMBOL(kmem_cache_destroy);
502 
503 /**
504  * kmem_cache_shrink - Shrink a cache.
505  * @cachep: The cache to shrink.
506  *
507  * Releases as many slabs as possible for a cache.
508  * To help debugging, a zero exit status indicates all slabs were released.
509  *
510  * Return: %0 if all slabs were released, non-zero otherwise
511  */
512 int kmem_cache_shrink(struct kmem_cache *cachep)
513 {
514 	int ret;
515 
516 
517 	kasan_cache_shrink(cachep);
518 	ret = __kmem_cache_shrink(cachep);
519 
520 	return ret;
521 }
522 EXPORT_SYMBOL(kmem_cache_shrink);
523 
524 bool slab_is_available(void)
525 {
526 	return slab_state >= UP;
527 }
528 
529 /**
530  * kmem_valid_obj - does the pointer reference a valid slab object?
531  * @object: pointer to query.
532  *
533  * Return: %true if the pointer is to a not-yet-freed object from
534  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
535  * is to an already-freed object, and %false otherwise.
536  */
537 bool kmem_valid_obj(void *object)
538 {
539 	struct page *page;
540 
541 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
542 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
543 		return false;
544 	page = virt_to_head_page(object);
545 	return PageSlab(page);
546 }
547 
548 /**
549  * kmem_dump_obj - Print available slab provenance information
550  * @object: slab object for which to find provenance information.
551  *
552  * This function uses pr_cont(), so that the caller is expected to have
553  * printed out whatever preamble is appropriate.  The provenance information
554  * depends on the type of object and on how much debugging is enabled.
555  * For a slab-cache object, the fact that it is a slab object is printed,
556  * and, if available, the slab name, return address, and stack trace from
557  * the allocation of that object.
558  *
559  * This function will splat if passed a pointer to a non-slab object.
560  * If you are not sure what type of object you have, you should instead
561  * use mem_dump_obj().
562  */
563 void kmem_dump_obj(void *object)
564 {
565 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
566 	int i;
567 	struct page *page;
568 	unsigned long ptroffset;
569 	struct kmem_obj_info kp = { };
570 
571 	if (WARN_ON_ONCE(!virt_addr_valid(object)))
572 		return;
573 	page = virt_to_head_page(object);
574 	if (WARN_ON_ONCE(!PageSlab(page))) {
575 		pr_cont(" non-slab memory.\n");
576 		return;
577 	}
578 	kmem_obj_info(&kp, object, page);
579 	if (kp.kp_slab_cache)
580 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
581 	else
582 		pr_cont(" slab%s", cp);
583 	if (kp.kp_objp)
584 		pr_cont(" start %px", kp.kp_objp);
585 	if (kp.kp_data_offset)
586 		pr_cont(" data offset %lu", kp.kp_data_offset);
587 	if (kp.kp_objp) {
588 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
589 		pr_cont(" pointer offset %lu", ptroffset);
590 	}
591 	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
592 		pr_cont(" size %u", kp.kp_slab_cache->usersize);
593 	if (kp.kp_ret)
594 		pr_cont(" allocated at %pS\n", kp.kp_ret);
595 	else
596 		pr_cont("\n");
597 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
598 		if (!kp.kp_stack[i])
599 			break;
600 		pr_info("    %pS\n", kp.kp_stack[i]);
601 	}
602 }
603 
604 #ifndef CONFIG_SLOB
605 /* Create a cache during boot when no slab services are available yet */
606 void __init create_boot_cache(struct kmem_cache *s, const char *name,
607 		unsigned int size, slab_flags_t flags,
608 		unsigned int useroffset, unsigned int usersize)
609 {
610 	int err;
611 	unsigned int align = ARCH_KMALLOC_MINALIGN;
612 
613 	s->name = name;
614 	s->size = s->object_size = size;
615 
616 	/*
617 	 * For power of two sizes, guarantee natural alignment for kmalloc
618 	 * caches, regardless of SL*B debugging options.
