xref: /openbmc/linux/mm/slab.h (revision 7d94ab16)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 #ifdef CONFIG_SLOB
9 /*
10  * Common fields provided in kmem_cache by all slab allocators
11  * This struct is either used directly by the allocator (SLOB)
12  * or the allocator must include definitions for all fields
13  * provided in kmem_cache_common in their definition of kmem_cache.
14  *
15  * Once we can do anonymous structs (C11 standard) we could put a
16  * anonymous struct definition in these allocators so that the
17  * separate allocations in the kmem_cache structure of SLAB and
18  * SLUB is no longer needed.
19  */
20 struct kmem_cache {
21 	unsigned int object_size;/* The original size of the object */
22 	unsigned int size;	/* The aligned/padded/added on size  */
23 	unsigned int align;	/* Alignment as calculated */
24 	slab_flags_t flags;	/* Active flags on the slab */
25 	unsigned int useroffset;/* Usercopy region offset */
26 	unsigned int usersize;	/* Usercopy region size */
27 	const char *name;	/* Slab name for sysfs */
28 	int refcount;		/* Use counter */
29 	void (*ctor)(void *);	/* Called on object slot creation */
30 	struct list_head list;	/* List of all slab caches on the system */
31 };
32 
33 #else /* !CONFIG_SLOB */
34 
35 struct memcg_cache_array {
36 	struct rcu_head rcu;
37 	struct kmem_cache *entries[0];
38 };
39 
40 /*
41  * This is the main placeholder for memcg-related information in kmem caches.
42  * Both the root cache and the child caches will have it. For the root cache,
43  * this will hold a dynamically allocated array large enough to hold
44  * information about the currently limited memcgs in the system. To allow the
45  * array to be accessed without taking any locks, on relocation we free the old
46  * version only after a grace period.
47  *
48  * Root and child caches hold different metadata.
49  *
50  * @root_cache:	Common to root and child caches.  NULL for root, pointer to
51  *		the root cache for children.
52  *
53  * The following fields are specific to root caches.
54  *
55  * @memcg_caches: kmemcg ID indexed table of child caches.  This table is
56  *		used to index child cachces during allocation and cleared
57  *		early during shutdown.
58  *
59  * @root_caches_node: List node for slab_root_caches list.
60  *
61  * @children:	List of all child caches.  While the child caches are also
62  *		reachable through @memcg_caches, a child cache remains on
63  *		this list until it is actually destroyed.
64  *
65  * The following fields are specific to child caches.
66  *
67  * @memcg:	Pointer to the memcg this cache belongs to.
68  *
69  * @children_node: List node for @root_cache->children list.
70  *
71  * @kmem_caches_node: List node for @memcg->kmem_caches list.
72  */
73 struct memcg_cache_params {
74 	struct kmem_cache *root_cache;
75 	union {
76 		struct {
77 			struct memcg_cache_array __rcu *memcg_caches;
78 			struct list_head __root_caches_node;
79 			struct list_head children;
80 			bool dying;
81 		};
82 		struct {
83 			struct mem_cgroup *memcg;
84 			struct list_head children_node;
85 			struct list_head kmem_caches_node;
86 			struct percpu_ref refcnt;
87 
88 			void (*work_fn)(struct kmem_cache *);
89 			union {
90 				struct rcu_head rcu_head;
91 				struct work_struct work;
92 			};
93 		};
94 	};
95 };
96 #endif /* CONFIG_SLOB */
97 
98 #ifdef CONFIG_SLAB
99 #include <linux/slab_def.h>
100 #endif
101 
102 #ifdef CONFIG_SLUB
103 #include <linux/slub_def.h>
104 #endif
105 
106 #include <linux/memcontrol.h>
107 #include <linux/fault-inject.h>
108 #include <linux/kasan.h>
109 #include <linux/kmemleak.h>
110 #include <linux/random.h>
111 #include <linux/sched/mm.h>
112 
113 /*
114  * State of the slab allocator.
115  *
116  * This is used to describe the states of the allocator during bootup.
117  * Allocators use this to gradually bootstrap themselves. Most allocators
118  * have the problem that the structures used for managing slab caches are
119  * allocated from slab caches themselves.
