1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Slab allocator functions that are independent of the allocator strategy 4 * 5 * (C) 2012 Christoph Lameter <cl@linux.com> 6 */ 7 #include <linux/slab.h> 8 9 #include <linux/mm.h> 10 #include <linux/poison.h> 11 #include <linux/interrupt.h> 12 #include <linux/memory.h> 13 #include <linux/cache.h> 14 #include <linux/compiler.h> 15 #include <linux/kfence.h> 16 #include <linux/module.h> 17 #include <linux/cpu.h> 18 #include <linux/uaccess.h> 19 #include <linux/seq_file.h> 20 #include <linux/proc_fs.h> 21 #include <linux/debugfs.h> 22 #include <linux/kasan.h> 23 #include <asm/cacheflush.h> 24 #include <asm/tlbflush.h> 25 #include <asm/page.h> 26 #include <linux/memcontrol.h> 27 28 #define CREATE_TRACE_POINTS 29 #include <trace/events/kmem.h> 30 31 #include "internal.h" 32 33 #include "slab.h" 34 35 enum slab_state slab_state; 36 LIST_HEAD(slab_caches); 37 DEFINE_MUTEX(slab_mutex); 38 struct kmem_cache *kmem_cache; 39 40 #ifdef CONFIG_HARDENED_USERCOPY 41 bool usercopy_fallback __ro_after_init = 42 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); 43 module_param(usercopy_fallback, bool, 0400); 44 MODULE_PARM_DESC(usercopy_fallback, 45 "WARN instead of reject usercopy whitelist violations"); 46 #endif 47 48 static LIST_HEAD(slab_caches_to_rcu_destroy); 49 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); 50 static DECLARE_WORK(slab_caches_to_rcu_destroy_work, 51 slab_caches_to_rcu_destroy_workfn); 52 53 /* 54 * Set of flags that will prevent slab merging 55 */ 56 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 57 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ 58 SLAB_FAILSLAB | kasan_never_merge()) 59 60 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ 61 SLAB_CACHE_DMA32 | SLAB_ACCOUNT) 62 63 /* 64 * Merge control. If this is set then no merging of slab caches will occur. 65 */ 66 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); 67 68 static int __init setup_slab_nomerge(char *str) 69 { 70 slab_nomerge = true; 71 return 1; 72 } 73 74 #ifdef CONFIG_SLUB 75 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 76 #endif 77 78 __setup("slab_nomerge", setup_slab_nomerge); 79 80 /* 81 * Determine the size of a slab object 82 */ 83 unsigned int kmem_cache_size(struct kmem_cache *s) 84 { 85 return s->object_size; 86 } 87 EXPORT_SYMBOL(kmem_cache_size); 88 89 #ifdef CONFIG_DEBUG_VM 90 static int kmem_cache_sanity_check(const char *name, unsigned int size) 91 { 92 if (!name || in_interrupt() || size < sizeof(void *) || 93 size > KMALLOC_MAX_SIZE) { 94 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 95 return -EINVAL; 96 } 97 98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 99 return 0; 100 } 101 #else 102 static inline int kmem_cache_sanity_check(const char *name, unsigned int size) 103 { 104 return 0; 105 } 106 #endif 107 108 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) 109 { 110 size_t i; 111 112 for (i = 0; i < nr; i++) { 113 if (s) 114 kmem_cache_free(s, p[i]); 115 else 116 kfree(p[i]); 117 } 118 } 119 120 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, 121 void **p) 122 { 123 size_t i; 124 125 for (i = 0; i < nr; i++) { 126 void *x = p[i] = kmem_cache_alloc(s, flags); 127 if (!x) { 128 __kmem_cache_free_bulk(s, i, p); 129 return 0; 130 } 131 } 132 return i; 133 } 134 135 /* 136 * Figure out what the alignment of the objects will be given a set of 137 * flags, a user specified alignment and the size of the objects. 138 */ 139 static unsigned int calculate_alignment(slab_flags_t flags, 140 unsigned int align, unsigned int size) 141 { 142 /* 143 * If the user wants hardware cache aligned objects then follow that 144 * suggestion if the object is sufficiently large. 145 * 146 * The hardware cache alignment cannot override the specified 147 * alignment though. If that is greater then use it. 148 */ 149 if (flags & SLAB_HWCACHE_ALIGN) { 150 unsigned int ralign; 151 152 ralign = cache_line_size(); 153 while (size <= ralign / 2) 154 ralign /= 2; 155 align = max(align, ralign); 156 } 157 158 if (align < ARCH_SLAB_MINALIGN) 159 align = ARCH_SLAB_MINALIGN; 160 161 return ALIGN(align, sizeof(void *)); 162 } 163 164 /* 165 * Find a mergeable slab cache 166 */ 167 int slab_unmergeable(struct kmem_cache *s) 168 { 169 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 170 return 1; 171 172 if (s->ctor) 173 return 1; 174 175 if (s->usersize) 176 return 1; 177 178 /* 179 * We may have set a slab to be unmergeable during bootstrap. 