xref: /openbmc/linux/mm/slab.h (revision adb57164)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 #ifdef CONFIG_SLOB
9 /*
10  * Common fields provided in kmem_cache by all slab allocators
11  * This struct is either used directly by the allocator (SLOB)
12  * or the allocator must include definitions for all fields
13  * provided in kmem_cache_common in their definition of kmem_cache.
14  *
15  * Once we can do anonymous structs (C11 standard) we could put a
16  * anonymous struct definition in these allocators so that the
17  * separate allocations in the kmem_cache structure of SLAB and
18  * SLUB is no longer needed.
19  */
20 struct kmem_cache {
21 	unsigned int object_size;/* The original size of the object */
22 	unsigned int size;	/* The aligned/padded/added on size  */
23 	unsigned int align;	/* Alignment as calculated */
24 	slab_flags_t flags;	/* Active flags on the slab */
25 	unsigned int useroffset;/* Usercopy region offset */
26 	unsigned int usersize;	/* Usercopy region size */
27 	const char *name;	/* Slab name for sysfs */
28 	int refcount;		/* Use counter */
29 	void (*ctor)(void *);	/* Called on object slot creation */
30 	struct list_head list;	/* List of all slab caches on the system */
31 };
32 
33 #else /* !CONFIG_SLOB */
34 
35 struct memcg_cache_array {
36 	struct rcu_head rcu;
37 	struct kmem_cache *entries[0];
38 };
39 
40 /*
41  * This is the main placeholder for memcg-related information in kmem caches.
42  * Both the root cache and the child caches will have it. For the root cache,
43  * this will hold a dynamically allocated array large enough to hold
44  * information about the currently limited memcgs in the system. To allow the
45  * array to be accessed without taking any locks, on relocation we free the old
46  * version only after a grace period.
47  *
48  * Root and child caches hold different metadata.
49  *
50  * @root_cache:	Common to root and child caches.  NULL for root, pointer to
51  *		the root cache for children.
52  *
53  * The following fields are specific to root caches.
54  *
55  * @memcg_caches: kmemcg ID indexed table of child caches.  This table is
56  *		used to index child cachces during allocation and cleared
57  *		early during shutdown.
58  *
59  * @root_caches_node: List node for slab_root_caches list.
60  *
61  * @children:	List of all child caches.  While the child caches are also
62  *		reachable through @memcg_caches, a child cache remains on
63  *		this list until it is actually destroyed.
64  *
65  * The following fields are specific to child caches.
66  *
67  * @memcg:	Pointer to the memcg this cache belongs to.
68  *
69  * @children_node: List node for @root_cache->children list.
70  *
71  * @kmem_caches_node: List node for @memcg->kmem_caches list.
72  */
73 struct memcg_cache_params {
74 	struct kmem_cache *root_cache;
75 	union {
76 		struct {
77 			struct memcg_cache_array __rcu *memcg_caches;
78 			struct list_head __root_caches_node;
79 			struct list_head children;
80 			bool dying;
81 		};
82 		struct {
83 			struct mem_cgroup *memcg;
84 			struct list_head children_node;
85 			struct list_head kmem_caches_node;
86 			struct percpu_ref refcnt;
87 
88 			void (*work_fn)(struct kmem_cache *);
89 			union {
90 				struct rcu_head rcu_head;
91 				struct work_struct work;
92 			};
93 		};
94 	};
95 };
96 #endif /* CONFIG_SLOB */
97 
98 #ifdef CONFIG_SLAB
99 #include <linux/slab_def.h>
100 #endif
101 
102 #ifdef CONFIG_SLUB
103 #include <linux/slub_def.h>
104 #endif
105 
106 #include <linux/memcontrol.h>
107 #include <linux/fault-inject.h>
108 #include <linux/kasan.h>
109 #include <linux/kmemleak.h>
110 #include <linux/random.h>
111 #include <linux/sched/mm.h>
112 
113 /*
114  * State of the slab allocator.
115  *
116  * This is used to describe the states of the allocator during bootup.
117  * Allocators use this to gradually bootstrap themselves. Most allocators
118  * have the problem that the structures used for managing slab caches are
119  * allocated from slab caches themselves.
