1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef MM_SLAB_H 3 #define MM_SLAB_H 4 /* 5 * Internal slab definitions 6 */ 7 8 #ifdef CONFIG_SLOB 9 /* 10 * Common fields provided in kmem_cache by all slab allocators 11 * This struct is either used directly by the allocator (SLOB) 12 * or the allocator must include definitions for all fields 13 * provided in kmem_cache_common in their definition of kmem_cache. 14 * 15 * Once we can do anonymous structs (C11 standard) we could put a 16 * anonymous struct definition in these allocators so that the 17 * separate allocations in the kmem_cache structure of SLAB and 18 * SLUB is no longer needed. 19 */ 20 struct kmem_cache { 21 unsigned int object_size;/* The original size of the object */ 22 unsigned int size; /* The aligned/padded/added on size */ 23 unsigned int align; /* Alignment as calculated */ 24 slab_flags_t flags; /* Active flags on the slab */ 25 unsigned int useroffset;/* Usercopy region offset */ 26 unsigned int usersize; /* Usercopy region size */ 27 const char *name; /* Slab name for sysfs */ 28 int refcount; /* Use counter */ 29 void (*ctor)(void *); /* Called on object slot creation */ 30 struct list_head list; /* List of all slab caches on the system */ 31 }; 32 33 #endif /* CONFIG_SLOB */ 34 35 #ifdef CONFIG_SLAB 36 #include <linux/slab_def.h> 37 #endif 38 39 #ifdef CONFIG_SLUB 40 #include <linux/slub_def.h> 41 #endif 42 43 #include <linux/memcontrol.h> 44 #include <linux/fault-inject.h> 45 #include <linux/kasan.h> 46 #include <linux/kmemleak.h> 47 #include <linux/random.h> 48 #include <linux/sched/mm.h> 49 50 /* 51 * State of the slab allocator. 52 * 53 * This is used to describe the states of the allocator during bootup. 54 * Allocators use this to gradually bootstrap themselves. Most allocators 55 * have the problem that the structures used for managing slab caches are 56 * allocated from slab caches themselves. 57 */ 58 enum slab_state { 59 DOWN, /* No slab functionality yet */ 60 PARTIAL, /* SLUB: kmem_cache_node available */ 61 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ 62 UP, /* Slab caches usable but not all extras yet */ 63 FULL /* Everything is working */ 64 }; 65 66 extern enum slab_state slab_state; 67 68 /* The slab cache mutex protects the management structures during changes */ 69 extern struct mutex slab_mutex; 70 71 /* The list of all slab caches on the system */ 72 extern struct list_head slab_caches; 73 74 /* The slab cache that manages slab cache information */ 75 extern struct kmem_cache *kmem_cache; 76 77 /* A table of kmalloc cache names and sizes */ 78 extern const struct kmalloc_info_struct { 79 const char *name; 80 unsigned int size; 81 } kmalloc_info[]; 82 83 #ifndef CONFIG_SLOB 84 /* Kmalloc array related functions */ 85 void setup_kmalloc_cache_index_table(void); 86 void create_kmalloc_caches(slab_flags_t); 87 88 /* Find the kmalloc slab corresponding for a certain size */ 89 struct kmem_cache *kmalloc_slab(size_t, gfp_t); 90 #endif 91 92 93 /* Functions provided by the slab allocators */ 94 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); 95 96 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size, 97 slab_flags_t flags, unsigned int useroffset, 98 unsigned int usersize); 99 extern void create_boot_cache(struct kmem_cache *, const char *name, 100 unsigned int size, slab_flags_t flags, 101 unsigned int useroffset, unsigned int usersize); 102 103 int slab_unmergeable(struct kmem_cache *s); 104 struct kmem_cache *find_mergeable(unsigned size, unsigned align, 105 slab_flags_t flags, const char *name, void (*ctor)(void *)); 106 #ifndef CONFIG_SLOB 107 struct kmem_cache * 108 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 109 slab_flags_t flags, void (*ctor)(void *)); 110 111 slab_flags_t kmem_cache_flags(unsigned