xref: /openbmc/linux/mm/slab.h (revision 5e012745)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 #ifdef CONFIG_SLOB
9 /*
10  * Common fields provided in kmem_cache by all slab allocators
11  * This struct is either used directly by the allocator (SLOB)
12  * or the allocator must include definitions for all fields
13  * provided in kmem_cache_common in their definition of kmem_cache.
14  *
15  * Once we can do anonymous structs (C11 standard) we could put a
16  * anonymous struct definition in these allocators so that the
17  * separate allocations in the kmem_cache structure of SLAB and
18  * SLUB is no longer needed.
19  */
20 struct kmem_cache {
21 	unsigned int object_size;/* The original size of the object */
22 	unsigned int size;	/* The aligned/padded/added on size  */
23 	unsigned int align;	/* Alignment as calculated */
24 	slab_flags_t flags;	/* Active flags on the slab */
25 	unsigned int useroffset;/* Usercopy region offset */
26 	unsigned int usersize;	/* Usercopy region size */
27 	const char *name;	/* Slab name for sysfs */
28 	int refcount;		/* Use counter */
29 	void (*ctor)(void *);	/* Called on object slot creation */
30 	struct list_head list;	/* List of all slab caches on the system */
31 };
32 
33 #endif /* CONFIG_SLOB */
34 
35 #ifdef CONFIG_SLAB
36 #include <linux/slab_def.h>
37 #endif
38 
39 #ifdef CONFIG_SLUB
40 #include <linux/slub_def.h>
41 #endif
42 
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
49 
50 /*
51  * State of the slab allocator.
52  *
53  * This is used to describe the states of the allocator during bootup.
54  * Allocators use this to gradually bootstrap themselves. Most allocators
55  * have the problem that the structures used for managing slab caches are
56  * allocated from slab caches themselves.
57  */
58 enum slab_state {
59 	DOWN,			/* No slab functionality yet */
60 	PARTIAL,		/* SLUB: kmem_cache_node available */
61 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
62 	UP,			/* Slab caches usable but not all extras yet */
63 	FULL			/* Everything is working */
64 };
65 
66 extern enum slab_state slab_state;
67 
68 /* The slab cache mutex protects the management structures during changes */
69 extern struct mutex slab_mutex;
70 
71 /* The list of all slab caches on the system */
72 extern struct list_head slab_caches;
73 
74 /* The slab cache that manages slab cache information */
75 extern struct kmem_cache *kmem_cache;
76 
77 /* A table of kmalloc cache names and sizes */
78 extern const struct kmalloc_info_struct {
79 	const char *name;
80 	unsigned int size;
81 } kmalloc_info[];
82 
83 #ifndef CONFIG_SLOB
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(slab_flags_t);
87 
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90 #endif
91 
92 
93 /* Functions provided by the slab allocators */
94 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
95 
96 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
97 			slab_flags_t flags, unsigned int useroffset,
98 			unsigned int usersize);
99 extern void create_boot_cache(struct kmem_cache *, const char *name,
100 			unsigned int size, slab_flags_t flags,
101 			unsigned int useroffset, unsigned int usersize);
102 
103 int slab_unmergeable(struct kmem_cache *s);
104 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
105 		slab_flags_t flags, const char *name, void (*ctor)(void *));
106 #ifndef CONFIG_SLOB
107 struct kmem_cache *
108 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
109 		   slab_flags_t flags, void (*ctor)(void *));
110 
111 slab_flags_t kmem_cache_flags(unsigned int object_size,
112 	slab_flags_t flags, const char *name,
113 	void (*ctor)(void *));
114 #else
115 static inline struct kmem_cache *
116 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
117 		   slab_flags_t flags, void (*ctor)(void *))
118 { return NULL; }
119 
120 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
121 	slab_flags_t flags, const char *name,
122 	void (*ctor)(void *))
123 {
124 	return flags;
125 }
126 #endif
127 
128 
129 /* Legal flag mask for kmem_cache_create(), for various configurations */
130 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
131 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
132 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
133 
134 #if defined(CONFIG_DEBUG_SLAB)
135 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
136 #elif defined(CONFIG_SLUB_DEBUG)
137 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
138 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
139 #else
140 #define SLAB_DEBUG_FLAGS (0)
141 #endif
142 
143 #if defined(CONFIG_SLAB)
144 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
145 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
146 			  SLAB_ACCOUNT)
147 #elif defined(CONFIG_SLUB)
148 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
149 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
150 #else
151 #define SLAB_CACHE_FLAGS (0)
152 #endif
153 
154 /* Common flags available with current configuration */
155 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
156 
157 /* Common flags permitted for kmem_cache_create */
158 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