120  */
121 enum slab_state {
122 	DOWN,			/* No slab functionality yet */
123 	PARTIAL,		/* SLUB: kmem_cache_node available */
124 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
125 	UP,			/* Slab caches usable but not all extras yet */
126 	FULL			/* Everything is working */
127 };
128 
129 extern enum slab_state slab_state;
130 
131 /* The slab cache mutex protects the management structures during changes */
132 extern struct mutex slab_mutex;
133 
134 /* The list of all slab caches on the system */
135 extern struct list_head slab_caches;
136 
137 /* The slab cache that manages slab cache information */
138 extern struct kmem_cache *kmem_cache;
139 
140 /* A table of kmalloc cache names and sizes */
141 extern const struct kmalloc_info_struct {
142 	const char *name[NR_KMALLOC_TYPES];
143 	unsigned int size;
144 } kmalloc_info[];
145 
146 #ifndef CONFIG_SLOB
147 /* Kmalloc array related functions */
148 void setup_kmalloc_cache_index_table(void);
149 void create_kmalloc_caches(slab_flags_t);
150 
151 /* Find the kmalloc slab corresponding for a certain size */
152 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
153 #endif
154 
155 
156 /* Functions provided by the slab allocators */
157 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
158 
159 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
160 			slab_flags_t flags, unsigned int useroffset,
161 			unsigned int usersize);
162 extern void create_boot_cache(struct kmem_cache *, const char *name,
163 			unsigned int size, slab_flags_t flags,
164 			unsigned int useroffset, unsigned int usersize);
165 
166 int slab_unmergeable(struct kmem_cache *s);
167 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
168 		slab_flags_t flags, const char *name, void (*ctor)(void *));
169 #ifndef CONFIG_SLOB
170 struct kmem_cache *
171 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
172 		   slab_flags_t flags, void (*ctor)(void *));
173 
174 slab_flags_t kmem_cache_flags(unsigned int object_size,
175 	slab_flags_t flags, const char *name,
176 	void (*ctor)(void *));
177 #else
178 static inline struct kmem_cache *
179 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
180 		   slab_flags_t flags, void (*ctor)(void *))
181 { return NULL; }
182 
183 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
184 	slab_flags_t flags, const char *name,
185 	void (*ctor)(void *))
186 {
187 	return flags;
188 }
189 #endif
190 
191 
192 /* Legal flag mask for kmem_cache_create(), for various configurations */
193 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
194 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
195 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
196 
197 #if defined(CONFIG_DEBUG_SLAB)
198 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
199 #elif defined(CONFIG_SLUB_DEBUG)
200 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
201 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
202 #else
203 #define SLAB_DEBUG_FLAGS (0)
204 #endif
205 
206 #if defined(CONFIG_SLAB)
207 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
208 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
209 			  SLAB_ACCOUNT)
210 #elif defined(CONFIG_SLUB)
211 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
212 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
213 #else
214 #define SLAB_CACHE_FLAGS (0)
215 #endif
216 
217 /* Common flags available with current configuration */
218 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
219 
220 /* Common flags permitted for kmem_cache_create */
221 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
222 			      SLAB_RED_ZONE | \
223 			      SLAB_POISON | \
224 			      SLAB_STORE_USER | \
225 			      SLAB_TRACE | \
226 			      SLAB_CONSISTENCY_CHECKS | \
227 			      SLAB_MEM_SPREAD | \
228 			      SLAB_NOLEAKTRACE | \
229 			      SLAB_RECLAIM_ACCOUNT | \
230 			      SLAB_TEMPORARY | \
231 			      SLAB_ACCOUNT)
232 
233 bool __kmem_cache_empty(struct kmem_cache *);
234 int __kmem_cache_shutdown(struct kmem_cache *);
235 void __kmem_cache_release(struct kmem_cache *);
236 int __kmem_cache_shrink(struct kmem_cache *);
237 void __kmemcg_cache_deactivate(struct kmem_cache *s);
238 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s);
239 void slab_kmem_cache_release(struct kmem_cache *);
240 void kmem_cache_shrink_all(struct kmem_cache *s);
241 
242 struct seq_file;
243 struct file;
244 
245 struct slabinfo {
246 	unsigned long active_objs;
247 	unsigned long num_objs;
248 	unsigned long active_slabs;
249 	unsigned long num_slabs;
250 	unsigned long shared_avail;
251 	unsigned int limit;
252 	unsigned int batchcount;
253 	unsigned int shared;
254 	unsigned int objects_per_slab;
255 	unsigned int cache_order;
256 };
257 
258 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
259 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
260 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
261 		       size_t count, loff_t *ppos);
262 
263 /*
264  * Generic implementation of bulk operations
265  * These are useful for situations in which the allocator cannot
266  * perform optimizations. In that case segments of the object listed
267  * may be allocated or freed using these operations.
