xref: /openbmc/linux/mm/slab.h (revision d2999e1b)
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4  * Internal slab definitions
5  */
6 
7 /*
8  * State of the slab allocator.
9  *
10  * This is used to describe the states of the allocator during bootup.
11  * Allocators use this to gradually bootstrap themselves. Most allocators
12  * have the problem that the structures used for managing slab caches are
13  * allocated from slab caches themselves.
14  */
15 enum slab_state {
16 	DOWN,			/* No slab functionality yet */
17 	PARTIAL,		/* SLUB: kmem_cache_node available */
18 	PARTIAL_ARRAYCACHE,	/* SLAB: kmalloc size for arraycache available */
19 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
20 	UP,			/* Slab caches usable but not all extras yet */
21 	FULL			/* Everything is working */
22 };
23 
24 extern enum slab_state slab_state;
25 
26 /* The slab cache mutex protects the management structures during changes */
27 extern struct mutex slab_mutex;
28 
29 /* The list of all slab caches on the system */
30 extern struct list_head slab_caches;
31 
32 /* The slab cache that manages slab cache information */
33 extern struct kmem_cache *kmem_cache;
34 
35 unsigned long calculate_alignment(unsigned long flags,
36 		unsigned long align, unsigned long size);
37 
38 #ifndef CONFIG_SLOB
39 /* Kmalloc array related functions */
40 void create_kmalloc_caches(unsigned long);
41 
42 /* Find the kmalloc slab corresponding for a certain size */
43 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
44 #endif
45 
46 
47 /* Functions provided by the slab allocators */
48 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
49 
50 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
51 			unsigned long flags);
52 extern void create_boot_cache(struct kmem_cache *, const char *name,
53 			size_t size, unsigned long flags);
54 
55 struct mem_cgroup;
56 #ifdef CONFIG_SLUB
57 struct kmem_cache *
58 __kmem_cache_alias(const char *name, size_t size, size_t align,
59 		   unsigned long flags, void (*ctor)(void *));
60 #else
61 static inline struct kmem_cache *
62 __kmem_cache_alias(const char *name, size_t size, size_t align,
63 		   unsigned long flags, void (*ctor)(void *))
64 { return NULL; }
65 #endif
66 
67 
68 /* Legal flag mask for kmem_cache_create(), for various configurations */
69 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
70 			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
71 
72 #if defined(CONFIG_DEBUG_SLAB)
73 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
74 #elif defined(CONFIG_SLUB_DEBUG)
75 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
76 			  SLAB_TRACE | SLAB_DEBUG_FREE)
77 #else
78 #define SLAB_DEBUG_FLAGS (0)
79 #endif
80 
81 #if defined(CONFIG_SLAB)
82 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
83 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
84 #elif defined(CONFIG_SLUB)
85 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
86 			  SLAB_TEMPORARY | SLAB_NOTRACK)
87 #else
88 #define SLAB_CACHE_FLAGS (0)
89 #endif
90 
91 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
92 
93 int __kmem_cache_shutdown(struct kmem_cache *);
94 int __kmem_cache_shrink(struct kmem_cache *);
95 void slab_kmem_cache_release(struct kmem_cache *);
96 
97 struct seq_file;
98 struct file;
99 
100 struct slabinfo {
101 	unsigned long active_objs;
102 	unsigned long num_objs;
103 	unsigned long active_slabs;
104 	unsigned long num_slabs;
105 	unsigned long shared_avail;
106 	unsigned int limit;
107 	unsigned int batchcount;
108 	unsigned int shared;
109 	unsigned int objects_per_slab;
110 	unsigned int cache_order;
111 };
112 
113 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
114 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
115 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
116 		       size_t count, loff_t *ppos);
117 
118 #ifdef CONFIG_MEMCG_KMEM
119 static inline bool is_root_cache(struct kmem_cache *s)
120 {
121 	return !s->memcg_params || s->memcg_params->is_root_cache;
122 }
123 
124 static inline bool slab_equal_or_root(struct kmem_cache *s,
125 					struct kmem_cache *p)
126 {
127 	return (p == s) ||
128 		(s->memcg_params && (p == s->memcg_params->root_cache));
129 }
130 
131 /*
132  * We use suffixes to the name in memcg because we can't have caches
133  * created in the system with the same name. But when we print them
134  * locally, better refer to them with the base name
135  */
136 static inline const char *cache_name(struct kmem_cache *s)
137 {
138 	if (!is_root_cache(s))
139 		return s->memcg_params->root_cache->name;
140 	return s->name;
141 }
142 
143 /*
144  * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
145  * That said the caller must assure the memcg's cache won't go away. Since once
146  * created a memcg's cache is destroyed only along with the root cache, it is
147  * true if we are going to allocate from the cache or hold a reference to the
148  * root cache by other means. Otherwise, we should hold either the slab_mutex
149  * or the memcg's slab_caches_mutex while calling this function and accessing
150  * the returned value.
