xref: /openbmc/linux/mm/slab.h (revision 680ef72a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 #ifdef CONFIG_SLOB
9 /*
10  * Common fields provided in kmem_cache by all slab allocators
11  * This struct is either used directly by the allocator (SLOB)
12  * or the allocator must include definitions for all fields
13  * provided in kmem_cache_common in their definition of kmem_cache.
14  *
15  * Once we can do anonymous structs (C11 standard) we could put a
16  * anonymous struct definition in these allocators so that the
17  * separate allocations in the kmem_cache structure of SLAB and
18  * SLUB is no longer needed.
19  */
20 struct kmem_cache {
21 	unsigned int object_size;/* The original size of the object */
22 	unsigned int size;	/* The aligned/padded/added on size  */
23 	unsigned int align;	/* Alignment as calculated */
24 	slab_flags_t flags;	/* Active flags on the slab */
25 	const char *name;	/* Slab name for sysfs */
26 	int refcount;		/* Use counter */
27 	void (*ctor)(void *);	/* Called on object slot creation */
28 	struct list_head list;	/* List of all slab caches on the system */
29 };
30 
31 #endif /* CONFIG_SLOB */
32 
33 #ifdef CONFIG_SLAB
34 #include <linux/slab_def.h>
35 #endif
36 
37 #ifdef CONFIG_SLUB
38 #include <linux/slub_def.h>
39 #endif
40 
41 #include <linux/memcontrol.h>
42 #include <linux/fault-inject.h>
43 #include <linux/kasan.h>
44 #include <linux/kmemleak.h>
45 #include <linux/random.h>
46 #include <linux/sched/mm.h>
47 
48 /*
49  * State of the slab allocator.
50  *
51  * This is used to describe the states of the allocator during bootup.
52  * Allocators use this to gradually bootstrap themselves. Most allocators
53  * have the problem that the structures used for managing slab caches are
54  * allocated from slab caches themselves.
55  */
56 enum slab_state {
57 	DOWN,			/* No slab functionality yet */
58 	PARTIAL,		/* SLUB: kmem_cache_node available */
59 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
60 	UP,			/* Slab caches usable but not all extras yet */
61 	FULL			/* Everything is working */
62 };
63 
64 extern enum slab_state slab_state;
65 
66 /* The slab cache mutex protects the management structures during changes */
67 extern struct mutex slab_mutex;
68 
69 /* The list of all slab caches on the system */
70 extern struct list_head slab_caches;
71 
72 /* The slab cache that manages slab cache information */
73 extern struct kmem_cache *kmem_cache;
74 
75 /* A table of kmalloc cache names and sizes */
76 extern const struct kmalloc_info_struct {
77 	const char *name;
78 	unsigned long size;
79 } kmalloc_info[];
80 
81 unsigned long calculate_alignment(slab_flags_t flags,
82 		unsigned long align, unsigned long size);
83 
84 #ifndef CONFIG_SLOB
85 /* Kmalloc array related functions */
86 void setup_kmalloc_cache_index_table(void);
87 void create_kmalloc_caches(slab_flags_t);
88 
89 /* Find the kmalloc slab corresponding for a certain size */
90 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
91 #endif
92 
93 
94 /* Functions provided by the slab allocators */
95 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
96 
97 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
98 			slab_flags_t flags);
99 extern void create_boot_cache(struct kmem_cache *, const char *name,
100 			size_t size, slab_flags_t flags);
101 
102 int slab_unmergeable(struct kmem_cache *s);
103 struct kmem_cache *find_mergeable(size_t size, size_t align,
104 		slab_flags_t flags, const char *name, void (*ctor)(void *));
105 #ifndef CONFIG_SLOB
106 struct kmem_cache *
107 __kmem_cache_alias(const char *name, size_t size, size_t align,
108 		   slab_flags_t flags, void (*ctor)(void *));
109 
110 slab_flags_t kmem_cache_flags(unsigned long object_size,
111 	slab_flags_t flags, const char *name,
112 	void (*ctor)(void *));
113 #else
114 static inline struct kmem_cache *
115 __kmem_cache_alias(const char *name, size_t size, size_t align,
116 		   slab_flags_t flags, void (*ctor)(void *))
117 { return NULL; }
118 
119 static inline slab_flags_t kmem_cache_flags(unsigned long object_size,
120 	slab_flags_t flags, const char *name,
