xref: /openbmc/linux/mm/slab.h (revision 5a32c3413d3340f90c82c84b375ad4b335a59f28)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 #ifdef CONFIG_SLOB
9 /*
10  * Common fields provided in kmem_cache by all slab allocators
11  * This struct is either used directly by the allocator (SLOB)
12  * or the allocator must include definitions for all fields
13  * provided in kmem_cache_common in their definition of kmem_cache.
14  *
15  * Once we can do anonymous structs (C11 standard) we could put a
16  * anonymous struct definition in these allocators so that the
17  * separate allocations in the kmem_cache structure of SLAB and
18  * SLUB is no longer needed.
19  */
20 struct kmem_cache {
21 	unsigned int object_size;/* The original size of the object */
22 	unsigned int size;	/* The aligned/padded/added on size  */
23 	unsigned int align;	/* Alignment as calculated */
24 	slab_flags_t flags;	/* Active flags on the slab */
25 	unsigned int useroffset;/* Usercopy region offset */
26 	unsigned int usersize;	/* Usercopy region size */
27 	const char *name;	/* Slab name for sysfs */
28 	int refcount;		/* Use counter */
29 	void (*ctor)(void *);	/* Called on object slot creation */
30 	struct list_head list;	/* List of all slab caches on the system */
31 };
32 
33 #endif /* CONFIG_SLOB */
34 
35 #ifdef CONFIG_SLAB
36 #include <linux/slab_def.h>
37 #endif
38 
39 #ifdef CONFIG_SLUB
40 #include <linux/slub_def.h>
41 #endif
42 
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
49 #include <linux/kmemleak.h>
50 
51 /*
52  * State of the slab allocator.
53  *
54  * This is used to describe the states of the allocator during bootup.
55  * Allocators use this to gradually bootstrap themselves. Most allocators
56  * have the problem that the structures used for managing slab caches are
57  * allocated from slab caches themselves.
58  */
59 enum slab_state {
60 	DOWN,			/* No slab functionality yet */
61 	PARTIAL,		/* SLUB: kmem_cache_node available */
62 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
63 	UP,			/* Slab caches usable but not all extras yet */
64 	FULL			/* Everything is working */
65 };
66 
67 extern enum slab_state slab_state;
68 
69 /* The slab cache mutex protects the management structures during changes */
70 extern struct mutex slab_mutex;
71 
72 /* The list of all slab caches on the system */
73 extern struct list_head slab_caches;
74 
75 /* The slab cache that manages slab cache information */
76 extern struct kmem_cache *kmem_cache;
77 
78 /* A table of kmalloc cache names and sizes */
79 extern const struct kmalloc_info_struct {
80 	const char *name[NR_KMALLOC_TYPES];
81 	unsigned int size;
82 } kmalloc_info[];
83 
84 #ifndef CONFIG_SLOB
85 /* Kmalloc array related functions */
86 void setup_kmalloc_cache_index_table(void);
87 void create_kmalloc_caches(slab_flags_t);
88 
89 /* Find the kmalloc slab corresponding for a certain size */
90 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
91 #endif
92 
93 gfp_t kmalloc_fix_flags(gfp_t flags);
94 
95 /* Functions provided by the slab allocators */
96 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97 
98 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
99 			slab_flags_t flags, unsigned int useroffset,
100 			unsigned int usersize);
101 extern void create_boot_cache(struct kmem_cache *, const char *name,
102 			unsigned int size, slab_flags_t flags,
103 			unsigned int useroffset, unsigned int usersize);
104 
105 int slab_unmergeable(struct kmem_cache *s);
106 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
107 		slab_flags_t flags, const char *name, void (*ctor)(void *));
108 #ifndef CONFIG_SLOB
109 struct kmem_cache *
110 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
111 		   slab_flags_t flags, void (*ctor)(void *));
112 
113 slab_flags_t kmem_cache_flags(unsigned int object_size,
114 	slab_flags_t flags, const char *name,
115 	void (*ctor)(void *));
116 #else
117 static inline struct kmem_cache *
118 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
119 		   slab_flags_t flags, void (*ctor)(void *))
120 { return NULL; }
121 
122 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
123 	slab_flags_t flags, const char *name,
124 	void (*ctor)(void *))
125 {
126 	return flags;
127 }
128 #endif
129 
130 
131 /* Legal flag mask for kmem_cache_create(), for various configurations */
132 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
133 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
134 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
135 
136 #if defined(CONFIG_DEBUG_SLAB)
