xref: /openbmc/linux/mm/slab_common.c (revision 05bcf503)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <asm/cacheflush.h>
17 #include <asm/tlbflush.h>
18 #include <asm/page.h>
19 
20 #include "slab.h"
21 
22 enum slab_state slab_state;
23 LIST_HEAD(slab_caches);
24 DEFINE_MUTEX(slab_mutex);
25 struct kmem_cache *kmem_cache;
26 
27 #ifdef CONFIG_DEBUG_VM
28 static int kmem_cache_sanity_check(const char *name, size_t size)
29 {
30 	struct kmem_cache *s = NULL;
31 
32 	if (!name || in_interrupt() || size < sizeof(void *) ||
33 		size > KMALLOC_MAX_SIZE) {
34 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
35 		return -EINVAL;
36 	}
37 
38 	list_for_each_entry(s, &slab_caches, list) {
39 		char tmp;
40 		int res;
41 
42 		/*
43 		 * This happens when the module gets unloaded and doesn't
44 		 * destroy its slab cache and no-one else reuses the vmalloc
45 		 * area of the module.  Print a warning.
46 		 */
47 		res = probe_kernel_address(s->name, tmp);
48 		if (res) {
49 			pr_err("Slab cache with size %d has lost its name\n",
50 			       s->object_size);
51 			continue;
52 		}
53 
54 		if (!strcmp(s->name, name)) {
55 			pr_err("%s (%s): Cache name already exists.\n",
56 			       __func__, name);
57 			dump_stack();
58 			s = NULL;
59 			return -EINVAL;
60 		}
61 	}
62 
63 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
64 	return 0;
65 }
66 #else
67 static inline int kmem_cache_sanity_check(const char *name, size_t size)
68 {
69 	return 0;
70 }
71 #endif
72 
73 /*
74  * kmem_cache_create - Create a cache.
75  * @name: A string which is used in /proc/slabinfo to identify this cache.
76  * @size: The size of objects to be created in this cache.
77  * @align: The required alignment for the objects.
78  * @flags: SLAB flags
79  * @ctor: A constructor for the objects.
80  *
81  * Returns a ptr to the cache on success, NULL on failure.
82  * Cannot be called within a interrupt, but can be interrupted.
83  * The @ctor is run when new pages are allocated by the cache.
84  *
85  * The flags are
86  *
87  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
88  * to catch references to uninitialised memory.
89  *
90  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
91  * for buffer overruns.
92  *
93  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
94  * cacheline.  This can be beneficial if you're counting cycles as closely
95  * as davem.
96  */
97 
98 struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align,
99 		unsigned long flags, void (*ctor)(void *))
100 {
101 	struct kmem_cache *s = NULL;
102 	int err = 0;
103 
104 	get_online_cpus();
105 	mutex_lock(&slab_mutex);
106 
107 	if (!kmem_cache_sanity_check(name, size) == 0)
108 		goto out_locked;
109 
110 
111 	s = __kmem_cache_alias(name, size, align, flags, ctor);
112 	if (s)
113 		goto out_locked;
114 
115 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
116 	if (s) {
117 		s->object_size = s->size = size;
118 		s->align = align;
119 		s->ctor = ctor;
120 		s->name = kstrdup(name, GFP_KERNEL);
121 		if (!s->name) {
122 			kmem_cache_free(kmem_cache, s);
123 			err = -ENOMEM;
124 			goto out_locked;
125 		}
126 
127 		err = __kmem_cache_create(s, flags);
128 		if (!err) {
129 
130 			s->refcount = 1;
131 			list_add(&s->list, &slab_caches);
132 
133 		} else {
134 			kfree(s->name);
135 			kmem_cache_free(kmem_cache, s);
136 		}
137 	} else
138 		err = -ENOMEM;
139 
140 out_locked:
141 	mutex_unlock(&slab_mutex);
142 	put_online_cpus();
143 
144 	if (err) {
145 
146 		if (flags & SLAB_PANIC)
147 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
148 				name, err);
149 		else {
150 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
151 				name, err);
152 			dump_stack();
153 		}
154 
155 		return NULL;
156 	}
157 
158 	return s;
159 }
160 EXPORT_SYMBOL(kmem_cache_create);
161 
162 void kmem_cache_destroy(struct kmem_cache *s)
163 {
164 	get_online_cpus();
165 	mutex_lock(&slab_mutex);
166 	s->refcount--;
167 	if (!s->refcount) {
168 		list_del(&s->list);
169 
170 		if (!__kmem_cache_shutdown(s)) {
171 			mutex_unlock(&slab_mutex);
172 			if (s->flags & SLAB_DESTROY_BY_RCU)
173 				rcu_barrier();
174 
175 			kfree(s->name);
176 			kmem_cache_free(kmem_cache, s);
177 		} else {
178 			list_add(&s->list, &slab_caches);
179 			mutex_unlock(&slab_mutex);
180 			printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
181 				s->name);
182 			dump_stack();
183 		}
184 	} else {
185 		mutex_unlock(&slab_mutex);
186 	}
187 	put_online_cpus();
188 }
189 EXPORT_SYMBOL(kmem_cache_destroy);
190 
191 int slab_is_available(void)
192 {
193 	return slab_state >= UP;
194 }
195