121 	void (*ctor)(void *))
122 {
123 	return flags;
124 }
125 #endif
126 
127 
128 /* Legal flag mask for kmem_cache_create(), for various configurations */
129 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
130 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
131 
132 #if defined(CONFIG_DEBUG_SLAB)
133 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
134 #elif defined(CONFIG_SLUB_DEBUG)
135 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
136 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
137 #else
138 #define SLAB_DEBUG_FLAGS (0)
139 #endif
140 
141 #if defined(CONFIG_SLAB)
142 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
143 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
144 			  SLAB_ACCOUNT)
145 #elif defined(CONFIG_SLUB)
146 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
147 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
148 #else
149 #define SLAB_CACHE_FLAGS (0)
150 #endif
151 
152 /* Common flags available with current configuration */
153 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
154 
155 /* Common flags permitted for kmem_cache_create */
156 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
157 			      SLAB_RED_ZONE | \
158 			      SLAB_POISON | \
159 			      SLAB_STORE_USER | \
160 			      SLAB_TRACE | \
161 			      SLAB_CONSISTENCY_CHECKS | \
162 			      SLAB_MEM_SPREAD | \
163 			      SLAB_NOLEAKTRACE | \
164 			      SLAB_RECLAIM_ACCOUNT | \
165 			      SLAB_TEMPORARY | \
166 			      SLAB_ACCOUNT)
167 
168 int __kmem_cache_shutdown(struct kmem_cache *);
169 void __kmem_cache_release(struct kmem_cache *);
170 int __kmem_cache_shrink(struct kmem_cache *);
171 void __kmemcg_cache_deactivate(struct kmem_cache *s);
172 void slab_kmem_cache_release(struct kmem_cache *);
173 
174 struct seq_file;
175 struct file;
176 
177 struct slabinfo {
178 	unsigned long active_objs;
179 	unsigned long num_objs;
180 	unsigned long active_slabs;
181 	unsigned long num_slabs;
182 	unsigned long shared_avail;
183 	unsigned int limit;
184 	unsigned int batchcount;
185 	unsigned int shared;
186 	unsigned int objects_per_slab;
187 	unsigned int cache_order;
188 };
189 
190 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
191 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
192 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
193 		       size_t count, loff_t *ppos);
194 
195 /*
196  * Generic implementation of bulk operations
197  * These are useful for situations in which the allocator cannot
198  * perform optimizations. In that case segments of the object listed
199  * may be allocated or freed using these operations.
200  */
201 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
202 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
203 
204 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
205 
206 /* List of all root caches. */
207 extern struct list_head		slab_root_caches;
208 #define root_caches_node	memcg_params.__root_caches_node
209 
210 /*
211  * Iterate over all memcg caches of the given root cache. The caller must hold
212  * slab_mutex.
213  */
214 #define for_each_memcg_cache(iter, root) \
215 	list_for_each_entry(iter, &(root)->memcg_params.children, \
216 			    memcg_params.children_node)
217 
218 static inline bool is_root_cache(struct kmem_cache *s)
219 {
220 	return !s->memcg_params.root_cache;
221 }
222 
223 static inline bool slab_equal_or_root(struct kmem_cache *s,
224 				      struct kmem_cache *p)
225 {
226 	return p == s || p == s->memcg_params.root_cache;
227 }
228 
229 /*
230  * We use suffixes to the name in memcg because we can't have caches
231  * created in the system with the same name. But when we print them
232  * locally, better refer to them with the base name
233  */
234 static inline const char *cache_name(struct kmem_cache *s)
235 {
236 	if (!is_root_cache(s))
237 		s = s->memcg_params.root_cache;
238 	return s->name;
239 }
240 
241 /*
242  * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
243  * That said the caller must assure the memcg's cache won't go away by either
244  * taking a css reference to the owner cgroup, or holding the slab_mutex.