180 */ 181 if (s->refcount < 0) 182 return 1; 183 184 return 0; 185 } 186 187 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, 188 slab_flags_t flags, const char *name, void (*ctor)(void *)) 189 { 190 struct kmem_cache *s; 191 192 if (slab_nomerge) 193 return NULL; 194 195 if (ctor) 196 return NULL; 197 198 size = ALIGN(size, sizeof(void *)); 199 align = calculate_alignment(flags, align, size); 200 size = ALIGN(size, align); 201 flags = kmem_cache_flags(size, flags, name); 202 203 if (flags & SLAB_NEVER_MERGE) 204 return NULL; 205 206 list_for_each_entry_reverse(s, &slab_caches, list) { 207 if (slab_unmergeable(s)) 208 continue; 209 210 if (size > s->size) 211 continue; 212 213 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 214 continue; 215 /* 216 * Check if alignment is compatible. 217 * Courtesy of Adrian Drzewiecki 218 */ 219 if ((s->size & ~(align - 1)) != s->size) 220 continue; 221 222 if (s->size - size >= sizeof(void *)) 223 continue; 224 225 if (IS_ENABLED(CONFIG_SLAB) && align && 226 (align > s->align || s->align % align)) 227 continue; 228 229 return s; 230 } 231 return NULL; 232 } 233 234 static struct kmem_cache *create_cache(const char *name, 235 unsigned int object_size, unsigned int align, 236 slab_flags_t flags, unsigned int useroffset, 237 unsigned int usersize, void (*ctor)(void *), 238 struct kmem_cache *root_cache) 239 { 240 struct kmem_cache *s; 241 int err; 242 243 if (WARN_ON(useroffset + usersize > object_size)) 244 useroffset = usersize = 0; 245 246 err = -ENOMEM; 247 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 248 if (!s) 249 goto out; 250 251 s->name = name; 252 s->size = s->object_size = object_size; 253 s->align = align; 254 s->ctor = ctor; 255 s->useroffset = useroffset; 256 s->usersize = usersize; 257 258 err = __kmem_cache_create(s, flags); 259 if (err) 260 goto out_free_cache; 261 262 s->refcount = 1; 263 list_add(&s->list, &slab_caches); 264 out: 265 if (err) 266 return ERR_PTR(err); 267 return s; 268 269 out_free_cache: 270 kmem_cache_free(kmem_cache, s); 271 goto out; 272 } 273 274 /** 275 * kmem_cache_create_usercopy - Create a cache with a region suitable 276 * for copying to userspace 277 * @name: A string which is used in /proc/slabinfo to identify this cache. 278 * @size: The size of objects to be created in this cache. 279 * @align: The required alignment for the objects. 280 * @flags: SLAB flags 281 * @useroffset: Usercopy region offset 282 * @usersize: Usercopy region size 283 * @ctor: A constructor for the objects. 284 * 285 * Cannot be called within a interrupt, but can be interrupted. 286 * The @ctor is run when new pages are allocated by the cache. 287 * 288 * The flags are 289 * 290 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 291 * to catch references to uninitialised memory. 292 * 293 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 294 * for buffer overruns. 295 * 296 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 297 * cacheline. This can be beneficial if you're counting cycles as closely 298 * as davem. 299 * 300 * Return: a pointer to the cache on success, NULL on failure. 301 */ 302 struct kmem_cache * 303 kmem_cache_create_usercopy(const char *name, 304 unsigned int size, unsigned int align, 305 slab_flags_t flags, 306 unsigned int useroffset, unsigned int usersize, 307 void (*ctor)(void *)) 308 { 309 struct kmem_cache *s = NULL; 310 const char *cache_name; 311 int err; 312 313 mutex_lock(&slab_mutex); 314 315 err = kmem_cache_sanity_check(name, size); 316 if (err) { 317 goto out_unlock; 318 } 319 320 /* Refuse requests with allocator specific flags */ 321 if (flags & ~SLAB_FLAGS_PERMITTED) { 322 err = -EINVAL; 323 goto out_unlock; 324 } 325 326 /* 327 * Some allocators will constraint the set of valid flags to a subset 328 * of all flags. We expect them to define CACHE_CREATE_MASK in this 329 * case, and we'll just provide them with a sanitized version of the 330 * passed flags. 