120  */
121 enum slab_state {
122 	DOWN,			/* No slab functionality yet */
123 	PARTIAL,		/* SLUB: kmem_cache_node available */
124 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
125 	UP,			/* Slab caches usable but not all extras yet */
126 	FULL			/* Everything is working */
127 };
128 
129 extern enum slab_state slab_state;
130 
131 /* The slab cache mutex protects the management structures during changes */
132 extern struct mutex slab_mutex;
133 
134 /* The list of all slab caches on the system */
135 extern struct list_head slab_caches;
136 
137 /* The slab cache that manages slab cache information */
138 extern struct kmem_cache *kmem_cache;
139 
140 /* A table of kmalloc cache names and sizes */
141 extern const struct kmalloc_info_struct {
142 	const char *name[NR_KMALLOC_TYPES];
143 	unsigned int size;
144 } kmalloc_info[];
145 
146 #ifndef CONFIG_SLOB
147 /* Kmalloc array related functions */
148 void setup_kmalloc_cache_index_table(void);
149 void create_kmalloc_caches(slab_flags_t);
150 
151 /* Find the kmalloc slab corresponding for a certain size */
152 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
153 #endif
154 
155 
156 /* Functions provided by the slab allocators */
157 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
158 
159 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
160 			slab_flags_t flags, unsigned int useroffset,
161 			unsigned int usersize);
162 extern void create_boot_cache(struct kmem_cache *, const char *name,
163 			unsigned int size, slab_flags_t flags,
164 			unsigned int useroffset, unsigned int usersize);
165 
166 int slab_unmergeable(struct kmem_cache *s);
167 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
168 		slab_flags_t flags, const char *name, void (*ctor)(void *));
169 #ifndef CONFIG_SLOB
170 struct kmem_cache *
171 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
172 		   slab_flags_t flags, void (*ctor)(void *));
173 
174 slab_flags_t kmem_cache_flags(unsigned int object_size,
175 	slab_flags_t flags, const char *name,
176 	void (*ctor)(void *));
177 #else
178 static inline struct kmem_cache *
179 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
180 		   slab_flags_t flags, void (*ctor)(void *))
181 { return NULL; }
182 
183 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
184 	slab_flags_t flags, const char *name,
185 	void (*ctor)(void *))
186 {
187 	return flags;
188 }
189 #endif
190 
191 
192 /* Legal flag mask for kmem_cache_create(), for various configurations */
193 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
194 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
195 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
196 
197 #if defined(CONFIG_DEBUG_SLAB)
198 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
199 #elif defined(CONFIG_SLUB_DEBUG)
200 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
201 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
202 #else
203 #define SLAB_DEBUG_FLAGS (0)
204 #endif
205 
206 #if defined(CONFIG_SLAB)
207 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
208 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
209 			  SLAB_ACCOUNT)
210 #elif defined(CONFIG_SLUB)
211 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
212 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
213 #else
214 #define SLAB_CACHE_FLAGS (0)
215 #endif
216 
217 /* Common flags available with current configuration */
218 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
219 
220 /* Common flags permitted for kmem_cache_create */
221 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
222 			      SLAB_RED_ZONE | \
223 			      SLAB_POISON | \
224 			      SLAB_STORE_USER | \
225 			      SLAB_TRACE | \
226 			      SLAB_CONSISTENCY_CHECKS | \
227 			      SLAB_MEM_SPREAD | \
228 			      SLAB_NOLEAKTRACE | \
229 			      SLAB_RECLAIM_ACCOUNT | \
230 			      SLAB_TEMPORARY | \
231 			      SLAB_ACCOUNT)
232 
233 bool __kmem_cache_empty(struct kmem_cache *);
234 int __kmem_cache_shutdown(struct kmem_cache *);
235 void __kmem_cache_release(struct kmem_cache *);
236 int __kmem_cache_shrink(struct kmem_cache *);
237 void __kmemcg_cache_deactivate(struct kmem_cache *s);
238 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s);
239 void slab_kmem_cache_release(struct kmem_cache *);
240 void kmem_cache_shrink_all(struct kmem_cache *s);
241 
242 struct seq_file;
243 struct file;
244 
245 struct slabinfo {
246 	unsigned long active_objs;
247 	unsigned long num_objs;
248 	unsigned long active_slabs;
249 	unsigned long num_slabs;
250 	unsigned long shared_avail;
251 	unsigned int limit;
252 	unsigned int batchcount;
253 	unsigned int shared;
254 	unsigned int objects_per_slab;
255 	unsigned int cache_order;
256 };
257 
258 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
259 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
260 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
261 		       size_t count, loff_t *ppos);
262 
263 /*
264  * Generic implementation of bulk operations
265  * These are useful for situations in which the allocator cannot
266  * perform optimizations. In that case segments of the object listed
267  * may be allocated or freed using these operations.
