1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef MM_SLAB_H 3 #define MM_SLAB_H 4 /* 5 * Internal slab definitions 6 */ 7 void __init kmem_cache_init(void); 8 9 /* Reuses the bits in struct page */ 10 struct slab { 11 unsigned long __page_flags; 12 13 #if defined(CONFIG_SLAB) 14 15 struct kmem_cache *slab_cache; 16 union { 17 struct { 18 struct list_head slab_list; 19 void *freelist; /* array of free object indexes */ 20 void *s_mem; /* first object */ 21 }; 22 struct rcu_head rcu_head; 23 }; 24 unsigned int active; 25 26 #elif defined(CONFIG_SLUB) 27 28 struct kmem_cache *slab_cache; 29 union { 30 struct { 31 union { 32 struct list_head slab_list; 33 #ifdef CONFIG_SLUB_CPU_PARTIAL 34 struct { 35 struct slab *next; 36 int slabs; /* Nr of slabs left */ 37 }; 38 #endif 39 }; 40 /* Double-word boundary */ 41 void *freelist; /* first free object */ 42 union { 43 unsigned long counters; 44 struct { 45 unsigned inuse:16; 46 unsigned objects:15; 47 unsigned frozen:1; 48 }; 49 }; 50 }; 51 struct rcu_head rcu_head; 52 }; 53 unsigned int __unused; 54 55 #else 56 #error "Unexpected slab allocator configured" 57 #endif 58 59 atomic_t __page_refcount; 60 #ifdef CONFIG_MEMCG 61 unsigned long memcg_data; 62 #endif 63 }; 64 65 #define SLAB_MATCH(pg, sl) \ 66 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl)) 67 SLAB_MATCH(flags, __page_flags); 68 SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */ 69 SLAB_MATCH(_refcount, __page_refcount); 70 #ifdef CONFIG_MEMCG 71 SLAB_MATCH(memcg_data, memcg_data); 72 #endif 73 #undef SLAB_MATCH 74 static_assert(sizeof(struct slab) <= sizeof(struct page)); 75 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && defined(CONFIG_SLUB) 76 static_assert(IS_ALIGNED(offsetof(struct slab, freelist), 2*sizeof(void *))); 77 #endif 78 79 /** 80 * folio_slab - Converts from folio to slab. 81 * @folio: The folio. 82 * 83 * Currently struct slab is a different representation of a folio where 84 * folio_test_slab() is true. 85 * 86 * Return: The slab which contains this folio. 87 */ 88 #define folio_slab(folio) (_Generic((folio), \ 89 const struct folio *: (const struct slab *)(folio), \ 90 struct folio *: (struct slab *)(folio))) 91 92 /** 93 * slab_folio - The folio allocated for a slab 94 * @slab: The slab. 95 * 96 * Slabs are allocated as folios that contain the individual objects and are 97 * using some fields in the first struct page of the folio - those fields are 98 * now accessed by struct slab. It is occasionally necessary to convert back to 99 * a folio in order to communicate with the rest of the mm. Please use this 100 * helper function instead of casting yourself, as the implementation may change 101 * in the future. 102 */ 103 #define slab_folio(s) (_Generic((s), \ 104 const struct slab *: (const struct folio *)s, \ 105 struct slab *: (struct folio *)s)) 106 107 /** 108 * page_slab - Converts from first struct page to slab. 109 * @p: The first (either head of compound or single) page of slab. 110 * 111 * A temporary wrapper to convert struct page to struct slab in situations where 112 * we know the page is the compound head, or single order-0 page. 113 * 114 * Long-term ideally everything would work with struct slab directly or go 115 * through folio to struct slab. 116 * 117 * Return: The slab which contains this page 118 */ 119 #define page_slab(p) (_Generic((p), \ 120 const struct page *: (const struct slab *)(p), \ 121 struct page *: (struct slab *)(p))) 122 123 /** 124 * slab_page - The first struct page allocated for a slab 125 * @slab: The slab. 126 * 127 * A convenience wrapper for converting slab to the first struct page of the 128 * underlying folio, to communicate with code not yet converted to folio or 129 * struct slab. 130 */ 131 #define slab_page(s) folio_page(slab_folio(s), 0) 132 133 /* 134 * If network-based swap is enabled, sl*b must keep track of whether pages 135 * were allocated from pfmemalloc reserves. 