xref: /openbmc/linux/mm/slab_common.c (revision 0b26ca68)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/debugfs.h>
21 #include <linux/kasan.h>
22 #include <asm/cacheflush.h>
23 #include <asm/tlbflush.h>
24 #include <asm/page.h>
25 #include <linux/memcontrol.h>
26 
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/kmem.h>
29 
30 #include "internal.h"
31 
32 #include "slab.h"
33 
34 enum slab_state slab_state;
35 LIST_HEAD(slab_caches);
36 DEFINE_MUTEX(slab_mutex);
37 struct kmem_cache *kmem_cache;
38 
39 #ifdef CONFIG_HARDENED_USERCOPY
40 bool usercopy_fallback __ro_after_init =
41 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
42 module_param(usercopy_fallback, bool, 0400);
43 MODULE_PARM_DESC(usercopy_fallback,
44 		"WARN instead of reject usercopy whitelist violations");
45 #endif
46 
47 static LIST_HEAD(slab_caches_to_rcu_destroy);
48 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
49 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
50 		    slab_caches_to_rcu_destroy_workfn);
51 
52 /*
53  * Set of flags that will prevent slab merging
54  */
55 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
56 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
57 		SLAB_FAILSLAB | kasan_never_merge())
58 
59 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
60 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
61 
62 /*
63  * Merge control. If this is set then no merging of slab caches will occur.
64  */
65 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
66 
67 static int __init setup_slab_nomerge(char *str)
68 {
69 	slab_nomerge = true;
70 	return 1;
71 }
72 
73 #ifdef CONFIG_SLUB
74 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
75 #endif
76 
77 __setup("slab_nomerge", setup_slab_nomerge);
78 
79 /*
80  * Determine the size of a slab object
81  */
82 unsigned int kmem_cache_size(struct kmem_cache *s)
83 {
84 	return s->object_size;
85 }
86 EXPORT_SYMBOL(kmem_cache_size);
87 
88 #ifdef CONFIG_DEBUG_VM
89 static int kmem_cache_sanity_check(const char *name, unsigned int size)
90 {
91 	if (!name || in_interrupt() || size < sizeof(void *) ||
92 		size > KMALLOC_MAX_SIZE) {
93 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
94 		return -EINVAL;
95 	}
96 
97 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
98 	return 0;
99 }
100 #else
101 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
102 {
103 	return 0;
104 }
105 #endif
106 
107 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
108 {
109 	size_t i;
110 
111 	for (i = 0; i < nr; i++) {
112 		if (s)
113 			kmem_cache_free(s, p[i]);
114 		else
115 			kfree(p[i]);
116 	}
117 }
118 
119 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
120 								void **p)
121 {
122 	size_t i;
123 
124 	for (i = 0; i < nr; i++) {
125 		void *x = p[i] = kmem_cache_alloc(s, flags);
126 		if (!x) {
127 			__kmem_cache_free_bulk(s, i, p);
128 			return 0;
129 		}
130 	}
131 	return i;
132 }
133 
134 /*
135  * Figure out what the alignment of the objects will be given a set of
136  * flags, a user specified alignment and the size of the objects.
137  */
138 static unsigned int calculate_alignment(slab_flags_t flags,
139 		unsigned int align, unsigned int size)
140 {
141 	/*
142 	 * If the user wants hardware cache aligned objects then follow that
143 	 * suggestion if the object is sufficiently large.
144 	 *
145 	 * The hardware cache alignment cannot override the specified
146 	 * alignment though. If that is greater then use it.
147 	 */
148 	if (flags & SLAB_HWCACHE_ALIGN) {
149 		unsigned int ralign;
150 
151 		ralign = cache_line_size();
152 		while (size <= ralign / 2)
153 			ralign /= 2;
154 		align = max(align, ralign);
155 	}
156 
157 	if (align < ARCH_SLAB_MINALIGN)
158 		align = ARCH_SLAB_MINALIGN;
159 
160 	return ALIGN(align, sizeof(void *));
161 }
162 
163 /*
164  * Find a mergeable slab cache
165  */
166 int slab_unmergeable(struct kmem_cache *s)
167 {
168 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
169 		return 1;
170 
171 	if (s->ctor)
172 		return 1;
173 
174 	if (s->usersize)
175 		return 1;
176 
177 	/*
178 	 * We may have set a slab to be unmergeable during bootstrap.