int object_size, 112 slab_flags_t flags, const char *name, 113 void (*ctor)(void *)); 114 #else 115 static inline struct kmem_cache * 116 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 117 slab_flags_t flags, void (*ctor)(void *)) 118 { return NULL; } 119 120 static inline slab_flags_t kmem_cache_flags(unsigned int object_size, 121 slab_flags_t flags, const char *name, 122 void (*ctor)(void *)) 123 { 124 return flags; 125 } 126 #endif 127 128 129 /* Legal flag mask for kmem_cache_create(), for various configurations */ 130 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ 131 SLAB_CACHE_DMA32 | SLAB_PANIC | \ 132 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) 133 134 #if defined(CONFIG_DEBUG_SLAB) 135 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 136 #elif defined(CONFIG_SLUB_DEBUG) 137 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 138 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) 139 #else 140 #define SLAB_DEBUG_FLAGS (0) 141 #endif 142 143 #if defined(CONFIG_SLAB) 144 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ 145 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ 146 SLAB_ACCOUNT) 147 #elif defined(CONFIG_SLUB) 148 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ 149 SLAB_TEMPORARY | SLAB_ACCOUNT) 150 #else 151 #define SLAB_CACHE_FLAGS (0) 152 #endif 153 154 /* Common flags available with current configuration */ 155 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) 156 157 /* Common flags permitted for kmem_cache_create */ 158 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ 159 SLAB_RED_ZONE | \ 160 SLAB_POISON | \ 161 SLAB_STORE_USER | \ 162 SLAB_TRACE | \ 163 SLAB_CONSISTENCY_CHECKS | \ 164 SLAB_MEM_SPREAD | \ 165 SLAB_NOLEAKTRACE | \ 166 SLAB_RECLAIM_ACCOUNT | \ 167 SLAB_TEMPORARY | \ 168 SLAB_ACCOUNT) 169 170 bool __kmem_cache_empty(struct kmem_cache *); 171 int __kmem_cache_shutdown(struct kmem_cache *); 172 void __kmem_cache_release(struct kmem_cache *); 173 int __kmem_cache_shrink(struct kmem_cache *); 174 void __kmemcg_cache_deactivate(struct kmem_cache *s); 175 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s); 176 void slab_kmem_cache_release(struct kmem_cache *); 177 178 struct seq_file; 179 struct file; 180 181 struct slabinfo { 182 unsigned long active_objs; 183 unsigned long num_objs; 184 unsigned long active_slabs; 185 unsigned long num_slabs; 186 unsigned long shared_avail; 187 unsigned int limit; 188 unsigned int batchcount; 189 unsigned int shared; 190 unsigned int objects_per_slab; 191 unsigned int cache_order; 192 }; 193 194 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); 195 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); 196 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 197 size_t count, loff_t *ppos); 198 199 /* 200 * Generic implementation of bulk operations 201 * These are useful for situations in which the allocator cannot 202 * perform optimizations. In that case segments of the object listed 203 * may be allocated or freed using these operations. 204 */ 205 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 206 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 207 208 static inline int cache_vmstat_idx(struct kmem_cache *s) 209 { 210 return (s->flags & SLAB_RECLAIM_ACCOUNT) ? 211 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE; 212 } 213 214 #ifdef CONFIG_MEMCG_KMEM 215 216 /* List of all root caches. */ 217 extern struct list_head slab_root_caches; 218 #define root_caches_node memcg_params.__root_caches_node 219 220 /* 221 * Iterate over all memcg caches of the given root cache. The caller must hold 222 * slab_mutex. 