136 */ 137 static inline bool slab_test_pfmemalloc(const struct slab *slab) 138 { 139 return folio_test_active((struct folio *)slab_folio(slab)); 140 } 141 142 static inline void slab_set_pfmemalloc(struct slab *slab) 143 { 144 folio_set_active(slab_folio(slab)); 145 } 146 147 static inline void slab_clear_pfmemalloc(struct slab *slab) 148 { 149 folio_clear_active(slab_folio(slab)); 150 } 151 152 static inline void __slab_clear_pfmemalloc(struct slab *slab) 153 { 154 __folio_clear_active(slab_folio(slab)); 155 } 156 157 static inline void *slab_address(const struct slab *slab) 158 { 159 return folio_address(slab_folio(slab)); 160 } 161 162 static inline int slab_nid(const struct slab *slab) 163 { 164 return folio_nid(slab_folio(slab)); 165 } 166 167 static inline pg_data_t *slab_pgdat(const struct slab *slab) 168 { 169 return folio_pgdat(slab_folio(slab)); 170 } 171 172 static inline struct slab *virt_to_slab(const void *addr) 173 { 174 struct folio *folio = virt_to_folio(addr); 175 176 if (!folio_test_slab(folio)) 177 return NULL; 178 179 return folio_slab(folio); 180 } 181 182 static inline int slab_order(const struct slab *slab) 183 { 184 return folio_order((struct folio *)slab_folio(slab)); 185 } 186 187 static inline size_t slab_size(const struct slab *slab) 188 { 189 return PAGE_SIZE << slab_order(slab); 190 } 191 192 #ifdef CONFIG_SLAB 193 #include <linux/slab_def.h> 194 #endif 195 196 #ifdef CONFIG_SLUB 197 #include <linux/slub_def.h> 198 #endif 199 200 #include <linux/memcontrol.h> 201 #include <linux/fault-inject.h> 202 #include <linux/kasan.h> 203 #include <linux/kmemleak.h> 204 #include <linux/random.h> 205 #include <linux/sched/mm.h> 206 #include <linux/list_lru.h> 207 208 /* 209 * State of the slab allocator. 210 * 211 * This is used to describe the states of the allocator during bootup. 212 * Allocators use this to gradually bootstrap themselves. Most allocators 213 * have the problem that the structures used for managing slab caches are 214 * allocated from slab caches themselves. 215 */ 216 enum slab_state { 217 DOWN, /* No slab functionality yet */ 218 PARTIAL, /* SLUB: kmem_cache_node available */ 219 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ 220 UP, /* Slab caches usable but not all extras yet */ 221 FULL /* Everything is working */ 222 }; 223 224 extern enum slab_state slab_state; 225 226 /* The slab cache mutex protects the management structures during changes */ 227 extern struct mutex slab_mutex; 228 229 /* The list of all slab caches on the system */ 230 extern struct list_head slab_caches; 231 232 /* The slab cache that manages slab cache information */ 233 extern struct kmem_cache *kmem_cache; 234 235 /* A table of kmalloc cache names and sizes */ 236 extern const struct kmalloc_info_struct { 237 const char *name[NR_KMALLOC_TYPES]; 238 unsigned int size; 239 } kmalloc_info[]; 240 241 /* Kmalloc array related functions */ 242 void setup_kmalloc_cache_index_table(void); 243 void create_kmalloc_caches(slab_flags_t); 244 245 /* Find the kmalloc slab corresponding for a certain size */ 246 struct kmem_cache *kmalloc_slab(size_t, gfp_t); 247 248 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, 249 int node, size_t orig_size, 250 unsigned long caller); 251 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller); 252 253 gfp_t kmalloc_fix_flags(gfp_t flags); 254 255 /* Functions provided by the slab allocators */ 256 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); 257 258 void __init new_kmalloc_cache(int idx, enum kmalloc_cache_type type, 259 slab_flags_t flags); 260 extern void create_boot_cache(struct kmem_cache *, const char *name, 261 unsigned int size, slab_flags_t flags, 262 unsigned int useroffset, unsigned int usersize); 263 264 int slab_unmergeable(struct kmem_cache *s); 265 struct kmem_cache *find_mergeable(unsigned size, unsigned align, 266 slab_flags_t flags, const char *name, void (*ctor)(void *)); 267 struct kmem_cache * 268 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 269 slab_flags_t flags, void (*ctor)(void *)); 270 271 slab_flags_t kmem_cache_flags(unsigned int object_size, 272 