619 	 */
620 	if (is_power_of_2(size))
621 		align = max(align, size);
622 	s->align = calculate_alignment(flags, align, size);
623 
624 	s->useroffset = useroffset;
625 	s->usersize = usersize;
626 
627 	err = __kmem_cache_create(s, flags);
628 
629 	if (err)
630 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
631 					name, size, err);
632 
633 	s->refcount = -1;	/* Exempt from merging for now */
634 }
635 
636 struct kmem_cache *__init create_kmalloc_cache(const char *name,
637 		unsigned int size, slab_flags_t flags,
638 		unsigned int useroffset, unsigned int usersize)
639 {
640 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
641 
642 	if (!s)
643 		panic("Out of memory when creating slab %s\n", name);
644 
645 	create_boot_cache(s, name, size, flags, useroffset, usersize);
646 	kasan_cache_create_kmalloc(s);
647 	list_add(&s->list, &slab_caches);
648 	s->refcount = 1;
649 	return s;
650 }
651 
652 struct kmem_cache *
653 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
654 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
655 EXPORT_SYMBOL(kmalloc_caches);
656 
657 /*
658  * Conversion table for small slabs sizes / 8 to the index in the
659  * kmalloc array. This is necessary for slabs < 192 since we have non power
660  * of two cache sizes there. The size of larger slabs can be determined using
661  * fls.
662  */
663 static u8 size_index[24] __ro_after_init = {
664 	3,	/* 8 */
665 	4,	/* 16 */
666 	5,	/* 24 */
667 	5,	/* 32 */
668 	6,	/* 40 */
669 	6,	/* 48 */
670 	6,	/* 56 */
671 	6,	/* 64 */
672 	1,	/* 72 */
673 	1,	/* 80 */
674 	1,	/* 88 */
675 	1,	/* 96 */
676 	7,	/* 104 */
677 	7,	/* 112 */
678 	7,	/* 120 */
679 	7,	/* 128 */
680 	2,	/* 136 */
681 	2,	/* 144 */
682 	2,	/* 152 */
683 	2,	/* 160 */
684 	2,	/* 168 */
685 	2,	/* 176 */
686 	2,	/* 184 */
687 	2	/* 192 */
688 };
689 
690 static inline unsigned int size_index_elem(unsigned int bytes)
691 {
692 	return (bytes - 1) / 8;
693 }
694 
695 /*
696  * Find the kmem_cache structure that serves a given size of
697  * allocation
698  */
699 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
700 {
701 	unsigned int index;
702 
703 	if (size <= 192) {
704 		if (!size)
705 			return ZERO_SIZE_PTR;
706 
707 		index = size_index[size_index_elem(size)];
708 	} else {
709 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
710 			return NULL;
711 		index = fls(size - 1);
712 	}
713 
714 	return kmalloc_caches[kmalloc_type(flags)][index];
715 }
716 
717 #ifdef CONFIG_ZONE_DMA
718 #define INIT_KMALLOC_INFO(__size, __short_size)			\
719 {								\
720 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
721 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
722 	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
723 	.size = __size,						\
724 }
725 #else
726 #define INIT_KMALLOC_INFO(__size, __short_size)			\
727 {								\
728 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
729 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
730 	.size = __size,						\
731 }
732 #endif
733 
734 /*
735  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
736  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
737  * kmalloc-67108864.