223 */ 224 #define for_each_memcg_cache(iter, root) \ 225 list_for_each_entry(iter, &(root)->memcg_params.children, \ 226 memcg_params.children_node) 227 228 static inline bool is_root_cache(struct kmem_cache *s) 229 { 230 return !s->memcg_params.root_cache; 231 } 232 233 static inline bool slab_equal_or_root(struct kmem_cache *s, 234 struct kmem_cache *p) 235 { 236 return p == s || p == s->memcg_params.root_cache; 237 } 238 239 /* 240 * We use suffixes to the name in memcg because we can't have caches 241 * created in the system with the same name. But when we print them 242 * locally, better refer to them with the base name 243 */ 244 static inline const char *cache_name(struct kmem_cache *s) 245 { 246 if (!is_root_cache(s)) 247 s = s->memcg_params.root_cache; 248 return s->name; 249 } 250 251 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 252 { 253 if (is_root_cache(s)) 254 return s; 255 return s->memcg_params.root_cache; 256 } 257 258 /* 259 * Expects a pointer to a slab page. Please note, that PageSlab() check 260 * isn't sufficient, as it returns true also for tail compound slab pages, 261 * which do not have slab_cache pointer set. 262 * So this function assumes that the page can pass PageHead() and PageSlab() 263 * checks. 264 * 265 * The kmem_cache can be reparented asynchronously. The caller must ensure 266 * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex. 267 */ 268 static inline struct mem_cgroup *memcg_from_slab_page(struct page *page) 269 { 270 struct kmem_cache *s; 271 272 s = READ_ONCE(page->slab_cache); 273 if (s && !is_root_cache(s)) 274 return READ_ONCE(s->memcg_params.memcg); 275 276 return NULL; 277 } 278 279 /* 280 * Charge the slab page belonging to the non-root kmem_cache. 281 * Can be called for non-root kmem_caches only. 282 */ 283 static __always_inline int memcg_charge_slab(struct page *page, 284 gfp_t gfp, int order, 285 struct kmem_cache *s) 286 { 287 struct mem_cgroup *memcg; 288 struct lruvec *lruvec; 289 int ret; 290 291 rcu_read_lock(); 292 memcg = READ_ONCE(s->memcg_params.memcg); 293 while (memcg && !css_tryget_online(&memcg->css)) 294 memcg = parent_mem_cgroup(memcg); 295 rcu_read_unlock(); 296 297 if (unlikely(!memcg || mem_cgroup_is_root(memcg))) { 298 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), 299 (1 << order)); 300 percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order); 301 return 0; 302 } 303 304 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 305 if (ret) 306 goto out; 307 308 lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg); 309 mod_lruvec_state(lruvec, cache_vmstat_idx(s), 1 << order); 310 311 /* transer try_charge() page references to kmem_cache */ 312 percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order); 313 css_put_many(&memcg->css, 1 << order); 314 out: 315 css_put(&memcg->css); 316 return ret; 317 } 318 319 /* 320 * Uncharge a slab page belonging to a non-root kmem_cache. 321 * Can be called for non-root kmem_caches only. 322 */ 323 static __always_inline void memcg_uncharge_slab(struct page *page, int order, 324 struct kmem_cache *s) 325 { 326 struct mem_cgroup *memcg; 327 struct lruvec *lruvec; 328 329 rcu_read_lock(); 330 memcg = READ_ONCE(s->memcg_params.memcg); 331 if (likely(!mem_cgroup_is_root(memcg))) { 332 lruvec = mem_cgroup_lruvec(page_pgdat(page), memcg); 333 mod_lruvec_state(lruvec, cache_vmstat_idx(s), -(1 << order)); 334 memcg_kmem_uncharge_memcg(page, order, memcg); 335 } else { 336 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), 337 -(1 << order)); 338 } 339 rcu_read_unlock(); 340 341 percpu_ref_put_many(&s->memcg_params.refcnt, 1 << order); 342 } 343 344 extern void slab_init_memcg_params(struct kmem_cache *); 345 extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg); 346 347 #else /* CONFIG_MEMCG_KMEM */ 348 349 /* If !memcg, all caches are root. */ 350 #define slab_root_caches slab_caches 351 #define root_caches_node list 352 353 #define