xref: /openbmc/linux/mm/slab.h (revision 70a59dd8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 #ifdef CONFIG_SLOB
9 /*
10  * Common fields provided in kmem_cache by all slab allocators
11  * This struct is either used directly by the allocator (SLOB)
12  * or the allocator must include definitions for all fields
13  * provided in kmem_cache_common in their definition of kmem_cache.
14  *
15  * Once we can do anonymous structs (C11 standard) we could put a
16  * anonymous struct definition in these allocators so that the
17  * separate allocations in the kmem_cache structure of SLAB and
18  * SLUB is no longer needed.
19  */
20 struct kmem_cache {
21 	unsigned int object_size;/* The original size of the object */
22 	unsigned int size;	/* The aligned/padded/added on size  */
23 	unsigned int align;	/* Alignment as calculated */
24 	slab_flags_t flags;	/* Active flags on the slab */
25 	unsigned int useroffset;/* Usercopy region offset */
26 	unsigned int usersize;	/* Usercopy region size */
27 	const char *name;	/* Slab name for sysfs */
28 	int refcount;		/* Use counter */
29 	void (*ctor)(void *);	/* Called on object slot creation */
30 	struct list_head list;	/* List of all slab caches on the system */
31 };
32 
33 #endif /* CONFIG_SLOB */
34 
35 #ifdef CONFIG_SLAB
36 #include <linux/slab_def.h>
37 #endif
38 
39 #ifdef CONFIG_SLUB
40 #include <linux/slub_def.h>
41 #endif
42 
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
49 
50 /*
51  * State of the slab allocator.
52  *
53  * This is used to describe the states of the allocator during bootup.
54  * Allocators use this to gradually bootstrap themselves. Most allocators
55  * have the problem that the structures used for managing slab caches are
56  * allocated from slab caches themselves.
57  */
58 enum slab_state {
59 	DOWN,			/* No slab functionality yet */
60 	PARTIAL,		/* SLUB: kmem_cache_node available */
61 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
62 	UP,			/* Slab caches usable but not all extras yet */
63 	FULL			/* Everything is working */
64 };
65 
66 extern enum slab_state slab_state;
67 
68 /* The slab cache mutex protects the management structures during changes */
69 extern struct mutex slab_mutex;
70 
71 /* The list of all slab caches on the system */
72 extern struct list_head slab_caches;
73 
74 /* The slab cache that manages slab cache information */
75 extern struct kmem_cache *kmem_cache;
76 
77 /* A table of kmalloc cache names and sizes */
78 extern const struct kmalloc_info_struct {
79 	const char *name[NR_KMALLOC_TYPES];
80 	unsigned int size;
81 } kmalloc_info[];
82 
83 #ifndef CONFIG_SLOB
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(slab_flags_t);
87 
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90 #endif
91 
92 gfp_t kmalloc_fix_flags(gfp_t flags);
93 
94 /* Functions provided by the slab allocators */
95 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
96 
97 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
98 			slab_flags_t flags, unsigned int useroffset,
99 			unsigned int usersize);
100 extern void create_boot_cache(struct kmem_cache *, const char *name,
101 			unsigned int size, slab_flags_t flags,
102 			unsigned int useroffset, unsigned int usersize);
103 
104 int slab_unmergeable(struct kmem_cache *s);
105 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
106 		slab_flags_t flags, const char *name, void (*ctor)(void *));
107 #ifndef CONFIG_SLOB
108 struct kmem_cache *
109 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
110 		   slab_flags_t flags, void (*ctor)(void *));
111 
112 slab_flags_t kmem_cache_flags(unsigned int object_size,
113 	slab_flags_t flags, const char *name,
114 	void (*ctor)(void *));
115 #else
116 static inline struct kmem_cache *
117 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
118 		   slab_flags_t flags, void (*ctor)(void *))
119 { return NULL; }
120 
121 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
122 	slab_flags_t flags, const char *name,
123 	void (*ctor)(void *))
124 {
125 	return flags;
126 }
127 #endif
128 
129 
130 /* Legal flag mask for kmem_cache_create(), for various configurations */
131 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
132 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
133 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
134 
135 #if defined(CONFIG_DEBUG_SLAB)