179 	 */
180 	if (s->refcount < 0)
181 		return 1;
182 
183 	return 0;
184 }
185 
186 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
187 		slab_flags_t flags, const char *name, void (*ctor)(void *))
188 {
189 	struct kmem_cache *s;
190 
191 	if (slab_nomerge)
192 		return NULL;
193 
194 	if (ctor)
195 		return NULL;
196 
197 	size = ALIGN(size, sizeof(void *));
198 	align = calculate_alignment(flags, align, size);
199 	size = ALIGN(size, align);
200 	flags = kmem_cache_flags(size, flags, name, NULL);
201 
202 	if (flags & SLAB_NEVER_MERGE)
203 		return NULL;
204 
205 	list_for_each_entry_reverse(s, &slab_caches, list) {
206 		if (slab_unmergeable(s))
207 			continue;
208 
209 		if (size > s->size)
210 			continue;
211 
212 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
213 			continue;
214 		/*
215 		 * Check if alignment is compatible.
216 		 * Courtesy of Adrian Drzewiecki
217 		 */
218 		if ((s->size & ~(align - 1)) != s->size)
219 			continue;
220 
221 		if (s->size - size >= sizeof(void *))
222 			continue;
223 
224 		if (IS_ENABLED(CONFIG_SLAB) && align &&
225 			(align > s->align || s->align % align))
226 			continue;
227 
228 		return s;
229 	}
230 	return NULL;
231 }
232 
233 static struct kmem_cache *create_cache(const char *name,
234 		unsigned int object_size, unsigned int align,
235 		slab_flags_t flags, unsigned int useroffset,
236 		unsigned int usersize, void (*ctor)(void *),
237 		struct kmem_cache *root_cache)
238 {
239 	struct kmem_cache *s;
240 	int err;
241 
242 	if (WARN_ON(useroffset + usersize > object_size))
243 		useroffset = usersize = 0;
244 
245 	err = -ENOMEM;
246 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
247 	if (!s)
248 		goto out;
249 
250 	s->name = name;
251 	s->size = s->object_size = object_size;
252 	s->align = align;
253 	s->ctor = ctor;
254 	s->useroffset = useroffset;
255 	s->usersize = usersize;
256 
257 	err = __kmem_cache_create(s, flags);
258 	if (err)
259 		goto out_free_cache;
260 
261 	s->refcount = 1;
262 	list_add(&s->list, &slab_caches);
263 out:
264 	if (err)
265 		return ERR_PTR(err);
266 	return s;
267 
268 out_free_cache:
269 	kmem_cache_free(kmem_cache, s);
270 	goto out;
271 }
272 
273 /**
274  * kmem_cache_create_usercopy - Create a cache with a region suitable
275  * for copying to userspace
276  * @name: A string which is used in /proc/slabinfo to identify this cache.
277  * @size: The size of objects to be created in this cache.
278  * @align: The required alignment for the objects.
279  * @flags: SLAB flags
280  * @useroffset: Usercopy region offset
281  * @usersize: Usercopy region size
282  * @ctor: A constructor for the objects.
283  *
284  * Cannot be called within a interrupt, but can be interrupted.
285  * The @ctor is run when new pages are allocated by the cache.
286  *
287  * The flags are
288  *
289  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
290  * to catch references to uninitialised memory.
291  *
292  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
293  * for buffer overruns.
294  *
295  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
296  * cacheline.  This can be beneficial if you're counting cycles as closely
297  * as davem.
298  *
299  * Return: a pointer to the cache on success, NULL on failure.
300  */
301 struct kmem_cache *
302 kmem_cache_create_usercopy(const char *name,
303 		  unsigned int size, unsigned int align,
304 		  slab_flags_t flags,
305 		  unsigned int useroffset, unsigned int usersize,
306 		  void (*ctor)(void *))
307 {
308 	struct kmem_cache *s = NULL;
309 	const char *cache_name;
310 	int err;
311 
312 	get_online_cpus();
313 	get_online_mems();
314 
315 	mutex_lock(&slab_mutex);
316 
317 	err = kmem_cache_sanity_check(name, size);
318 	if (err) {
319 		goto out_unlock;
320 	}
321 
322 	/* Refuse requests with allocator specific flags */
323 	if (flags & ~SLAB_FLAGS_PERMITTED) {
324 		err = -EINVAL;
325 		goto out_unlock;
326 	}
327 
328 	/*
329 	 * Some allocators will constraint the set of valid flags to a subset
330 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
331 	 * case, and we'll just provide them with a sanitized version of the
332 	 * passed flags.
