xref: /openbmc/linux/mm/slab.h (revision 81113b04)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 #ifdef CONFIG_SLOB
9 /*
10  * Common fields provided in kmem_cache by all slab allocators
11  * This struct is either used directly by the allocator (SLOB)
12  * or the allocator must include definitions for all fields
13  * provided in kmem_cache_common in their definition of kmem_cache.
14  *
15  * Once we can do anonymous structs (C11 standard) we could put a
16  * anonymous struct definition in these allocators so that the
17  * separate allocations in the kmem_cache structure of SLAB and
18  * SLUB is no longer needed.
19  */
20 struct kmem_cache {
21 	unsigned int object_size;/* The original size of the object */
22 	unsigned int size;	/* The aligned/padded/added on size  */
23 	unsigned int align;	/* Alignment as calculated */
24 	slab_flags_t flags;	/* Active flags on the slab */
25 	unsigned int useroffset;/* Usercopy region offset */
26 	unsigned int usersize;	/* Usercopy region size */
27 	const char *name;	/* Slab name for sysfs */
28 	int refcount;		/* Use counter */
29 	void (*ctor)(void *);	/* Called on object slot creation */
30 	struct list_head list;	/* List of all slab caches on the system */
31 };
32 
33 #endif /* CONFIG_SLOB */
34 
35 #ifdef CONFIG_SLAB
36 #include <linux/slab_def.h>
37 #endif
38 
39 #ifdef CONFIG_SLUB
40 #include <linux/slub_def.h>
41 #endif
42 
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
49 
50 /*
51  * State of the slab allocator.
52  *
53  * This is used to describe the states of the allocator during bootup.
54  * Allocators use this to gradually bootstrap themselves. Most allocators
55  * have the problem that the structures used for managing slab caches are
56  * allocated from slab caches themselves.
57  */
58 enum slab_state {
59 	DOWN,			/* No slab functionality yet */
60 	PARTIAL,		/* SLUB: kmem_cache_node available */
61 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
62 	UP,			/* Slab caches usable but not all extras yet */
63 	FULL			/* Everything is working */
64 };
65 
66 extern enum slab_state slab_state;
67 
68 /* The slab cache mutex protects the management structures during changes */
69 extern struct mutex slab_mutex;
70 
71 /* The list of all slab caches on the system */
72 extern struct list_head slab_caches;
73 
74 /* The slab cache that manages slab cache information */
75 extern struct kmem_cache *kmem_cache;
76 
77 /* A table of kmalloc cache names and sizes */
78 extern const struct kmalloc_info_struct {
79 	const char *name[NR_KMALLOC_TYPES];
80 	unsigned int size;
81 } kmalloc_info[];
82 
83 #ifndef CONFIG_SLOB
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(slab_flags_t);
87 
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90 #endif
91 
92 gfp_t kmalloc_fix_flags(gfp_t flags);
93 
94 /* Functions provided by the slab allocators */
95 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
96 
97 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
98 			slab_flags_t flags, unsigned int useroffset,
99 			unsigned int usersize);
100 extern void create_boot_cache(struct kmem_cache *, const char *name,
101 			unsigned int size, slab_flags_t flags,
102 			unsigned int useroffset, unsigned int usersize);
103 
104 int slab_unmergeable(struct kmem_cache *s);
105 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
106 		slab_flags_t flags, const char *name, void (*ctor)(void *));
107 #ifndef CONFIG_SLOB
108 struct kmem_cache *
109 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
110 		   slab_flags_t flags, void (*ctor)(void *));
111 
112 slab_flags_t kmem_cache_flags(unsigned int object_size,
113 	slab_flags_t flags, const char *name,
114 	void (*ctor)(void *));
115 #else
116 static inline struct kmem_cache *
117 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
118 		   slab_flags_t flags, void (*ctor)(void *))
119 { return NULL; }
120 
121 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
122 	slab_flags_t flags, const char *name,
123 	void (*ctor)(void *))
124 {
125 	return flags;
126 }
127 #endif
128 
129 
130 /* Legal flag mask for kmem_cache_create(), for various configurations */
131 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
132 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
133 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
134 
135 #if defined(CONFIG_DEBUG_SLAB)
136 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
137 #elif defined(CONFIG_SLUB_DEBUG)