268  */
269 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
270 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
271 
272 static inline int cache_vmstat_idx(struct kmem_cache *s)
273 {
274 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
275 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE;
276 }
277 
278 #ifdef CONFIG_MEMCG_KMEM
279 
280 /* List of all root caches. */
281 extern struct list_head		slab_root_caches;
282 #define root_caches_node	memcg_params.__root_caches_node
283 
284 /*
285  * Iterate over all memcg caches of the given root cache. The caller must hold
286  * slab_mutex.
287  */
288 #define for_each_memcg_cache(iter, root) \
289 	list_for_each_entry(iter, &(root)->memcg_params.children, \
290 			    memcg_params.children_node)
291 
292 static inline bool is_root_cache(struct kmem_cache *s)
293 {
294 	return !s->memcg_params.root_cache;
295 }
296 
297 static inline bool slab_equal_or_root(struct kmem_cache *s,
298 				      struct kmem_cache *p)
299 {
300 	return p == s || p == s->memcg_params.root_cache;
301 }
302 
303 /*
304  * We use suffixes to the name in memcg because we can't have caches
305  * created in the system with the same name. But when we print them
306  * locally, better refer to them with the base name
307  */
308 static inline const char *cache_name(struct kmem_cache *s)
309 {
310 	if (!is_root_cache(s))
311 		s = s->memcg_params.root_cache;
312 	return s->name;
313 }
314 
315 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
316 {
317 	if (is_root_cache(s))
318 		return s;
319 	return s->memcg_params.root_cache;
320 }
321 
322 /*
323  * Expects a pointer to a slab page. Please note, that PageSlab() check
324  * isn't sufficient, as it returns true also for tail compound slab pages,
325  * which do not have slab_cache pointer set.
326  * So this function assumes that the page can pass PageSlab() && !PageTail()
327  * check.
328  *
329  * The kmem_cache can be reparented asynchronously. The caller must ensure
330  * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex.
331  */
332 static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
333 {
334 	struct kmem_cache *s;
335 
336 	s = READ_ONCE(page->slab_cache);
337 	if (s && !is_root_cache(s))
338 		return READ_ONCE(s->memcg_params.memcg);
339 
340 	return NULL;
341 }
342 
343 /*
344  * Charge the slab page belonging to the non-root kmem_cache.
345  * Can be called for non-root kmem_caches only.
346  */
347 static __always_inline int memcg_charge_slab(struct page *page,
348 					     gfp_t gfp, int order,
349 					     struct kmem_cache *s)
350 {
351 	struct mem_cgroup *memcg;
352 	struct lruvec *lruvec;
353 	int ret;
354 
355 	rcu_read_lock();
356 	memcg = READ_ONCE(s->memcg_params.memcg);
357 	while (memcg && !css_tryget_online(&memcg->css))
358 		memcg = parent_mem_cgroup(memcg);
359 	rcu_read_unlock();
360 
361 	if (unlikely(!memcg || mem_cgroup_is_root(memcg))) {
362 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
363 				    (1 << order));
364 		percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
365 		return 0;
366 	}
367 
368 	ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
369 	if (ret)
370 		goto out;
371 
372 	lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page));
373 	mod_lruvec_state(lruvec, cache_vmstat_idx(s), 1 << order);
374 
375 	/* transer try_charge() page references to kmem_cache */
376 	percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
377 	css_put_many(&memcg->css, 1 << order);
378 out:
379 	css_put(&memcg->css);
380 	return ret;
381 }
382 
383 /*
384  * Uncharge a slab page belonging to a non-root kmem_cache.
385  * Can be called for non-root kmem_caches only.