136 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
137 #elif defined(CONFIG_SLUB_DEBUG)
138 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
139 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
140 #else
141 #define SLAB_DEBUG_FLAGS (0)
142 #endif
143 
144 #if defined(CONFIG_SLAB)
145 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
146 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
147 			  SLAB_ACCOUNT)
148 #elif defined(CONFIG_SLUB)
149 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
150 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
151 #else
152 #define SLAB_CACHE_FLAGS (0)
153 #endif
154 
155 /* Common flags available with current configuration */
156 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
157 
158 /* Common flags permitted for kmem_cache_create */
159 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
160 			      SLAB_RED_ZONE | \
161 			      SLAB_POISON | \
162 			      SLAB_STORE_USER | \
163 			      SLAB_TRACE | \
164 			      SLAB_CONSISTENCY_CHECKS | \
165 			      SLAB_MEM_SPREAD | \
166 			      SLAB_NOLEAKTRACE | \
167 			      SLAB_RECLAIM_ACCOUNT | \
168 			      SLAB_TEMPORARY | \
169 			      SLAB_ACCOUNT)
170 
171 bool __kmem_cache_empty(struct kmem_cache *);
172 int __kmem_cache_shutdown(struct kmem_cache *);
173 void __kmem_cache_release(struct kmem_cache *);
174 int __kmem_cache_shrink(struct kmem_cache *);
175 void slab_kmem_cache_release(struct kmem_cache *);
176 
177 struct seq_file;
178 struct file;
179 
180 struct slabinfo {
181 	unsigned long active_objs;
182 	unsigned long num_objs;
183 	unsigned long active_slabs;
184 	unsigned long num_slabs;
185 	unsigned long shared_avail;
186 	unsigned int limit;
187 	unsigned int batchcount;
188 	unsigned int shared;
189 	unsigned int objects_per_slab;
190 	unsigned int cache_order;
191 };
192 
193 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
194 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
195 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
196 		       size_t count, loff_t *ppos);
197 
198 /*
199  * Generic implementation of bulk operations
200  * These are useful for situations in which the allocator cannot
201  * perform optimizations. In that case segments of the object listed
202  * may be allocated or freed using these operations.
203  */
204 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
205 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
206 
207 static inline int cache_vmstat_idx(struct kmem_cache *s)
208 {
209 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
210 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
211 }
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 extern void print_tracking(struct kmem_cache *s, void *object);
220 #else
221 static inline void print_tracking(struct kmem_cache *s, void *object)
222 {
223 }
224 #endif
225 
226 /*
227  * Returns true if any of the specified slub_debug flags is enabled for the
228  * cache. Use only for flags parsed by setup_slub_debug() as it also enables
229  * the static key.
230  */
231 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
232 {
233 #ifdef CONFIG_SLUB_DEBUG
234 	VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
235 	if (static_branch_unlikely(&slub_debug_enabled))
236 		return s->flags & flags;
237 #endif
238 	return false;
239 }
240 
241 #ifdef CONFIG_MEMCG_KMEM
242 static inline struct obj_cgroup **page_obj_cgroups(struct page *page)
243 {
244 	/*
245 	 * page->mem_cgroup and page->obj_cgroups are sharing the same
246 	 * space. To distinguish between them in case we don't know for sure
247 	 * that the page is a slab page (e.g. page_cgroup_ino()), let's
248 	 * always set the lowest bit of obj_cgroups.
249 	 */
250 	return (struct obj_cgroup **)
251 		((unsigned long)page->obj_cgroups & ~0x1UL);
252 }
253 
254 static inline bool page_has_obj_cgroups(struct page *page)
255 {
256 	return ((unsigned long)page->obj_cgroups & 0x1UL);
257 }
258 
259 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
260 				 gfp_t gfp);
261 
262 static inline void memcg_free_page_obj_cgroups(struct page *page)
263 {
264 	kfree(page_obj_cgroups(page));
265 	page->obj_cgroups = NULL;
266 }
267 
268 static inline size_t obj_full_size(struct kmem_cache *s)
269 {
270 	/*
271 	 * For each accounted object there is an extra space which is used
272 	 * to store obj_cgroup membership. Charge it too.