138 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
139 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
140 #else
141 #define SLAB_DEBUG_FLAGS (0)
142 #endif
143 
144 #if defined(CONFIG_SLAB)
145 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
146 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
147 			  SLAB_ACCOUNT)
148 #elif defined(CONFIG_SLUB)
149 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
150 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
151 #else
152 #define SLAB_CACHE_FLAGS (0)
153 #endif
154 
155 /* Common flags available with current configuration */
156 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
157 
158 /* Common flags permitted for kmem_cache_create */
159 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
160 			      SLAB_RED_ZONE | \
161 			      SLAB_POISON | \
162 			      SLAB_STORE_USER | \
163 			      SLAB_TRACE | \
164 			      SLAB_CONSISTENCY_CHECKS | \
165 			      SLAB_MEM_SPREAD | \
166 			      SLAB_NOLEAKTRACE | \
167 			      SLAB_RECLAIM_ACCOUNT | \
168 			      SLAB_TEMPORARY | \
169 			      SLAB_ACCOUNT)
170 
171 bool __kmem_cache_empty(struct kmem_cache *);
172 int __kmem_cache_shutdown(struct kmem_cache *);
173 void __kmem_cache_release(struct kmem_cache *);
174 int __kmem_cache_shrink(struct kmem_cache *);
175 void slab_kmem_cache_release(struct kmem_cache *);
176 
177 struct seq_file;
178 struct file;
179 
180 struct slabinfo {
181 	unsigned long active_objs;
182 	unsigned long num_objs;
183 	unsigned long active_slabs;
184 	unsigned long num_slabs;
185 	unsigned long shared_avail;
186 	unsigned int limit;
187 	unsigned int batchcount;
188 	unsigned int shared;
189 	unsigned int objects_per_slab;
190 	unsigned int cache_order;
191 };
192 
193 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
194 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
195 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
196 		       size_t count, loff_t *ppos);
197 
198 /*
199  * Generic implementation of bulk operations
200  * These are useful for situations in which the allocator cannot
201  * perform optimizations. In that case segments of the object listed
202  * may be allocated or freed using these operations.
203  */
204 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
205 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
206 
207 static inline int cache_vmstat_idx(struct kmem_cache *s)
208 {
209 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
210 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
211 }
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 extern void print_tracking(struct kmem_cache *s, void *object);
220 #else
221 static inline void print_tracking(struct kmem_cache *s, void *object)
222 {
223 }
224 #endif
225 
226 /*
227  * Returns true if any of the specified slub_debug flags is enabled for the
228  * cache. Use only for flags parsed by setup_slub_debug() as it also enables
229  * the static key.
230  */
231 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
232 {
233 #ifdef CONFIG_SLUB_DEBUG
234 	VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
235 	if (static_branch_unlikely(&slub_debug_enabled))
236 		return s->flags & flags;
237 #endif
238 	return false;
239 }
240 
241 #ifdef CONFIG_MEMCG_KMEM
242 static inline struct obj_cgroup **page_obj_cgroups(struct page *page)
243 {
244 	/*
245 	 * page->mem_cgroup and page->obj_cgroups are sharing the same
246 	 * space. To distinguish between them in case we don't know for sure
247 	 * that the page is a slab page (e.g. page_cgroup_ino()), let's
248 	 * always set the lowest bit of obj_cgroups.
249 	 */
250 	return (struct obj_cgroup **)
251 		((unsigned long)page->obj_cgroups & ~0x1UL);
252 }
253 
254 static inline bool page_has_obj_cgroups(struct page *page)
255 {
256 	return ((unsigned long)page->obj_cgroups & 0x1UL);
257 }
258 
259 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
260 				 gfp_t gfp);
261 
262 static inline void memcg_free_page_obj_cgroups(struct page *page)
263 {
264 	kfree(page_obj_cgroups(page));
265 	page->obj_cgroups = NULL;
266 }
267 
268 static inline size_t obj_full_size(struct kmem_cache *s)
269 {
270 	/*
271 	 * For each accounted object there is an extra space which is used
272 	 * to store obj_cgroup membership. Charge it too.
273 	 */
274 	return s->size + sizeof(struct obj_cgroup *);
275 }
276 
277 /*
278  * Returns false if the allocation should fail.