331 */ 332 flags &= CACHE_CREATE_MASK; 333 334 /* Fail closed on bad usersize of useroffset values. */ 335 if (WARN_ON(!usersize && useroffset) || 336 WARN_ON(size < usersize || size - usersize < useroffset)) 337 usersize = useroffset = 0; 338 339 if (!usersize) 340 s = __kmem_cache_alias(name, size, align, flags, ctor); 341 if (s) 342 goto out_unlock; 343 344 cache_name = kstrdup_const(name, GFP_KERNEL); 345 if (!cache_name) { 346 err = -ENOMEM; 347 goto out_unlock; 348 } 349 350 s = create_cache(cache_name, size, 351 calculate_alignment(flags, align, size), 352 flags, useroffset, usersize, ctor, NULL); 353 if (IS_ERR(s)) { 354 err = PTR_ERR(s); 355 kfree_const(cache_name); 356 } 357 358 out_unlock: 359 mutex_unlock(&slab_mutex); 360 361 if (err) { 362 if (flags & SLAB_PANIC) 363 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", 364 name, err); 365 else { 366 pr_warn("kmem_cache_create(%s) failed with error %d\n", 367 name, err); 368 dump_stack(); 369 } 370 return NULL; 371 } 372 return s; 373 } 374 EXPORT_SYMBOL(kmem_cache_create_usercopy); 375 376 /** 377 * kmem_cache_create - Create a cache. 378 * @name: A string which is used in /proc/slabinfo to identify this cache. 379 * @size: The size of objects to be created in this cache. 380 * @align: The required alignment for the objects. 381 * @flags: SLAB flags 382 * @ctor: A constructor for the objects. 383 * 384 * Cannot be called within a interrupt, but can be interrupted. 385 * The @ctor is run when new pages are allocated by the cache. 386 * 387 * The flags are 388 * 389 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 390 * to catch references to uninitialised memory. 391 * 392 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 393 * for buffer overruns. 394 * 395 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 396 * cacheline. This can be beneficial if you're counting cycles as closely 397 * as davem. 398 * 399 * Return: a pointer to the cache on success, NULL on failure. 400 */ 401 struct kmem_cache * 402 kmem_cache_create(const char *name, unsigned int size, unsigned int align, 403 slab_flags_t flags, void (*ctor)(void *)) 404 { 405 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, 406 ctor); 407 } 408 EXPORT_SYMBOL(kmem_cache_create); 409 410 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) 411 { 412 LIST_HEAD(to_destroy); 413 struct kmem_cache *s, *s2; 414 415 /* 416 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the 417 * @slab_caches_to_rcu_destroy list. The slab pages are freed 418 * through RCU and the associated kmem_cache are dereferenced 419 * while freeing the pages, so the kmem_caches should be freed only 420 * after the pending RCU operations are finished. As rcu_barrier() 421 * is a pretty slow operation, we batch all pending destructions 422 * asynchronously. 423 */ 424 mutex_lock(&slab_mutex); 425 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); 426 mutex_unlock(&slab_mutex); 427 428 if (list_empty(&to_destroy)) 429 return; 430 431 rcu_barrier(); 432 433 list_for_each_entry_safe(s, s2, &to_destroy, list) { 434 kfence_shutdown_cache(s); 435 #ifdef SLAB_SUPPORTS_SYSFS 436 sysfs_slab_release(s); 437 #else 438 slab_kmem_cache_release(s); 439 #endif 440 } 441 } 442 443 static int shutdown_cache(struct kmem_cache *s) 444 { 445 /* free asan quarantined objects */ 446 kasan_cache_shutdown(s); 447 448 if (__kmem_cache_shutdown(s) != 0) 449 return -EBUSY; 450 451 list_del(&s->list); 452 453 if (s->flags & SLAB_TYPESAFE_BY_RCU) { 454 #ifdef SLAB_SUPPORTS_SYSFS 455 sysfs_slab_unlink(s); 456 #endif 457 list_add_tail(&s->list, &slab_caches_to_rcu_destroy); 458 schedule_work(&slab_caches_to_rcu_destroy_work); 459 } else { 460 kfence_shutdown_cache(s); 461 #ifdef SLAB_SUPPORTS_SYSFS 462 sysfs_slab_unlink(s); 463 sysfs_slab_release(s); 464 #else 465 slab_kmem_cache_release(s); 466 #endif 467 } 468 469 return 0; 470 } 471 472 void slab_kmem_cache_release(struct kmem_cache *s) 473 { 474 __kmem_cache_release(s); 475 kfree_const(s->name); 476 kmem_cache_free(kmem_cache, s); 477 } 478 479 void kmem_cache_destroy(struct kmem_cache *s) 480 { 481 int err; 482 483 if (unlikely(!s)) 484 return; 485 486 mutex_lock(&slab_mutex); 487 488 s->refcount--; 489 if (s->refcount) 490 goto out_unlock; 491 492 err = shutdown_cache(s); 493 if (err) { 494 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", 495 s->name); 496 dump_stack(); 497 } 498 out_unlock: 499 mutex_unlock(&slab_mutex); 500 } 501 EXPORT_SYMBOL(kmem_cache_destroy); 502 503 /** 504 * kmem_cache_shrink - Shrink a cache. 505 * @cachep: The cache to shrink. 506 * 507 * Releases as many slabs as possible for a cache. 508 * To help debugging, a zero exit status indicates all slabs were released. 509 * 510 * Return: %0 if all slabs were released, non-zero otherwise 511 */ 512 int kmem_cache_shrink(struct kmem_cache *cachep) 513 { 514 int ret; 515 516 517 kasan_cache_shrink(cachep); 518 ret = __kmem_cache_shrink(cachep); 519 520 return ret; 521 } 522 EXPORT_SYMBOL(kmem_cache_shrink); 523 524 bool slab_is_available(void) 525 { 526 return slab_state >= UP; 527 } 528 529 /** 530 * kmem_valid_obj - does the pointer reference a valid slab object? 