273 	 */
274 	return s->size + sizeof(struct obj_cgroup *);
275 }
276 
277 static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s,
278 							   size_t objects,
279 							   gfp_t flags)
280 {
281 	struct obj_cgroup *objcg;
282 
283 	objcg = get_obj_cgroup_from_current();
284 	if (!objcg)
285 		return NULL;
286 
287 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
288 		obj_cgroup_put(objcg);
289 		return NULL;
290 	}
291 
292 	return objcg;
293 }
294 
295 static inline void mod_objcg_state(struct obj_cgroup *objcg,
296 				   struct pglist_data *pgdat,
297 				   int idx, int nr)
298 {
299 	struct mem_cgroup *memcg;
300 	struct lruvec *lruvec;
301 
302 	rcu_read_lock();
303 	memcg = obj_cgroup_memcg(objcg);
304 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
305 	mod_memcg_lruvec_state(lruvec, idx, nr);
306 	rcu_read_unlock();
307 }
308 
309 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
310 					      struct obj_cgroup *objcg,
311 					      gfp_t flags, size_t size,
312 					      void **p)
313 {
314 	struct page *page;
315 	unsigned long off;
316 	size_t i;
317 
318 	if (!objcg)
319 		return;
320 
321 	flags &= ~__GFP_ACCOUNT;
322 	for (i = 0; i < size; i++) {
323 		if (likely(p[i])) {
324 			page = virt_to_head_page(p[i]);
325 
326 			if (!page_has_obj_cgroups(page) &&
327 			    memcg_alloc_page_obj_cgroups(page, s, flags)) {
328 				obj_cgroup_uncharge(objcg, obj_full_size(s));
329 				continue;
330 			}
331 
332 			off = obj_to_index(s, page, p[i]);
333 			obj_cgroup_get(objcg);
334 			page_obj_cgroups(page)[off] = objcg;
335 			mod_objcg_state(objcg, page_pgdat(page),
336 					cache_vmstat_idx(s), obj_full_size(s));
337 		} else {
338 			obj_cgroup_uncharge(objcg, obj_full_size(s));
339 		}
340 	}
341 	obj_cgroup_put(objcg);
342 }
343 
344 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
345 					void **p, int objects)
346 {
347 	struct kmem_cache *s;
348 	struct obj_cgroup *objcg;
349 	struct page *page;
350 	unsigned int off;
351 	int i;
352 
353 	if (!memcg_kmem_enabled())
354 		return;
355 
356 	for (i = 0; i < objects; i++) {
357 		if (unlikely(!p[i]))
358 			continue;
359 
360 		page = virt_to_head_page(p[i]);
361 		if (!page_has_obj_cgroups(page))
362 			continue;
363 
364 		if (!s_orig)
365 			s = page->slab_cache;
366 		else
367 			s = s_orig;
368 
369 		off = obj_to_index(s, page, p[i]);
370 		objcg = page_obj_cgroups(page)[off];
371 		if (!objcg)
372 			continue;
373 
374 		page_obj_cgroups(page)[off] = NULL;
375 		obj_cgroup_uncharge(objcg, obj_full_size(s));
376 		mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
377 				-obj_full_size(s));
378 		obj_cgroup_put(objcg);
379 	}
380 }
381 
382 #else /* CONFIG_MEMCG_KMEM */
383 static inline bool page_has_obj_cgroups(struct page *page)
384 {
385 	return false;
386 }
387 
388 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
389 {
390 	return NULL;
391 }
392 
393 static inline int memcg_alloc_page_obj_cgroups(struct page *page,
394 					       struct kmem_cache *s, gfp_t gfp)
395 {
396 	return 0;
397 }
398 
399 static inline void memcg_free_page_obj_cgroups(struct page *page)
400 {
401 }
402 
403 static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s,
404 							   size_t objects,
405 							   gfp_t flags)
406 {
407 	return NULL;
408 }
409 
410 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
411 					      struct obj_cgroup *objcg,
412 					      gfp_t flags, size_t size,
413 					      void **p)
414 {
415 }
416 
417 static inline void memcg_slab_free_hook(struct kmem_cache *s,
418 					void **p, int objects)
419 {
420 }
421 #endif /* CONFIG_MEMCG_KMEM */
422 
423 static inline struct kmem_cache *virt_to_cache(const void *obj)
424 {
425 	struct page *page;
426 
427 	page = virt_to_head_page(obj);
428 	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
429 					__func__))
430 		return NULL;
431 	return page->slab_cache;
432 }
433 
434 static __always_inline void account_slab_page(struct page *page, int order,
435 					      struct kmem_cache *s)
436 {
437 	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
438 			    PAGE_SIZE << order);
439 }
440 
441 static __always_inline void unaccount_slab_page(struct page *page, int order,
442 						struct kmem_cache *s)
443 {
444 	if (memcg_kmem_enabled())
445 		memcg_free_page_obj_cgroups(page);
446 
447 	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
448 			    -(PAGE_SIZE << order));
449 }
450 
451 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
452 {
453 	struct kmem_cache *cachep;
454 
455 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
456 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
457 		return s;
458 
459 	cachep = virt_to_cache(x);
460 	if (WARN(cachep && cachep != s,
461 		  "%s: Wrong slab cache. %s but object is from %s\n",
462 		  __func__, s->name, cachep->name))
463 		print_tracking(cachep, x);
464 	return cachep;
465 }
466 
467 static inline size_t slab_ksize(const struct kmem_cache *s)
468 {
469 #ifndef CONFIG_SLUB
470 	return s->object_size;
471 
472 #else /* CONFIG_SLUB */
473 # ifdef CONFIG_SLUB_DEBUG
474 	/*
475 	 * Debugging requires use of the padding between object
476 	 * and whatever may come after it.
