1 #ifndef MM_SLAB_H 2 #define MM_SLAB_H 3 /* 4 * Internal slab definitions 5 */ 6 7 #ifdef CONFIG_SLOB 8 /* 9 * Common fields provided in kmem_cache by all slab allocators 10 * This struct is either used directly by the allocator (SLOB) 11 * or the allocator must include definitions for all fields 12 * provided in kmem_cache_common in their definition of kmem_cache. 13 * 14 * Once we can do anonymous structs (C11 standard) we could put a 15 * anonymous struct definition in these allocators so that the 16 * separate allocations in the kmem_cache structure of SLAB and 17 * SLUB is no longer needed. 18 */ 19 struct kmem_cache { 20 unsigned int object_size;/* The original size of the object */ 21 unsigned int size; /* The aligned/padded/added on size */ 22 unsigned int align; /* Alignment as calculated */ 23 unsigned long flags; /* Active flags on the slab */ 24 const char *name; /* Slab name for sysfs */ 25 int refcount; /* Use counter */ 26 void (*ctor)(void *); /* Called on object slot creation */ 27 struct list_head list; /* List of all slab caches on the system */ 28 }; 29 30 #endif /* CONFIG_SLOB */ 31 32 #ifdef CONFIG_SLAB 33 #include <linux/slab_def.h> 34 #endif 35 36 #ifdef CONFIG_SLUB 37 #include <linux/slub_def.h> 38 #endif 39 40 #include <linux/memcontrol.h> 41 #include <linux/fault-inject.h> 42 #include <linux/kmemcheck.h> 43 #include <linux/kasan.h> 44 #include <linux/kmemleak.h> 45 #include <linux/random.h> 46 47 /* 48 * State of the slab allocator. 49 * 50 * This is used to describe the states of the allocator during bootup. 51 * Allocators use this to gradually bootstrap themselves. Most allocators 52 * have the problem that the structures used for managing slab caches are 53 * allocated from slab caches themselves. 54 */ 55 enum slab_state { 56 DOWN, /* No slab functionality yet */ 57 PARTIAL, /* SLUB: kmem_cache_node available */ 58 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ 59 UP, /* Slab caches usable but not all extras yet */ 60 FULL /* Everything is working */ 61 }; 62 63 extern enum slab_state slab_state; 64 65 /* The slab cache mutex protects the management structures during changes */ 66 extern struct mutex slab_mutex; 67 68 /* The list of all slab caches on the system */ 69 extern struct list_head slab_caches; 70 71 /* The slab cache that manages slab cache information */ 72 extern struct kmem_cache *kmem_cache; 73 74 /* A table of kmalloc cache names and sizes */ 75 extern const struct kmalloc_info_struct { 76 const char *name; 77 unsigned long size; 78 } kmalloc_info[]; 79 80 unsigned long calculate_alignment(unsigned long flags, 81 unsigned long align, unsigned long size); 82 83 #ifndef CONFIG_SLOB 84 /* Kmalloc array related functions */ 85 void setup_kmalloc_cache_index_table(void); 86 void create_kmalloc_caches(unsigned long); 87 88 /* Find the kmalloc slab corresponding for a certain size */ 89 struct kmem_cache *kmalloc_slab(size_t, gfp_t); 90 #endif 91 92 93 /* Functions provided by the slab allocators */ 94 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags); 95 96 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size, 97 unsigned long flags); 98 extern void create_boot_cache(struct kmem_cache *, const char *name, 99 size_t size, unsigned long flags); 100 101 int slab_unmergeable(struct kmem_cache *s); 102 struct kmem_cache *find_mergeable(size_t size, size_t align, 103 unsigned long flags, const char *name, void (*ctor)(void *)); 104 #ifndef CONFIG_SLOB 105 struct kmem_cache * 106 __kmem_cache_alias(const char *name, size_t size, size_t align, 107 unsigned long flags, void (*ctor)(void *)); 108 109 unsigned long kmem_cache_flags(unsigned long object_size, 110 unsigned long flags, const char *name, 111 void (*ctor)(void *)); 112 #else 113 static inline struct kmem_cache * 114 __kmem_cache_alias(const char *name, size_t size, size_t align, 115 unsigned long flags, void (*ctor)(void *)) 116 { return