159 			      SLAB_RED_ZONE | \
160 			      SLAB_POISON | \
161 			      SLAB_STORE_USER | \
162 			      SLAB_TRACE | \
163 			      SLAB_CONSISTENCY_CHECKS | \
164 			      SLAB_MEM_SPREAD | \
165 			      SLAB_NOLEAKTRACE | \
166 			      SLAB_RECLAIM_ACCOUNT | \
167 			      SLAB_TEMPORARY | \
168 			      SLAB_ACCOUNT)
169 
170 bool __kmem_cache_empty(struct kmem_cache *);
171 int __kmem_cache_shutdown(struct kmem_cache *);
172 void __kmem_cache_release(struct kmem_cache *);
173 int __kmem_cache_shrink(struct kmem_cache *);
174 void __kmemcg_cache_deactivate(struct kmem_cache *s);
175 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s);
176 void slab_kmem_cache_release(struct kmem_cache *);
177 
178 struct seq_file;
179 struct file;
180 
181 struct slabinfo {
182 	unsigned long active_objs;
183 	unsigned long num_objs;
184 	unsigned long active_slabs;
185 	unsigned long num_slabs;
186 	unsigned long shared_avail;
187 	unsigned int limit;
188 	unsigned int batchcount;
189 	unsigned int shared;
190 	unsigned int objects_per_slab;
191 	unsigned int cache_order;
192 };
193 
194 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
195 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
196 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
197 		       size_t count, loff_t *ppos);
198 
199 /*
200  * Generic implementation of bulk operations
201  * These are useful for situations in which the allocator cannot
202  * perform optimizations. In that case segments of the object listed
203  * may be allocated or freed using these operations.
204  */
205 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
206 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
207 
208 static inline int cache_vmstat_idx(struct kmem_cache *s)
209 {
210 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
211 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE;
212 }
213 
214 #ifdef CONFIG_MEMCG_KMEM
215 
216 /* List of all root caches. */
217 extern struct list_head		slab_root_caches;
218 #define root_caches_node	memcg_params.__root_caches_node
219 
220 /*
221  * Iterate over all memcg caches of the given root cache. The caller must hold
222  * slab_mutex.
223  */
224 #define for_each_memcg_cache(iter, root) \
225 	list_for_each_entry(iter, &(root)->memcg_params.children, \
226 			    memcg_params.children_node)
227 
228 static inline bool is_root_cache(struct kmem_cache *s)
229 {
230 	return !s->memcg_params.root_cache;
231 }
232 
233 static inline bool slab_equal_or_root(struct kmem_cache *s,
234 				      struct kmem_cache *p)
235 {
236 	return p == s || p == s->memcg_params.root_cache;
237 }
238 
239 /*
240  * We use suffixes to the name in memcg because we can't have caches
241  * created in the system with the same name. But when we print them
242  * locally, better refer to them with the base name
243  */
244 static inline const char *cache_name(struct kmem_cache *s)
245 {
246 	if (!is_root_cache(s))
247 		s = s->memcg_params.root_cache;
248 	return s->name;
249 }
250 
251 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
252 {
253 	if (is_root_cache(s))
254 		return s;
255 	return s->memcg_params.root_cache;
256 }
257 
258 /*
259  * Expects a pointer to a slab page. Please note, that PageSlab() check
260  * isn't sufficient, as it returns true also for tail compound slab pages,
261  * which do not have slab_cache pointer set.
262  * So this function assumes that the page can pass PageHead() and PageSlab()
263  * checks.
264  *
265  * The kmem_cache can be reparented asynchronously. The caller must ensure
266  * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex.
267  */
268 static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
269 {
270 	struct kmem_cache *s;
271 
272 	s = READ_ONCE(page->slab_cache);
273 	if (s && !is_root_cache(s))
274 		return READ_ONCE(s->memcg_params.memcg);
275 
276 	return NULL;
277 }
278 
279 /*
280  * Charge the slab page belonging to the non-root kmem_cache.
281  * Can be called for non-root kmem_caches only.
282  */
283 static __always_inline int memcg_charge_slab(struct page *page,
284 					     gfp_t gfp, int order,
285 					     struct kmem_cache *s)
286 {
287 	struct mem_cgroup *memcg;
288 	struct lruvec *lruvec;
289 	int ret;
290 
291 	rcu_read_lock();
292 	memcg = READ_ONCE(s->memcg_params.memcg);
293 	while (memcg && !css_tryget_online(&memcg->css))
294 		memcg = parent_mem_cgroup(memcg);
295 	rcu_read_unlock();
296 
297 	if (unlikely(!memcg || mem_cgroup_is_root(memcg))) {
298 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
299 				    (1 << order));
300 		percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
301 		return 0;
302 	}
303 
304 	ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
305 	if (ret)
306 		goto out;
307 
308 	lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
309 	mod_lruvec_state(lruvec, cache_vmstat_idx(s), 1 << order);
310 
311 	/* transer try_charge() page references to kmem_cache */
312 	percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
313 	css_put_many(&memcg->css, 1 << order);
314 out:
315 	css_put(&memcg->css);
316 	return ret;
317 }
318 
319 /*
320  * Uncharge a slab page belonging to a non-root kmem_cache.
