1 #ifndef MM_SLAB_H 2 #define MM_SLAB_H 3 /* 4 * Internal slab definitions 5 */ 6 7 #ifdef CONFIG_SLOB 8 /* 9 * Common fields provided in kmem_cache by all slab allocators 10 * This struct is either used directly by the allocator (SLOB) 11 * or the allocator must include definitions for all fields 12 * provided in kmem_cache_common in their definition of kmem_cache. 13 * 14 * Once we can do anonymous structs (C11 standard) we could put a 15 * anonymous struct definition in these allocators so that the 16 * separate allocations in the kmem_cache structure of SLAB and 17 * SLUB is no longer needed. 18 */ 19 struct kmem_cache { 20 unsigned int object_size;/* The original size of the object */ 21 unsigned int size; /* The aligned/padded/added on size */ 22 unsigned int align; /* Alignment as calculated */ 23 unsigned long flags; /* Active flags on the slab */ 24 const char *name; /* Slab name for sysfs */ 25 int refcount; /* Use counter */ 26 void (*ctor)(void *); /* Called on object slot creation */ 27 struct list_head list; /* List of all slab caches on the system */ 28 }; 29 30 #endif /* CONFIG_SLOB */ 31 32 #ifdef CONFIG_SLAB 33 #include <linux/slab_def.h> 34 #endif 35 36 #ifdef CONFIG_SLUB 37 #include <linux/slub_def.h> 38 #endif 39 40 #include <linux/memcontrol.h> 41 42 /* 43 * State of the slab allocator. 44 * 45 * This is used to describe the states of the allocator during bootup. 46 * Allocators use this to gradually bootstrap themselves. Most allocators 47 * have the problem that the structures used for managing slab caches are 48 * allocated from slab caches themselves. 49 */ 50 enum slab_state { 51 DOWN, /* No slab functionality yet */ 52 PARTIAL, /* SLUB: kmem_cache_node available */ 53 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ 54 UP, /* Slab caches usable but not all extras yet */ 55 FULL /* Everything is working */ 56 }; 57 58 extern enum slab_state slab_state; 59 60 /* The slab cache mutex protects the management structures during changes */ 61 extern struct mutex slab_mutex; 62 63 /* The list of all slab caches on the system */ 64 extern struct list_head slab_caches; 65 66 /* The slab cache that manages slab cache information */ 67 extern struct kmem_cache *kmem_cache; 68 69 unsigned long calculate_alignment(unsigned long flags, 70 unsigned long align, unsigned long size); 71 72 #ifndef CONFIG_SLOB 73 /* Kmalloc array related functions */ 74 void create_kmalloc_caches(unsigned long); 75 76 /* Find the kmalloc slab corresponding for a certain size */ 77 struct kmem_cache *kmalloc_slab(size_t, gfp_t); 78 #endif 79 80 81 /* Functions provided by the slab allocators */ 82 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags); 83 84 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size, 85 unsigned long flags); 86 extern void create_boot_cache(struct kmem_cache *, const char *name, 87 size_t size, unsigned long flags); 88 89 struct mem_cgroup; 90 91 int slab_unmergeable(struct kmem_cache *s); 92 struct kmem_cache *find_mergeable(size_t size, size_t align, 93 unsigned long flags, const char *name, void (*ctor)(void *)); 94 #ifndef CONFIG_SLOB 95 struct kmem_cache * 96 __kmem_cache_alias(const char *name, size_t size, size_t align, 97 unsigned long flags, void (*ctor)(void *)); 98 99 unsigned long kmem_cache_flags(unsigned long object_size, 100 unsigned long flags, const char *name, 101 void (*ctor)(void *)); 102 #else 103 static inline struct kmem_cache * 104 __kmem_cache_alias(const char *name, size_t size, size_t align, 105 unsigned long flags, void (*ctor)(void *)) 106 { return NULL; } 107 108 static inline unsigned long kmem_cache_flags(unsigned long object_size, 109 unsigned long flags, const char *name, 110 void (*ctor)(void *)) 111 { 112 return flags; 113 } 114 #endif 115 116 117 /* Legal flag mask for kmem_cache_create(), for various configurations */ 118 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \ 119 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS ) 120 121 #if defined(CONFIG_DEBUG_SLAB) 122 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 123 #elif defined(CONFIG_SLUB_DEBUG) 124 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 125 SLAB_TRACE | SLAB_DEBUG_FREE) 126 #else 127 #define SLAB_DEBUG_FLAGS (0) 128 #endif 129 130 #if defined(CONFIG_SLAB) 131 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ 132 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK) 133 #elif defined(CONFIG_SLUB) 134 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ 135 SLAB_TEMPORARY | SLAB_NOTRACK) 136 #else 137 #define SLAB_CACHE_FLAGS (0) 138 #endif 139 140 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) 141 142 int __kmem_cache_shutdown(struct kmem_cache *); 143 int __kmem_cache_shrink(struct kmem_cache *); 144 void slab_kmem_cache_release(struct kmem_cache *); 145 146 struct seq_file; 147 struct file; 148 149 struct slabinfo { 150 unsigned long active_objs; 151 unsigned long num_objs; 152 unsigned long active_slabs; 153 unsigned long num_slabs; 154 unsigned long shared_avail; 155 unsigned int limit; 156 unsigned int batchcount; 157 unsigned int shared; 158 unsigned int objects_per_slab; 159 unsigned int cache_order; 160 }; 161 162 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); 163 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); 164 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 165 size_t count, loff_t *ppos); 166 167 #ifdef CONFIG_MEMCG_KMEM 168 static inline bool is_root_cache(struct kmem_cache *s) 