738  */
739 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
740 	INIT_KMALLOC_INFO(0, 0),
741 	INIT_KMALLOC_INFO(96, 96),
742 	INIT_KMALLOC_INFO(192, 192),
743 	INIT_KMALLOC_INFO(8, 8),
744 	INIT_KMALLOC_INFO(16, 16),
745 	INIT_KMALLOC_INFO(32, 32),
746 	INIT_KMALLOC_INFO(64, 64),
747 	INIT_KMALLOC_INFO(128, 128),
748 	INIT_KMALLOC_INFO(256, 256),
749 	INIT_KMALLOC_INFO(512, 512),
750 	INIT_KMALLOC_INFO(1024, 1k),
751 	INIT_KMALLOC_INFO(2048, 2k),
752 	INIT_KMALLOC_INFO(4096, 4k),
753 	INIT_KMALLOC_INFO(8192, 8k),
754 	INIT_KMALLOC_INFO(16384, 16k),
755 	INIT_KMALLOC_INFO(32768, 32k),
756 	INIT_KMALLOC_INFO(65536, 64k),
757 	INIT_KMALLOC_INFO(131072, 128k),
758 	INIT_KMALLOC_INFO(262144, 256k),
759 	INIT_KMALLOC_INFO(524288, 512k),
760 	INIT_KMALLOC_INFO(1048576, 1M),
761 	INIT_KMALLOC_INFO(2097152, 2M),
762 	INIT_KMALLOC_INFO(4194304, 4M),
763 	INIT_KMALLOC_INFO(8388608, 8M),
764 	INIT_KMALLOC_INFO(16777216, 16M),
765 	INIT_KMALLOC_INFO(33554432, 32M),
766 	INIT_KMALLOC_INFO(67108864, 64M)
767 };
768 
769 /*
770  * Patch up the size_index table if we have strange large alignment
771  * requirements for the kmalloc array. This is only the case for
772  * MIPS it seems. The standard arches will not generate any code here.
773  *
774  * Largest permitted alignment is 256 bytes due to the way we
775  * handle the index determination for the smaller caches.
776  *
777  * Make sure that nothing crazy happens if someone starts tinkering
778  * around with ARCH_KMALLOC_MINALIGN
779  */
780 void __init setup_kmalloc_cache_index_table(void)
781 {
782 	unsigned int i;
783 
784 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
785 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
786 
787 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
788 		unsigned int elem = size_index_elem(i);
789 
790 		if (elem >= ARRAY_SIZE(size_index))
791 			break;
792 		size_index[elem] = KMALLOC_SHIFT_LOW;
793 	}
794 
795 	if (KMALLOC_MIN_SIZE >= 64) {
796 		/*
797 		 * The 96 byte size cache is not used if the alignment
798 		 * is 64 byte.
799 		 */
800 		for (i = 64 + 8; i <= 96; i += 8)
801 			size_index[size_index_elem(i)] = 7;
802 
803 	}
804 
805 	if (KMALLOC_MIN_SIZE >= 128) {
806 		/*
807 		 * The 192 byte sized cache is not used if the alignment
808 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
809 		 * instead.
810 		 */
811 		for (i = 128 + 8; i <= 192; i += 8)
812 			size_index[size_index_elem(i)] = 8;
813 	}
814 }
815 
816 static void __init
817 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
818 {
819 	if (type == KMALLOC_RECLAIM)
820 		flags |= SLAB_RECLAIM_ACCOUNT;
821 
822 	kmalloc_caches[type][idx] = create_kmalloc_cache(
823 					kmalloc_info[idx].name[type],
824 					kmalloc_info[idx].size, flags, 0,
825 					kmalloc_info[idx].size);
826 }
827 
828 /*
829  * Create the kmalloc array. Some of the regular kmalloc arrays
830  * may already have been created because they were needed to
831  * enable allocations for slab creation.
832  */
833 void __init create_kmalloc_caches(slab_flags_t flags)
834 {
835 	int i;
836 	enum kmalloc_cache_type type;
837 
838 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
839 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
840 			if (!kmalloc_caches[type][i])
841 				new_kmalloc_cache(i, type, flags);
842 
843 			/*
844 			 * Caches that are not of the two-to-the-power-of size.
845 			 * These have to be created immediately after the
846 			 * earlier power of two caches
847 			 */
848 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
849 					!kmalloc_caches[type][1])
850 				new_kmalloc_cache(1, type, flags);
851 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
852 					!kmalloc_caches[type][2])
853 				new_kmalloc_cache(2, type, flags);
854 		}
855 	}
856 
857 	/* Kmalloc array is now usable */
858 	slab_state = UP;
859 
860 #ifdef CONFIG_ZONE_DMA
861 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
862 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
863 
864 		if (s) {
865 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
866 				kmalloc_info[i].name[KMALLOC_DMA],
867 				kmalloc_info[i].size,
868 				SLAB_CACHE_DMA | flags, 0,
869 				kmalloc_info[i].size);
870 		}
871 	}
872 #endif
873 }
874 #endif /* !CONFIG_SLOB */
875 
876 gfp_t kmalloc_fix_flags(gfp_t flags)
877 {
878 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
879 
880 	flags &= ~GFP_SLAB_BUG_MASK;
881 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
882 			invalid_mask, &invalid_mask, flags, &flags);
883 	dump_stack();
884 
885 	return flags;
886 }
887 
888 /*
889  * To avoid unnecessary overhead, we pass through large allocation requests
890  * directly to the page allocator. We use __GFP_COMP, because we will need to
891  * know the allocation order to free the pages properly in kfree.