slab_flags_t flags, const char *name); 273 274 static inline bool is_kmalloc_cache(struct kmem_cache *s) 275 { 276 return (s->flags & SLAB_KMALLOC); 277 } 278 279 /* Legal flag mask for kmem_cache_create(), for various configurations */ 280 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ 281 SLAB_CACHE_DMA32 | SLAB_PANIC | \ 282 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) 283 284 #if defined(CONFIG_DEBUG_SLAB) 285 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 286 #elif defined(CONFIG_SLUB_DEBUG) 287 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 288 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) 289 #else 290 #define SLAB_DEBUG_FLAGS (0) 291 #endif 292 293 #if defined(CONFIG_SLAB) 294 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ 295 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ 296 SLAB_ACCOUNT) 297 #elif defined(CONFIG_SLUB) 298 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ 299 SLAB_TEMPORARY | SLAB_ACCOUNT | \ 300 SLAB_NO_USER_FLAGS | SLAB_KMALLOC) 301 #else 302 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE) 303 #endif 304 305 /* Common flags available with current configuration */ 306 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) 307 308 /* Common flags permitted for kmem_cache_create */ 309 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ 310 SLAB_RED_ZONE | \ 311 SLAB_POISON | \ 312 SLAB_STORE_USER | \ 313 SLAB_TRACE | \ 314 SLAB_CONSISTENCY_CHECKS | \ 315 SLAB_MEM_SPREAD | \ 316 SLAB_NOLEAKTRACE | \ 317 SLAB_RECLAIM_ACCOUNT | \ 318 SLAB_TEMPORARY | \ 319 SLAB_ACCOUNT | \ 320 SLAB_KMALLOC | \ 321 SLAB_NO_USER_FLAGS) 322 323 bool __kmem_cache_empty(struct kmem_cache *); 324 int __kmem_cache_shutdown(struct kmem_cache *); 325 void __kmem_cache_release(struct kmem_cache *); 326 int __kmem_cache_shrink(struct kmem_cache *); 327 void slab_kmem_cache_release(struct kmem_cache *); 328 329 struct seq_file; 330 struct file; 331 332 struct slabinfo { 333 unsigned long active_objs; 334 unsigned long num_objs; 335 unsigned long active_slabs; 336 unsigned long num_slabs; 337 unsigned long shared_avail; 338 unsigned int limit; 339 unsigned int batchcount; 340 unsigned int shared; 341 unsigned int objects_per_slab; 342 unsigned int cache_order; 343 }; 344 345 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); 346 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); 347 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 348 size_t count, loff_t *ppos); 349 350 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) 351 { 352 return (s->flags & SLAB_RECLAIM_ACCOUNT) ? 353 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; 354 } 355 356 #ifdef CONFIG_SLUB_DEBUG 357 #ifdef CONFIG_SLUB_DEBUG_ON 358 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled); 359 #else 360 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled); 361 #endif 362 extern void print_tracking(struct kmem_cache *s, void *object); 363 long validate_slab_cache(struct kmem_cache *s); 364 static inline bool __slub_debug_enabled(void) 365 { 366 return static_branch_unlikely(&slub_debug_enabled); 367 } 368 #else 369 static inline void print_tracking(struct kmem_cache *s, void *object) 370 { 371 } 372 static inline bool __slub_debug_enabled(void) 373 { 374 return false; 375 } 376 #endif 377 378 /* 379 * Returns true if any of the specified slub_debug flags is enabled for the 380 * cache. Use only for flags parsed by setup_slub_debug() as it also enables 381 * the static key. 382 */ 383 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags) 384 { 385 if (IS_ENABLED(CONFIG_SLUB_DEBUG)) 386 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS)); 387 if (__slub_debug_enabled()) 388 return s->flags & flags; 389 return false; 390 } 391 392 #ifdef CONFIG_MEMCG_KMEM 393 /* 394 * slab_objcgs - get the object cgroups vector associated with a slab 395 * @slab: a pointer to the slab struct 396 * 397 * Returns a pointer to the object cgroups vector associated with the slab, 398 * or NULL if no such vector has been