321  * Can be called for non-root kmem_caches only.
322  */
323 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
324 						struct kmem_cache *s)
325 {
326 	struct mem_cgroup *memcg;
327 	struct lruvec *lruvec;
328 
329 	rcu_read_lock();
330 	memcg = READ_ONCE(s->memcg_params.memcg);
331 	if (likely(!mem_cgroup_is_root(memcg))) {
332 		lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg);
333 		mod_lruvec_state(lruvec, cache_vmstat_idx(s), -(1 << order));
334 		memcg_kmem_uncharge_memcg(page, order, memcg);
335 	} else {
336 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
337 				    -(1 << order));
338 	}
339 	rcu_read_unlock();
340 
341 	percpu_ref_put_many(&s->memcg_params.refcnt, 1 << order);
342 }
343 
344 extern void slab_init_memcg_params(struct kmem_cache *);
345 extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg);
346 
347 #else /* CONFIG_MEMCG_KMEM */
348 
349 /* If !memcg, all caches are root. */
350 #define slab_root_caches	slab_caches
351 #define root_caches_node	list
352 
353 #define for_each_memcg_cache(iter, root) \
354 	for ((void)(iter), (void)(root); 0; )
355 
356 static inline bool is_root_cache(struct kmem_cache *s)
357 {
358 	return true;
359 }
360 
361 static inline bool slab_equal_or_root(struct kmem_cache *s,
362 				      struct kmem_cache *p)
363 {
364 	return s == p;
365 }
366 
367 static inline const char *cache_name(struct kmem_cache *s)
368 {
369 	return s->name;
370 }
371 
372 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
373 {
374 	return s;
375 }
376 
377 static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
378 {
379 	return NULL;
380 }
381 
382 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
383 				    struct kmem_cache *s)
384 {
385 	return 0;
386 }
387 
388 static inline void memcg_uncharge_slab(struct page *page, int order,
389 				       struct kmem_cache *s)
390 {
391 }
392 
393 static inline void slab_init_memcg_params(struct kmem_cache *s)
394 {
395 }
396 
397 static inline void memcg_link_cache(struct kmem_cache *s,
398 				    struct mem_cgroup *memcg)
399 {
400 }
401 
402 #endif /* CONFIG_MEMCG_KMEM */
403 
404 static inline struct kmem_cache *virt_to_cache(const void *obj)
405 {
406 	struct page *page;
407 
408 	page = virt_to_head_page(obj);
409 	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
410 					__func__))
411 		return NULL;
412 	return page->slab_cache;
413 }
414 
415 static __always_inline int charge_slab_page(struct page *page,
416 					    gfp_t gfp, int order,
417 					    struct kmem_cache *s)
418 {
419 	if (is_root_cache(s)) {
420 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
421 				    1 << order);
422 		return 0;
423 	}
424 
425 	return memcg_charge_slab(page, gfp, order, s);
426 }
427 
428 static __always_inline void uncharge_slab_page(struct page *page, int order,
429 					       struct kmem_cache *s)
430 {
431 	if (is_root_cache(s)) {
432 		mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
433 				    -(1 << order));
434 		return;
435 	}
436 
437 	memcg_uncharge_slab(page, order, s);
438 }
439 
440 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
441 {
442 	struct kmem_cache *cachep;
443 
444 	/*
445 	 * When kmemcg is not being used, both assignments should return the
446 	 * same value. but we don't want to pay the assignment price in that
447 	 * case. If it is not compiled in, the compiler should be smart enough
448 	 * to not do even the assignment. In that case, slab_equal_or_root
449 	 * will also be a constant.
450 	 */
451 	if (!memcg_kmem_enabled() &&
452 	    !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
453 	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
454 		return s;
455 
456 	cachep = virt_to_cache(x);
457 	WARN_ONCE(cachep && !slab_equal_or_root(cachep, s),
458 		  "%s: Wrong slab cache. %s but object is from %s\n",
459 		  __func__, s->name, cachep->name);
460 	return cachep;
461 }
462 
463 static inline size_t slab_ksize(const struct kmem_cache *s)
464 {
465 #ifndef CONFIG_SLUB
466 	return s->object_size;
467 
468 #else /* CONFIG_SLUB */
469 # ifdef CONFIG_SLUB_DEBUG
470 	/*
471 	 * Debugging requires use of the padding between object
472 	 * and whatever may come after it.