279  */
280 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
281 					     struct obj_cgroup **objcgp,
282 					     size_t objects, gfp_t flags)
283 {
284 	struct obj_cgroup *objcg;
285 
286 	if (!memcg_kmem_enabled())
287 		return true;
288 
289 	if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
290 		return true;
291 
292 	objcg = get_obj_cgroup_from_current();
293 	if (!objcg)
294 		return true;
295 
296 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
297 		obj_cgroup_put(objcg);
298 		return false;
299 	}
300 
301 	*objcgp = objcg;
302 	return true;
303 }
304 
305 static inline void mod_objcg_state(struct obj_cgroup *objcg,
306 				   struct pglist_data *pgdat,
307 				   int idx, int nr)
308 {
309 	struct mem_cgroup *memcg;
310 	struct lruvec *lruvec;
311 
312 	rcu_read_lock();
313 	memcg = obj_cgroup_memcg(objcg);
314 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
315 	mod_memcg_lruvec_state(lruvec, idx, nr);
316 	rcu_read_unlock();
317 }
318 
319 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
320 					      struct obj_cgroup *objcg,
321 					      gfp_t flags, size_t size,
322 					      void **p)
323 {
324 	struct page *page;
325 	unsigned long off;
326 	size_t i;
327 
328 	if (!memcg_kmem_enabled() || !objcg)
329 		return;
330 
331 	flags &= ~__GFP_ACCOUNT;
332 	for (i = 0; i < size; i++) {
333 		if (likely(p[i])) {
334 			page = virt_to_head_page(p[i]);
335 
336 			if (!page_has_obj_cgroups(page) &&
337 			    memcg_alloc_page_obj_cgroups(page, s, flags)) {
338 				obj_cgroup_uncharge(objcg, obj_full_size(s));
339 				continue;
340 			}
341 
342 			off = obj_to_index(s, page, p[i]);
343 			obj_cgroup_get(objcg);
344 			page_obj_cgroups(page)[off] = objcg;
345 			mod_objcg_state(objcg, page_pgdat(page),
346 					cache_vmstat_idx(s), obj_full_size(s));
347 		} else {
348 			obj_cgroup_uncharge(objcg, obj_full_size(s));
349 		}
350 	}
351 	obj_cgroup_put(objcg);
352 }
353 
354 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
355 					void **p, int objects)
356 {
357 	struct kmem_cache *s;
358 	struct obj_cgroup *objcg;
359 	struct page *page;
360 	unsigned int off;
361 	int i;
362 
363 	if (!memcg_kmem_enabled())
364 		return;
365 
366 	for (i = 0; i < objects; i++) {
367 		if (unlikely(!p[i]))
368 			continue;
369 
370 		page = virt_to_head_page(p[i]);
371 		if (!page_has_obj_cgroups(page))
372 			continue;
373 
374 		if (!s_orig)
375 			s = page->slab_cache;
376 		else
377 			s = s_orig;
378 
379 		off = obj_to_index(s, page, p[i]);
380 		objcg = page_obj_cgroups(page)[off];
381 		if (!objcg)
382 			continue;
383 
384 		page_obj_cgroups(page)[off] = NULL;
385 		obj_cgroup_uncharge(objcg, obj_full_size(s));
386 		mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
387 				-obj_full_size(s));
388 		obj_cgroup_put(objcg);
389 	}
390 }
391 
392 #else /* CONFIG_MEMCG_KMEM */
393 static inline bool page_has_obj_cgroups(struct page *page)
394 {
395 	return false;
396 }
397 
398 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
399 {
400 	return NULL;
401 }
402 
403 static inline int memcg_alloc_page_obj_cgroups(struct page *page,
404 					       struct kmem_cache *s, gfp_t gfp)
405 {
406 	return 0;
407 }
408 
409 static inline void memcg_free_page_obj_cgroups(struct page *page)
410 {
411 }
412 
413 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
414 					     struct obj_cgroup **objcgp,
415 					     size_t objects, gfp_t flags)
416 {
417 	return true;
418 }
419 
420 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
421 					      struct obj_cgroup *objcg,
422 					      gfp_t flags, size_t size,
423 					      void **p)
424 {
425 }
426 
427 static inline void memcg_slab_free_hook(struct kmem_cache *s,
428 					void **p, int objects)
429 {
430 }
431 #endif /* CONFIG_MEMCG_KMEM */
432 
433 static inline struct kmem_cache *virt_to_cache(const void *obj)
434 {
435 	struct page *page;
436 
437 	page = virt_to_head_page(obj);
438 	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
439 					__func__))
440 		return NULL;
441 	return page->slab_cache;
442 }
443 
444 static __always_inline void account_slab_page(struct page *page, int order,
445 					      struct kmem_cache *s)
446 {
447 	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
448 			    PAGE_SIZE << order);
449 }
450 
451 static __always_inline void unaccount_slab_page(struct page *page, int order,
452 						struct kmem_cache *s)
453 {
454 	if (memcg_kmem_enabled())
455 		memcg_free_page_obj_cgroups(page);
456 
457 	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
458 			    -(PAGE_SIZE << order));
459 }
460 
461 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
462 {
463 	struct kmem_cache *cachep;
464 
465 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
466 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
467 		return s;
468 
469 	cachep = virt_to_cache(x);
470 	if (WARN(cachep && cachep != s,
471 		  "%s: Wrong slab cache. %s but object is from %s\n",
472 		  __func__, s->name, cachep->name))
473 		print_tracking(cachep, x);
474 	return cachep;
475 }
476 
477 static inline size_t slab_ksize(const struct kmem_cache *s)
478 {
479 #ifndef CONFIG_SLUB
480 	return s->object_size;
481 
482 #else /* CONFIG_SLUB */
483 # ifdef CONFIG_SLUB_DEBUG
484 	/*
485 	 * Debugging requires use of the padding between object
486 	 * and whatever may come after it.
