xref: /openbmc/linux/mm/slab_common.c (revision 0883c2c0)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25 
26 #include "slab.h"
27 
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32 
33 /*
34  * Set of flags that will prevent slab merging
35  */
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 		SLAB_FAILSLAB | SLAB_KASAN)
39 
40 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
41 			 SLAB_NOTRACK | SLAB_ACCOUNT)
42 
43 /*
44  * Merge control. If this is set then no merging of slab caches will occur.
45  * (Could be removed. This was introduced to pacify the merge skeptics.)
46  */
47 static int slab_nomerge;
48 
49 static int __init setup_slab_nomerge(char *str)
50 {
51 	slab_nomerge = 1;
52 	return 1;
53 }
54 
55 #ifdef CONFIG_SLUB
56 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57 #endif
58 
59 __setup("slab_nomerge", setup_slab_nomerge);
60 
61 /*
62  * Determine the size of a slab object
63  */
64 unsigned int kmem_cache_size(struct kmem_cache *s)
65 {
66 	return s->object_size;
67 }
68 EXPORT_SYMBOL(kmem_cache_size);
69 
70 #ifdef CONFIG_DEBUG_VM
71 static int kmem_cache_sanity_check(const char *name, size_t size)
72 {
73 	struct kmem_cache *s = NULL;
74 
75 	if (!name || in_interrupt() || size < sizeof(void *) ||
76 		size > KMALLOC_MAX_SIZE) {
77 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 		return -EINVAL;
79 	}
80 
81 	list_for_each_entry(s, &slab_caches, list) {
82 		char tmp;
83 		int res;
84 
85 		/*
86 		 * This happens when the module gets unloaded and doesn't
87 		 * destroy its slab cache and no-one else reuses the vmalloc
88 		 * area of the module.  Print a warning.
89 		 */
90 		res = probe_kernel_address(s->name, tmp);
91 		if (res) {
92 			pr_err("Slab cache with size %d has lost its name\n",
93 			       s->object_size);
94 			continue;
95 		}
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, size_t size)
103 {
104 	return 0;
105 }
106 #endif
107 
108 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109 {
110 	size_t i;
111 
112 	for (i = 0; i < nr; i++) {
113 		if (s)
114 			kmem_cache_free(s, p[i]);
115 		else
116 			kfree(p[i]);
117 	}
118 }
119 
120 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
121 								void **p)
122 {
123 	size_t i;
124 
125 	for (i = 0; i < nr; i++) {
126 		void *x = p[i] = kmem_cache_alloc(s, flags);
127 		if (!x) {
128 			__kmem_cache_free_bulk(s, i, p);
129 			return 0;
130 		}
131 	}
132 	return i;
133 }
134 
135 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
136 void slab_init_memcg_params(struct kmem_cache *s)
137 {
138 	s->memcg_params.is_root_cache = true;
139 	INIT_LIST_HEAD(&s->memcg_params.list);
140 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
141 }
142 
143 static int init_memcg_params(struct kmem_cache *s,
144 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
145 {
146 	struct memcg_cache_array *arr;
147 
148 	if (memcg) {
149 		s->memcg_params.is_root_cache = false;
150 		s->memcg_params.memcg = memcg;
151 		s->memcg_params.root_cache = root_cache;
152 		return 0;
153 	}
154 
155 	slab_init_memcg_params(s);
156 
157 	if (!memcg_nr_cache_ids)
158 		return 0;
159 
160 	arr = kzalloc(sizeof(struct memcg_cache_array) +
161 		      memcg_nr_cache_ids * sizeof(void *),
162 		      GFP_KERNEL);
163 	if (!arr)
164 		return -ENOMEM;
165 
166 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
167 	return 0;
168 }
169 
170 static void destroy_memcg_params(struct kmem_cache *s)
171 {
172 	if (is_root_cache(s))
173 		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
174 }
175 
176 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
177 {
178 	struct memcg_cache_array *old, *new;
179 
180 	if (!is_root_cache(s))
181 		return 0;
182 
183 	new = kzalloc(sizeof(struct memcg_cache_array) +
184 		      new_array_size * sizeof(void *), GFP_KERNEL);
185 	if (!new)
186 		return -ENOMEM;
187 
188 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
189 					lockdep_is_held(&slab_mutex));
190 	if (old)
191 		memcpy(new->entries, old->entries,
192 		       memcg_nr_cache_ids * sizeof(void *));
193 
194 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
195 	if (old)
196 		kfree_rcu(old, rcu);
197 	return 0;
198 }
199 
200 int memcg_update_all_caches(int num_memcgs)
201 {
202 	struct kmem_cache *s;
203 	int ret = 0;
204 
205 	mutex_lock(&slab_mutex);
206 	list_for_each_entry(s, &slab_caches, list) {
207 		ret = update_memcg_params(s, num_memcgs);
208 		/*
209 		 * Instead of freeing the memory, we'll just leave the caches
210 		 * up to this point in an updated state.