137 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
138 #elif defined(CONFIG_SLUB_DEBUG)
139 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
140 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
141 #else
142 #define SLAB_DEBUG_FLAGS (0)
143 #endif
144 
145 #if defined(CONFIG_SLAB)
146 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
147 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
148 			  SLAB_ACCOUNT)
149 #elif defined(CONFIG_SLUB)
150 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
151 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
152 #else
153 #define SLAB_CACHE_FLAGS (0)
154 #endif
155 
156 /* Common flags available with current configuration */
157 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
158 
159 /* Common flags permitted for kmem_cache_create */
160 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
161 			      SLAB_RED_ZONE | \
162 			      SLAB_POISON | \
163 			      SLAB_STORE_USER | \
164 			      SLAB_TRACE | \
165 			      SLAB_CONSISTENCY_CHECKS | \
166 			      SLAB_MEM_SPREAD | \
167 			      SLAB_NOLEAKTRACE | \
168 			      SLAB_RECLAIM_ACCOUNT | \
169 			      SLAB_TEMPORARY | \
170 			      SLAB_ACCOUNT)
171 
172 bool __kmem_cache_empty(struct kmem_cache *);
173 int __kmem_cache_shutdown(struct kmem_cache *);
174 void __kmem_cache_release(struct kmem_cache *);
175 int __kmem_cache_shrink(struct kmem_cache *);
176 void slab_kmem_cache_release(struct kmem_cache *);
177 
178 struct seq_file;
179 struct file;
180 
181 struct slabinfo {
182 	unsigned long active_objs;
183 	unsigned long num_objs;
184 	unsigned long active_slabs;
185 	unsigned long num_slabs;
186 	unsigned long shared_avail;
187 	unsigned int limit;
188 	unsigned int batchcount;
189 	unsigned int shared;
190 	unsigned int objects_per_slab;
191 	unsigned int cache_order;
192 };
193 
194 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
195 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
196 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
197 		       size_t count, loff_t *ppos);
198 
199 /*
200  * Generic implementation of bulk operations
201  * These are useful for situations in which the allocator cannot
202  * perform optimizations. In that case segments of the object listed
203  * may be allocated or freed using these operations.
204  */
205 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
206 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
207 
208 static inline int cache_vmstat_idx(struct kmem_cache *s)
209 {
210 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
211 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
212 }
213 
214 #ifdef CONFIG_SLUB_DEBUG
215 #ifdef CONFIG_SLUB_DEBUG_ON
216 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
217 #else
218 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
219 #endif
220 extern void print_tracking(struct kmem_cache *s, void *object);
221 #else
222 static inline void print_tracking(struct kmem_cache *s, void *object)
223 {
224 }
225 #endif
226 
227 /*
228  * Returns true if any of the specified slub_debug flags is enabled for the
229  * cache. Use only for flags parsed by setup_slub_debug() as it also enables
230  * the static key.
231  */
232 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
233 {
234 #ifdef CONFIG_SLUB_DEBUG
235 	VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
236 	if (static_branch_unlikely(&slub_debug_enabled))
237 		return s->flags & flags;
238 #endif
239 	return false;
240 }
241 
242 #ifdef CONFIG_MEMCG_KMEM
243 static inline struct obj_cgroup **page_obj_cgroups(struct page *page)
244 {
245 	/*
246 	 * page->mem_cgroup and page->obj_cgroups are sharing the same
247 	 * space. To distinguish between them in case we don't know for sure
248 	 * that the page is a slab page (e.g. page_cgroup_ino()), let's
249 	 * always set the lowest bit of obj_cgroups.
250 	 */
251 	return (struct obj_cgroup **)
252 		((unsigned long)page->obj_cgroups & ~0x1UL);
253 }
254 
255 static inline bool page_has_obj_cgroups(struct page *page)
256 {
257 	return ((unsigned long)page->obj_cgroups & 0x1UL);
258 }
259 
260 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
261 				 gfp_t gfp);
262 
263 static inline void memcg_free_page_obj_cgroups(struct page *page)
264 {
265 	kfree(page_obj_cgroups(page));
266 	page->obj_cgroups = NULL;
267 }
268 
269 static inline size_t obj_full_size(struct kmem_cache *s)
270 {
271 	/*
272 	 * For each accounted object there is an extra space which is used
273 	 * to store obj_cgroup membership. Charge it too.