associated yet. 399 */ 400 static inline struct obj_cgroup **slab_objcgs(struct slab *slab) 401 { 402 unsigned long memcg_data = READ_ONCE(slab->memcg_data); 403 404 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), 405 slab_page(slab)); 406 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab)); 407 408 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 409 } 410 411 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 412 gfp_t gfp, bool new_slab); 413 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 414 enum node_stat_item idx, int nr); 415 416 static inline void memcg_free_slab_cgroups(struct slab *slab) 417 { 418 kfree(slab_objcgs(slab)); 419 slab->memcg_data = 0; 420 } 421 422 static inline size_t obj_full_size(struct kmem_cache *s) 423 { 424 /* 425 * For each accounted object there is an extra space which is used 426 * to store obj_cgroup membership. Charge it too. 427 */ 428 return s->size + sizeof(struct obj_cgroup *); 429 } 430 431 /* 432 * Returns false if the allocation should fail. 433 */ 434 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, 435 struct list_lru *lru, 436 struct obj_cgroup **objcgp, 437 size_t objects, gfp_t flags) 438 { 439 struct obj_cgroup *objcg; 440 441 if (!memcg_kmem_online()) 442 return true; 443 444 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)) 445 return true; 446 447 objcg = get_obj_cgroup_from_current(); 448 if (!objcg) 449 return true; 450 451 if (lru) { 452 int ret; 453 struct mem_cgroup *memcg; 454 455 memcg = get_mem_cgroup_from_objcg(objcg); 456 ret = memcg_list_lru_alloc(memcg, lru, flags); 457 css_put(&memcg->css); 458 459 if (ret) 460 goto out; 461 } 462 463 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) 464 goto out; 465 466 *objcgp = objcg; 467 return true; 468 out: 469 obj_cgroup_put(objcg); 470 return false; 471 } 472 473 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, 474 struct obj_cgroup *objcg, 475 gfp_t flags, size_t size, 476 void **p) 477 { 478 struct slab *slab; 479 unsigned long off; 480 size_t i; 481 482 if (!memcg_kmem_online() || !objcg) 483 return; 484 485 for (i = 0; i < size; i++) { 486 if (likely(p[i])) { 487 slab = virt_to_slab(p[i]); 488 489 if (!slab_objcgs(slab) && 490 memcg_alloc_slab_cgroups(slab, s, flags, 491 false)) { 492 obj_cgroup_uncharge(objcg, obj_full_size(s)); 493 continue; 494 } 495 496 off = obj_to_index(s, slab, p[i]); 497 obj_cgroup_get(objcg); 498 slab_objcgs(slab)[off] = objcg; 499 mod_objcg_state(objcg, slab_pgdat(slab), 500 cache_vmstat_idx(s), obj_full_size(s)); 501 } else { 502 obj_cgroup_uncharge(objcg, obj_full_size(s)); 503 } 504 } 505 obj_cgroup_put(objcg); 506 } 507 508 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 509 void **p, int objects) 510 { 511 struct obj_cgroup **objcgs; 512 int i; 513 514 if (!memcg_kmem_online()) 515 return; 516 517 objcgs = slab_objcgs(slab); 518 if (!objcgs) 519 return; 520 521 for (i = 0; i < objects; i++) { 522 struct obj_cgroup *objcg; 523 unsigned int off; 524 525 off = obj_to_index(s, slab, p[i]); 526 objcg = objcgs[off]; 527 if (!objcg) 528 continue; 529 530 objcgs[off] = NULL; 531 obj_cgroup_uncharge(objcg, obj_full_size(s)); 532 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), 533 -obj_full_size(s)); 534 obj_cgroup_put(objcg); 535 } 536 } 537 538 #else /* CONFIG_MEMCG_KMEM */ 539 static inline struct obj_cgroup **slab_objcgs(struct slab *slab) 540 { 541 return NULL; 542 } 543 544 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr) 545 { 546 return NULL; 547 } 548 549 static inline int memcg_alloc_slab_cgroups(struct slab *slab, 550 struct kmem_cache *s, gfp_t gfp, 551 bool new_slab) 552 { 553 return 0; 554 } 555 556 static inline void memcg_free_slab_cgroups(struct slab *slab) 557 { 558 } 559 560 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, 561 struct list_lru *lru, 562 struct obj_cgroup **objcgp, 563 size_t objects, gfp_t flags) 564 { 565 return true; 566 } 567 568 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, 569 struct obj_cgroup *objcg, 