xref: /openbmc/linux/mm/slab.h (revision 6a143a7c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 #ifdef CONFIG_SLOB
9 /*
10  * Common fields provided in kmem_cache by all slab allocators
11  * This struct is either used directly by the allocator (SLOB)
12  * or the allocator must include definitions for all fields
13  * provided in kmem_cache_common in their definition of kmem_cache.
14  *
15  * Once we can do anonymous structs (C11 standard) we could put a
16  * anonymous struct definition in these allocators so that the
17  * separate allocations in the kmem_cache structure of SLAB and
18  * SLUB is no longer needed.
19  */
20 struct kmem_cache {
21 	unsigned int object_size;/* The original size of the object */
22 	unsigned int size;	/* The aligned/padded/added on size  */
23 	unsigned int align;	/* Alignment as calculated */
24 	slab_flags_t flags;	/* Active flags on the slab */
25 	unsigned int useroffset;/* Usercopy region offset */
26 	unsigned int usersize;	/* Usercopy region size */
27 	const char *name;	/* Slab name for sysfs */
28 	int refcount;		/* Use counter */
29 	void (*ctor)(void *);	/* Called on object slot creation */
30 	struct list_head list;	/* List of all slab caches on the system */
31 };
32 
33 #endif /* CONFIG_SLOB */
34 
35 #ifdef CONFIG_SLAB
36 #include <linux/slab_def.h>
37 #endif
38 
39 #ifdef CONFIG_SLUB
40 #include <linux/slub_def.h>
41 #endif
42 
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
49 
50 /*
51  * State of the slab allocator.
52  *
53  * This is used to describe the states of the allocator during bootup.
54  * Allocators use this to gradually bootstrap themselves. Most allocators
55  * have the problem that the structures used for managing slab caches are
56  * allocated from slab caches themselves.
57  */
58 enum slab_state {
59 	DOWN,			/* No slab functionality yet */
60 	PARTIAL,		/* SLUB: kmem_cache_node available */
61 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
62 	UP,			/* Slab caches usable but not all extras yet */
63 	FULL			/* Everything is working */
64 };
65 
66 extern enum slab_state slab_state;
67 
68 /* The slab cache mutex protects the management structures during changes */
69 extern struct mutex slab_mutex;
70 
71 /* The list of all slab caches on the system */
72 extern struct list_head slab_caches;
73 
74 /* The slab cache that manages slab cache information */
75 extern struct kmem_cache *kmem_cache;
76 
77 /* A table of kmalloc cache names and sizes */
78 extern const struct kmalloc_info_struct {
79 	const char *name[NR_KMALLOC_TYPES];
80 	unsigned int size;
81 } kmalloc_info[];
82 
83 #ifndef CONFIG_SLOB
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(slab_flags_t);
87 
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90 #endif
91 
92 gfp_t kmalloc_fix_flags(gfp_t flags);
93 
94 /* Functions provided by the slab allocators */
95 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
96 
97 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
98 			slab_flags_t flags, unsigned int useroffset,
99 			unsigned int usersize);
100 extern void create_boot_cache(struct kmem_cache *, const char *name,
101 			unsigned int size, slab_flags_t flags,
102 			unsigned int useroffset, unsigned int usersize);
103 
104 int slab_unmergeable(struct kmem_cache *s);
105 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
106 		slab_flags_t flags, const char *name, void (*ctor)(void *));
107 #ifndef CONFIG_SLOB
108 struct kmem_cache *
109 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
110 		   slab_flags_t flags, void (*ctor)(void *));
111 
112 slab_flags_t kmem_cache_flags(unsigned int object_size,
113 	slab_flags_t flags, const char *name);
114 #else
115 static inline struct kmem_cache *
116 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
117 		   slab_flags_t flags, void (*ctor)(void *))
118 { return NULL; }
119 
120 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
121 	slab_flags_t flags, const char *name)
122 {
123 	return flags;
124 }
125 #endif
126 
127 
128 /* Legal flag mask for kmem_cache_create(), for various configurations */
129 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
130 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
131 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
132 
133 #if defined(CONFIG_DEBUG_SLAB)
134 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
135 #elif defined(CONFIG_SLUB_DEBUG)
136 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
137 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
138 #else
139 #define SLAB_DEBUG_FLAGS (0)
140 #endif
141 
142 #if defined(CONFIG_SLAB)
143 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
144 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
145 			  SLAB_ACCOUNT)