531 * @object: pointer to query. 532 * 533 * Return: %true if the pointer is to a not-yet-freed object from 534 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer 535 * is to an already-freed object, and %false otherwise. 536 */ 537 bool kmem_valid_obj(void *object) 538 { 539 struct page *page; 540 541 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ 542 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) 543 return false; 544 page = virt_to_head_page(object); 545 return PageSlab(page); 546 } 547 548 /** 549 * kmem_dump_obj - Print available slab provenance information 550 * @object: slab object for which to find provenance information. 551 * 552 * This function uses pr_cont(), so that the caller is expected to have 553 * printed out whatever preamble is appropriate. The provenance information 554 * depends on the type of object and on how much debugging is enabled. 555 * For a slab-cache object, the fact that it is a slab object is printed, 556 * and, if available, the slab name, return address, and stack trace from 557 * the allocation of that object. 558 * 559 * This function will splat if passed a pointer to a non-slab object. 560 * If you are not sure what type of object you have, you should instead 561 * use mem_dump_obj(). 562 */ 563 void kmem_dump_obj(void *object) 564 { 565 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; 566 int i; 567 struct page *page; 568 unsigned long ptroffset; 569 struct kmem_obj_info kp = { }; 570 571 if (WARN_ON_ONCE(!virt_addr_valid(object))) 572 return; 573 page = virt_to_head_page(object); 574 if (WARN_ON_ONCE(!PageSlab(page))) { 575 pr_cont(" non-slab memory.\n"); 576 return; 577 } 578 kmem_obj_info(&kp, object, page); 579 if (kp.kp_slab_cache) 580 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); 581 else 582 pr_cont(" slab%s", cp); 583 if (kp.kp_objp) 584 pr_cont(" start %px", kp.kp_objp); 585 if (kp.kp_data_offset) 586 pr_cont(" data offset %lu", kp.kp_data_offset); 587 if (kp.kp_objp) { 588 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; 589 pr_cont(" pointer offset %lu", ptroffset); 590 } 591 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize) 592 pr_cont(" size %u", kp.kp_slab_cache->usersize); 593 if (kp.kp_ret) 594 pr_cont(" allocated at %pS\n", kp.kp_ret); 595 else 596 pr_cont("\n"); 597 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { 598 if (!kp.kp_stack[i]) 599 break; 600 pr_info(" %pS\n", kp.kp_stack[i]); 601 } 602 } 603 604 #ifndef CONFIG_SLOB 605 /* Create a cache during boot when no slab services are available yet */ 606 void __init create_boot_cache(struct kmem_cache *s, const char *name, 607 unsigned int size, slab_flags_t flags, 608 unsigned int useroffset, unsigned int usersize) 609 { 610 int err; 611 unsigned int align = ARCH_KMALLOC_MINALIGN; 612 613 s->name = name; 614 s->size = s->object_size = size; 615 616 /* 617 * For power of two sizes, guarantee natural alignment for kmalloc 618 * caches, regardless of SL*B debugging options. 619 */ 620 if (is_power_of_2(size)) 621 align = max(align, size); 622 s->align = calculate_alignment(flags, align, size); 623 624 s->useroffset = useroffset; 625 s->usersize = usersize; 626 627 err = __kmem_cache_create(s, flags); 628 629 if (err) 630 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", 631 name, size, err); 632 633 s->refcount = -1; /* Exempt from merging for now */ 634 } 635 636 struct kmem_cache *__init create_kmalloc_cache(const char *name, 637 unsigned int size, slab_flags_t flags, 638 unsigned int useroffset, unsigned int usersize) 639 { 640 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 641 642 if (!s) 643 panic("Out of memory when creating slab %s\n", name); 644 645 create_boot_cache(s, name, size, flags, useroffset, usersize); 646 kasan_cache_create_kmalloc(s); 647 list_add(&s->list, &slab_caches); 648 s->refcount = 1; 649 return s; 650 } 651 652 struct kmem_cache * 653 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = 654 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; 655 EXPORT_SYMBOL(kmalloc_caches); 656 657 /* 658 * Conversion table for small slabs sizes / 8 to the index in the 659 * kmalloc array. This is necessary for slabs < 192 since we have non power 660 * of two cache sizes there. The size of larger slabs can be determined using 