892  */
893 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
894 {
895 	void *ret = NULL;
896 	struct page *page;
897 
898 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
899 		flags = kmalloc_fix_flags(flags);
900 
901 	flags |= __GFP_COMP;
902 	page = alloc_pages(flags, order);
903 	if (likely(page)) {
904 		ret = page_address(page);
905 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
906 				      PAGE_SIZE << order);
907 	}
908 	ret = kasan_kmalloc_large(ret, size, flags);
909 	/* As ret might get tagged, call kmemleak hook after KASAN. */
910 	kmemleak_alloc(ret, size, 1, flags);
911 	return ret;
912 }
913 EXPORT_SYMBOL(kmalloc_order);
914 
915 #ifdef CONFIG_TRACING
916 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
917 {
918 	void *ret = kmalloc_order(size, flags, order);
919 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
920 	return ret;
921 }
922 EXPORT_SYMBOL(kmalloc_order_trace);
923 #endif
924 
925 #ifdef CONFIG_SLAB_FREELIST_RANDOM
926 /* Randomize a generic freelist */
927 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
928 			       unsigned int count)
929 {
930 	unsigned int rand;
931 	unsigned int i;
932 
933 	for (i = 0; i < count; i++)
934 		list[i] = i;
935 
936 	/* Fisher-Yates shuffle */
937 	for (i = count - 1; i > 0; i--) {
938 		rand = prandom_u32_state(state);
939 		rand %= (i + 1);
940 		swap(list[i], list[rand]);
941 	}
942 }
943 
944 /* Create a random sequence per cache */
945 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
946 				    gfp_t gfp)
947 {
948 	struct rnd_state state;
949 
950 	if (count < 2 || cachep->random_seq)
951 		return 0;
952 
953 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
954 	if (!cachep->random_seq)
955 		return -ENOMEM;
956 
957 	/* Get best entropy at this stage of boot */
958 	prandom_seed_state(&state, get_random_long());
959 
960 	freelist_randomize(&state, cachep->random_seq, count);
961 	return 0;
962 }
963 
964 /* Destroy the per-cache random freelist sequence */
965 void cache_random_seq_destroy(struct kmem_cache *cachep)
966 {
967 	kfree(cachep->random_seq);
968 	cachep->random_seq = NULL;
969 }
970 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
971 
972 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
973 #ifdef CONFIG_SLAB
974 #define SLABINFO_RIGHTS (0600)
975 #else
976 #define SLABINFO_RIGHTS (0400)
977 #endif
978 
979 static void print_slabinfo_header(struct seq_file *m)
980 {
981 	/*
982 	 * Output format version, so at least we can change it
983 	 * without _too_ many complaints.