146 #elif defined(CONFIG_SLUB)
147 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
148 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
149 #else
150 #define SLAB_CACHE_FLAGS (0)
151 #endif
152 
153 /* Common flags available with current configuration */
154 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
155 
156 /* Common flags permitted for kmem_cache_create */
157 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
158 			      SLAB_RED_ZONE | \
159 			      SLAB_POISON | \
160 			      SLAB_STORE_USER | \
161 			      SLAB_TRACE | \
162 			      SLAB_CONSISTENCY_CHECKS | \
163 			      SLAB_MEM_SPREAD | \
164 			      SLAB_NOLEAKTRACE | \
165 			      SLAB_RECLAIM_ACCOUNT | \
166 			      SLAB_TEMPORARY | \
167 			      SLAB_ACCOUNT)
168 
169 bool __kmem_cache_empty(struct kmem_cache *);
170 int __kmem_cache_shutdown(struct kmem_cache *);
171 void __kmem_cache_release(struct kmem_cache *);
172 int __kmem_cache_shrink(struct kmem_cache *);
173 void slab_kmem_cache_release(struct kmem_cache *);
174 
175 struct seq_file;
176 struct file;
177 
178 struct slabinfo {
179 	unsigned long active_objs;
180 	unsigned long num_objs;
181 	unsigned long active_slabs;
182 	unsigned long num_slabs;
183 	unsigned long shared_avail;
184 	unsigned int limit;
185 	unsigned int batchcount;
186 	unsigned int shared;
187 	unsigned int objects_per_slab;
188 	unsigned int cache_order;
189 };
190 
191 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
192 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
193 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
194 		       size_t count, loff_t *ppos);
195 
196 /*
197  * Generic implementation of bulk operations
198  * These are useful for situations in which the allocator cannot
199  * perform optimizations. In that case segments of the object listed
200  * may be allocated or freed using these operations.
201  */
202 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
203 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
204 
205 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
206 {
207 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
208 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
209 }
210 
211 #ifdef CONFIG_SLUB_DEBUG
212 #ifdef CONFIG_SLUB_DEBUG_ON
213 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
214 #else
215 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
216 #endif
217 extern void print_tracking(struct kmem_cache *s, void *object);
218 #else
219 static inline void print_tracking(struct kmem_cache *s, void *object)
220 {
221 }
222 #endif
223 
224 /*
225  * Returns true if any of the specified slub_debug flags is enabled for the
226  * cache. Use only for flags parsed by setup_slub_debug() as it also enables
227  * the static key.
228  */
229 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
230 {
231 #ifdef CONFIG_SLUB_DEBUG
232 	VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
233 	if (static_branch_unlikely(&slub_debug_enabled))
234 		return s->flags & flags;
235 #endif
236 	return false;
237 }
238 
239 #ifdef CONFIG_MEMCG_KMEM
240 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
241 				 gfp_t gfp, bool new_page);
242 
243 static inline void memcg_free_page_obj_cgroups(struct page *page)
244 {
245 	kfree(page_objcgs(page));
246 	page->memcg_data = 0;
247 }
248 
249 static inline size_t obj_full_size(struct kmem_cache *s)
250 {
251 	/*
252 	 * For each accounted object there is an extra space which is used
253 	 * to store obj_cgroup membership. Charge it too.
254 	 */
255 	return s->size + sizeof(struct obj_cgroup *);
256 }
257 
258 /*
259  * Returns false if the allocation should fail.
260  */
261 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
262 					     struct obj_cgroup **objcgp,
263 					     size_t objects, gfp_t flags)
264 {
265 	struct obj_cgroup *objcg;
266 
267 	if (!memcg_kmem_enabled())
268 		return true;
269 
270 	if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
271 		return true;
272 
273 	objcg = get_obj_cgroup_from_current();
274 	if (!objcg)
275 		return true;
276 
277 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
278 		obj_cgroup_put(objcg);
279 		return false;
280 	}
281 
282 	*objcgp = objcg;
283 	return true;
284 }
285 
286 static inline void mod_objcg_state(struct obj_cgroup *objcg,
287 				   struct pglist_data *pgdat,
288 				   enum node_stat_item idx, int nr)
289 {
290 	struct mem_cgroup *memcg;
291 	struct lruvec *lruvec;
292 
293 	rcu_read_lock();
294 	memcg = obj_cgroup_memcg(objcg);
295 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
296 	mod_memcg_lruvec_state(lruvec, idx, nr);
297 	rcu_read_unlock();
298 }
299 
300 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