661 * fls. 662 */ 663 static u8 size_index[24] __ro_after_init = { 664 3, /* 8 */ 665 4, /* 16 */ 666 5, /* 24 */ 667 5, /* 32 */ 668 6, /* 40 */ 669 6, /* 48 */ 670 6, /* 56 */ 671 6, /* 64 */ 672 1, /* 72 */ 673 1, /* 80 */ 674 1, /* 88 */ 675 1, /* 96 */ 676 7, /* 104 */ 677 7, /* 112 */ 678 7, /* 120 */ 679 7, /* 128 */ 680 2, /* 136 */ 681 2, /* 144 */ 682 2, /* 152 */ 683 2, /* 160 */ 684 2, /* 168 */ 685 2, /* 176 */ 686 2, /* 184 */ 687 2 /* 192 */ 688 }; 689 690 static inline unsigned int size_index_elem(unsigned int bytes) 691 { 692 return (bytes - 1) / 8; 693 } 694 695 /* 696 * Find the kmem_cache structure that serves a given size of 697 * allocation 698 */ 699 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) 700 { 701 unsigned int index; 702 703 if (size <= 192) { 704 if (!size) 705 return ZERO_SIZE_PTR; 706 707 index = size_index[size_index_elem(size)]; 708 } else { 709 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) 710 return NULL; 711 index = fls(size - 1); 712 } 713 714 return kmalloc_caches[kmalloc_type(flags)][index]; 715 } 716 717 #ifdef CONFIG_ZONE_DMA 718 #define INIT_KMALLOC_INFO(__size, __short_size) \ 719 { \ 720 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ 721 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \ 722 .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \ 723 .size = __size, \ 724 } 725 #else 726 #define INIT_KMALLOC_INFO(__size, __short_size) \ 727 { \ 728 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ 729 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \ 730 .size = __size, \ 731 } 732 #endif 733 734 /* 735 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. 736 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is 737 * kmalloc-67108864. 738 */ 739 const struct kmalloc_info_struct kmalloc_info[] __initconst = { 740 INIT_KMALLOC_INFO(0, 0), 741 INIT_KMALLOC_INFO(96, 96), 742 INIT_KMALLOC_INFO(192, 192), 743 INIT_KMALLOC_INFO(8, 8), 744 INIT_KMALLOC_INFO(16, 16), 745 INIT_KMALLOC_INFO(32, 32), 746 INIT_KMALLOC_INFO(64, 64), 747 INIT_KMALLOC_INFO(128, 128), 748 INIT_KMALLOC_INFO(256, 256), 749 INIT_KMALLOC_INFO(512, 512), 750 INIT_KMALLOC_INFO(1024, 1k), 751 INIT_KMALLOC_INFO(2048, 2k), 752 INIT_KMALLOC_INFO(4096, 4k), 753 INIT_KMALLOC_INFO(8192, 8k), 754 INIT_KMALLOC_INFO(16384, 16k), 755 INIT_KMALLOC_INFO(32768, 32k), 756 INIT_KMALLOC_INFO(65536, 64k), 757 INIT_KMALLOC_INFO(131072, 128k), 758 INIT_KMALLOC_INFO(262144, 256k), 759 INIT_KMALLOC_INFO(524288, 512k), 760 INIT_KMALLOC_INFO(1048576, 1M), 761 INIT_KMALLOC_INFO(2097152, 2M), 762 INIT_KMALLOC_INFO(4194304, 4M), 763 INIT_KMALLOC_INFO(8388608, 8M), 764 INIT_KMALLOC_INFO(16777216, 16M), 765 INIT_KMALLOC_INFO(33554432, 32M), 766 INIT_KMALLOC_INFO(67108864, 64M) 767 }; 768 769 /* 770 * Patch up the size_index table if we have strange large alignment 771 * requirements for the kmalloc array. This is only the case for 772 * MIPS it seems. The standard arches will not generate any code here. 773 * 774 * Largest permitted alignment is 256 bytes due to the way we 775 * handle the index determination for the smaller caches. 776 * 777 * Make sure that nothing crazy happens if someone starts tinkering 778 * around with ARCH_KMALLOC_MINALIGN 779 */ 780 void __init setup_kmalloc_cache_index_table(void) 781 { 782 unsigned int i; 783 784 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 785 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 786 787 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 788 unsigned int elem = size_index_elem(i); 789 790 if (elem >= ARRAY_SIZE(size_index)) 791 break; 792 size_index[elem] = KMALLOC_SHIFT_LOW; 793 } 794 795 if (KMALLOC_MIN_SIZE >= 64) { 796 /* 797 * The 96 byte size cache is not used if the alignment 798 * is 64 byte. 799 */ 800 for (i = 64 + 8; i <= 96; i += 8) 801 size_index[size_index_elem(i)] = 7; 802 803 } 804 805 if (KMALLOC_MIN_SIZE >= 128) { 806 /* 807 * The 192 byte sized cache is not used if the alignment 808 * is 128 byte. Redirect kmalloc to use the 256 byte cache 809 * instead. 810 */ 811 for (i = 128 + 8; i <= 192; i += 8) 812 size_index[size_index_elem(i)] = 8; 813 } 814 } 815 816 static void __init 817 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags) 818 { 819 if (type == KMALLOC_RECLAIM) 820 flags |= SLAB_RECLAIM_ACCOUNT; 821 822 kmalloc_caches[type][idx] = create_kmalloc_cache( 823 kmalloc_info[idx].name[type], 824 kmalloc_info[idx].size, flags, 0, 825 kmalloc_info[idx].size); 826 } 827 828 /* 829 * Create the kmalloc array. Some of the regular kmalloc arrays 830 * may already have been created because they were needed to 831 * enable allocations for slab creation. 