169 { 170 return !s->memcg_params || s->memcg_params->is_root_cache; 171 } 172 173 static inline bool slab_equal_or_root(struct kmem_cache *s, 174 struct kmem_cache *p) 175 { 176 return (p == s) || 177 (s->memcg_params && (p == s->memcg_params->root_cache)); 178 } 179 180 /* 181 * We use suffixes to the name in memcg because we can't have caches 182 * created in the system with the same name. But when we print them 183 * locally, better refer to them with the base name 184 */ 185 static inline const char *cache_name(struct kmem_cache *s) 186 { 187 if (!is_root_cache(s)) 188 return s->memcg_params->root_cache->name; 189 return s->name; 190 } 191 192 /* 193 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches. 194 * That said the caller must assure the memcg's cache won't go away. Since once 195 * created a memcg's cache is destroyed only along with the root cache, it is 196 * true if we are going to allocate from the cache or hold a reference to the 197 * root cache by other means. Otherwise, we should hold either the slab_mutex 198 * or the memcg's slab_caches_mutex while calling this function and accessing 199 * the returned value. 200 */ 201 static inline struct kmem_cache * 202 cache_from_memcg_idx(struct kmem_cache *s, int idx) 203 { 204 struct kmem_cache *cachep; 205 struct memcg_cache_params *params; 206 207 if (!s->memcg_params) 208 return NULL; 209 210 rcu_read_lock(); 211 params = rcu_dereference(s->memcg_params); 212 213 /* 214 * Make sure we will access the up-to-date value. The code updating 215 * memcg_caches issues a write barrier to match this (see 216 * memcg_register_cache()). 217 */ 218 cachep = lockless_dereference(params->memcg_caches[idx]); 219 rcu_read_unlock(); 220 221 return cachep; 222 } 223 224 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 225 { 226 if (is_root_cache(s)) 227 return s; 228 return s->memcg_params->root_cache; 229 } 230 231 static __always_inline int memcg_charge_slab(struct kmem_cache *s, 232 gfp_t gfp, int order) 233 { 234 if (!memcg_kmem_enabled()) 235 return 0; 236 if (is_root_cache(s)) 237 return 0; 238 return __memcg_charge_slab(s, gfp, order); 239 } 240 241 static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order) 242 { 243 if (!memcg_kmem_enabled()) 244 return; 245 if (is_root_cache(s)) 246 return; 247 __memcg_uncharge_slab(s, order); 248 } 249 #else 250 static inline bool is_root_cache(struct kmem_cache *s) 251 { 252 return true; 253 } 254 255 static inline bool slab_equal_or_root(struct kmem_cache *s, 256 struct kmem_cache *p) 257 { 258 return true; 259 } 260 261 static inline const char *cache_name(struct kmem_cache *s) 262 { 263 return s->name; 264 } 265 266 static inline struct kmem_cache * 267 cache_from_memcg_idx(struct kmem_cache *s, int idx) 268 { 269 return NULL; 270 } 271 272 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 273 { 274 return s; 275 } 276 277 static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order) 278 { 279 return 0; 280 } 281 282 static inline void memcg_uncharge_slab(struct kmem_cache *s, int order) 283 { 284 } 285 #endif 286 287 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 288 { 289 struct kmem_cache *cachep; 290 struct page *page; 291 292 /* 293 * When kmemcg is not being used, both assignments should return the 294 * same value. but we don't want to pay the assignment price in that 295 * case. If it is not compiled in, the compiler should be smart enough 296 * to not do even the assignment. In that case, slab_equal_or_root 297 * will also be a constant. 298 */ 299 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE)) 300 return s; 301 302 page = virt_to_head_page(x); 303 cachep = page->slab_cache; 304 if (slab_equal_or_root(cachep, s)) 305 return cachep; 306 307 pr_err("%s: Wrong slab cache. %s but object is from %s\n", 308 __func__, cachep->name, s->name); 309 WARN_ON_ONCE(1); 310 return s; 311 } 312 313 #ifndef CONFIG_SLOB 314 /* 315 * The slab lists for all objects. 316 */ 317 struct kmem_cache_node { 318 spinlock_t list_lock; 319 320 #ifdef CONFIG_SLAB 321 struct list_head slabs_partial; /* partial list first, better asm code */ 322 struct list_head slabs_full; 323 struct list_head slabs_free; 324 unsigned long free_objects; 325 unsigned int free_limit; 326 unsigned int colour_next; /* Per-node cache coloring */ 327 struct array_cache *shared; /* shared per node */ 328 struct alien_cache **alien; /* on other nodes */ 329 unsigned long next_reap; /* updated without locking */ 330 int free_touched; /* updated without locking */ 331 #endif 332 333 #ifdef CONFIG_SLUB 334 unsigned long nr_partial; 335 struct list_head partial; 336 #ifdef CONFIG_SLUB_DEBUG 337 atomic_long_t nr_slabs; 338 atomic_long_t total_objects; 339 struct list_head full; 340 #endif 341 #endif 342 343 }; 344 345 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 346 { 347 return s->node[node]; 348 } 349 350 /* 351 * Iterator over all nodes. The body will be executed for each node that has 352 * a kmem_cache_node structure allocated (which is true for all online nodes) 353 */ 354 #define for_each_kmem_cache_node(__s, __node, __n) \ 355 for (__node = 0; __node < nr_node_ids; __node++) \ 356 if ((__n = get_node(__s, __node))) 357 358 #endif 359 360 void *slab_start(struct seq_file *m, loff_t *pos); 361 void *slab_next(struct seq_file *m, void *p, loff_t *pos); 362 void slab_stop(struct seq_file *m, void *p); 363 int memcg_slab_show(struct seq_file *m, void *p); 364 365 #endif /* MM_SLAB_H */ 366