NULL; } 117 118 static inline unsigned long kmem_cache_flags(unsigned long object_size, 119 unsigned long flags, const char *name, 120 void (*ctor)(void *)) 121 { 122 return flags; 123 } 124 #endif 125 126 127 /* Legal flag mask for kmem_cache_create(), for various configurations */ 128 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \ 129 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) 130 131 #if defined(CONFIG_DEBUG_SLAB) 132 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 133 #elif defined(CONFIG_SLUB_DEBUG) 134 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 135 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) 136 #else 137 #define SLAB_DEBUG_FLAGS (0) 138 #endif 139 140 #if defined(CONFIG_SLAB) 141 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ 142 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ 143 SLAB_NOTRACK | SLAB_ACCOUNT) 144 #elif defined(CONFIG_SLUB) 145 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ 146 SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT) 147 #else 148 #define SLAB_CACHE_FLAGS (0) 149 #endif 150 151 /* Common flags available with current configuration */ 152 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) 153 154 /* Common flags permitted for kmem_cache_create */ 155 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ 156 SLAB_RED_ZONE | \ 157 SLAB_POISON | \ 158 SLAB_STORE_USER | \ 159 SLAB_TRACE | \ 160 SLAB_CONSISTENCY_CHECKS | \ 161 SLAB_MEM_SPREAD | \ 162 SLAB_NOLEAKTRACE | \ 163 SLAB_RECLAIM_ACCOUNT | \ 164 SLAB_TEMPORARY | \ 165 SLAB_NOTRACK | \ 166 SLAB_ACCOUNT) 167 168 int __kmem_cache_shutdown(struct kmem_cache *); 169 void __kmem_cache_release(struct kmem_cache *); 170 int __kmem_cache_shrink(struct kmem_cache *); 171 void __kmemcg_cache_deactivate(struct kmem_cache *s); 172 void slab_kmem_cache_release(struct kmem_cache *); 173 174 struct seq_file; 175 struct file; 176 177 struct slabinfo { 178 unsigned long active_objs; 179 unsigned long num_objs; 180 unsigned long active_slabs; 181 unsigned long num_slabs; 182 unsigned long shared_avail; 183 unsigned int limit; 184 unsigned int batchcount; 185 unsigned int shared; 186 unsigned int objects_per_slab; 187 unsigned int cache_order; 188 }; 189 190 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); 191 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); 192 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 193 size_t count, loff_t *ppos); 194 195 /* 196 * Generic implementation of bulk operations 197 * These are useful for situations in which the allocator cannot 198 * perform optimizations. In that case segments of the object listed 199 * may be allocated or freed using these operations. 200 */ 201 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 202 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 203 204 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 205 206 /* List of all root caches. */ 207 extern struct list_head slab_root_caches; 208 #define root_caches_node memcg_params.__root_caches_node 209 210 /* 211 * Iterate over all memcg caches of the given root cache. The caller must hold 212 * slab_mutex. 213 */ 214 #define for_each_memcg_cache(iter, root) \ 215 list_for_each_entry(iter, &(root)->memcg_params.children, \ 216 memcg_params.children_node) 217 218 static inline bool is_root_cache(struct kmem_cache *s) 219 { 220 return !s->memcg_params.root_cache; 221 } 222 223 static inline bool slab_equal_or_root(struct kmem_cache *s, 224 struct kmem_cache *p) 225 { 226 return p == s || p == s->memcg_params.root_cache; 227 } 228 229 /* 230 * We use suffixes to the name in memcg because we can't have caches 231 * created in the system with the same name. But when we print them 232 * locally, better refer to them with the base name 233 */ 234 static inline const char *cache_name(struct kmem_cache *s) 235 { 236 if (!is_root_cache(s)) 237 s = s->memcg_params.root_cache; 238 return s->name; 239 } 240 241 /* 242 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches. 243 * That said the caller must assure the memcg's cache won't go away by either 244 * taking a css reference to the owner cgroup, or holding the slab_mutex. 