333 	 */
334 	flags &= CACHE_CREATE_MASK;
335 
336 	/* Fail closed on bad usersize of useroffset values. */
337 	if (WARN_ON(!usersize && useroffset) ||
338 	    WARN_ON(size < usersize || size - usersize < useroffset))
339 		usersize = useroffset = 0;
340 
341 	if (!usersize)
342 		s = __kmem_cache_alias(name, size, align, flags, ctor);
343 	if (s)
344 		goto out_unlock;
345 
346 	cache_name = kstrdup_const(name, GFP_KERNEL);
347 	if (!cache_name) {
348 		err = -ENOMEM;
349 		goto out_unlock;
350 	}
351 
352 	s = create_cache(cache_name, size,
353 			 calculate_alignment(flags, align, size),
354 			 flags, useroffset, usersize, ctor, NULL);
355 	if (IS_ERR(s)) {
356 		err = PTR_ERR(s);
357 		kfree_const(cache_name);
358 	}
359 
360 out_unlock:
361 	mutex_unlock(&slab_mutex);
362 
363 	put_online_mems();
364 	put_online_cpus();
365 
366 	if (err) {
367 		if (flags & SLAB_PANIC)
368 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
369 				name, err);
370 		else {
371 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
372 				name, err);
373 			dump_stack();
374 		}
375 		return NULL;
376 	}
377 	return s;
378 }
379 EXPORT_SYMBOL(kmem_cache_create_usercopy);
380 
381 /**
382  * kmem_cache_create - Create a cache.
383  * @name: A string which is used in /proc/slabinfo to identify this cache.
384  * @size: The size of objects to be created in this cache.
385  * @align: The required alignment for the objects.
386  * @flags: SLAB flags
387  * @ctor: A constructor for the objects.
388  *
389  * Cannot be called within a interrupt, but can be interrupted.
390  * The @ctor is run when new pages are allocated by the cache.
391  *
392  * The flags are
393  *
394  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
395  * to catch references to uninitialised memory.
396  *
397  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
398  * for buffer overruns.
399  *
400  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
401  * cacheline.  This can be beneficial if you're counting cycles as closely
402  * as davem.
403  *
404  * Return: a pointer to the cache on success, NULL on failure.
405  */
406 struct kmem_cache *
407 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
408 		slab_flags_t flags, void (*ctor)(void *))
409 {
410 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
411 					  ctor);
412 }
413 EXPORT_SYMBOL(kmem_cache_create);
414 
415 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
416 {
417 	LIST_HEAD(to_destroy);
418 	struct kmem_cache *s, *s2;
419 
420 	/*
421 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
422 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
423 	 * through RCU and the associated kmem_cache are dereferenced
424 	 * while freeing the pages, so the kmem_caches should be freed only
425 	 * after the pending RCU operations are finished.  As rcu_barrier()
426 	 * is a pretty slow operation, we batch all pending destructions
427 	 * asynchronously.
428 	 */
429 	mutex_lock(&slab_mutex);
430 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
431 	mutex_unlock(&slab_mutex);
432 
433 	if (list_empty(&to_destroy))
434 		return;
435 
436 	rcu_barrier();
437 
438 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
439 #ifdef SLAB_SUPPORTS_SYSFS
440 		sysfs_slab_release(s);
441 #else
442 		slab_kmem_cache_release(s);
443 #endif
444 	}
445 }
446 
447 static int shutdown_cache(struct kmem_cache *s)
448 {
449 	/* free asan quarantined objects */
450 	kasan_cache_shutdown(s);
451 
452 	if (__kmem_cache_shutdown(s) != 0)
453 		return -EBUSY;
454 
455 	list_del(&s->list);
456 
457 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
458 #ifdef SLAB_SUPPORTS_SYSFS
459 		sysfs_slab_unlink(s);
460 #endif
461 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
462 		schedule_work(&slab_caches_to_rcu_destroy_work);
463 	} else {
464 #ifdef SLAB_SUPPORTS_SYSFS
465 		sysfs_slab_unlink(s);
466 		sysfs_slab_release(s);
467 #else
468 		slab_kmem_cache_release(s);
469 #endif
470 	}
471 
472 	return 0;
473 }
474 
475 void slab_kmem_cache_release(struct kmem_cache *s)
476 {
477 	__kmem_cache_release(s);
478 	kfree_const(s->name);
479 	kmem_cache_free(kmem_cache, s);
480 }
481 
482 void kmem_cache_destroy(struct kmem_cache *s)
483 {
484 	int err;
485 
486 	if (unlikely(!s))
487 		return;
488 
489 	get_online_cpus();
490 	get_online_mems();
491 
492 	mutex_lock(&slab_mutex);
493 
494 	s->refcount--;
495 	if (s->refcount)
496 		goto out_unlock;
497 
498 	err = shutdown_cache(s);
499 	if (err) {
500 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
501 		       s->name);
502 		dump_stack();
503 	}
504 out_unlock:
505 	mutex_unlock(&slab_mutex);
506 
507 	put_online_mems();
508 	put_online_cpus();
509 }
510 EXPORT_SYMBOL(kmem_cache_destroy);
511 
512 /**
513  * kmem_cache_shrink - Shrink a cache.