245  */
246 static inline struct kmem_cache *
247 cache_from_memcg_idx(struct kmem_cache *s, int idx)
248 {
249 	struct kmem_cache *cachep;
250 	struct memcg_cache_array *arr;
251 
252 	rcu_read_lock();
253 	arr = rcu_dereference(s->memcg_params.memcg_caches);
254 
255 	/*
256 	 * Make sure we will access the up-to-date value. The code updating
257 	 * memcg_caches issues a write barrier to match this (see
258 	 * memcg_create_kmem_cache()).
259 	 */
260 	cachep = READ_ONCE(arr->entries[idx]);
261 	rcu_read_unlock();
262 
263 	return cachep;
264 }
265 
266 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
267 {
268 	if (is_root_cache(s))
269 		return s;
270 	return s->memcg_params.root_cache;
271 }
272 
273 static __always_inline int memcg_charge_slab(struct page *page,
274 					     gfp_t gfp, int order,
275 					     struct kmem_cache *s)
276 {
277 	if (!memcg_kmem_enabled())
278 		return 0;
279 	if (is_root_cache(s))
280 		return 0;
281 	return memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
282 }
283 
284 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
285 						struct kmem_cache *s)
286 {
287 	if (!memcg_kmem_enabled())
288 		return;
289 	memcg_kmem_uncharge(page, order);
290 }
291 
292 extern void slab_init_memcg_params(struct kmem_cache *);
293 extern void memcg_link_cache(struct kmem_cache *s);
294 extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
295 				void (*deact_fn)(struct kmem_cache *));
296 
297 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
298 
299 /* If !memcg, all caches are root. */
300 #define slab_root_caches	slab_caches
301 #define root_caches_node	list
302 
303 #define for_each_memcg_cache(iter, root) \
304 	for ((void)(iter), (void)(root); 0; )
305 
306 static inline bool is_root_cache(struct kmem_cache *s)
307 {
308 	return true;
309 }
310 
311 static inline bool slab_equal_or_root(struct kmem_cache *s,
312 				      struct kmem_cache *p)
313 {
314 	return true;
315 }
316 
317 static inline const char *cache_name(struct kmem_cache *s)
318 {
319 	return s->name;
320 }
321 
322 static inline struct kmem_cache *
323 cache_from_memcg_idx(struct kmem_cache *s, int idx)
324 {
325 	return NULL;
326 }
327 
328 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
329 {
330 	return s;
331 }
332 
333 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
334 				    struct kmem_cache *s)
335 {
336 	return 0;
337 }
338 
339 static inline void memcg_uncharge_slab(struct page *page, int order,
340 				       struct kmem_cache *s)
341 {
342 }
343 
344 static inline void slab_init_memcg_params(struct kmem_cache *s)
345 {
346 }
347 
348 static inline void memcg_link_cache(struct kmem_cache *s)
349 {
350 }
351 
352 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
353 
354 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
355 {
356 	struct kmem_cache *cachep;
357 	struct page *page;
358 
359 	/*
360 	 * When kmemcg is not being used, both assignments should return the
361 	 * same value. but we don't want to pay the assignment price in that
362 	 * case. If it is not compiled in, the compiler should be smart enough
363 	 * to not do even the assignment. In that case, slab_equal_or_root
364 	 * will also be a constant.
365 	 */
366 	if (!memcg_kmem_enabled() &&
367 	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
368 		return s;
369 
370 	page = virt_to_head_page(x);
371 	cachep = page->slab_cache;
372 	if (slab_equal_or_root(cachep, s))
373 		return cachep;
374 
375 	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
376 	       __func__, s->name, cachep->name);
377 	WARN_ON_ONCE(1);
378 	return s;
379 }
380 
381 static inline size_t slab_ksize(const struct kmem_cache *s)
382 {
383 #ifndef CONFIG_SLUB
384 	return s->object_size;
385 
386 #else /* CONFIG_SLUB */
387 # ifdef CONFIG_SLUB_DEBUG
388 	/*
389 	 * Debugging requires use of the padding between object
390 	 * and whatever may come after it.