211 		 */
212 		if (ret)
213 			break;
214 	}
215 	mutex_unlock(&slab_mutex);
216 	return ret;
217 }
218 #else
219 static inline int init_memcg_params(struct kmem_cache *s,
220 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
221 {
222 	return 0;
223 }
224 
225 static inline void destroy_memcg_params(struct kmem_cache *s)
226 {
227 }
228 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
229 
230 /*
231  * Find a mergeable slab cache
232  */
233 int slab_unmergeable(struct kmem_cache *s)
234 {
235 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
236 		return 1;
237 
238 	if (!is_root_cache(s))
239 		return 1;
240 
241 	if (s->ctor)
242 		return 1;
243 
244 	/*
245 	 * We may have set a slab to be unmergeable during bootstrap.
246 	 */
247 	if (s->refcount < 0)
248 		return 1;
249 
250 	return 0;
251 }
252 
253 struct kmem_cache *find_mergeable(size_t size, size_t align,
254 		unsigned long flags, const char *name, void (*ctor)(void *))
255 {
256 	struct kmem_cache *s;
257 
258 	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
259 		return NULL;
260 
261 	if (ctor)
262 		return NULL;
263 
264 	size = ALIGN(size, sizeof(void *));
265 	align = calculate_alignment(flags, align, size);
266 	size = ALIGN(size, align);
267 	flags = kmem_cache_flags(size, flags, name, NULL);
268 
269 	list_for_each_entry_reverse(s, &slab_caches, list) {
270 		if (slab_unmergeable(s))
271 			continue;
272 
273 		if (size > s->size)
274 			continue;
275 
276 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
277 			continue;
278 		/*
279 		 * Check if alignment is compatible.
280 		 * Courtesy of Adrian Drzewiecki
281 		 */
282 		if ((s->size & ~(align - 1)) != s->size)
283 			continue;
284 
285 		if (s->size - size >= sizeof(void *))
286 			continue;
287 
288 		if (IS_ENABLED(CONFIG_SLAB) && align &&
289 			(align > s->align || s->align % align))
290 			continue;
291 
292 		return s;
293 	}
294 	return NULL;
295 }
296 
297 /*
298  * Figure out what the alignment of the objects will be given a set of
299  * flags, a user specified alignment and the size of the objects.
300  */
301 unsigned long calculate_alignment(unsigned long flags,
302 		unsigned long align, unsigned long size)
303 {
304 	/*
305 	 * If the user wants hardware cache aligned objects then follow that
306 	 * suggestion if the object is sufficiently large.
307 	 *
308 	 * The hardware cache alignment cannot override the specified
309 	 * alignment though. If that is greater then use it.
310 	 */
311 	if (flags & SLAB_HWCACHE_ALIGN) {
312 		unsigned long ralign = cache_line_size();
313 		while (size <= ralign / 2)
314 			ralign /= 2;
315 		align = max(align, ralign);
316 	}
317 
318 	if (align < ARCH_SLAB_MINALIGN)
319 		align = ARCH_SLAB_MINALIGN;
320 
321 	return ALIGN(align, sizeof(void *));
322 }
323 
324 static struct kmem_cache *create_cache(const char *name,
325 		size_t object_size, size_t size, size_t align,
326 		unsigned long flags, void (*ctor)(void *),
327 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
328 {
329 	struct kmem_cache *s;
330 	int err;
331 
332 	err = -ENOMEM;
333 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
334 	if (!s)
335 		goto out;
336 
337 	s->name = name;
338 	s->object_size = object_size;
339 	s->size = size;
340 	s->align = align;
341 	s->ctor = ctor;
342 
343 	err = init_memcg_params(s, memcg, root_cache);
344 	if (err)
345 		goto out_free_cache;
346 
347 	err = __kmem_cache_create(s, flags);
348 	if (err)
349 		goto out_free_cache;
350 
351 	s->refcount = 1;
352 	list_add(&s->list, &slab_caches);
353 out:
354 	if (err)
355 		return ERR_PTR(err);
356 	return s;
357 
358 out_free_cache:
359 	destroy_memcg_params(s);
360 	kmem_cache_free(kmem_cache, s);
361 	goto out;
362 }
363 
364 /*
365  * kmem_cache_create - Create a cache.