984 	 */
985 #ifdef CONFIG_DEBUG_SLAB
986 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
987 #else
988 	seq_puts(m, "slabinfo - version: 2.1\n");
989 #endif
990 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
991 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
992 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
993 #ifdef CONFIG_DEBUG_SLAB
994 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
995 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
996 #endif
997 	seq_putc(m, '\n');
998 }
999 
1000 void *slab_start(struct seq_file *m, loff_t *pos)
1001 {
1002 	mutex_lock(&slab_mutex);
1003 	return seq_list_start(&slab_caches, *pos);
1004 }
1005 
1006 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1007 {
1008 	return seq_list_next(p, &slab_caches, pos);
1009 }
1010 
1011 void slab_stop(struct seq_file *m, void *p)
1012 {
1013 	mutex_unlock(&slab_mutex);
1014 }
1015 
1016 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1017 {
1018 	struct slabinfo sinfo;
1019 
1020 	memset(&sinfo, 0, sizeof(sinfo));
1021 	get_slabinfo(s, &sinfo);
1022 
1023 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1024 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1025 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1026 
1027 	seq_printf(m, " : tunables %4u %4u %4u",
1028 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1029 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1030 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1031 	slabinfo_show_stats(m, s);
1032 	seq_putc(m, '\n');
1033 }
1034 
1035 static int slab_show(struct seq_file *m, void *p)
1036 {
1037 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1038 
1039 	if (p == slab_caches.next)
1040 		print_slabinfo_header(m);
1041 	cache_show(s, m);
1042 	return 0;
1043 }
1044 
1045 void dump_unreclaimable_slab(void)
1046 {
1047 	struct kmem_cache *s;
1048 	struct slabinfo sinfo;
1049 
1050 	/*
1051 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1052 	 * sleep in oom path. But, without mutex hold, it may introduce a
1053 	 * risk of crash.
1054 	 * Use mutex_trylock to protect the list traverse, dump nothing
1055 	 * without acquiring the mutex.
1056 	 */
1057 	if (!mutex_trylock(&slab_mutex)) {
1058 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1059 		return;
1060 	}
1061 
1062 	pr_info("Unreclaimable slab info:\n");
1063 	pr_info("Name                      Used          Total\n");
1064 
1065 	list_for_each_entry(s, &slab_caches, list) {
1066 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1067 			continue;
1068 
1069 		get_slabinfo(s, &sinfo);
1070 
1071 		if (sinfo.num_objs > 0)
1072 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1073 				(sinfo.active_objs * s->size) / 1024,
1074 				(sinfo.num_objs * s->size) / 1024);
1075 	}
1076 	mutex_unlock(&slab_mutex);
1077 }
1078 
1079 #if defined(CONFIG_MEMCG_KMEM)
1080 int memcg_slab_show(struct seq_file *m, void *p)
1081 {
1082 	/*
1083 	 * Deprecated.
1084 	 * Please, take a look at tools/cgroup/slabinfo.py .
1085 	 */
1086 	return 0;
1087 }
1088 #endif
1089 
1090 /*
1091  * slabinfo_op - iterator that generates /proc/slabinfo
1092  *
1093  * Output layout:
1094  * cache-name
1095  * num-active-objs
1096  * total-objs
1097  * object size
1098  * num-active-slabs
1099  * total-slabs
1100  * num-pages-per-slab
1101  * + further values on SMP and with statistics enabled
1102  */
1103 static const struct seq_operations slabinfo_op = {
1104 	.start = slab_start,
1105 	.next = slab_next,
1106 	.stop = slab_stop,
1107 	.show = slab_show,
1108 };
1109 
1110 static int slabinfo_open(struct inode *inode, struct file *file)
1111 {
1112 	return seq_open(file, &slabinfo_op);
1113 }
1114 
1115 static const struct proc_ops slabinfo_proc_ops = {
1116 	.proc_flags	= PROC_ENTRY_PERMANENT,
1117 	.proc_open	= slabinfo_open,
1118 	.proc_read	= seq_read,
1119 	.proc_write	= slabinfo_write,
1120 	.proc_lseek	= seq_lseek,
1121 	.proc_release	= seq_release,
1122 };
1123 
1124 static int __init slab_proc_init(void)
1125 {
1126 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1127 	return 0;
1128 }
1129 module_init(slab_proc_init);
1130 
1131 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1132 
1133 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1134 					   gfp_t flags)
1135 {
1136 	void *ret;
1137 	size_t ks;
1138 
1139 	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
1140 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1141 		if (!kasan_check_byte(p))
1142 			return NULL;
1143 		ks = kfence_ksize(p) ?: __ksize(p);
1144 	} else
1145 		ks = 0;
1146 
1147 	/* If the object still fits, repoison it precisely. */
1148 	if (ks >= new_size) {
1149 		p = kasan_krealloc((void *)p, new_size, flags);
1150 		return (void *)p;
1151 	}
1152 
1153 	ret = kmalloc_track_caller(new_size, flags);
1154 	if (ret && p) {
1155 		/* Disable KASAN checks as the object's redzone is accessed. */
1156 		kasan_disable_current();
1157 		memcpy(ret, kasan_reset_tag(p), ks);
1158 		kasan_enable_current();
1159 	}
1160 
1161 	return ret;
1162 }
1163 
1164 /**
1165  * krealloc - reallocate memory. The contents will remain unchanged.