514  * @cachep: The cache to shrink.
515  *
516  * Releases as many slabs as possible for a cache.
517  * To help debugging, a zero exit status indicates all slabs were released.
518  *
519  * Return: %0 if all slabs were released, non-zero otherwise
520  */
521 int kmem_cache_shrink(struct kmem_cache *cachep)
522 {
523 	int ret;
524 
525 	get_online_cpus();
526 	get_online_mems();
527 	kasan_cache_shrink(cachep);
528 	ret = __kmem_cache_shrink(cachep);
529 	put_online_mems();
530 	put_online_cpus();
531 	return ret;
532 }
533 EXPORT_SYMBOL(kmem_cache_shrink);
534 
535 bool slab_is_available(void)
536 {
537 	return slab_state >= UP;
538 }
539 
540 #ifndef CONFIG_SLOB
541 /* Create a cache during boot when no slab services are available yet */
542 void __init create_boot_cache(struct kmem_cache *s, const char *name,
543 		unsigned int size, slab_flags_t flags,
544 		unsigned int useroffset, unsigned int usersize)
545 {
546 	int err;
547 	unsigned int align = ARCH_KMALLOC_MINALIGN;
548 
549 	s->name = name;
550 	s->size = s->object_size = size;
551 
552 	/*
553 	 * For power of two sizes, guarantee natural alignment for kmalloc
554 	 * caches, regardless of SL*B debugging options.
555 	 */
556 	if (is_power_of_2(size))
557 		align = max(align, size);
558 	s->align = calculate_alignment(flags, align, size);
559 
560 	s->useroffset = useroffset;
561 	s->usersize = usersize;
562 
563 	err = __kmem_cache_create(s, flags);
564 
565 	if (err)
566 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
567 					name, size, err);
568 
569 	s->refcount = -1;	/* Exempt from merging for now */
570 }
571 
572 struct kmem_cache *__init create_kmalloc_cache(const char *name,
573 		unsigned int size, slab_flags_t flags,
574 		unsigned int useroffset, unsigned int usersize)
575 {
576 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
577 
578 	if (!s)
579 		panic("Out of memory when creating slab %s\n", name);
580 
581 	create_boot_cache(s, name, size, flags, useroffset, usersize);
582 	list_add(&s->list, &slab_caches);
583 	s->refcount = 1;
584 	return s;
585 }
586 
587 struct kmem_cache *
588 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
589 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
590 EXPORT_SYMBOL(kmalloc_caches);
591 
592 /*
593  * Conversion table for small slabs sizes / 8 to the index in the
594  * kmalloc array. This is necessary for slabs < 192 since we have non power
595  * of two cache sizes there. The size of larger slabs can be determined using
596  * fls.
597  */
598 static u8 size_index[24] __ro_after_init = {
599 	3,	/* 8 */
600 	4,	/* 16 */
601 	5,	/* 24 */
602 	5,	/* 32 */
603 	6,	/* 40 */
604 	6,	/* 48 */
605 	6,	/* 56 */
606 	6,	/* 64 */
607 	1,	/* 72 */
608 	1,	/* 80 */
609 	1,	/* 88 */
610 	1,	/* 96 */
611 	7,	/* 104 */
612 	7,	/* 112 */
613 	7,	/* 120 */
614 	7,	/* 128 */
615 	2,	/* 136 */
616 	2,	/* 144 */
617 	2,	/* 152 */
618 	2,	/* 160 */
619 	2,	/* 168 */
620 	2,	/* 176 */
621 	2,	/* 184 */
622 	2	/* 192 */
623 };
624 
625 static inline unsigned int size_index_elem(unsigned int bytes)
626 {
627 	return (bytes - 1) / 8;
628 }
629 
630 /*
631  * Find the kmem_cache structure that serves a given size of
632  * allocation
633  */
634 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
635 {
636 	unsigned int index;
637 
638 	if (size <= 192) {
639 		if (!size)
640 			return ZERO_SIZE_PTR;
641 
642 		index = size_index[size_index_elem(size)];
643 	} else {
644 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
645 			return NULL;
646 		index = fls(size - 1);
647 	}
648 
649 	return kmalloc_caches[kmalloc_type(flags)][index];
650 }
651 
652 #ifdef CONFIG_ZONE_DMA
653 #define INIT_KMALLOC_INFO(__size, __short_size)			\
654 {								\
655 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
656 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
657 	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
658 	.size = __size,						\
659 }
660 #else
661 #define INIT_KMALLOC_INFO(__size, __short_size)			\
662 {								\
663 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
664 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
665 	.size = __size,						\
666 }
667 #endif
668 
669 /*
670  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
671  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
672  * kmalloc-67108864.