366  * @name: A string which is used in /proc/slabinfo to identify this cache.
367  * @size: The size of objects to be created in this cache.
368  * @align: The required alignment for the objects.
369  * @flags: SLAB flags
370  * @ctor: A constructor for the objects.
371  *
372  * Returns a ptr to the cache on success, NULL on failure.
373  * Cannot be called within a interrupt, but can be interrupted.
374  * The @ctor is run when new pages are allocated by the cache.
375  *
376  * The flags are
377  *
378  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
379  * to catch references to uninitialised memory.
380  *
381  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
382  * for buffer overruns.
383  *
384  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
385  * cacheline.  This can be beneficial if you're counting cycles as closely
386  * as davem.
387  */
388 struct kmem_cache *
389 kmem_cache_create(const char *name, size_t size, size_t align,
390 		  unsigned long flags, void (*ctor)(void *))
391 {
392 	struct kmem_cache *s = NULL;
393 	const char *cache_name;
394 	int err;
395 
396 	get_online_cpus();
397 	get_online_mems();
398 	memcg_get_cache_ids();
399 
400 	mutex_lock(&slab_mutex);
401 
402 	err = kmem_cache_sanity_check(name, size);
403 	if (err) {
404 		goto out_unlock;
405 	}
406 
407 	/*
408 	 * Some allocators will constraint the set of valid flags to a subset
409 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
410 	 * case, and we'll just provide them with a sanitized version of the
411 	 * passed flags.
412 	 */
413 	flags &= CACHE_CREATE_MASK;
414 
415 	s = __kmem_cache_alias(name, size, align, flags, ctor);
416 	if (s)
417 		goto out_unlock;
418 
419 	cache_name = kstrdup_const(name, GFP_KERNEL);
420 	if (!cache_name) {
421 		err = -ENOMEM;
422 		goto out_unlock;
423 	}
424 
425 	s = create_cache(cache_name, size, size,
426 			 calculate_alignment(flags, align, size),
427 			 flags, ctor, NULL, NULL);
428 	if (IS_ERR(s)) {
429 		err = PTR_ERR(s);
430 		kfree_const(cache_name);
431 	}
432 
433 out_unlock:
434 	mutex_unlock(&slab_mutex);
435 
436 	memcg_put_cache_ids();
437 	put_online_mems();
438 	put_online_cpus();
439 
440 	if (err) {
441 		if (flags & SLAB_PANIC)
442 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
443 				name, err);
444 		else {
445 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
446 				name, err);
447 			dump_stack();
448 		}
449 		return NULL;
450 	}
451 	return s;
452 }
453 EXPORT_SYMBOL(kmem_cache_create);
454 
455 static int shutdown_cache(struct kmem_cache *s,
456 		struct list_head *release, bool *need_rcu_barrier)
457 {
458 	if (__kmem_cache_shutdown(s) != 0)
459 		return -EBUSY;
460 
461 	if (s->flags & SLAB_DESTROY_BY_RCU)
462 		*need_rcu_barrier = true;
463 
464 	list_move(&s->list, release);
465 	return 0;
466 }
467 
468 static void release_caches(struct list_head *release, bool need_rcu_barrier)
469 {
470 	struct kmem_cache *s, *s2;
471 
472 	if (need_rcu_barrier)
473 		rcu_barrier();
474 
475 	list_for_each_entry_safe(s, s2, release, list) {
476 #ifdef SLAB_SUPPORTS_SYSFS
477 		sysfs_slab_remove(s);
478 #else
479 		slab_kmem_cache_release(s);
480 #endif
481 	}
482 }
483 
484 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
485 /*
486  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
487  * @memcg: The memory cgroup the new cache is for.
488  * @root_cache: The parent of the new cache.
489  *
490  * This function attempts to create a kmem cache that will serve allocation
491  * requests going from @memcg to @root_cache. The new cache inherits properties
492  * from its parent.
493  */
494 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
495 			     struct kmem_cache *root_cache)
496 {
497 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
498 	struct cgroup_subsys_state *css = &memcg->css;
499 	struct memcg_cache_array *arr;
500 	struct kmem_cache *s = NULL;
501 	char *cache_name;
502 	int idx;
503 
504 	get_online_cpus();
505 	get_online_mems();
506 
507 	mutex_lock(&slab_mutex);
508 
509 	/*
510 	 * The memory cgroup could have been offlined while the cache
511 	 * creation work was pending.