570 gfp_t flags, size_t size, 571 void **p) 572 { 573 } 574 575 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 576 void **p, int objects) 577 { 578 } 579 #endif /* CONFIG_MEMCG_KMEM */ 580 581 static inline struct kmem_cache *virt_to_cache(const void *obj) 582 { 583 struct slab *slab; 584 585 slab = virt_to_slab(obj); 586 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", 587 __func__)) 588 return NULL; 589 return slab->slab_cache; 590 } 591 592 static __always_inline void account_slab(struct slab *slab, int order, 593 struct kmem_cache *s, gfp_t gfp) 594 { 595 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 596 memcg_alloc_slab_cgroups(slab, s, gfp, true); 597 598 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 599 PAGE_SIZE << order); 600 } 601 602 static __always_inline void unaccount_slab(struct slab *slab, int order, 603 struct kmem_cache *s) 604 { 605 if (memcg_kmem_online()) 606 memcg_free_slab_cgroups(slab); 607 608 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 609 -(PAGE_SIZE << order)); 610 } 611 612 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 613 { 614 struct kmem_cache *cachep; 615 616 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 617 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 618 return s; 619 620 cachep = virt_to_cache(x); 621 if (WARN(cachep && cachep != s, 622 "%s: Wrong slab cache. %s but object is from %s\n", 623 __func__, s->name, cachep->name)) 624 print_tracking(cachep, x); 625 return cachep; 626 } 627 628 void free_large_kmalloc(struct folio *folio, void *object); 629 630 size_t __ksize(const void *objp); 631 632 static inline size_t slab_ksize(const struct kmem_cache *s) 633 { 634 #ifndef CONFIG_SLUB 635 return s->object_size; 636 637 #else /* CONFIG_SLUB */ 638 # ifdef CONFIG_SLUB_DEBUG 639 /* 640 * Debugging requires use of the padding between object 641 * and whatever may come after it. 642 */ 643 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 644 return s->object_size; 645 # endif 646 if (s->flags & SLAB_KASAN) 647 return s->object_size; 648 /* 649 * If we have the need to store the freelist pointer 650 * back there or track user information then we can 651 * only use the space before that information. 652 */ 653 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) 654 return s->inuse; 655 /* 656 * Else we can use all the padding etc for the allocation 657 */ 658 return s->size; 659 #endif 660 } 661 662 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 663 struct list_lru *lru, 664 struct obj_cgroup **objcgp, 665 size_t size, gfp_t flags) 666 { 667 flags &= gfp_allowed_mask; 668 669 might_alloc(flags); 670 671 if (should_failslab(s, flags)) 672 return NULL; 673 674 if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)) 675 return NULL; 676 677 return s; 678 } 679 680 static inline void slab_post_alloc_hook(struct kmem_cache *s, 681 struct obj_cgroup *objcg, gfp_t flags, 682 size_t size, void **p, bool init, 683 unsigned int orig_size) 684 { 685 unsigned int zero_size = s->object_size; 686 size_t i; 687 688 flags &= gfp_allowed_mask; 689 690 /* 691 * For kmalloc object, the allocated memory size(object_size) is likely 692 * larger than the requested size(orig_size). If redzone check is 693 * enabled for the extra space, don't zero it, as it will be redzoned 694 * soon. The redzone operation for this extra space could be seen as a 695 * replacement of current poisoning under certain debug option, and 696 * won't break other sanity checks. 697 */ 698 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 699 (s->flags & SLAB_KMALLOC)) 700 zero_size = orig_size; 701 702 /* 703 * As memory initialization might be integrated into KASAN, 704 * kasan_slab_alloc and initialization memset must be 705 * kept together to avoid discrepancies in behavior. 