245 */ 246 static inline struct kmem_cache * 247 cache_from_memcg_idx(struct kmem_cache *s, int idx) 248 { 249 struct kmem_cache *cachep; 250 struct memcg_cache_array *arr; 251 252 rcu_read_lock(); 253 arr = rcu_dereference(s->memcg_params.memcg_caches); 254 255 /* 256 * Make sure we will access the up-to-date value. The code updating 257 * memcg_caches issues a write barrier to match this (see 258 * memcg_create_kmem_cache()). 259 */ 260 cachep = lockless_dereference(arr->entries[idx]); 261 rcu_read_unlock(); 262 263 return cachep; 264 } 265 266 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 267 { 268 if (is_root_cache(s)) 269 return s; 270 return s->memcg_params.root_cache; 271 } 272 273 static __always_inline int memcg_charge_slab(struct page *page, 274 gfp_t gfp, int order, 275 struct kmem_cache *s) 276 { 277 if (!memcg_kmem_enabled()) 278 return 0; 279 if (is_root_cache(s)) 280 return 0; 281 return memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg); 282 } 283 284 static __always_inline void memcg_uncharge_slab(struct page *page, int order, 285 struct kmem_cache *s) 286 { 287 if (!memcg_kmem_enabled()) 288 return; 289 memcg_kmem_uncharge(page, order); 290 } 291 292 extern void slab_init_memcg_params(struct kmem_cache *); 293 extern void memcg_link_cache(struct kmem_cache *s); 294 extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s, 295 void (*deact_fn)(struct kmem_cache *)); 296 297 #else /* CONFIG_MEMCG && !CONFIG_SLOB */ 298 299 /* If !memcg, all caches are root. */ 300 #define slab_root_caches slab_caches 301 #define root_caches_node list 302 303 #define for_each_memcg_cache(iter, root) \ 304 for ((void)(iter), (void)(root); 0; ) 305 306 static inline bool is_root_cache(struct kmem_cache *s) 307 { 308 return true; 309 } 310 311 static inline bool slab_equal_or_root(struct kmem_cache *s, 312 struct kmem_cache *p) 313 { 314 return true; 315 } 316 317 static inline const char *cache_name(struct kmem_cache *s) 318 { 319 return s->name; 320 } 321 322 static inline struct kmem_cache * 323 cache_from_memcg_idx(struct kmem_cache *s, int idx) 324 { 325 return NULL; 326 } 327 328 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 329 { 330 return s; 331 } 332 333 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order, 334 struct kmem_cache *s) 335 { 336 return 0; 337 } 338 339 static inline void memcg_uncharge_slab(struct page *page, int order, 340 struct kmem_cache *s) 341 { 342 } 343 344 static inline void slab_init_memcg_params(struct kmem_cache *s) 345 { 346 } 347 348 static inline void memcg_link_cache(struct kmem_cache *s) 349 { 350 } 351 352 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 353 354 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 355 { 356 struct kmem_cache *cachep; 357 struct page *page; 358 359 /* 360 * When kmemcg is not being used, both assignments should return the 361 * same value. but we don't want to pay the assignment price in that 362 * case. If it is not compiled in, the compiler should be smart enough 363 * to not do even the assignment. In that case, slab_equal_or_root 364 * will also be a constant. 365 */ 366 if (!memcg_kmem_enabled() && 367 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS)) 368 return s; 369 370 page = virt_to_head_page(x); 371 cachep = page->slab_cache; 372 if (slab_equal_or_root(cachep, s)) 373 return cachep; 374 375 pr_err("%s: Wrong slab cache. %s but object is from %s\n", 376 __func__, s->name, cachep->name); 377 WARN_ON_ONCE(1); 378 return s; 379 } 380 381 static inline size_t slab_ksize(const struct kmem_cache *s) 382 { 383 #ifndef CONFIG_SLUB 384 return s->object_size; 385 386 #else /* CONFIG_SLUB */ 387 # ifdef CONFIG_SLUB_DEBUG 388 /* 389 * Debugging requires use of the padding between object 390 * and whatever may come after it. 391 */ 392 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 393 return s->object_size; 394 # endif 395 if (s->flags & SLAB_KASAN) 396 return s->object_size; 397 /* 398 * If we have the need to store the freelist pointer 399 * back there or track user information then we can 400 * only use the space before that information. 