1166  * @p: object to reallocate memory for.
1167  * @new_size: how many bytes of memory are required.
1168  * @flags: the type of memory to allocate.
1169  *
1170  * The contents of the object pointed to are preserved up to the
1171  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1172  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1173  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1174  *
1175  * Return: pointer to the allocated memory or %NULL in case of error
1176  */
1177 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1178 {
1179 	void *ret;
1180 
1181 	if (unlikely(!new_size)) {
1182 		kfree(p);
1183 		return ZERO_SIZE_PTR;
1184 	}
1185 
1186 	ret = __do_krealloc(p, new_size, flags);
1187 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1188 		kfree(p);
1189 
1190 	return ret;
1191 }
1192 EXPORT_SYMBOL(krealloc);
1193 
1194 /**
1195  * kfree_sensitive - Clear sensitive information in memory before freeing
1196  * @p: object to free memory of
1197  *
1198  * The memory of the object @p points to is zeroed before freed.
1199  * If @p is %NULL, kfree_sensitive() does nothing.
1200  *
1201  * Note: this function zeroes the whole allocated buffer which can be a good
1202  * deal bigger than the requested buffer size passed to kmalloc(). So be
1203  * careful when using this function in performance sensitive code.
1204  */
1205 void kfree_sensitive(const void *p)
1206 {
1207 	size_t ks;
1208 	void *mem = (void *)p;
1209 
1210 	ks = ksize(mem);
1211 	if (ks)
1212 		memzero_explicit(mem, ks);
1213 	kfree(mem);
1214 }
1215 EXPORT_SYMBOL(kfree_sensitive);
1216 
1217 /**
1218  * ksize - get the actual amount of memory allocated for a given object
1219  * @objp: Pointer to the object
1220  *
1221  * kmalloc may internally round up allocations and return more memory
1222  * than requested. ksize() can be used to determine the actual amount of
1223  * memory allocated. The caller may use this additional memory, even though
1224  * a smaller amount of memory was initially specified with the kmalloc call.
1225  * The caller must guarantee that objp points to a valid object previously
1226  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1227  * must not be freed during the duration of the call.
1228  *
1229  * Return: size of the actual memory used by @objp in bytes
1230  */
1231 size_t ksize(const void *objp)
1232 {
1233 	size_t size;
1234 
1235 	/*
1236 	 * We need to first check that the pointer to the object is valid, and
1237 	 * only then unpoison the memory. The report printed from ksize() is
1238 	 * more useful, then when it's printed later when the behaviour could
1239 	 * be undefined due to a potential use-after-free or double-free.
1240 	 *
1241 	 * We use kasan_check_byte(), which is supported for the hardware
1242 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1243 	 *
1244 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1245 	 * ksize() writing to and potentially corrupting the memory region.
1246 	 *
1247 	 * We want to perform the check before __ksize(), to avoid potentially
1248 	 * crashing in __ksize() due to accessing invalid metadata.
1249 	 */
1250 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1251 		return 0;
1252 
1253 	size = kfence_ksize(objp) ?: __ksize(objp);
1254 	/*
1255 	 * We assume that ksize callers could use whole allocated area,
1256 	 * so we need to unpoison this area.
1257 	 */
1258 	kasan_unpoison_range(objp, size);
1259 	return size;
1260 }
1261 EXPORT_SYMBOL(ksize);
1262 
1263 /* Tracepoints definitions. */
1264 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1265 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1266 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1267 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1268 EXPORT_TRACEPOINT_SYMBOL(kfree);
1269 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1270 
1271 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1272 {
1273 	if (__should_failslab(s, gfpflags))
1274 		return -ENOMEM;
1275 	return 0;
1276 }
1277 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1278