673  */
674 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
675 	INIT_KMALLOC_INFO(0, 0),
676 	INIT_KMALLOC_INFO(96, 96),
677 	INIT_KMALLOC_INFO(192, 192),
678 	INIT_KMALLOC_INFO(8, 8),
679 	INIT_KMALLOC_INFO(16, 16),
680 	INIT_KMALLOC_INFO(32, 32),
681 	INIT_KMALLOC_INFO(64, 64),
682 	INIT_KMALLOC_INFO(128, 128),
683 	INIT_KMALLOC_INFO(256, 256),
684 	INIT_KMALLOC_INFO(512, 512),
685 	INIT_KMALLOC_INFO(1024, 1k),
686 	INIT_KMALLOC_INFO(2048, 2k),
687 	INIT_KMALLOC_INFO(4096, 4k),
688 	INIT_KMALLOC_INFO(8192, 8k),
689 	INIT_KMALLOC_INFO(16384, 16k),
690 	INIT_KMALLOC_INFO(32768, 32k),
691 	INIT_KMALLOC_INFO(65536, 64k),
692 	INIT_KMALLOC_INFO(131072, 128k),
693 	INIT_KMALLOC_INFO(262144, 256k),
694 	INIT_KMALLOC_INFO(524288, 512k),
695 	INIT_KMALLOC_INFO(1048576, 1M),
696 	INIT_KMALLOC_INFO(2097152, 2M),
697 	INIT_KMALLOC_INFO(4194304, 4M),
698 	INIT_KMALLOC_INFO(8388608, 8M),
699 	INIT_KMALLOC_INFO(16777216, 16M),
700 	INIT_KMALLOC_INFO(33554432, 32M),
701 	INIT_KMALLOC_INFO(67108864, 64M)
702 };
703 
704 /*
705  * Patch up the size_index table if we have strange large alignment
706  * requirements for the kmalloc array. This is only the case for
707  * MIPS it seems. The standard arches will not generate any code here.
708  *
709  * Largest permitted alignment is 256 bytes due to the way we
710  * handle the index determination for the smaller caches.
711  *
712  * Make sure that nothing crazy happens if someone starts tinkering
713  * around with ARCH_KMALLOC_MINALIGN
714  */
715 void __init setup_kmalloc_cache_index_table(void)
716 {
717 	unsigned int i;
718 
719 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
720 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
721 
722 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
723 		unsigned int elem = size_index_elem(i);
724 
725 		if (elem >= ARRAY_SIZE(size_index))
726 			break;
727 		size_index[elem] = KMALLOC_SHIFT_LOW;
728 	}
729 
730 	if (KMALLOC_MIN_SIZE >= 64) {
731 		/*
732 		 * The 96 byte size cache is not used if the alignment
733 		 * is 64 byte.
734 		 */
735 		for (i = 64 + 8; i <= 96; i += 8)
736 			size_index[size_index_elem(i)] = 7;
737 
738 	}
739 
740 	if (KMALLOC_MIN_SIZE >= 128) {
741 		/*
742 		 * The 192 byte sized cache is not used if the alignment
743 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
744 		 * instead.
745 		 */
746 		for (i = 128 + 8; i <= 192; i += 8)
747 			size_index[size_index_elem(i)] = 8;
748 	}
749 }
750 
751 static void __init
752 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
753 {
754 	if (type == KMALLOC_RECLAIM)
755 		flags |= SLAB_RECLAIM_ACCOUNT;
756 
757 	kmalloc_caches[type][idx] = create_kmalloc_cache(
758 					kmalloc_info[idx].name[type],
759 					kmalloc_info[idx].size, flags, 0,
760 					kmalloc_info[idx].size);
761 }
762 
763 /*
764  * Create the kmalloc array. Some of the regular kmalloc arrays
765  * may already have been created because they were needed to
766  * enable allocations for slab creation.