391 	 */
392 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
393 		return s->object_size;
394 # endif
395 	if (s->flags & SLAB_KASAN)
396 		return s->object_size;
397 	/*
398 	 * If we have the need to store the freelist pointer
399 	 * back there or track user information then we can
400 	 * only use the space before that information.
401 	 */
402 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
403 		return s->inuse;
404 	/*
405 	 * Else we can use all the padding etc for the allocation
406 	 */
407 	return s->size;
408 #endif
409 }
410 
411 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
412 						     gfp_t flags)
413 {
414 	flags &= gfp_allowed_mask;
415 
416 	fs_reclaim_acquire(flags);
417 	fs_reclaim_release(flags);
418 
419 	might_sleep_if(gfpflags_allow_blocking(flags));
420 
421 	if (should_failslab(s, flags))
422 		return NULL;
423 
424 	if (memcg_kmem_enabled() &&
425 	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
426 		return memcg_kmem_get_cache(s);
427 
428 	return s;
429 }
430 
431 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
432 					size_t size, void **p)
433 {
434 	size_t i;
435 
436 	flags &= gfp_allowed_mask;
437 	for (i = 0; i < size; i++) {
438 		void *object = p[i];
439 
440 		kmemleak_alloc_recursive(object, s->object_size, 1,
441 					 s->flags, flags);
442 		kasan_slab_alloc(s, object, flags);
443 	}
444 
445 	if (memcg_kmem_enabled())
446 		memcg_kmem_put_cache(s);
447 }
448 
449 #ifndef CONFIG_SLOB
450 /*
451  * The slab lists for all objects.
452  */
453 struct kmem_cache_node {
454 	spinlock_t list_lock;
455 
456 #ifdef CONFIG_SLAB
457 	struct list_head slabs_partial;	/* partial list first, better asm code */
458 	struct list_head slabs_full;
459 	struct list_head slabs_free;
460 	unsigned long total_slabs;	/* length of all slab lists */
461 	unsigned long free_slabs;	/* length of free slab list only */
462 	unsigned long free_objects;
463 	unsigned int free_limit;
464 	unsigned int colour_next;	/* Per-node cache coloring */
465 	struct array_cache *shared;	/* shared per node */
466 	struct alien_cache **alien;	/* on other nodes */
467 	unsigned long next_reap;	/* updated without locking */
468 	int free_touched;		/* updated without locking */
469 #endif
470 
471 #ifdef CONFIG_SLUB
472 	unsigned long nr_partial;
473 	struct list_head partial;
474 #ifdef CONFIG_SLUB_DEBUG
475 	atomic_long_t nr_slabs;
476 	atomic_long_t total_objects;
477 	struct list_head full;
478 #endif
479 #endif
480 
481 };
482 
483 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
484 {
485 	return s->node[node];
486 }
487 
488 /*
489  * Iterator over all nodes. The body will be executed for each node that has
490  * a kmem_cache_node structure allocated (which is true for all online nodes)
491  */
492 #define for_each_kmem_cache_node(__s, __node, __n) \
493 	for (__node = 0; __node < nr_node_ids; __node++) \
494 		 if ((__n = get_node(__s, __node)))
495 
496 #endif
497 
498 void *slab_start(struct seq_file *m, loff_t *pos);
499 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
500 void slab_stop(struct seq_file *m, void *p);
501 void *memcg_slab_start(struct seq_file *m, loff_t *pos);
502 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
503 void memcg_slab_stop(struct seq_file *m, void *p);
504 int memcg_slab_show(struct seq_file *m, void *p);
505 
506 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
507 void dump_unreclaimable_slab(void);
508 #else
509 static inline void dump_unreclaimable_slab(void)
510 {
511 }
512 #endif
513 
514 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
515 
516 #ifdef CONFIG_SLAB_FREELIST_RANDOM
517 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
518 			gfp_t gfp);
519 void cache_random_seq_destroy(struct kmem_cache *cachep);
520 #else
521 static inline int cache_random_seq_create(struct kmem_cache *cachep,
522 					unsigned int count, gfp_t gfp)
523 {
524 	return 0;
525 }
526 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
527 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
528 
529 #endif /* MM_SLAB_H */
530