512 	 */
513 	if (memcg->kmem_state != KMEM_ONLINE)
514 		goto out_unlock;
515 
516 	idx = memcg_cache_id(memcg);
517 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
518 					lockdep_is_held(&slab_mutex));
519 
520 	/*
521 	 * Since per-memcg caches are created asynchronously on first
522 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
523 	 * create the same cache, but only one of them may succeed.
524 	 */
525 	if (arr->entries[idx])
526 		goto out_unlock;
527 
528 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
529 	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
530 			       css->id, memcg_name_buf);
531 	if (!cache_name)
532 		goto out_unlock;
533 
534 	s = create_cache(cache_name, root_cache->object_size,
535 			 root_cache->size, root_cache->align,
536 			 root_cache->flags, root_cache->ctor,
537 			 memcg, root_cache);
538 	/*
539 	 * If we could not create a memcg cache, do not complain, because
540 	 * that's not critical at all as we can always proceed with the root
541 	 * cache.
542 	 */
543 	if (IS_ERR(s)) {
544 		kfree(cache_name);
545 		goto out_unlock;
546 	}
547 
548 	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
549 
550 	/*
551 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
552 	 * barrier here to ensure nobody will see the kmem_cache partially
553 	 * initialized.
554 	 */
555 	smp_wmb();
556 	arr->entries[idx] = s;
557 
558 out_unlock:
559 	mutex_unlock(&slab_mutex);
560 
561 	put_online_mems();
562 	put_online_cpus();
563 }
564 
565 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
566 {
567 	int idx;
568 	struct memcg_cache_array *arr;
569 	struct kmem_cache *s, *c;
570 
571 	idx = memcg_cache_id(memcg);
572 
573 	get_online_cpus();
574 	get_online_mems();
575 
576 	mutex_lock(&slab_mutex);
577 	list_for_each_entry(s, &slab_caches, list) {
578 		if (!is_root_cache(s))
579 			continue;
580 
581 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
582 						lockdep_is_held(&slab_mutex));
583 		c = arr->entries[idx];
584 		if (!c)
585 			continue;
586 
587 		__kmem_cache_shrink(c, true);
588 		arr->entries[idx] = NULL;
589 	}
590 	mutex_unlock(&slab_mutex);
591 
592 	put_online_mems();
593 	put_online_cpus();
594 }
595 
596 static int __shutdown_memcg_cache(struct kmem_cache *s,
597 		struct list_head *release, bool *need_rcu_barrier)
598 {
599 	BUG_ON(is_root_cache(s));
600 
601 	if (shutdown_cache(s, release, need_rcu_barrier))
602 		return -EBUSY;
603 
604 	list_del(&s->memcg_params.list);
605 	return 0;
606 }
607 
608 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
609 {
610 	LIST_HEAD(release);
611 	bool need_rcu_barrier = false;
612 	struct kmem_cache *s, *s2;
613 
614 	get_online_cpus();
615 	get_online_mems();
616 
617 	mutex_lock(&slab_mutex);
618 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
619 		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
620 			continue;
621 		/*
622 		 * The cgroup is about to be freed and therefore has no charges
623 		 * left. Hence, all its caches must be empty by now.
624 		 */
625 		BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
626 	}
627 	mutex_unlock(&slab_mutex);
628 
629 	put_online_mems();
630 	put_online_cpus();
631 
632 	release_caches(&release, need_rcu_barrier);
633 }
634 
635 static int shutdown_memcg_caches(struct kmem_cache *s,
636 		struct list_head *release, bool *need_rcu_barrier)
637 {
638 	struct memcg_cache_array *arr;
639 	struct kmem_cache *c, *c2;
640 	LIST_HEAD(busy);
641 	int i;
642 
643 	BUG_ON(!is_root_cache(s));
644 
645 	/*
646 	 * First, shutdown active caches, i.e. caches that belong to online
647 	 * memory cgroups.
648 	 */
649 	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
650 					lockdep_is_held(&slab_mutex));
651 	for_each_memcg_cache_index(i) {
652 		c = arr->entries[i];
653 		if (!c)
654 			continue;
655 		if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
656 			/*
657 			 * The cache still has objects. Move it to a temporary
658 			 * list so as not to try to destroy it for a second
659 			 * time while iterating over inactive caches below.
660 			 */
661 			list_move(&c->memcg_params.list, &busy);
662 		else
663 			/*
664 			 * The cache is empty and will be destroyed soon. Clear
665 			 * the pointer to it in the memcg_caches array so that
666 			 * it will never be accessed even if the root cache
667 			 * stays alive.