268  */
269 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
270 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
271 
272 static inline int cache_vmstat_idx(struct kmem_cache *s)
273 {
274 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
275 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE;
276 }
277 
278 #ifdef CONFIG_MEMCG_KMEM
279 
280 /* List of all root caches. */
281 extern struct list_head		slab_root_caches;
282 #define root_caches_node	memcg_params.__root_caches_node
283 
284 /*
285  * Iterate over all memcg caches of the given root cache. The caller must hold
286  * slab_mutex.
287  */
288 #define for_each_memcg_cache(iter, root) \
289 	list_for_each_entry(iter, &(root)->memcg_params.children, \
290 			    memcg_params.children_node)
291 
292 static inline bool is_root_cache(struct kmem_cache *s)
293 {
294 	return !s->memcg_params.root_cache;
295 }
296 
297 static inline bool slab_equal_or_root(struct kmem_cache *s,
298 				      struct kmem_cache *p)
299 {
300 	return p == s || p == s->memcg_params.root_cache;
301 }
302 
303 /*
304  * We use suffixes to the name in memcg because we can't have caches
305  * created in the system with the same name. But when we print them
306  * locally, better refer to them with the base name
307  */
308 static inline const char *cache_name(struct kmem_cache *s)
309 {
310 	if (!is_root_cache(s))
311 		s = s->memcg_params.root_cache;
312 	return s->name;
313 }
314 
315 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
316 {
317 	if (is_root_cache(s))
318 		return s;
319 	return s->memcg_params.root_cache;
320 }
321 
322 /*
323  * Expects a pointer to a slab page. Please note, that PageSlab() check
324  * isn't sufficient, as it returns true also for tail compound slab pages,
325  * which do not have slab_cache pointer set.
326  * So this function assumes that the page can pass PageSlab() && !PageTail()
327  * check.
328  *
329  * The kmem_cache can be reparented asynchronously. The caller must ensure
330  * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex.
331  */
332 static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
333 {
334 	struct kmem_cache *s;
335 
336 	s = READ_ONCE(page->slab_cache);
337 	if (s && !is_root_cache(s))
338 		return READ_ONCE(s->memcg_params.memcg);
339 
340 	return NULL;
341 }
342 
343 /*
344  * Charge the slab page belonging to the non-root kmem_cache.
345  * Can be called for non-root kmem_caches only.
346  */
347 static __always_inline int memcg_charge_slab(struct page *page,
348 					     gfp_t gfp, int order,
349 					     struct kmem_cache *s)
350 {
351 	unsigned int nr_pages = 1 << order;
352 	struct mem_cgroup *memcg;
353 	struct lruvec *lruvec;
354 	int ret;
355 
356 	rcu_read_lock();
357 	memcg = READ_ONCE(s->memcg_params.memcg);
358 	while (memcg && !css_tryget_online(&memcg->css))
359 		memcg = parent_mem_cgroup(memcg);
360 	rcu_read_unlock();
361 
362 	if (unlikely(!memcg || mem_cgroup_is_root(memcg))) {
363 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
364 				    nr_pages);
365 		percpu_ref_get_many(&s->memcg_params.refcnt, nr_pages);
366 		return 0;
367 	}
368 
369 	ret = memcg_kmem_charge(memcg, gfp, nr_pages);
370 	if (ret)
371 		goto out;
372 
373 	lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page));
374 	mod_lruvec_state(lruvec, cache_vmstat_idx(s), nr_pages);
375 
376 	/* transer try_charge() page references to kmem_cache */
377 	percpu_ref_get_many(&s->memcg_params.refcnt, nr_pages);
378 	css_put_many(&memcg->css, nr_pages);
379 out:
380 	css_put(&memcg->css);
381 	return ret;
382 }
383 
384 /*
385  * Uncharge a slab page belonging to a non-root kmem_cache.
386  * Can be called for non-root kmem_caches only.