832 */ 833 void __init create_kmalloc_caches(slab_flags_t flags) 834 { 835 int i; 836 enum kmalloc_cache_type type; 837 838 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { 839 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 840 if (!kmalloc_caches[type][i]) 841 new_kmalloc_cache(i, type, flags); 842 843 /* 844 * Caches that are not of the two-to-the-power-of size. 845 * These have to be created immediately after the 846 * earlier power of two caches 847 */ 848 if (KMALLOC_MIN_SIZE <= 32 && i == 6 && 849 !kmalloc_caches[type][1]) 850 new_kmalloc_cache(1, type, flags); 851 if (KMALLOC_MIN_SIZE <= 64 && i == 7 && 852 !kmalloc_caches[type][2]) 853 new_kmalloc_cache(2, type, flags); 854 } 855 } 856 857 /* Kmalloc array is now usable */ 858 slab_state = UP; 859 860 #ifdef CONFIG_ZONE_DMA 861 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 862 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; 863 864 if (s) { 865 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( 866 kmalloc_info[i].name[KMALLOC_DMA], 867 kmalloc_info[i].size, 868 SLAB_CACHE_DMA | flags, 0, 869 kmalloc_info[i].size); 870 } 871 } 872 #endif 873 } 874 #endif /* !CONFIG_SLOB */ 875 876 gfp_t kmalloc_fix_flags(gfp_t flags) 877 { 878 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 879 880 flags &= ~GFP_SLAB_BUG_MASK; 881 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 882 invalid_mask, &invalid_mask, flags, &flags); 883 dump_stack(); 884 885 return flags; 886 } 887 888 /* 889 * To avoid unnecessary overhead, we pass through large allocation requests 890 * directly to the page allocator. We use __GFP_COMP, because we will need to 891 * know the allocation order to free the pages properly in kfree. 892 */ 893 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) 894 { 895 void *ret = NULL; 896 struct page *page; 897 898 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 899 flags = kmalloc_fix_flags(flags); 900 901 flags |= __GFP_COMP; 902 page = alloc_pages(flags, order); 903 if (likely(page)) { 904 ret = page_address(page); 905 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 906 PAGE_SIZE << order); 907 } 908 ret = kasan_kmalloc_large(ret, size, flags); 909 /* As ret might get tagged, call kmemleak hook after KASAN. */ 910 kmemleak_alloc(ret, size, 1, flags); 911 return ret; 912 } 913 EXPORT_SYMBOL(kmalloc_order); 914 915 #ifdef CONFIG_TRACING 916 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 917 { 918 void *ret = kmalloc_order(size, flags, order); 919 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 920 return ret; 921 } 922 EXPORT_SYMBOL(kmalloc_order_trace); 923 #endif 924 925 #ifdef CONFIG_SLAB_FREELIST_RANDOM 926 /* Randomize a generic freelist */ 927 static void freelist_randomize(struct rnd_state *state, unsigned int *list, 928 unsigned int count) 929 { 930 unsigned int rand; 931 unsigned int i; 932 933 for (i = 0; i < count; i++) 934 list[i] = i; 935 936 /* Fisher-Yates shuffle */ 937 for (i = count - 1; i > 0; i--) { 938 rand = prandom_u32_state(state); 939 rand %= (i + 1); 940 swap(list[i], list[rand]); 941 } 942 } 943 944 /* Create a random sequence per cache */ 945 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 946 gfp_t gfp) 947 { 948 struct rnd_state state; 949 950 if (count < 2 || cachep->random_seq) 951 return 0; 952 953 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); 954 if (!cachep->random_seq) 955 return -ENOMEM; 956 957 /* Get best entropy at this stage of boot */ 958 prandom_seed_state(&state, get_random_long()); 959 960 freelist_randomize(&state, cachep->random_seq, count); 961 return 0; 962 } 963 964 /* Destroy the per-cache random freelist sequence */ 965 void cache_random_seq_destroy(struct kmem_cache *cachep) 966 { 967 kfree(cachep->random_seq); 968 cachep->random_seq = NULL; 969 } 970 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 971 972 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 973 #ifdef CONFIG_SLAB 974 #define SLABINFO_RIGHTS (0600) 975 #else 976 #define SLABINFO_RIGHTS (0400) 977 #endif 978 979 static void print_slabinfo_header(struct seq_file *m) 980 { 981 /* 982 * Output format version, so at least we can change it 983 * without _too_ many complaints. 