668 			 */
669 			arr->entries[i] = NULL;
670 	}
671 
672 	/*
673 	 * Second, shutdown all caches left from memory cgroups that are now
674 	 * offline.
675 	 */
676 	list_for_each_entry_safe(c, c2, &s->memcg_params.list,
677 				 memcg_params.list)
678 		__shutdown_memcg_cache(c, release, need_rcu_barrier);
679 
680 	list_splice(&busy, &s->memcg_params.list);
681 
682 	/*
683 	 * A cache being destroyed must be empty. In particular, this means
684 	 * that all per memcg caches attached to it must be empty too.
685 	 */
686 	if (!list_empty(&s->memcg_params.list))
687 		return -EBUSY;
688 	return 0;
689 }
690 #else
691 static inline int shutdown_memcg_caches(struct kmem_cache *s,
692 		struct list_head *release, bool *need_rcu_barrier)
693 {
694 	return 0;
695 }
696 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
697 
698 void slab_kmem_cache_release(struct kmem_cache *s)
699 {
700 	__kmem_cache_release(s);
701 	destroy_memcg_params(s);
702 	kfree_const(s->name);
703 	kmem_cache_free(kmem_cache, s);
704 }
705 
706 void kmem_cache_destroy(struct kmem_cache *s)
707 {
708 	LIST_HEAD(release);
709 	bool need_rcu_barrier = false;
710 	int err;
711 
712 	if (unlikely(!s))
713 		return;
714 
715 	get_online_cpus();
716 	get_online_mems();
717 
718 	kasan_cache_destroy(s);
719 	mutex_lock(&slab_mutex);
720 
721 	s->refcount--;
722 	if (s->refcount)
723 		goto out_unlock;
724 
725 	err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
726 	if (!err)
727 		err = shutdown_cache(s, &release, &need_rcu_barrier);
728 
729 	if (err) {
730 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
731 		       s->name);
732 		dump_stack();
733 	}
734 out_unlock:
735 	mutex_unlock(&slab_mutex);
736 
737 	put_online_mems();
738 	put_online_cpus();
739 
740 	release_caches(&release, need_rcu_barrier);
741 }
742 EXPORT_SYMBOL(kmem_cache_destroy);
743 
744 /**
745  * kmem_cache_shrink - Shrink a cache.
746  * @cachep: The cache to shrink.
747  *
748  * Releases as many slabs as possible for a cache.
749  * To help debugging, a zero exit status indicates all slabs were released.
750  */
751 int kmem_cache_shrink(struct kmem_cache *cachep)
752 {
753 	int ret;
754 
755 	get_online_cpus();
756 	get_online_mems();
757 	kasan_cache_shrink(cachep);
758 	ret = __kmem_cache_shrink(cachep, false);
759 	put_online_mems();
760 	put_online_cpus();
761 	return ret;
762 }
763 EXPORT_SYMBOL(kmem_cache_shrink);
764 
765 bool slab_is_available(void)
766 {
767 	return slab_state >= UP;
768 }
769 
770 #ifndef CONFIG_SLOB
771 /* Create a cache during boot when no slab services are available yet */
772 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
773 		unsigned long flags)
774 {
775 	int err;
776 
777 	s->name = name;
778 	s->size = s->object_size = size;
779 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
780 
781 	slab_init_memcg_params(s);
782 
783 	err = __kmem_cache_create(s, flags);
784 
785 	if (err)
786 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
787 					name, size, err);
788 
789 	s->refcount = -1;	/* Exempt from merging for now */
790 }
791 
792 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
793 				unsigned long flags)
794 {
795 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
796 
797 	if (!s)
798 		panic("Out of memory when creating slab %s\n", name);
799 
800 	create_boot_cache(s, name, size, flags);
801 	list_add(&s->list, &slab_caches);
802 	s->refcount = 1;
803 	return s;
804 }
805 
806 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
807 EXPORT_SYMBOL(kmalloc_caches);
808 
809 #ifdef CONFIG_ZONE_DMA
810 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
811 EXPORT_SYMBOL(kmalloc_dma_caches);
812 #endif
813 
814 /*
815  * Conversion table for small slabs sizes / 8 to the index in the
816  * kmalloc array. This is necessary for slabs < 192 since we have non power
817  * of two cache sizes there. The size of larger slabs can be determined using
818  * fls.