for_each_memcg_cache(iter, root) \ 354 for ((void)(iter), (void)(root); 0; ) 355 356 static inline bool is_root_cache(struct kmem_cache *s) 357 { 358 return true; 359 } 360 361 static inline bool slab_equal_or_root(struct kmem_cache *s, 362 struct kmem_cache *p) 363 { 364 return s == p; 365 } 366 367 static inline const char *cache_name(struct kmem_cache *s) 368 { 369 return s->name; 370 } 371 372 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 373 { 374 return s; 375 } 376 377 static inline struct mem_cgroup *memcg_from_slab_page(struct page *page) 378 { 379 return NULL; 380 } 381 382 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order, 383 struct kmem_cache *s) 384 { 385 return 0; 386 } 387 388 static inline void memcg_uncharge_slab(struct page *page, int order, 389 struct kmem_cache *s) 390 { 391 } 392 393 static inline void slab_init_memcg_params(struct kmem_cache *s) 394 { 395 } 396 397 static inline void memcg_link_cache(struct kmem_cache *s, 398 struct mem_cgroup *memcg) 399 { 400 } 401 402 #endif /* CONFIG_MEMCG_KMEM */ 403 404 static inline struct kmem_cache *virt_to_cache(const void *obj) 405 { 406 struct page *page; 407 408 page = virt_to_head_page(obj); 409 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n", 410 __func__)) 411 return NULL; 412 return page->slab_cache; 413 } 414 415 static __always_inline int charge_slab_page(struct page *page, 416 gfp_t gfp, int order, 417 struct kmem_cache *s) 418 { 419 if (is_root_cache(s)) { 420 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), 421 1 << order); 422 return 0; 423 } 424 425 return memcg_charge_slab(page, gfp, order, s); 426 } 427 428 static __always_inline void uncharge_slab_page(struct page *page, int order, 429 struct kmem_cache *s) 430 { 431 if (is_root_cache(s)) { 432 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), 433 -(1 << order)); 434 return; 435 } 436 437 memcg_uncharge_slab(page, order, s); 438 } 439 440 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 441 { 442 struct kmem_cache *cachep; 443 444 /* 445 * When kmemcg is not being used, both assignments should return the 446 * same value. but we don't want to pay the assignment price in that 447 * case. If it is not compiled in, the compiler should be smart enough 448 * to not do even the assignment. In that case, slab_equal_or_root 449 * will also be a constant. 450 */ 451 if (!memcg_kmem_enabled() && 452 !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 453 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS)) 454 return s; 455 456 cachep = virt_to_cache(x); 457 WARN_ONCE(cachep && !slab_equal_or_root(cachep, s), 458 "%s: Wrong slab cache. %s but object is from %s\n", 459 __func__, s->name, cachep->name); 460 return cachep; 461 } 462 463 static inline size_t slab_ksize(const struct kmem_cache *s) 464 { 465 #ifndef CONFIG_SLUB 466 return s->object_size; 467 468 #else /* CONFIG_SLUB */ 469 # ifdef CONFIG_SLUB_DEBUG 470 /* 471 * Debugging requires use of the padding between object 472 * and whatever may come after it. 473 */ 474 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 475 return s->object_size; 476 # endif 477 if (s->flags & SLAB_KASAN) 478 return s->object_size; 479 /* 480 * If we have the need to store the freelist pointer 481 * back there or track user information then we can 482 * only use the space before that information. 