984 */ 985 #ifdef CONFIG_DEBUG_SLAB 986 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 987 #else 988 seq_puts(m, "slabinfo - version: 2.1\n"); 989 #endif 990 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); 991 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 992 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 993 #ifdef CONFIG_DEBUG_SLAB 994 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 995 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 996 #endif 997 seq_putc(m, '\n'); 998 } 999 1000 void *slab_start(struct seq_file *m, loff_t *pos) 1001 { 1002 mutex_lock(&slab_mutex); 1003 return seq_list_start(&slab_caches, *pos); 1004 } 1005 1006 void *slab_next(struct seq_file *m, void *p, loff_t *pos) 1007 { 1008 return seq_list_next(p, &slab_caches, pos); 1009 } 1010 1011 void slab_stop(struct seq_file *m, void *p) 1012 { 1013 mutex_unlock(&slab_mutex); 1014 } 1015 1016 static void cache_show(struct kmem_cache *s, struct seq_file *m) 1017 { 1018 struct slabinfo sinfo; 1019 1020 memset(&sinfo, 0, sizeof(sinfo)); 1021 get_slabinfo(s, &sinfo); 1022 1023 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 1024 s->name, sinfo.active_objs, sinfo.num_objs, s->size, 1025 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 1026 1027 seq_printf(m, " : tunables %4u %4u %4u", 1028 sinfo.limit, sinfo.batchcount, sinfo.shared); 1029 seq_printf(m, " : slabdata %6lu %6lu %6lu", 1030 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 1031 slabinfo_show_stats(m, s); 1032 seq_putc(m, '\n'); 1033 } 1034 1035 static int slab_show(struct seq_file *m, void *p) 1036 { 1037 struct kmem_cache *s = list_entry(p, struct kmem_cache, list); 1038 1039 if (p == slab_caches.next) 1040 print_slabinfo_header(m); 1041 cache_show(s, m); 1042 return 0; 1043 } 1044 1045 void dump_unreclaimable_slab(void) 1046 { 1047 struct kmem_cache *s; 1048 struct slabinfo sinfo; 1049 1050 /* 1051 * Here acquiring slab_mutex is risky since we don't prefer to get 1052 * sleep in oom path. But, without mutex hold, it may introduce a 1053 * risk of crash. 1054 * Use mutex_trylock to protect the list traverse, dump nothing 1055 * without acquiring the mutex. 1056 */ 1057 if (!mutex_trylock(&slab_mutex)) { 1058 pr_warn("excessive unreclaimable slab but cannot dump stats\n"); 1059 return; 1060 } 1061 1062 pr_info("Unreclaimable slab info:\n"); 1063 pr_info("Name Used Total\n"); 1064 1065 list_for_each_entry(s, &slab_caches, list) { 1066 if (s->flags & SLAB_RECLAIM_ACCOUNT) 1067 continue; 1068 1069 get_slabinfo(s, &sinfo); 1070 1071 if (sinfo.num_objs > 0) 1072 pr_info("%-17s %10luKB %10luKB\n", s->name, 1073 (sinfo.active_objs * s->size) / 1024, 1074 (sinfo.num_objs * s->size) / 1024); 1075 } 1076 mutex_unlock(&slab_mutex); 1077 } 1078 1079 #if defined(CONFIG_MEMCG_KMEM) 1080 int memcg_slab_show(struct seq_file *m, void *p) 1081 { 1082 /* 1083 * Deprecated. 1084 * Please, take a look at tools/cgroup/slabinfo.py . 1085 */ 1086 return 0; 1087 } 1088 #endif 1089 1090 /* 1091 * slabinfo_op - iterator that generates /proc/slabinfo 1092 * 1093 * Output layout: 1094 * cache-name 1095 * num-active-objs 1096 * total-objs 1097 * object size 1098 * num-active-slabs 1099 * total-slabs 1100 * num-pages-per-slab 1101 * + further values on SMP and with statistics enabled 1102 */ 1103 static const struct seq_operations slabinfo_op = { 1104 .start = slab_start, 1105 .next = slab_next, 1106 .stop = slab_stop, 1107 .show = slab_show, 1108 }; 1109 1110 static int slabinfo_open(struct inode *inode, struct file *file) 1111 { 1112 return seq_open(file, &slabinfo_op); 1113 } 1114 1115 static const struct proc_ops slabinfo_proc_ops = { 1116 .proc_flags = PROC_ENTRY_PERMANENT, 1117 .proc_open = slabinfo_open, 1118 .proc_read = seq_read, 1119 .proc_write = slabinfo_write, 1120 .proc_lseek = seq_lseek, 1121 .proc_release = seq_release, 1122 }; 1123 1124 static int __init slab_proc_init(void) 1125 { 1126 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); 1127 return 0; 1128 } 1129 module_init(slab_proc_init); 1130 1131 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ 1132 1133 static __always_inline void *__do_krealloc(const void *p, size_t new_size, 1134 gfp_t flags) 1135 { 1136 void *ret; 1137 size_t ks; 1138 1139 /* Don't use instrumented ksize to allow precise KASAN poisoning. */ 1140 if (likely(!ZERO_OR_NULL_PTR(p))) { 1141 if (!kasan_check_byte(p)) 1142 return NULL; 1143 ks = kfence_ksize(p) ?: __ksize(p); 1144 } else 1145 ks = 0; 1146 1147 /* If the object still fits, repoison it precisely. */ 1148 if (ks >= new_size) { 1149 p = kasan_krealloc((void *)p, new_size, flags); 1150 return (void *)p; 1151 } 1152 1153 ret = kmalloc_track_caller(new_size, flags); 1154 if (ret && p) { 1155 /* Disable KASAN checks as the object's redzone is accessed. */ 1156 kasan_disable_current(); 1157 memcpy(ret, kasan_reset_tag(p), ks); 1158 kasan_enable_current(); 1159 } 1160 1161 return ret; 1162 } 1163 1164 /** 1165 * krealloc - reallocate memory. The contents will remain unchanged. 