387  */
388 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
389 						struct kmem_cache *s)
390 {
391 	unsigned int nr_pages = 1 << order;
392 	struct mem_cgroup *memcg;
393 	struct lruvec *lruvec;
394 
395 	rcu_read_lock();
396 	memcg = READ_ONCE(s->memcg_params.memcg);
397 	if (likely(!mem_cgroup_is_root(memcg))) {
398 		lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page));
399 		mod_lruvec_state(lruvec, cache_vmstat_idx(s), -nr_pages);
400 		memcg_kmem_uncharge(memcg, nr_pages);
401 	} else {
402 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
403 				    -nr_pages);
404 	}
405 	rcu_read_unlock();
406 
407 	percpu_ref_put_many(&s->memcg_params.refcnt, nr_pages);
408 }
409 
410 extern void slab_init_memcg_params(struct kmem_cache *);
411 extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg);
412 
413 #else /* CONFIG_MEMCG_KMEM */
414 
415 /* If !memcg, all caches are root. */
416 #define slab_root_caches	slab_caches
417 #define root_caches_node	list
418 
419 #define for_each_memcg_cache(iter, root) \
420 	for ((void)(iter), (void)(root); 0; )
421 
422 static inline bool is_root_cache(struct kmem_cache *s)
423 {
424 	return true;
425 }
426 
427 static inline bool slab_equal_or_root(struct kmem_cache *s,
428 				      struct kmem_cache *p)
429 {
430 	return s == p;
431 }
432 
433 static inline const char *cache_name(struct kmem_cache *s)
434 {
435 	return s->name;
436 }
437 
438 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
439 {
440 	return s;
441 }
442 
443 static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
444 {
445 	return NULL;
446 }
447 
448 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
449 				    struct kmem_cache *s)
450 {
451 	return 0;
452 }
453 
454 static inline void memcg_uncharge_slab(struct page *page, int order,
455 				       struct kmem_cache *s)
456 {
457 }
458 
459 static inline void slab_init_memcg_params(struct kmem_cache *s)
460 {
461 }
462 
463 static inline void memcg_link_cache(struct kmem_cache *s,
464 				    struct mem_cgroup *memcg)
465 {
466 }
467 
468 #endif /* CONFIG_MEMCG_KMEM */
469 
470 static inline struct kmem_cache *virt_to_cache(const void *obj)
471 {
472 	struct page *page;
473 
474 	page = virt_to_head_page(obj);
475 	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
476 					__func__))
477 		return NULL;
478 	return page->slab_cache;
479 }
480 
481 static __always_inline int charge_slab_page(struct page *page,
482 					    gfp_t gfp, int order,
483 					    struct kmem_cache *s)
484 {
485 	if (is_root_cache(s)) {
486 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
487 				    1 << order);
488 		return 0;
489 	}
490 
491 	return memcg_charge_slab(page, gfp, order, s);
492 }
493 
494 static __always_inline void uncharge_slab_page(struct page *page, int order,
495 					       struct kmem_cache *s)
496 {
497 	if (is_root_cache(s)) {
498 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
499 				    -(1 << order));
500 		return;
501 	}
502 
503 	memcg_uncharge_slab(page, order, s);
504 }
505 
506 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
507 {
508 	struct kmem_cache *cachep;
509 
510 	/*
511 	 * When kmemcg is not being used, both assignments should return the
512 	 * same value. but we don't want to pay the assignment price in that
513 	 * case. If it is not compiled in, the compiler should be smart enough
514 	 * to not do even the assignment. In that case, slab_equal_or_root
515 	 * will also be a constant.
516 	 */
517 	if (!memcg_kmem_enabled() &&
518 	    !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
519 	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
520 		return s;
521 
522 	cachep = virt_to_cache(x);
523 	WARN_ONCE(cachep && !slab_equal_or_root(cachep, s),
524 		  "%s: Wrong slab cache. %s but object is from %s\n",
525 		  __func__, s->name, cachep->name);
526 	return cachep;
527 }
528 
529 static inline size_t slab_ksize(const struct kmem_cache *s)
530 {
531 #ifndef CONFIG_SLUB
532 	return s->object_size;
533 
534 #else /* CONFIG_SLUB */
535 # ifdef CONFIG_SLUB_DEBUG
536 	/*
537 	 * Debugging requires use of the padding between object
538 	 * and whatever may come after it.
539 	 */
540 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
541 		return s->object_size;
542 # endif
543 	if (s->flags & SLAB_KASAN)
544 		return s->object_size;
545 	/*
546 	 * If we have the need to store the freelist pointer
547 	 * back there or track user information then we can
548 	 * only use the space before that information.