819  */
820 static s8 size_index[24] = {
821 	3,	/* 8 */
822 	4,	/* 16 */
823 	5,	/* 24 */
824 	5,	/* 32 */
825 	6,	/* 40 */
826 	6,	/* 48 */
827 	6,	/* 56 */
828 	6,	/* 64 */
829 	1,	/* 72 */
830 	1,	/* 80 */
831 	1,	/* 88 */
832 	1,	/* 96 */
833 	7,	/* 104 */
834 	7,	/* 112 */
835 	7,	/* 120 */
836 	7,	/* 128 */
837 	2,	/* 136 */
838 	2,	/* 144 */
839 	2,	/* 152 */
840 	2,	/* 160 */
841 	2,	/* 168 */
842 	2,	/* 176 */
843 	2,	/* 184 */
844 	2	/* 192 */
845 };
846 
847 static inline int size_index_elem(size_t bytes)
848 {
849 	return (bytes - 1) / 8;
850 }
851 
852 /*
853  * Find the kmem_cache structure that serves a given size of
854  * allocation
855  */
856 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
857 {
858 	int index;
859 
860 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
861 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
862 		return NULL;
863 	}
864 
865 	if (size <= 192) {
866 		if (!size)
867 			return ZERO_SIZE_PTR;
868 
869 		index = size_index[size_index_elem(size)];
870 	} else
871 		index = fls(size - 1);
872 
873 #ifdef CONFIG_ZONE_DMA
874 	if (unlikely((flags & GFP_DMA)))
875 		return kmalloc_dma_caches[index];
876 
877 #endif
878 	return kmalloc_caches[index];
879 }
880 
881 /*
882  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
883  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
884  * kmalloc-67108864.
885  */
886 static struct {
887 	const char *name;
888 	unsigned long size;
889 } const kmalloc_info[] __initconst = {
890 	{NULL,                      0},		{"kmalloc-96",             96},
891 	{"kmalloc-192",           192},		{"kmalloc-8",               8},
892 	{"kmalloc-16",             16},		{"kmalloc-32",             32},
893 	{"kmalloc-64",             64},		{"kmalloc-128",           128},
894 	{"kmalloc-256",           256},		{"kmalloc-512",           512},
895 	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
896 	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
897 	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
898 	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
899 	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
900 	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
901 	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
902 	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
903 	{"kmalloc-67108864", 67108864}
904 };
905 
906 /*
907  * Patch up the size_index table if we have strange large alignment
908  * requirements for the kmalloc array. This is only the case for
909  * MIPS it seems. The standard arches will not generate any code here.
910  *
911  * Largest permitted alignment is 256 bytes due to the way we
912  * handle the index determination for the smaller caches.
913  *
914  * Make sure that nothing crazy happens if someone starts tinkering
915  * around with ARCH_KMALLOC_MINALIGN
916  */
917 void __init setup_kmalloc_cache_index_table(void)
918 {
919 	int i;
920 
921 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
922 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
923 
924 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
925 		int elem = size_index_elem(i);
926 
927 		if (elem >= ARRAY_SIZE(size_index))
928 			break;
929 		size_index[elem] = KMALLOC_SHIFT_LOW;
930 	}
931 
932 	if (KMALLOC_MIN_SIZE >= 64) {
933 		/*
934 		 * The 96 byte size cache is not used if the alignment
935 		 * is 64 byte.
936 		 */
937 		for (i = 64 + 8; i <= 96; i += 8)
938 			size_index[size_index_elem(i)] = 7;
939 
940 	}
941 
942 	if (KMALLOC_MIN_SIZE >= 128) {
943 		/*
944 		 * The 192 byte sized cache is not used if the alignment
945 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
946 		 * instead.
947 		 */
948 		for (i = 128 + 8; i <= 192; i += 8)
949 			size_index[size_index_elem(i)] = 8;
950 	}
951 }
952 
953 static void __init new_kmalloc_cache(int idx, unsigned long flags)
954 {
955 	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
956 					kmalloc_info[idx].size, flags);
957 }
958 
959 /*
960  * Create the kmalloc array. Some of the regular kmalloc arrays
961  * may already have been created because they were needed to
962  * enable allocations for slab creation.
963  */
964 void __init create_kmalloc_caches(unsigned long flags)
965 {
966 	int i;
967 
968 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
969 		if (!kmalloc_caches[i])
970 			new_kmalloc_cache(i, flags);
971 
972 		/*
973 		 * Caches that are not of the two-to-the-power-of size.