386  */
387 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
388 						struct kmem_cache *s)
389 {
390 	struct mem_cgroup *memcg;
391 	struct lruvec *lruvec;
392 
393 	rcu_read_lock();
394 	memcg = READ_ONCE(s->memcg_params.memcg);
395 	if (likely(!mem_cgroup_is_root(memcg))) {
396 		lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page));
397 		mod_lruvec_state(lruvec, cache_vmstat_idx(s), -(1 << order));
398 		memcg_kmem_uncharge_memcg(page, order, memcg);
399 	} else {
400 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
401 				    -(1 << order));
402 	}
403 	rcu_read_unlock();
404 
405 	percpu_ref_put_many(&s->memcg_params.refcnt, 1 << order);
406 }
407 
408 extern void slab_init_memcg_params(struct kmem_cache *);
409 extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg);
410 
411 #else /* CONFIG_MEMCG_KMEM */
412 
413 /* If !memcg, all caches are root. */
414 #define slab_root_caches	slab_caches
415 #define root_caches_node	list
416 
417 #define for_each_memcg_cache(iter, root) \
418 	for ((void)(iter), (void)(root); 0; )
419 
420 static inline bool is_root_cache(struct kmem_cache *s)
421 {
422 	return true;
423 }
424 
425 static inline bool slab_equal_or_root(struct kmem_cache *s,
426 				      struct kmem_cache *p)
427 {
428 	return s == p;
429 }
430 
431 static inline const char *cache_name(struct kmem_cache *s)
432 {
433 	return s->name;
434 }
435 
436 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
437 {
438 	return s;
439 }
440 
441 static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
442 {
443 	return NULL;
444 }
445 
446 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
447 				    struct kmem_cache *s)
448 {
449 	return 0;
450 }
451 
452 static inline void memcg_uncharge_slab(struct page *page, int order,
453 				       struct kmem_cache *s)
454 {
455 }
456 
457 static inline void slab_init_memcg_params(struct kmem_cache *s)
458 {
459 }
460 
461 static inline void memcg_link_cache(struct kmem_cache *s,
462 				    struct mem_cgroup *memcg)
463 {
464 }
465 
466 #endif /* CONFIG_MEMCG_KMEM */
467 
468 static inline struct kmem_cache *virt_to_cache(const void *obj)
469 {
470 	struct page *page;
471 
472 	page = virt_to_head_page(obj);
473 	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
474 					__func__))
475 		return NULL;
476 	return page->slab_cache;
477 }
478 
479 static __always_inline int charge_slab_page(struct page *page,
480 					    gfp_t gfp, int order,
481 					    struct kmem_cache *s)
482 {
483 	if (is_root_cache(s)) {
484 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
485 				    1 << order);
486 		return 0;
487 	}
488 
489 	return memcg_charge_slab(page, gfp, order, s);
490 }
491 
492 static __always_inline void uncharge_slab_page(struct page *page, int order,
493 					       struct kmem_cache *s)
494 {
495 	if (is_root_cache(s)) {
496 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
497 				    -(1 << order));
498 		return;
499 	}
500 
501 	memcg_uncharge_slab(page, order, s);
502 }
503 
504 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
505 {
506 	struct kmem_cache *cachep;
507 
508 	/*
509 	 * When kmemcg is not being used, both assignments should return the
510 	 * same value. but we don't want to pay the assignment price in that
511 	 * case. If it is not compiled in, the compiler should be smart enough
512 	 * to not do even the assignment. In that case, slab_equal_or_root
513 	 * will also be a constant.
514 	 */
515 	if (!memcg_kmem_enabled() &&
516 	    !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
517 	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
518 		return s;
519 
520 	cachep = virt_to_cache(x);
521 	WARN_ONCE(cachep && !slab_equal_or_root(cachep, s),
522 		  "%s: Wrong slab cache. %s but object is from %s\n",
523 		  __func__, s->name, cachep->name);
524 	return cachep;
525 }
526 
527 static inline size_t slab_ksize(const struct kmem_cache *s)
528 {
529 #ifndef CONFIG_SLUB
530 	return s->object_size;
531 
532 #else /* CONFIG_SLUB */
533 # ifdef CONFIG_SLUB_DEBUG
534 	/*
535 	 * Debugging requires use of the padding between object
536 	 * and whatever may come after it.
537 	 */
538 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
539 		return s->object_size;
540 # endif
541 	if (s->flags & SLAB_KASAN)
542 		return s->object_size;
543 	/*
544 	 * If we have the need to store the freelist pointer
545 	 * back there or track user information then we can
546 	 * only use the space before that information.