274 	 */
275 	return s->size + sizeof(struct obj_cgroup *);
276 }
277 
278 static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s,
279 							   size_t objects,
280 							   gfp_t flags)
281 {
282 	struct obj_cgroup *objcg;
283 
284 	if (memcg_kmem_bypass())
285 		return NULL;
286 
287 	objcg = get_obj_cgroup_from_current();
288 	if (!objcg)
289 		return NULL;
290 
291 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
292 		obj_cgroup_put(objcg);
293 		return NULL;
294 	}
295 
296 	return objcg;
297 }
298 
299 static inline void mod_objcg_state(struct obj_cgroup *objcg,
300 				   struct pglist_data *pgdat,
301 				   int idx, int nr)
302 {
303 	struct mem_cgroup *memcg;
304 	struct lruvec *lruvec;
305 
306 	rcu_read_lock();
307 	memcg = obj_cgroup_memcg(objcg);
308 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
309 	mod_memcg_lruvec_state(lruvec, idx, nr);
310 	rcu_read_unlock();
311 }
312 
313 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
314 					      struct obj_cgroup *objcg,
315 					      gfp_t flags, size_t size,
316 					      void **p)
317 {
318 	struct page *page;
319 	unsigned long off;
320 	size_t i;
321 
322 	if (!objcg)
323 		return;
324 
325 	flags &= ~__GFP_ACCOUNT;
326 	for (i = 0; i < size; i++) {
327 		if (likely(p[i])) {
328 			page = virt_to_head_page(p[i]);
329 
330 			if (!page_has_obj_cgroups(page) &&
331 			    memcg_alloc_page_obj_cgroups(page, s, flags)) {
332 				obj_cgroup_uncharge(objcg, obj_full_size(s));
333 				continue;
334 			}
335 
336 			off = obj_to_index(s, page, p[i]);
337 			obj_cgroup_get(objcg);
338 			page_obj_cgroups(page)[off] = objcg;
339 			mod_objcg_state(objcg, page_pgdat(page),
340 					cache_vmstat_idx(s), obj_full_size(s));
341 		} else {
342 			obj_cgroup_uncharge(objcg, obj_full_size(s));
343 		}
344 	}
345 	obj_cgroup_put(objcg);
346 }
347 
348 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
349 					void **p, int objects)
350 {
351 	struct kmem_cache *s;
352 	struct obj_cgroup *objcg;
353 	struct page *page;
354 	unsigned int off;
355 	int i;
356 
357 	if (!memcg_kmem_enabled())
358 		return;
359 
360 	for (i = 0; i < objects; i++) {
361 		if (unlikely(!p[i]))
362 			continue;
363 
364 		page = virt_to_head_page(p[i]);
365 		if (!page_has_obj_cgroups(page))
366 			continue;
367 
368 		if (!s_orig)
369 			s = page->slab_cache;
370 		else
371 			s = s_orig;
372 
373 		off = obj_to_index(s, page, p[i]);
374 		objcg = page_obj_cgroups(page)[off];
375 		if (!objcg)
376 			continue;
377 
378 		page_obj_cgroups(page)[off] = NULL;
379 		obj_cgroup_uncharge(objcg, obj_full_size(s));
380 		mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
381 				-obj_full_size(s));
382 		obj_cgroup_put(objcg);
383 	}
384 }
385 
386 #else /* CONFIG_MEMCG_KMEM */
387 static inline bool page_has_obj_cgroups(struct page *page)
388 {
389 	return false;
390 }
391 
392 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
393 {
394 	return NULL;
395 }
396 
397 static inline int memcg_alloc_page_obj_cgroups(struct page *page,
398 					       struct kmem_cache *s, gfp_t gfp)
399 {
400 	return 0;
401 }
402 
403 static inline void memcg_free_page_obj_cgroups(struct page *page)
404 {
405 }
406 
407 static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s,
408 							   size_t objects,
409 							   gfp_t flags)
410 {
411 	return NULL;
412 }
413 
414 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
415 					      struct obj_cgroup *objcg,
416 					      gfp_t flags, size_t size,
417 					      void **p)
418 {
419 }
420 
421 static inline void memcg_slab_free_hook(struct kmem_cache *s,
422 					void **p, int objects)
423 {
424 }
425 #endif /* CONFIG_MEMCG_KMEM */
426 
427 static inline struct kmem_cache *virt_to_cache(const void *obj)
428 {
429 	struct page *page;
430 
431 	page = virt_to_head_page(obj);
432 	if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
433 					__func__))
434 		return NULL;
435 	return page->slab_cache;
436 }
437 
438 static __always_inline void account_slab_page(struct page *page, int order,
439 					      struct kmem_cache *s)
440 {
441 	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
442 			    PAGE_SIZE << order);
443 }
444 
445 static __always_inline void unaccount_slab_page(struct page *page, int order,
446 						struct kmem_cache *s)
447 {
448 	if (memcg_kmem_enabled())
449 		memcg_free_page_obj_cgroups(page);
450 
451 	mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
452 			    -(PAGE_SIZE << order));
453 }
454 
455 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
456 {
457 	struct kmem_cache *cachep;
458 
459 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
460 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
461 		return s;
462 
463 	cachep = virt_to_cache(x);
464 	if (WARN(cachep && cachep != s,
465 		  "%s: Wrong slab cache. %s but object is from %s\n",
466 		  __func__, s->name, cachep->name))
467 		print_tracking(cachep, x);
468 	return cachep;
469 }
470 
471 static inline size_t slab_ksize(const struct kmem_cache *s)
472 {
473 #ifndef CONFIG_SLUB
474 	return s->object_size;
475 
476 #else /* CONFIG_SLUB */
477 # ifdef CONFIG_SLUB_DEBUG
478 	/*
479 	 * Debugging requires use of the padding between object
480 	 * and whatever may come after it.