301 					      struct obj_cgroup *objcg,
302 					      gfp_t flags, size_t size,
303 					      void **p)
304 {
305 	struct page *page;
306 	unsigned long off;
307 	size_t i;
308 
309 	if (!memcg_kmem_enabled() || !objcg)
310 		return;
311 
312 	flags &= ~__GFP_ACCOUNT;
313 	for (i = 0; i < size; i++) {
314 		if (likely(p[i])) {
315 			page = virt_to_head_page(p[i]);
316 
317 			if (!page_objcgs(page) &&
318 			    memcg_alloc_page_obj_cgroups(page, s, flags,
319 							 false)) {
320 				obj_cgroup_uncharge(objcg, obj_full_size(s));
321 				continue;
322 			}
323 
324 			off = obj_to_index(s, page, p[i]);
325 			obj_cgroup_get(objcg);
326 			page_objcgs(page)[off] = objcg;
327 			mod_objcg_state(objcg, page_pgdat(page),
328 					cache_vmstat_idx(s), obj_full_size(s));
329 		} else {
330 			obj_cgroup_uncharge(objcg, obj_full_size(s));
331 		}
332 	}
333 	obj_cgroup_put(objcg);
334 }
335 
336 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
337 					void **p, int objects)
338 {
339 	struct kmem_cache *s;
340 	struct obj_cgroup **objcgs;
341 	struct obj_cgroup *objcg;
342 	struct page *page;
343 	unsigned int off;
344 	int i;
345 
346 	if (!memcg_kmem_enabled())
347 		return;
348 
349 	for (i = 0; i < objects; i++) {
350 		if (unlikely(!p[i]))
351 			continue;
352 
353 		page = virt_to_head_page(p[i]);
354 		objcgs = page_objcgs(page);
355 		if (!objcgs)
356 			continue;
357 
358 		if (!s_orig)
359 			s = page->slab_cache;
360 		else
361 			s = s_orig;
362 
363 		off = obj_to_index(s, page, p[i]);
364 		objcg = objcgs[off];
365 		if (!objcg)
366 			continue;
367 
368 		objcgs[off] = NULL;
369 		obj_cgroup_uncharge(objcg, obj_full_size(s));
370 		mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
371 				-obj_full_size(s));
372 		obj_cgroup_put(objcg);
373 	}
374 }
375 
376 #else /* CONFIG_MEMCG_KMEM */
377 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
378 {
379 	return NULL;
380 }
381 
382 static inline int memcg_alloc_page_obj_cgroups(struct page *page,
383 					       struct kmem_cache *s, gfp_t gfp,
384 					       bool new_page)
385 {
386 	return 0;
387 }
388 
389 static inline void memcg_free_page_obj_cgroups(struct page *page)
390 {
391 }
392 
393 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
394 					     struct obj_cgroup **objcgp,
395 					     size_t objects, gfp_t flags)
396 {
397 	return true;
398 }
399 
400 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
401 					      struct obj_cgroup *objcg,
402 					      gfp_t flags, size_t size,
403 					      void **p)
404 {
405 }
406 
407 static inline void memcg_slab_free_hook(struct kmem_cache *s,
408 					void **p, int objects)
409 {
410 }
411 #endif /* CONFIG_MEMCG_KMEM */
412 
413 static inline struct kmem_cache *virt_to_cache(const void *obj)
414 {
415 	struct page *page;
416 
417 	page = virt_to_head_page(obj);
418 	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
419 					__func__))
420 		return NULL;
421 	return page->slab_cache;
422 }
423 
424 static __always_inline void account_slab_page(struct page *page, int order,
425 					      struct kmem_cache *s,
426 					      gfp_t gfp)
427 {
428 	if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
429 		memcg_alloc_page_obj_cgroups(page, s, gfp, true);
430 
431 	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
432 			    PAGE_SIZE << order);
433 }
434 
435 static __always_inline void unaccount_slab_page(struct page *page, int order,
436 						struct kmem_cache *s)
437 {
438 	if (memcg_kmem_enabled())
439 		memcg_free_page_obj_cgroups(page);
440 
441 	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
442 			    -(PAGE_SIZE << order));
443 }
444 
445 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
446 {
447 	struct kmem_cache *cachep;
448 
449 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
450 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
451 		return s;
452 
453 	cachep = virt_to_cache(x);
454 	if (WARN(cachep && cachep != s,
455 		  "%s: Wrong slab cache. %s but object is from %s\n",
456 		  __func__, s->name, cachep->name))
457 		print_tracking(cachep, x);
458 	return cachep;
459 }
460 
461 static inline size_t slab_ksize(const struct kmem_cache *s)
462 {
463 #ifndef CONFIG_SLUB
464 	return s->object_size;
465 
466 #else /* CONFIG_SLUB */
467 # ifdef CONFIG_SLUB_DEBUG
468 	/*
469 	 * Debugging requires use of the padding between object
470 	 * and whatever may come after it.
471 	 */
472 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
473 		return s->object_size;
474 # endif
475 	if (s->flags & SLAB_KASAN)
476 		return s->object_size;
477 	/*
478 	 * If we have the need to store the freelist pointer
479 	 * back there or track user information then we can
480 	 * only use the space before that information.