483 */ 484 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) 485 return s->inuse; 486 /* 487 * Else we can use all the padding etc for the allocation 488 */ 489 return s->size; 490 #endif 491 } 492 493 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 494 gfp_t flags) 495 { 496 flags &= gfp_allowed_mask; 497 498 fs_reclaim_acquire(flags); 499 fs_reclaim_release(flags); 500 501 might_sleep_if(gfpflags_allow_blocking(flags)); 502 503 if (should_failslab(s, flags)) 504 return NULL; 505 506 if (memcg_kmem_enabled() && 507 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT))) 508 return memcg_kmem_get_cache(s); 509 510 return s; 511 } 512 513 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 514 size_t size, void **p) 515 { 516 size_t i; 517 518 flags &= gfp_allowed_mask; 519 for (i = 0; i < size; i++) { 520 p[i] = kasan_slab_alloc(s, p[i], flags); 521 /* As p[i] might get tagged, call kmemleak hook after KASAN. */ 522 kmemleak_alloc_recursive(p[i], s->object_size, 1, 523 s->flags, flags); 524 } 525 526 if (memcg_kmem_enabled()) 527 memcg_kmem_put_cache(s); 528 } 529 530 #ifndef CONFIG_SLOB 531 /* 532 * The slab lists for all objects. 533 */ 534 struct kmem_cache_node { 535 spinlock_t list_lock; 536 537 #ifdef CONFIG_SLAB 538 struct list_head slabs_partial; /* partial list first, better asm code */ 539 struct list_head slabs_full; 540 struct list_head slabs_free; 541 unsigned long total_slabs; /* length of all slab lists */ 542 unsigned long free_slabs; /* length of free slab list only */ 543 unsigned long free_objects; 544 unsigned int free_limit; 545 unsigned int colour_next; /* Per-node cache coloring */ 546 struct array_cache *shared; /* shared per node */ 547 struct alien_cache **alien; /* on other nodes */ 548 unsigned long next_reap; /* updated without locking */ 549 int free_touched; /* updated without locking */ 550 #endif 551 552 #ifdef CONFIG_SLUB 553 unsigned long nr_partial; 554 struct list_head partial; 555 #ifdef CONFIG_SLUB_DEBUG 556 atomic_long_t nr_slabs; 557 atomic_long_t total_objects; 558 struct list_head full; 559 #endif 560 #endif 561 562 }; 563 564 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 565 { 566 return s->node[node]; 567 } 568 569 /* 570 * Iterator over all nodes. The body will be executed for each node that has 571 * a kmem_cache_node structure allocated (which is true for all online nodes) 572 */ 573 #define for_each_kmem_cache_node(__s, __node, __n) \ 574 for (__node = 0; __node < nr_node_ids; __node++) \ 575 if ((__n = get_node(__s, __node))) 576 577 #endif 578 579 void *slab_start(struct seq_file *m, loff_t *pos); 580 void *slab_next(struct seq_file *m, void *p, loff_t *pos); 581 void slab_stop(struct seq_file *m, void *p); 582 void *memcg_slab_start(struct seq_file *m, loff_t *pos); 583 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos); 584 void memcg_slab_stop(struct seq_file *m, void *p); 585 int memcg_slab_show(struct seq_file *m, void *p); 586 587 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 588 void dump_unreclaimable_slab(void); 589 #else 590 static inline void dump_unreclaimable_slab(void) 591 { 592 } 593 #endif 594 595 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); 596 597 #ifdef CONFIG_SLAB_FREELIST_RANDOM 598 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 599 gfp_t gfp); 600 void cache_random_seq_destroy(struct kmem_cache *cachep); 601 #else 602 static inline int cache_random_seq_create(struct kmem_cache *cachep, 603 unsigned int count, gfp_t gfp) 604 { 605 return 0; 606 } 607 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } 608 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 609 610 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) 611 { 612 if (static_branch_unlikely(&init_on_alloc)) { 613 if (c->ctor) 614 return false; 615 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) 616 return flags & __GFP_ZERO; 617 return true; 618 } 619 return flags & __GFP_ZERO; 620 } 621 622 static inline bool slab_want_init_on_free(struct kmem_cache *c) 623 { 624 if (static_branch_unlikely(&init_on_free)) 625 return !(c->ctor || 626 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); 627 return false; 628 } 629 630 #endif /* MM_SLAB_H */ 631