767  */
768 void __init create_kmalloc_caches(slab_flags_t flags)
769 {
770 	int i;
771 	enum kmalloc_cache_type type;
772 
773 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
774 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
775 			if (!kmalloc_caches[type][i])
776 				new_kmalloc_cache(i, type, flags);
777 
778 			/*
779 			 * Caches that are not of the two-to-the-power-of size.
780 			 * These have to be created immediately after the
781 			 * earlier power of two caches
782 			 */
783 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
784 					!kmalloc_caches[type][1])
785 				new_kmalloc_cache(1, type, flags);
786 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
787 					!kmalloc_caches[type][2])
788 				new_kmalloc_cache(2, type, flags);
789 		}
790 	}
791 
792 	/* Kmalloc array is now usable */
793 	slab_state = UP;
794 
795 #ifdef CONFIG_ZONE_DMA
796 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
797 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
798 
799 		if (s) {
800 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
801 				kmalloc_info[i].name[KMALLOC_DMA],
802 				kmalloc_info[i].size,
803 				SLAB_CACHE_DMA | flags, 0,
804 				kmalloc_info[i].size);
805 		}
806 	}
807 #endif
808 }
809 #endif /* !CONFIG_SLOB */
810 
811 gfp_t kmalloc_fix_flags(gfp_t flags)
812 {
813 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
814 
815 	flags &= ~GFP_SLAB_BUG_MASK;
816 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
817 			invalid_mask, &invalid_mask, flags, &flags);
818 	dump_stack();
819 
820 	return flags;
821 }
822 
823 /*
824  * To avoid unnecessary overhead, we pass through large allocation requests
825  * directly to the page allocator. We use __GFP_COMP, because we will need to
826  * know the allocation order to free the pages properly in kfree.
827  */
828 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
829 {
830 	void *ret = NULL;
831 	struct page *page;
832 
833 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
834 		flags = kmalloc_fix_flags(flags);
835 
836 	flags |= __GFP_COMP;
837 	page = alloc_pages(flags, order);
838 	if (likely(page)) {
839 		ret = page_address(page);
840 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
841 				    PAGE_SIZE << order);
842 	}
843 	ret = kasan_kmalloc_large(ret, size, flags);
844 	/* As ret might get tagged, call kmemleak hook after KASAN. */
845 	kmemleak_alloc(ret, size, 1, flags);
846 	return ret;
847 }
848 EXPORT_SYMBOL(kmalloc_order);
849 
850 #ifdef CONFIG_TRACING
851 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
852 {
853 	void *ret = kmalloc_order(size, flags, order);
854 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
855 	return ret;
856 }
857 EXPORT_SYMBOL(kmalloc_order_trace);
858 #endif
859 
860 #ifdef CONFIG_SLAB_FREELIST_RANDOM
861 /* Randomize a generic freelist */
862 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
863 			       unsigned int count)
864 {
865 	unsigned int rand;
866 	unsigned int i;
867 
868 	for (i = 0; i < count; i++)
869 		list[i] = i;
870 
871 	/* Fisher-Yates shuffle */
872 	for (i = count - 1; i > 0; i--) {
873 		rand = prandom_u32_state(state);
874 		rand %= (i + 1);
875 		swap(list[i], list[rand]);
876 	}
877 }
878 
879 /* Create a random sequence per cache */
880 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
881 				    gfp_t gfp)
882 {
883 	struct rnd_state state;
884 
885 	if (count < 2 || cachep->random_seq)
886 		return 0;
887 
888 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
889 	if (!cachep->random_seq)
890 		return -ENOMEM;
891 
892 	/* Get best entropy at this stage of boot */
893 	prandom_seed_state(&state, get_random_long());
894 
895 	freelist_randomize(&state, cachep->random_seq, count);
896 	return 0;
897 }
898 
899 /* Destroy the per-cache random freelist sequence */
900 void cache_random_seq_destroy(struct kmem_cache *cachep)
901 {
902 	kfree(cachep->random_seq);
903 	cachep->random_seq = NULL;
904 }
905 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
906 
907 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
908 #ifdef CONFIG_SLAB
909 #define SLABINFO_RIGHTS (0600)
910 #else
911 #define SLABINFO_RIGHTS (0400)
912 #endif
913 
914 static void print_slabinfo_header(struct seq_file *m)
915 {
916 	/*
917 	 * Output format version, so at least we can change it
918 	 * without _too_ many complaints.