151  */
152 static inline struct kmem_cache *
153 cache_from_memcg_idx(struct kmem_cache *s, int idx)
154 {
155 	struct kmem_cache *cachep;
156 	struct memcg_cache_params *params;
157 
158 	if (!s->memcg_params)
159 		return NULL;
160 
161 	rcu_read_lock();
162 	params = rcu_dereference(s->memcg_params);
163 	cachep = params->memcg_caches[idx];
164 	rcu_read_unlock();
165 
166 	/*
167 	 * Make sure we will access the up-to-date value. The code updating
168 	 * memcg_caches issues a write barrier to match this (see
169 	 * memcg_register_cache()).
170 	 */
171 	smp_read_barrier_depends();
172 	return cachep;
173 }
174 
175 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
176 {
177 	if (is_root_cache(s))
178 		return s;
179 	return s->memcg_params->root_cache;
180 }
181 
182 static __always_inline int memcg_charge_slab(struct kmem_cache *s,
183 					     gfp_t gfp, int order)
184 {
185 	if (!memcg_kmem_enabled())
186 		return 0;
187 	if (is_root_cache(s))
188 		return 0;
189 	return __memcg_charge_slab(s, gfp, order);
190 }
191 
192 static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
193 {
194 	if (!memcg_kmem_enabled())
195 		return;
196 	if (is_root_cache(s))
197 		return;
198 	__memcg_uncharge_slab(s, order);
199 }
200 #else
201 static inline bool is_root_cache(struct kmem_cache *s)
202 {
203 	return true;
204 }
205 
206 static inline bool slab_equal_or_root(struct kmem_cache *s,
207 				      struct kmem_cache *p)
208 {
209 	return true;
210 }
211 
212 static inline const char *cache_name(struct kmem_cache *s)
213 {
214 	return s->name;
215 }
216 
217 static inline struct kmem_cache *
218 cache_from_memcg_idx(struct kmem_cache *s, int idx)
219 {
220 	return NULL;
221 }
222 
223 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
224 {
225 	return s;
226 }
227 
228 static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
229 {
230 	return 0;
231 }
232 
233 static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
234 {
235 }
236 #endif
237 
238 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
239 {
240 	struct kmem_cache *cachep;
241 	struct page *page;
242 
243 	/*
244 	 * When kmemcg is not being used, both assignments should return the
245 	 * same value. but we don't want to pay the assignment price in that
246 	 * case. If it is not compiled in, the compiler should be smart enough
247 	 * to not do even the assignment. In that case, slab_equal_or_root
248 	 * will also be a constant.
249 	 */
250 	if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
251 		return s;
252 
253 	page = virt_to_head_page(x);
254 	cachep = page->slab_cache;
255 	if (slab_equal_or_root(cachep, s))
256 		return cachep;
257 
258 	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
259 		__FUNCTION__, cachep->name, s->name);
260 	WARN_ON_ONCE(1);
261 	return s;
262 }
263 #endif
264 
265 
266 /*
267  * The slab lists for all objects.
268  */
269 struct kmem_cache_node {
270 	spinlock_t list_lock;
271 
272 #ifdef CONFIG_SLAB
273 	struct list_head slabs_partial;	/* partial list first, better asm code */
274 	struct list_head slabs_full;
275 	struct list_head slabs_free;
276 	unsigned long free_objects;
277 	unsigned int free_limit;
278 	unsigned int colour_next;	/* Per-node cache coloring */
279 	struct array_cache *shared;	/* shared per node */
280 	struct array_cache **alien;	/* on other nodes */
281 	unsigned long next_reap;	/* updated without locking */
282 	int free_touched;		/* updated without locking */
283 #endif
284 
285 #ifdef CONFIG_SLUB
286 	unsigned long nr_partial;
287 	struct list_head partial;
288 #ifdef CONFIG_SLUB_DEBUG
289 	atomic_long_t nr_slabs;
290 	atomic_long_t total_objects;
291 	struct list_head full;
292 #endif
293 #endif
294 
295 };
296 
297 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
298 void slab_stop(struct seq_file *m, void *p);
299