481 	 */
482 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
483 		return s->inuse;
484 	/*
485 	 * Else we can use all the padding etc for the allocation
486 	 */
487 	return s->size;
488 #endif
489 }
490 
491 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
492 						     struct obj_cgroup **objcgp,
493 						     size_t size, gfp_t flags)
494 {
495 	flags &= gfp_allowed_mask;
496 
497 	might_alloc(flags);
498 
499 	if (should_failslab(s, flags))
500 		return NULL;
501 
502 	if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
503 		return NULL;
504 
505 	return s;
506 }
507 
508 static inline void slab_post_alloc_hook(struct kmem_cache *s,
509 					struct obj_cgroup *objcg,
510 					gfp_t flags, size_t size, void **p)
511 {
512 	size_t i;
513 
514 	flags &= gfp_allowed_mask;
515 	for (i = 0; i < size; i++) {
516 		p[i] = kasan_slab_alloc(s, p[i], flags);
517 		/* As p[i] might get tagged, call kmemleak hook after KASAN. */
518 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
519 					 s->flags, flags);
520 	}
521 
522 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
523 }
524 
525 #ifndef CONFIG_SLOB
526 /*
527  * The slab lists for all objects.
528  */
529 struct kmem_cache_node {
530 	spinlock_t list_lock;
531 
532 #ifdef CONFIG_SLAB
533 	struct list_head slabs_partial;	/* partial list first, better asm code */
534 	struct list_head slabs_full;
535 	struct list_head slabs_free;
536 	unsigned long total_slabs;	/* length of all slab lists */
537 	unsigned long free_slabs;	/* length of free slab list only */
538 	unsigned long free_objects;
539 	unsigned int free_limit;
540 	unsigned int colour_next;	/* Per-node cache coloring */
541 	struct array_cache *shared;	/* shared per node */
542 	struct alien_cache **alien;	/* on other nodes */
543 	unsigned long next_reap;	/* updated without locking */
544 	int free_touched;		/* updated without locking */
545 #endif
546 
547 #ifdef CONFIG_SLUB
548 	unsigned long nr_partial;
549 	struct list_head partial;
550 #ifdef CONFIG_SLUB_DEBUG
551 	atomic_long_t nr_slabs;
552 	atomic_long_t total_objects;
553 	struct list_head full;
554 #endif
555 #endif
556 
557 };
558 
559 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
560 {
561 	return s->node[node];
562 }
563 
564 /*
565  * Iterator over all nodes. The body will be executed for each node that has
566  * a kmem_cache_node structure allocated (which is true for all online nodes)
567  */
568 #define for_each_kmem_cache_node(__s, __node, __n) \
569 	for (__node = 0; __node < nr_node_ids; __node++) \
570 		 if ((__n = get_node(__s, __node)))
571 
572 #endif
573 
574 void *slab_start(struct seq_file *m, loff_t *pos);
575 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
576 void slab_stop(struct seq_file *m, void *p);
577 int memcg_slab_show(struct seq_file *m, void *p);
578 
579 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
580 void dump_unreclaimable_slab(void);
581 #else
582 static inline void dump_unreclaimable_slab(void)
583 {
584 }
585 #endif
586 
587 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
588 
589 #ifdef CONFIG_SLAB_FREELIST_RANDOM
590 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
591 			gfp_t gfp);
592 void cache_random_seq_destroy(struct kmem_cache *cachep);
593 #else
594 static inline int cache_random_seq_create(struct kmem_cache *cachep,
595 					unsigned int count, gfp_t gfp)
596 {
597 	return 0;
598 }
599 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
600 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
601 
602 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
603 {
604 	if (static_branch_unlikely(&init_on_alloc)) {
605 		if (c->ctor)
606 			return false;
607 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
608 			return flags & __GFP_ZERO;
609 		return true;
610 	}
611 	return flags & __GFP_ZERO;
612 }
613 
614 static inline bool slab_want_init_on_free(struct kmem_cache *c)
615 {
616 	if (static_branch_unlikely(&init_on_free))
617 		return !(c->ctor ||
618 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
619 	return false;
620 }
621 
622 #define KS_ADDRS_COUNT 16
623 struct kmem_obj_info {
624 	void *kp_ptr;
625 	struct page *kp_page;
626 	void *kp_objp;
627 	unsigned long kp_data_offset;
628 	struct kmem_cache *kp_slab_cache;
629 	void *kp_ret;
630 	void *kp_stack[KS_ADDRS_COUNT];
631 };
632 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page);
633 
634 #endif /* MM_SLAB_H */
635