919 	 */
920 #ifdef CONFIG_DEBUG_SLAB
921 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
922 #else
923 	seq_puts(m, "slabinfo - version: 2.1\n");
924 #endif
925 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
926 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
927 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
928 #ifdef CONFIG_DEBUG_SLAB
929 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
930 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
931 #endif
932 	seq_putc(m, '\n');
933 }
934 
935 void *slab_start(struct seq_file *m, loff_t *pos)
936 {
937 	mutex_lock(&slab_mutex);
938 	return seq_list_start(&slab_caches, *pos);
939 }
940 
941 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
942 {
943 	return seq_list_next(p, &slab_caches, pos);
944 }
945 
946 void slab_stop(struct seq_file *m, void *p)
947 {
948 	mutex_unlock(&slab_mutex);
949 }
950 
951 static void cache_show(struct kmem_cache *s, struct seq_file *m)
952 {
953 	struct slabinfo sinfo;
954 
955 	memset(&sinfo, 0, sizeof(sinfo));
956 	get_slabinfo(s, &sinfo);
957 
958 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
959 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
960 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
961 
962 	seq_printf(m, " : tunables %4u %4u %4u",
963 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
964 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
965 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
966 	slabinfo_show_stats(m, s);
967 	seq_putc(m, '\n');
968 }
969 
970 static int slab_show(struct seq_file *m, void *p)
971 {
972 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
973 
974 	if (p == slab_caches.next)
975 		print_slabinfo_header(m);
976 	cache_show(s, m);
977 	return 0;
978 }
979 
980 void dump_unreclaimable_slab(void)
981 {
982 	struct kmem_cache *s;
983 	struct slabinfo sinfo;
984 
985 	/*
986 	 * Here acquiring slab_mutex is risky since we don't prefer to get
987 	 * sleep in oom path. But, without mutex hold, it may introduce a
988 	 * risk of crash.
989 	 * Use mutex_trylock to protect the list traverse, dump nothing
990 	 * without acquiring the mutex.
991 	 */
992 	if (!mutex_trylock(&slab_mutex)) {
993 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
994 		return;
995 	}
996 
997 	pr_info("Unreclaimable slab info:\n");
998 	pr_info("Name                      Used          Total\n");
999 
1000 	list_for_each_entry(s, &slab_caches, list) {
1001 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1002 			continue;
1003 
1004 		get_slabinfo(s, &sinfo);
1005 
1006 		if (sinfo.num_objs > 0)
1007 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1008 				(sinfo.active_objs * s->size) / 1024,
1009 				(sinfo.num_objs * s->size) / 1024);
1010 	}
1011 	mutex_unlock(&slab_mutex);
1012 }
1013 
1014 #if defined(CONFIG_MEMCG_KMEM)
1015 int memcg_slab_show(struct seq_file *m, void *p)
1016 {
1017 	/*
1018 	 * Deprecated.
1019 	 * Please, take a look at tools/cgroup/slabinfo.py .
1020 	 */
1021 	return 0;
1022 }
1023 #endif
1024 
1025 /*
1026  * slabinfo_op - iterator that generates /proc/slabinfo
1027  *
1028  * Output layout:
1029  * cache-name
1030  * num-active-objs
1031  * total-objs
1032  * object size
1033  * num-active-slabs
1034  * total-slabs
1035  * num-pages-per-slab
1036  * + further values on SMP and with statistics enabled
1037  */
1038 static const struct seq_operations slabinfo_op = {
1039 	.start = slab_start,
1040 	.next = slab_next,
1041 	.stop = slab_stop,
1042 	.show = slab_show,
1043 };
1044 
1045 static int slabinfo_open(struct inode *inode, struct file *file)
1046 {
1047 	return seq_open(file, &slabinfo_op);
1048 }
1049 
1050 static const struct proc_ops slabinfo_proc_ops = {
1051 	.proc_flags	= PROC_ENTRY_PERMANENT,
1052 	.proc_open	= slabinfo_open,
1053 	.proc_read	= seq_read,
1054 	.proc_write	= slabinfo_write,
1055 	.proc_lseek	= seq_lseek,
1056 	.proc_release	= seq_release,
1057 };
1058 
1059 static int __init slab_proc_init(void)
1060 {
1061 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1062 	return 0;
1063 }
1064 module_init(slab_proc_init);
1065 
1066 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1067 
1068 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1069 					   gfp_t flags)
1070 {
1071 	void *ret;
1072 	size_t ks;
1073 
1074 	ks = ksize(p);
1075 
1076 	if (ks >= new_size) {
1077 		p = kasan_krealloc((void *)p, new_size, flags);
1078 		return (void *)p;
1079 	}
1080 
1081 	ret = kmalloc_track_caller(new_size, flags);
1082 	if (ret && p)
1083 		memcpy(ret, p, ks);
1084 
1085 	return ret;
1086 }
1087 
1088 /**
1089  * krealloc - reallocate memory. The contents will remain unchanged.