974 		 * These have to be created immediately after the
975 		 * earlier power of two caches
976 		 */
977 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
978 			new_kmalloc_cache(1, flags);
979 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
980 			new_kmalloc_cache(2, flags);
981 	}
982 
983 	/* Kmalloc array is now usable */
984 	slab_state = UP;
985 
986 #ifdef CONFIG_ZONE_DMA
987 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
988 		struct kmem_cache *s = kmalloc_caches[i];
989 
990 		if (s) {
991 			int size = kmalloc_size(i);
992 			char *n = kasprintf(GFP_NOWAIT,
993 				 "dma-kmalloc-%d", size);
994 
995 			BUG_ON(!n);
996 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
997 				size, SLAB_CACHE_DMA | flags);
998 		}
999 	}
1000 #endif
1001 }
1002 #endif /* !CONFIG_SLOB */
1003 
1004 /*
1005  * To avoid unnecessary overhead, we pass through large allocation requests
1006  * directly to the page allocator. We use __GFP_COMP, because we will need to
1007  * know the allocation order to free the pages properly in kfree.
1008  */
1009 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1010 {
1011 	void *ret;
1012 	struct page *page;
1013 
1014 	flags |= __GFP_COMP;
1015 	page = alloc_kmem_pages(flags, order);
1016 	ret = page ? page_address(page) : NULL;
1017 	kmemleak_alloc(ret, size, 1, flags);
1018 	kasan_kmalloc_large(ret, size, flags);
1019 	return ret;
1020 }
1021 EXPORT_SYMBOL(kmalloc_order);
1022 
1023 #ifdef CONFIG_TRACING
1024 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1025 {
1026 	void *ret = kmalloc_order(size, flags, order);
1027 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1028 	return ret;
1029 }
1030 EXPORT_SYMBOL(kmalloc_order_trace);
1031 #endif
1032 
1033 #ifdef CONFIG_SLABINFO
1034 
1035 #ifdef CONFIG_SLAB
1036 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1037 #else
1038 #define SLABINFO_RIGHTS S_IRUSR
1039 #endif
1040 
1041 static void print_slabinfo_header(struct seq_file *m)
1042 {
1043 	/*
1044 	 * Output format version, so at least we can change it
1045 	 * without _too_ many complaints.
1046 	 */
1047 #ifdef CONFIG_DEBUG_SLAB
1048 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1049 #else
1050 	seq_puts(m, "slabinfo - version: 2.1\n");
1051 #endif
1052 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1053 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1054 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1055 #ifdef CONFIG_DEBUG_SLAB
1056 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1057 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1058 #endif
1059 	seq_putc(m, '\n');
1060 }
1061 
1062 void *slab_start(struct seq_file *m, loff_t *pos)
1063 {
1064 	mutex_lock(&slab_mutex);
1065 	return seq_list_start(&slab_caches, *pos);
1066 }
1067 
1068 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1069 {
1070 	return seq_list_next(p, &slab_caches, pos);
1071 }
1072 
1073 void slab_stop(struct seq_file *m, void *p)
1074 {
1075 	mutex_unlock(&slab_mutex);
1076 }
1077 
1078 static void
1079 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1080 {
1081 	struct kmem_cache *c;
1082 	struct slabinfo sinfo;
1083 
1084 	if (!is_root_cache(s))
1085 		return;
1086 
1087 	for_each_memcg_cache(c, s) {
1088 		memset(&sinfo, 0, sizeof(sinfo));
1089 		get_slabinfo(c, &sinfo);
1090 
1091 		info->active_slabs += sinfo.active_slabs;
1092 		info->num_slabs += sinfo.num_slabs;
1093 		info->shared_avail += sinfo.shared_avail;
1094 		info->active_objs += sinfo.active_objs;
1095 		info->num_objs += sinfo.num_objs;
1096 	}
1097 }
1098 
1099 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1100 {
1101 	struct slabinfo sinfo;
1102 
1103 	memset(&sinfo, 0, sizeof(sinfo));
1104 	get_slabinfo(s, &sinfo);
1105 
1106 	memcg_accumulate_slabinfo(s, &sinfo);
1107 
1108 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1109 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1110 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1111 
1112 	seq_printf(m, " : tunables %4u %4u %4u",
1113 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1114 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1115 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1116 	slabinfo_show_stats(m, s);
1117 	seq_putc(m, '\n');
1118 }
1119 
1120 static int slab_show(struct seq_file *m, void *p)
1121 {
1122 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1123 
1124 	if (p == slab_caches.next)
1125 		print_slabinfo_header(m);
1126 	if (is_root_cache(s))
1127 		cache_show(s, m);
1128 	return 0;
1129 }
1130 