706 * 707 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 708 */ 709 for (i = 0; i < size; i++) { 710 p[i] = kasan_slab_alloc(s, p[i], flags, init); 711 if (p[i] && init && !kasan_has_integrated_init()) 712 memset(p[i], 0, zero_size); 713 kmemleak_alloc_recursive(p[i], s->object_size, 1, 714 s->flags, flags); 715 kmsan_slab_alloc(s, p[i], flags); 716 } 717 718 memcg_slab_post_alloc_hook(s, objcg, flags, size, p); 719 } 720 721 /* 722 * The slab lists for all objects. 723 */ 724 struct kmem_cache_node { 725 #ifdef CONFIG_SLAB 726 raw_spinlock_t list_lock; 727 struct list_head slabs_partial; /* partial list first, better asm code */ 728 struct list_head slabs_full; 729 struct list_head slabs_free; 730 unsigned long total_slabs; /* length of all slab lists */ 731 unsigned long free_slabs; /* length of free slab list only */ 732 unsigned long free_objects; 733 unsigned int free_limit; 734 unsigned int colour_next; /* Per-node cache coloring */ 735 struct array_cache *shared; /* shared per node */ 736 struct alien_cache **alien; /* on other nodes */ 737 unsigned long next_reap; /* updated without locking */ 738 int free_touched; /* updated without locking */ 739 #endif 740 741 #ifdef CONFIG_SLUB 742 spinlock_t list_lock; 743 unsigned long nr_partial; 744 struct list_head partial; 745 #ifdef CONFIG_SLUB_DEBUG 746 atomic_long_t nr_slabs; 747 atomic_long_t total_objects; 748 struct list_head full; 749 #endif 750 #endif 751 752 }; 753 754 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 755 { 756 return s->node[node]; 757 } 758 759 /* 760 * Iterator over all nodes. The body will be executed for each node that has 761 * a kmem_cache_node structure allocated (which is true for all online nodes) 762 */ 763 #define for_each_kmem_cache_node(__s, __node, __n) \ 764 for (__node = 0; __node < nr_node_ids; __node++) \ 765 if ((__n = get_node(__s, __node))) 766 767 768 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 769 void dump_unreclaimable_slab(void); 770 #else 771 static inline void dump_unreclaimable_slab(void) 772 { 773 } 774 #endif 775 776 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); 777 778 #ifdef CONFIG_SLAB_FREELIST_RANDOM 779 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 780 gfp_t gfp); 781 void cache_random_seq_destroy(struct kmem_cache *cachep); 782 #else 783 static inline int cache_random_seq_create(struct kmem_cache *cachep, 784 unsigned int count, gfp_t gfp) 785 { 786 return 0; 787 } 788 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } 789 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 790 791 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) 792 { 793 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 794 &init_on_alloc)) { 795 if (c->ctor) 796 return false; 797 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) 798 return flags & __GFP_ZERO; 799 return true; 800 } 801 return flags & __GFP_ZERO; 802 } 803 804 static inline bool slab_want_init_on_free(struct kmem_cache *c) 805 { 806 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 807 &init_on_free)) 808 return !(c->ctor || 809 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); 810 return false; 811 } 812 813 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 814 void debugfs_slab_release(struct kmem_cache *); 815 #else 816 static inline void debugfs_slab_release(struct kmem_cache *s) { } 817 #endif 818 819 #ifdef CONFIG_PRINTK 820 #define KS_ADDRS_COUNT 16 821 struct kmem_obj_info { 822 void *kp_ptr; 823 struct slab *kp_slab; 824 void *kp_objp; 825 unsigned long kp_data_offset; 826 struct kmem_cache *kp_slab_cache; 827 void *kp_ret; 828 void *kp_stack[KS_ADDRS_COUNT]; 829 void *kp_free_stack[KS_ADDRS_COUNT]; 830 }; 831 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab); 832 #endif 833 834 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR 835 void __check_heap_object(const void *ptr, unsigned long n, 836 const struct slab *slab, bool to_user); 837 #else 838 static inline 839 void __check_heap_object(const void *ptr, unsigned long n, 840 const struct slab *slab, bool to_user) 841 { 842 } 843 #endif 844 845 #ifdef CONFIG_SLUB_DEBUG 846 void skip_orig_size_check(struct kmem_cache *s, const void *object); 847 #endif 848 849 #endif /* MM_SLAB_H */ 850