549 	 */
550 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
551 		return s->inuse;
552 	/*
553 	 * Else we can use all the padding etc for the allocation
554 	 */
555 	return s->size;
556 #endif
557 }
558 
559 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
560 						     gfp_t flags)
561 {
562 	flags &= gfp_allowed_mask;
563 
564 	fs_reclaim_acquire(flags);
565 	fs_reclaim_release(flags);
566 
567 	might_sleep_if(gfpflags_allow_blocking(flags));
568 
569 	if (should_failslab(s, flags))
570 		return NULL;
571 
572 	if (memcg_kmem_enabled() &&
573 	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
574 		return memcg_kmem_get_cache(s);
575 
576 	return s;
577 }
578 
579 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
580 					size_t size, void **p)
581 {
582 	size_t i;
583 
584 	flags &= gfp_allowed_mask;
585 	for (i = 0; i < size; i++) {
586 		p[i] = kasan_slab_alloc(s, p[i], flags);
587 		/* As p[i] might get tagged, call kmemleak hook after KASAN. */
588 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
589 					 s->flags, flags);
590 	}
591 
592 	if (memcg_kmem_enabled())
593 		memcg_kmem_put_cache(s);
594 }
595 
596 #ifndef CONFIG_SLOB
597 /*
598  * The slab lists for all objects.
599  */
600 struct kmem_cache_node {
601 	spinlock_t list_lock;
602 
603 #ifdef CONFIG_SLAB
604 	struct list_head slabs_partial;	/* partial list first, better asm code */
605 	struct list_head slabs_full;
606 	struct list_head slabs_free;
607 	unsigned long total_slabs;	/* length of all slab lists */
608 	unsigned long free_slabs;	/* length of free slab list only */
609 	unsigned long free_objects;
610 	unsigned int free_limit;
611 	unsigned int colour_next;	/* Per-node cache coloring */
612 	struct array_cache *shared;	/* shared per node */
613 	struct alien_cache **alien;	/* on other nodes */
614 	unsigned long next_reap;	/* updated without locking */
615 	int free_touched;		/* updated without locking */
616 #endif
617 
618 #ifdef CONFIG_SLUB
619 	unsigned long nr_partial;
620 	struct list_head partial;
621 #ifdef CONFIG_SLUB_DEBUG
622 	atomic_long_t nr_slabs;
623 	atomic_long_t total_objects;
624 	struct list_head full;
625 #endif
626 #endif
627 
628 };
629 
630 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
631 {
632 	return s->node[node];
633 }
634 
635 /*
636  * Iterator over all nodes. The body will be executed for each node that has
637  * a kmem_cache_node structure allocated (which is true for all online nodes)
638  */
639 #define for_each_kmem_cache_node(__s, __node, __n) \
640 	for (__node = 0; __node < nr_node_ids; __node++) \
641 		 if ((__n = get_node(__s, __node)))
642 
643 #endif
644 
645 void *slab_start(struct seq_file *m, loff_t *pos);
646 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
647 void slab_stop(struct seq_file *m, void *p);
648 void *memcg_slab_start(struct seq_file *m, loff_t *pos);
649 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
650 void memcg_slab_stop(struct seq_file *m, void *p);
651 int memcg_slab_show(struct seq_file *m, void *p);
652 
653 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
654 void dump_unreclaimable_slab(void);
655 #else
656 static inline void dump_unreclaimable_slab(void)
657 {
658 }
659 #endif
660 
661 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
662 
663 #ifdef CONFIG_SLAB_FREELIST_RANDOM
664 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
665 			gfp_t gfp);
666 void cache_random_seq_destroy(struct kmem_cache *cachep);
667 #else
668 static inline int cache_random_seq_create(struct kmem_cache *cachep,
669 					unsigned int count, gfp_t gfp)
670 {
671 	return 0;
672 }
673 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
674 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
675 
676 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
677 {
678 	if (static_branch_unlikely(&init_on_alloc)) {
679 		if (c->ctor)
680 			return false;
681 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
682 			return flags & __GFP_ZERO;
683 		return true;
684 	}
685 	return flags & __GFP_ZERO;
686 }
687 
688 static inline bool slab_want_init_on_free(struct kmem_cache *c)
689 {
690 	if (static_branch_unlikely(&init_on_free))
691 		return !(c->ctor ||
692 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
693 	return false;
694 }
695 
696 #endif /* MM_SLAB_H */
697