473 	 */
474 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
475 		return s->object_size;
476 # endif
477 	if (s->flags & SLAB_KASAN)
478 		return s->object_size;
479 	/*
480 	 * If we have the need to store the freelist pointer
481 	 * back there or track user information then we can
482 	 * only use the space before that information.
483 	 */
484 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
485 		return s->inuse;
486 	/*
487 	 * Else we can use all the padding etc for the allocation
488 	 */
489 	return s->size;
490 #endif
491 }
492 
493 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
494 						     gfp_t flags)
495 {
496 	flags &= gfp_allowed_mask;
497 
498 	fs_reclaim_acquire(flags);
499 	fs_reclaim_release(flags);
500 
501 	might_sleep_if(gfpflags_allow_blocking(flags));
502 
503 	if (should_failslab(s, flags))
504 		return NULL;
505 
506 	if (memcg_kmem_enabled() &&
507 	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
508 		return memcg_kmem_get_cache(s);
509 
510 	return s;
511 }
512 
513 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
514 					size_t size, void **p)
515 {
516 	size_t i;
517 
518 	flags &= gfp_allowed_mask;
519 	for (i = 0; i < size; i++) {
520 		p[i] = kasan_slab_alloc(s, p[i], flags);
521 		/* As p[i] might get tagged, call kmemleak hook after KASAN. */
522 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
523 					 s->flags, flags);
524 	}
525 
526 	if (memcg_kmem_enabled())
527 		memcg_kmem_put_cache(s);
528 }
529 
530 #ifndef CONFIG_SLOB
531 /*
532  * The slab lists for all objects.
533  */
534 struct kmem_cache_node {
535 	spinlock_t list_lock;
536 
537 #ifdef CONFIG_SLAB
538 	struct list_head slabs_partial;	/* partial list first, better asm code */
539 	struct list_head slabs_full;
540 	struct list_head slabs_free;
541 	unsigned long total_slabs;	/* length of all slab lists */
542 	unsigned long free_slabs;	/* length of free slab list only */
543 	unsigned long free_objects;
544 	unsigned int free_limit;
545 	unsigned int colour_next;	/* Per-node cache coloring */
546 	struct array_cache *shared;	/* shared per node */
547 	struct alien_cache **alien;	/* on other nodes */
548 	unsigned long next_reap;	/* updated without locking */
549 	int free_touched;		/* updated without locking */
550 #endif
551 
552 #ifdef CONFIG_SLUB
553 	unsigned long nr_partial;
554 	struct list_head partial;
555 #ifdef CONFIG_SLUB_DEBUG
556 	atomic_long_t nr_slabs;
557 	atomic_long_t total_objects;
558 	struct list_head full;
559 #endif
560 #endif
561 
562 };
563 
564 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
565 {
566 	return s->node[node];
567 }
568 
569 /*
570  * Iterator over all nodes. The body will be executed for each node that has
571  * a kmem_cache_node structure allocated (which is true for all online nodes)
572  */
573 #define for_each_kmem_cache_node(__s, __node, __n) \
574 	for (__node = 0; __node < nr_node_ids; __node++) \
575 		 if ((__n = get_node(__s, __node)))
576 
577 #endif
578 
579 void *slab_start(struct seq_file *m, loff_t *pos);
580 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
581 void slab_stop(struct seq_file *m, void *p);
582 void *memcg_slab_start(struct seq_file *m, loff_t *pos);
583 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
584 void memcg_slab_stop(struct seq_file *m, void *p);
585 int memcg_slab_show(struct seq_file *m, void *p);
586 
587 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
588 void dump_unreclaimable_slab(void);
589 #else
590 static inline void dump_unreclaimable_slab(void)
591 {
592 }
593 #endif
594 
595 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
596 
597 #ifdef CONFIG_SLAB_FREELIST_RANDOM
598 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
599 			gfp_t gfp);
600 void cache_random_seq_destroy(struct kmem_cache *cachep);
601 #else
602 static inline int cache_random_seq_create(struct kmem_cache *cachep,
603 					unsigned int count, gfp_t gfp)
604 {
605 	return 0;
606 }
607 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
608 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
609 
610 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
611 {
612 	if (static_branch_unlikely(&init_on_alloc)) {
613 		if (c->ctor)
614 			return false;
615 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
616 			return flags & __GFP_ZERO;
617 		return true;
618 	}
619 	return flags & __GFP_ZERO;
620 }
621 
622 static inline bool slab_want_init_on_free(struct kmem_cache *c)
623 {
624 	if (static_branch_unlikely(&init_on_free))
625 		return !(c->ctor ||
626 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
627 	return false;
628 }
629 
630 #endif /* MM_SLAB_H */
631