1090  * @p: object to reallocate memory for.
1091  * @new_size: how many bytes of memory are required.
1092  * @flags: the type of memory to allocate.
1093  *
1094  * The contents of the object pointed to are preserved up to the
1095  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1096  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1097  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1098  *
1099  * Return: pointer to the allocated memory or %NULL in case of error
1100  */
1101 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1102 {
1103 	void *ret;
1104 
1105 	if (unlikely(!new_size)) {
1106 		kfree(p);
1107 		return ZERO_SIZE_PTR;
1108 	}
1109 
1110 	ret = __do_krealloc(p, new_size, flags);
1111 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1112 		kfree(p);
1113 
1114 	return ret;
1115 }
1116 EXPORT_SYMBOL(krealloc);
1117 
1118 /**
1119  * kfree_sensitive - Clear sensitive information in memory before freeing
1120  * @p: object to free memory of
1121  *
1122  * The memory of the object @p points to is zeroed before freed.
1123  * If @p is %NULL, kfree_sensitive() does nothing.
1124  *
1125  * Note: this function zeroes the whole allocated buffer which can be a good
1126  * deal bigger than the requested buffer size passed to kmalloc(). So be
1127  * careful when using this function in performance sensitive code.
1128  */
1129 void kfree_sensitive(const void *p)
1130 {
1131 	size_t ks;
1132 	void *mem = (void *)p;
1133 
1134 	ks = ksize(mem);
1135 	if (ks)
1136 		memzero_explicit(mem, ks);
1137 	kfree(mem);
1138 }
1139 EXPORT_SYMBOL(kfree_sensitive);
1140 
1141 /**
1142  * ksize - get the actual amount of memory allocated for a given object
1143  * @objp: Pointer to the object
1144  *
1145  * kmalloc may internally round up allocations and return more memory
1146  * than requested. ksize() can be used to determine the actual amount of
1147  * memory allocated. The caller may use this additional memory, even though
1148  * a smaller amount of memory was initially specified with the kmalloc call.
1149  * The caller must guarantee that objp points to a valid object previously
1150  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1151  * must not be freed during the duration of the call.
1152  *
1153  * Return: size of the actual memory used by @objp in bytes
1154  */
1155 size_t ksize(const void *objp)
1156 {
1157 	size_t size;
1158 
1159 	/*
1160 	 * We need to check that the pointed to object is valid, and only then
1161 	 * unpoison the shadow memory below. We use __kasan_check_read(), to
1162 	 * generate a more useful report at the time ksize() is called (rather
1163 	 * than later where behaviour is undefined due to potential
1164 	 * use-after-free or double-free).
1165 	 *
1166 	 * If the pointed to memory is invalid we return 0, to avoid users of
1167 	 * ksize() writing to and potentially corrupting the memory region.
1168 	 *
1169 	 * We want to perform the check before __ksize(), to avoid potentially
1170 	 * crashing in __ksize() due to accessing invalid metadata.
1171 	 */
1172 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1173 		return 0;
1174 
1175 	size = __ksize(objp);
1176 	/*
1177 	 * We assume that ksize callers could use whole allocated area,
1178 	 * so we need to unpoison this area.
1179 	 */
1180 	kasan_unpoison_range(objp, size);
1181 	return size;
1182 }
1183 EXPORT_SYMBOL(ksize);
1184 
1185 /* Tracepoints definitions. */
1186 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1187 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1188 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1189 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1190 EXPORT_TRACEPOINT_SYMBOL(kfree);
1191 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1192 
1193 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1194 {
1195 	if (__should_failslab(s, gfpflags))
1196 		return -ENOMEM;
1197 	return 0;
1198 }
1199 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1200