547 	 */
548 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
549 		return s->inuse;
550 	/*
551 	 * Else we can use all the padding etc for the allocation
552 	 */
553 	return s->size;
554 #endif
555 }
556 
557 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
558 						     gfp_t flags)
559 {
560 	flags &= gfp_allowed_mask;
561 
562 	fs_reclaim_acquire(flags);
563 	fs_reclaim_release(flags);
564 
565 	might_sleep_if(gfpflags_allow_blocking(flags));
566 
567 	if (should_failslab(s, flags))
568 		return NULL;
569 
570 	if (memcg_kmem_enabled() &&
571 	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
572 		return memcg_kmem_get_cache(s);
573 
574 	return s;
575 }
576 
577 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
578 					size_t size, void **p)
579 {
580 	size_t i;
581 
582 	flags &= gfp_allowed_mask;
583 	for (i = 0; i < size; i++) {
584 		p[i] = kasan_slab_alloc(s, p[i], flags);
585 		/* As p[i] might get tagged, call kmemleak hook after KASAN. */
586 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
587 					 s->flags, flags);
588 	}
589 
590 	if (memcg_kmem_enabled())
591 		memcg_kmem_put_cache(s);
592 }
593 
594 #ifndef CONFIG_SLOB
595 /*
596  * The slab lists for all objects.
597  */
598 struct kmem_cache_node {
599 	spinlock_t list_lock;
600 
601 #ifdef CONFIG_SLAB
602 	struct list_head slabs_partial;	/* partial list first, better asm code */
603 	struct list_head slabs_full;
604 	struct list_head slabs_free;
605 	unsigned long total_slabs;	/* length of all slab lists */
606 	unsigned long free_slabs;	/* length of free slab list only */
607 	unsigned long free_objects;
608 	unsigned int free_limit;
609 	unsigned int colour_next;	/* Per-node cache coloring */
610 	struct array_cache *shared;	/* shared per node */
611 	struct alien_cache **alien;	/* on other nodes */
612 	unsigned long next_reap;	/* updated without locking */
613 	int free_touched;		/* updated without locking */
614 #endif
615 
616 #ifdef CONFIG_SLUB
617 	unsigned long nr_partial;
618 	struct list_head partial;
619 #ifdef CONFIG_SLUB_DEBUG
620 	atomic_long_t nr_slabs;
621 	atomic_long_t total_objects;
622 	struct list_head full;
623 #endif
624 #endif
625 
626 };
627 
628 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
629 {
630 	return s->node[node];
631 }
632 
633 /*
634  * Iterator over all nodes. The body will be executed for each node that has
635  * a kmem_cache_node structure allocated (which is true for all online nodes)
636  */
637 #define for_each_kmem_cache_node(__s, __node, __n) \
638 	for (__node = 0; __node < nr_node_ids; __node++) \
639 		 if ((__n = get_node(__s, __node)))
640 
641 #endif
642 
643 void *slab_start(struct seq_file *m, loff_t *pos);
644 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
645 void slab_stop(struct seq_file *m, void *p);
646 void *memcg_slab_start(struct seq_file *m, loff_t *pos);
647 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
648 void memcg_slab_stop(struct seq_file *m, void *p);
649 int memcg_slab_show(struct seq_file *m, void *p);
650 
651 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
652 void dump_unreclaimable_slab(void);
653 #else
654 static inline void dump_unreclaimable_slab(void)
655 {
656 }
657 #endif
658 
659 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
660 
661 #ifdef CONFIG_SLAB_FREELIST_RANDOM
662 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
663 			gfp_t gfp);
664 void cache_random_seq_destroy(struct kmem_cache *cachep);
665 #else
666 static inline int cache_random_seq_create(struct kmem_cache *cachep,
667 					unsigned int count, gfp_t gfp)
668 {
669 	return 0;
670 }
671 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
672 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
673 
674 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
675 {
676 	if (static_branch_unlikely(&init_on_alloc)) {
677 		if (c->ctor)
678 			return false;
679 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
680 			return flags & __GFP_ZERO;
681 		return true;
682 	}
683 	return flags & __GFP_ZERO;
684 }
685 
686 static inline bool slab_want_init_on_free(struct kmem_cache *c)
687 {
688 	if (static_branch_unlikely(&init_on_free))
689 		return !(c->ctor ||
690 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
691 	return false;
692 }
693 
694 #endif /* MM_SLAB_H */
695