401 */ 402 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) 403 return s->inuse; 404 /* 405 * Else we can use all the padding etc for the allocation 406 */ 407 return s->size; 408 #endif 409 } 410 411 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 412 gfp_t flags) 413 { 414 flags &= gfp_allowed_mask; 415 lockdep_trace_alloc(flags); 416 might_sleep_if(gfpflags_allow_blocking(flags)); 417 418 if (should_failslab(s, flags)) 419 return NULL; 420 421 if (memcg_kmem_enabled() && 422 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT))) 423 return memcg_kmem_get_cache(s); 424 425 return s; 426 } 427 428 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 429 size_t size, void **p) 430 { 431 size_t i; 432 433 flags &= gfp_allowed_mask; 434 for (i = 0; i < size; i++) { 435 void *object = p[i]; 436 437 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 438 kmemleak_alloc_recursive(object, s->object_size, 1, 439 s->flags, flags); 440 kasan_slab_alloc(s, object, flags); 441 } 442 443 if (memcg_kmem_enabled()) 444 memcg_kmem_put_cache(s); 445 } 446 447 #ifndef CONFIG_SLOB 448 /* 449 * The slab lists for all objects. 450 */ 451 struct kmem_cache_node { 452 spinlock_t list_lock; 453 454 #ifdef CONFIG_SLAB 455 struct list_head slabs_partial; /* partial list first, better asm code */ 456 struct list_head slabs_full; 457 struct list_head slabs_free; 458 unsigned long total_slabs; /* length of all slab lists */ 459 unsigned long free_slabs; /* length of free slab list only */ 460 unsigned long free_objects; 461 unsigned int free_limit; 462 unsigned int colour_next; /* Per-node cache coloring */ 463 struct array_cache *shared; /* shared per node */ 464 struct alien_cache **alien; /* on other nodes */ 465 unsigned long next_reap; /* updated without locking */ 466 int free_touched; /* updated without locking */ 467 #endif 468 469 #ifdef CONFIG_SLUB 470 unsigned long nr_partial; 471 struct list_head partial; 472 #ifdef CONFIG_SLUB_DEBUG 473 atomic_long_t nr_slabs; 474 atomic_long_t total_objects; 475 struct list_head full; 476 #endif 477 #endif 478 479 }; 480 481 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 482 { 483 return s->node[node]; 484 } 485 486 /* 487 * Iterator over all nodes. The body will be executed for each node that has 488 * a kmem_cache_node structure allocated (which is true for all online nodes) 489 */ 490 #define for_each_kmem_cache_node(__s, __node, __n) \ 491 for (__node = 0; __node < nr_node_ids; __node++) \ 492 if ((__n = get_node(__s, __node))) 493 494 #endif 495 496 void *slab_start(struct seq_file *m, loff_t *pos); 497 void *slab_next(struct seq_file *m, void *p, loff_t *pos); 498 void slab_stop(struct seq_file *m, void *p); 499 void *memcg_slab_start(struct seq_file *m, loff_t *pos); 500 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos); 501 void memcg_slab_stop(struct seq_file *m, void *p); 502 int memcg_slab_show(struct seq_file *m, void *p); 503 504 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); 505 506 #ifdef CONFIG_SLAB_FREELIST_RANDOM 507 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 508 gfp_t gfp); 509 void cache_random_seq_destroy(struct kmem_cache *cachep); 510 #else 511 static inline int cache_random_seq_create(struct kmem_cache *cachep, 512 unsigned int count, gfp_t gfp) 513 { 514 return 0; 515 } 516 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } 517 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 518 519 #endif /* MM_SLAB_H */ 520