1131 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1132 int memcg_slab_show(struct seq_file *m, void *p)
1133 {
1134 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1135 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1136 
1137 	if (p == slab_caches.next)
1138 		print_slabinfo_header(m);
1139 	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1140 		cache_show(s, m);
1141 	return 0;
1142 }
1143 #endif
1144 
1145 /*
1146  * slabinfo_op - iterator that generates /proc/slabinfo
1147  *
1148  * Output layout:
1149  * cache-name
1150  * num-active-objs
1151  * total-objs
1152  * object size
1153  * num-active-slabs
1154  * total-slabs
1155  * num-pages-per-slab
1156  * + further values on SMP and with statistics enabled
1157  */
1158 static const struct seq_operations slabinfo_op = {
1159 	.start = slab_start,
1160 	.next = slab_next,
1161 	.stop = slab_stop,
1162 	.show = slab_show,
1163 };
1164 
1165 static int slabinfo_open(struct inode *inode, struct file *file)
1166 {
1167 	return seq_open(file, &slabinfo_op);
1168 }
1169 
1170 static const struct file_operations proc_slabinfo_operations = {
1171 	.open		= slabinfo_open,
1172 	.read		= seq_read,
1173 	.write          = slabinfo_write,
1174 	.llseek		= seq_lseek,
1175 	.release	= seq_release,
1176 };
1177 
1178 static int __init slab_proc_init(void)
1179 {
1180 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1181 						&proc_slabinfo_operations);
1182 	return 0;
1183 }
1184 module_init(slab_proc_init);
1185 #endif /* CONFIG_SLABINFO */
1186 
1187 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1188 					   gfp_t flags)
1189 {
1190 	void *ret;
1191 	size_t ks = 0;
1192 
1193 	if (p)
1194 		ks = ksize(p);
1195 
1196 	if (ks >= new_size) {
1197 		kasan_krealloc((void *)p, new_size, flags);
1198 		return (void *)p;
1199 	}
1200 
1201 	ret = kmalloc_track_caller(new_size, flags);
1202 	if (ret && p)
1203 		memcpy(ret, p, ks);
1204 
1205 	return ret;
1206 }
1207 
1208 /**
1209  * __krealloc - like krealloc() but don't free @p.
1210  * @p: object to reallocate memory for.
1211  * @new_size: how many bytes of memory are required.
1212  * @flags: the type of memory to allocate.
1213  *
1214  * This function is like krealloc() except it never frees the originally
1215  * allocated buffer. Use this if you don't want to free the buffer immediately
1216  * like, for example, with RCU.
1217  */
1218 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1219 {
1220 	if (unlikely(!new_size))
1221 		return ZERO_SIZE_PTR;
1222 
1223 	return __do_krealloc(p, new_size, flags);
1224 
1225 }
1226 EXPORT_SYMBOL(__krealloc);
1227 
1228 /**
1229  * krealloc - reallocate memory. The contents will remain unchanged.
1230  * @p: object to reallocate memory for.
1231  * @new_size: how many bytes of memory are required.
1232  * @flags: the type of memory to allocate.
1233  *
1234  * The contents of the object pointed to are preserved up to the
1235  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1236  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1237  * %NULL pointer, the object pointed to is freed.
1238  */
1239 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1240 {
1241 	void *ret;
1242 
1243 	if (unlikely(!new_size)) {
1244 		kfree(p);
1245 		return ZERO_SIZE_PTR;
1246 	}
1247 
1248 	ret = __do_krealloc(p, new_size, flags);
1249 	if (ret && p != ret)
1250 		kfree(p);
1251 
1252 	return ret;
1253 }
1254 EXPORT_SYMBOL(krealloc);
1255 
1256 /**
1257  * kzfree - like kfree but zero memory
1258  * @p: object to free memory of
1259  *
1260  * The memory of the object @p points to is zeroed before freed.
1261  * If @p is %NULL, kzfree() does nothing.
1262  *
1263  * Note: this function zeroes the whole allocated buffer which can be a good
1264  * deal bigger than the requested buffer size passed to kmalloc(). So be
1265  * careful when using this function in performance sensitive code.
1266  */
1267 void kzfree(const void *p)
1268 {
1269 	size_t ks;
1270 	void *mem = (void *)p;
1271 
1272 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1273 		return;
1274 	ks = ksize(mem);
1275 	memset(mem, 0, ks);
1276 	kfree(mem);
1277 }
1278 EXPORT_SYMBOL(kzfree);
1279 
1280 /* Tracepoints definitions. */
1281 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1282 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1283 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1284 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1285 EXPORT_TRACEPOINT_SYMBOL(kfree);
1286 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1287