477 	 */
478 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
479 		return s->object_size;
480 # endif
481 	if (s->flags & SLAB_KASAN)
482 		return s->object_size;
483 	/*
484 	 * If we have the need to store the freelist pointer
485 	 * back there or track user information then we can
486 	 * only use the space before that information.
487 	 */
488 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
489 		return s->inuse;
490 	/*
491 	 * Else we can use all the padding etc for the allocation
492 	 */
493 	return s->size;
494 #endif
495 }
496 
497 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
498 						     struct obj_cgroup **objcgp,
499 						     size_t size, gfp_t flags)
500 {
501 	flags &= gfp_allowed_mask;
502 
503 	fs_reclaim_acquire(flags);
504 	fs_reclaim_release(flags);
505 
506 	might_sleep_if(gfpflags_allow_blocking(flags));
507 
508 	if (should_failslab(s, flags))
509 		return NULL;
510 
511 	if (memcg_kmem_enabled() &&
512 	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
513 		*objcgp = memcg_slab_pre_alloc_hook(s, size, flags);
514 
515 	return s;
516 }
517 
518 static inline void slab_post_alloc_hook(struct kmem_cache *s,
519 					struct obj_cgroup *objcg,
520 					gfp_t flags, size_t size, void **p)
521 {
522 	size_t i;
523 
524 	flags &= gfp_allowed_mask;
525 	for (i = 0; i < size; i++) {
526 		p[i] = kasan_slab_alloc(s, p[i], flags);
527 		/* As p[i] might get tagged, call kmemleak hook after KASAN. */
528 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
529 					 s->flags, flags);
530 	}
531 
532 	if (memcg_kmem_enabled())
533 		memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
534 }
535 
536 #ifndef CONFIG_SLOB
537 /*
538  * The slab lists for all objects.
539  */
540 struct kmem_cache_node {
541 	spinlock_t list_lock;
542 
543 #ifdef CONFIG_SLAB
544 	struct list_head slabs_partial;	/* partial list first, better asm code */
545 	struct list_head slabs_full;
546 	struct list_head slabs_free;
547 	unsigned long total_slabs;	/* length of all slab lists */
548 	unsigned long free_slabs;	/* length of free slab list only */
549 	unsigned long free_objects;
550 	unsigned int free_limit;
551 	unsigned int colour_next;	/* Per-node cache coloring */
552 	struct array_cache *shared;	/* shared per node */
553 	struct alien_cache **alien;	/* on other nodes */
554 	unsigned long next_reap;	/* updated without locking */
555 	int free_touched;		/* updated without locking */
556 #endif
557 
558 #ifdef CONFIG_SLUB
559 	unsigned long nr_partial;
560 	struct list_head partial;
561 #ifdef CONFIG_SLUB_DEBUG
562 	atomic_long_t nr_slabs;
563 	atomic_long_t total_objects;
564 	struct list_head full;
565 #endif
566 #endif
567 
568 };
569 
570 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
571 {
572 	return s->node[node];
573 }
574 
575 /*
576  * Iterator over all nodes. The body will be executed for each node that has
577  * a kmem_cache_node structure allocated (which is true for all online nodes)
578  */
579 #define for_each_kmem_cache_node(__s, __node, __n) \
580 	for (__node = 0; __node < nr_node_ids; __node++) \
581 		 if ((__n = get_node(__s, __node)))
582 
583 #endif
584 
585 void *slab_start(struct seq_file *m, loff_t *pos);
586 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
587 void slab_stop(struct seq_file *m, void *p);
588 int memcg_slab_show(struct seq_file *m, void *p);
589 
590 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
591 void dump_unreclaimable_slab(void);
592 #else
593 static inline void dump_unreclaimable_slab(void)
594 {
595 }
596 #endif
597 
598 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
599 
600 #ifdef CONFIG_SLAB_FREELIST_RANDOM
601 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
602 			gfp_t gfp);
603 void cache_random_seq_destroy(struct kmem_cache *cachep);
604 #else
605 static inline int cache_random_seq_create(struct kmem_cache *cachep,
606 					unsigned int count, gfp_t gfp)
607 {
608 	return 0;
609 }
610 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
611 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
612 
613 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
614 {
615 	if (static_branch_unlikely(&init_on_alloc)) {
616 		if (c->ctor)
617 			return false;
618 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
619 			return flags & __GFP_ZERO;
620 		return true;
621 	}
622 	return flags & __GFP_ZERO;
623 }
624 
625 static inline bool slab_want_init_on_free(struct kmem_cache *c)
626 {
627 	if (static_branch_unlikely(&init_on_free))
628 		return !(c->ctor ||
629 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
630 	return false;
631 }
632 
633 #endif /* MM_SLAB_H */
634