1166 * @p: object to reallocate memory for. 1167 * @new_size: how many bytes of memory are required. 1168 * @flags: the type of memory to allocate. 1169 * 1170 * The contents of the object pointed to are preserved up to the 1171 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored). 1172 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 1173 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 1174 * 1175 * Return: pointer to the allocated memory or %NULL in case of error 1176 */ 1177 void *krealloc(const void *p, size_t new_size, gfp_t flags) 1178 { 1179 void *ret; 1180 1181 if (unlikely(!new_size)) { 1182 kfree(p); 1183 return ZERO_SIZE_PTR; 1184 } 1185 1186 ret = __do_krealloc(p, new_size, flags); 1187 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 1188 kfree(p); 1189 1190 return ret; 1191 } 1192 EXPORT_SYMBOL(krealloc); 1193 1194 /** 1195 * kfree_sensitive - Clear sensitive information in memory before freeing 1196 * @p: object to free memory of 1197 * 1198 * The memory of the object @p points to is zeroed before freed. 1199 * If @p is %NULL, kfree_sensitive() does nothing. 1200 * 1201 * Note: this function zeroes the whole allocated buffer which can be a good 1202 * deal bigger than the requested buffer size passed to kmalloc(). So be 1203 * careful when using this function in performance sensitive code. 1204 */ 1205 void kfree_sensitive(const void *p) 1206 { 1207 size_t ks; 1208 void *mem = (void *)p; 1209 1210 ks = ksize(mem); 1211 if (ks) 1212 memzero_explicit(mem, ks); 1213 kfree(mem); 1214 } 1215 EXPORT_SYMBOL(kfree_sensitive); 1216 1217 /** 1218 * ksize - get the actual amount of memory allocated for a given object 1219 * @objp: Pointer to the object 1220 * 1221 * kmalloc may internally round up allocations and return more memory 1222 * than requested. ksize() can be used to determine the actual amount of 1223 * memory allocated. The caller may use this additional memory, even though 1224 * a smaller amount of memory was initially specified with the kmalloc call. 1225 * The caller must guarantee that objp points to a valid object previously 1226 * allocated with either kmalloc() or kmem_cache_alloc(). The object 1227 * must not be freed during the duration of the call. 1228 * 1229 * Return: size of the actual memory used by @objp in bytes 1230 */ 1231 size_t ksize(const void *objp) 1232 { 1233 size_t size; 1234 1235 /* 1236 * We need to first check that the pointer to the object is valid, and 1237 * only then unpoison the memory. The report printed from ksize() is 1238 * more useful, then when it's printed later when the behaviour could 1239 * be undefined due to a potential use-after-free or double-free. 1240 * 1241 * We use kasan_check_byte(), which is supported for the hardware 1242 * tag-based KASAN mode, unlike kasan_check_read/write(). 1243 * 1244 * If the pointed to memory is invalid, we return 0 to avoid users of 1245 * ksize() writing to and potentially corrupting the memory region. 1246 * 1247 * We want to perform the check before __ksize(), to avoid potentially 1248 * crashing in __ksize() due to accessing invalid metadata. 1249 */ 1250 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) 1251 return 0; 1252 1253 size = kfence_ksize(objp) ?: __ksize(objp); 1254 /* 1255 * We assume that ksize callers could use whole allocated area, 1256 * so we need to unpoison this area. 1257 */ 1258 kasan_unpoison_range(objp, size); 1259 return size; 1260 } 1261 EXPORT_SYMBOL(ksize); 1262 1263 /* Tracepoints definitions. */ 1264 EXPORT_TRACEPOINT_SYMBOL(kmalloc); 1265 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 1266 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); 1267 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); 1268 EXPORT_TRACEPOINT_SYMBOL(kfree); 1269 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 1270 1271 int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 1272 { 1273 if (__should_failslab(s, gfpflags)) 1274 return -ENOMEM; 1275 return 0; 1276 } 1277 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 1278