487 	 */
488 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
489 		return s->object_size;
490 # endif
491 	if (s->flags & SLAB_KASAN)
492 		return s->object_size;
493 	/*
494 	 * If we have the need to store the freelist pointer
495 	 * back there or track user information then we can
496 	 * only use the space before that information.
497 	 */
498 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
499 		return s->inuse;
500 	/*
501 	 * Else we can use all the padding etc for the allocation
502 	 */
503 	return s->size;
504 #endif
505 }
506 
507 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
508 						     struct obj_cgroup **objcgp,
509 						     size_t size, gfp_t flags)
510 {
511 	flags &= gfp_allowed_mask;
512 
513 	fs_reclaim_acquire(flags);
514 	fs_reclaim_release(flags);
515 
516 	might_sleep_if(gfpflags_allow_blocking(flags));
517 
518 	if (should_failslab(s, flags))
519 		return NULL;
520 
521 	if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
522 		return NULL;
523 
524 	return s;
525 }
526 
527 static inline void slab_post_alloc_hook(struct kmem_cache *s,
528 					struct obj_cgroup *objcg,
529 					gfp_t flags, size_t size, void **p)
530 {
531 	size_t i;
532 
533 	flags &= gfp_allowed_mask;
534 	for (i = 0; i < size; i++) {
535 		p[i] = kasan_slab_alloc(s, p[i], flags);
536 		/* As p[i] might get tagged, call kmemleak hook after KASAN. */
537 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
538 					 s->flags, flags);
539 	}
540 
541 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
542 }
543 
544 #ifndef CONFIG_SLOB
545 /*
546  * The slab lists for all objects.
547  */
548 struct kmem_cache_node {
549 	spinlock_t list_lock;
550 
551 #ifdef CONFIG_SLAB
552 	struct list_head slabs_partial;	/* partial list first, better asm code */
553 	struct list_head slabs_full;
554 	struct list_head slabs_free;
555 	unsigned long total_slabs;	/* length of all slab lists */
556 	unsigned long free_slabs;	/* length of free slab list only */
557 	unsigned long free_objects;
558 	unsigned int free_limit;
559 	unsigned int colour_next;	/* Per-node cache coloring */
560 	struct array_cache *shared;	/* shared per node */
561 	struct alien_cache **alien;	/* on other nodes */
562 	unsigned long next_reap;	/* updated without locking */
563 	int free_touched;		/* updated without locking */
564 #endif
565 
566 #ifdef CONFIG_SLUB
567 	unsigned long nr_partial;
568 	struct list_head partial;
569 #ifdef CONFIG_SLUB_DEBUG
570 	atomic_long_t nr_slabs;
571 	atomic_long_t total_objects;
572 	struct list_head full;
573 #endif
574 #endif
575 
576 };
577 
578 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
579 {
580 	return s->node[node];
581 }
582 
583 /*
584  * Iterator over all nodes. The body will be executed for each node that has
585  * a kmem_cache_node structure allocated (which is true for all online nodes)
586  */
587 #define for_each_kmem_cache_node(__s, __node, __n) \
588 	for (__node = 0; __node < nr_node_ids; __node++) \
589 		 if ((__n = get_node(__s, __node)))
590 
591 #endif
592 
593 void *slab_start(struct seq_file *m, loff_t *pos);
594 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
595 void slab_stop(struct seq_file *m, void *p);
596 int memcg_slab_show(struct seq_file *m, void *p);
597 
598 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
599 void dump_unreclaimable_slab(void);
600 #else
601 static inline void dump_unreclaimable_slab(void)
602 {
603 }
604 #endif
605 
606 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
607 
608 #ifdef CONFIG_SLAB_FREELIST_RANDOM
609 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
610 			gfp_t gfp);
611 void cache_random_seq_destroy(struct kmem_cache *cachep);
612 #else
613 static inline int cache_random_seq_create(struct kmem_cache *cachep,
614 					unsigned int count, gfp_t gfp)
615 {
616 	return 0;
617 }
618 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
619 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
620 
621 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
622 {
623 	if (static_branch_unlikely(&init_on_alloc)) {
624 		if (c->ctor)
625 			return false;
626 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
627 			return flags & __GFP_ZERO;
628 		return true;
629 	}
630 	return flags & __GFP_ZERO;
631 }
632 
633 static inline bool slab_want_init_on_free(struct kmem_cache *c)
634 {
635 	if (static_branch_unlikely(&init_on_free))
636 		return !(c->ctor ||
637 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
638 	return false;
639 }
640 
641 #endif /* MM_SLAB_H */
642