481 	 */
482 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
483 		return s->object_size;
484 # endif
485 	if (s->flags & SLAB_KASAN)
486 		return s->object_size;
487 	/*
488 	 * If we have the need to store the freelist pointer
489 	 * back there or track user information then we can
490 	 * only use the space before that information.
491 	 */
492 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
493 		return s->inuse;
494 	/*
495 	 * Else we can use all the padding etc for the allocation
496 	 */
497 	return s->size;
498 #endif
499 }
500 
501 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
502 						     struct obj_cgroup **objcgp,
503 						     size_t size, gfp_t flags)
504 {
505 	flags &= gfp_allowed_mask;
506 
507 	fs_reclaim_acquire(flags);
508 	fs_reclaim_release(flags);
509 
510 	might_sleep_if(gfpflags_allow_blocking(flags));
511 
512 	if (should_failslab(s, flags))
513 		return NULL;
514 
515 	if (memcg_kmem_enabled() &&
516 	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
517 		*objcgp = memcg_slab_pre_alloc_hook(s, size, flags);
518 
519 	return s;
520 }
521 
522 static inline void slab_post_alloc_hook(struct kmem_cache *s,
523 					struct obj_cgroup *objcg,
524 					gfp_t flags, size_t size, void **p)
525 {
526 	size_t i;
527 
528 	flags &= gfp_allowed_mask;
529 	for (i = 0; i < size; i++) {
530 		p[i] = kasan_slab_alloc(s, p[i], flags);
531 		/* As p[i] might get tagged, call kmemleak hook after KASAN. */
532 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
533 					 s->flags, flags);
534 	}
535 
536 	if (memcg_kmem_enabled())
537 		memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
538 }
539 
540 #ifndef CONFIG_SLOB
541 /*
542  * The slab lists for all objects.
543  */
544 struct kmem_cache_node {
545 	spinlock_t list_lock;
546 
547 #ifdef CONFIG_SLAB
548 	struct list_head slabs_partial;	/* partial list first, better asm code */
549 	struct list_head slabs_full;
550 	struct list_head slabs_free;
551 	unsigned long total_slabs;	/* length of all slab lists */
552 	unsigned long free_slabs;	/* length of free slab list only */
553 	unsigned long free_objects;
554 	unsigned int free_limit;
555 	unsigned int colour_next;	/* Per-node cache coloring */
556 	struct array_cache *shared;	/* shared per node */
557 	struct alien_cache **alien;	/* on other nodes */
558 	unsigned long next_reap;	/* updated without locking */
559 	int free_touched;		/* updated without locking */
560 #endif
561 
562 #ifdef CONFIG_SLUB
563 	unsigned long nr_partial;
564 	struct list_head partial;
565 #ifdef CONFIG_SLUB_DEBUG
566 	atomic_long_t nr_slabs;
567 	atomic_long_t total_objects;
568 	struct list_head full;
569 #endif
570 #endif
571 
572 };
573 
574 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
575 {
576 	return s->node[node];
577 }
578 
579 /*
580  * Iterator over all nodes. The body will be executed for each node that has
581  * a kmem_cache_node structure allocated (which is true for all online nodes)
582  */
583 #define for_each_kmem_cache_node(__s, __node, __n) \
584 	for (__node = 0; __node < nr_node_ids; __node++) \
585 		 if ((__n = get_node(__s, __node)))
586 
587 #endif
588 
589 void *slab_start(struct seq_file *m, loff_t *pos);
590 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
591 void slab_stop(struct seq_file *m, void *p);
592 int memcg_slab_show(struct seq_file *m, void *p);
593 
594 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
595 void dump_unreclaimable_slab(void);
596 #else
597 static inline void dump_unreclaimable_slab(void)
598 {
599 }
600 #endif
601 
602 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
603 
604 #ifdef CONFIG_SLAB_FREELIST_RANDOM
605 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
606 			gfp_t gfp);
607 void cache_random_seq_destroy(struct kmem_cache *cachep);
608 #else
609 static inline int cache_random_seq_create(struct kmem_cache *cachep,
610 					unsigned int count, gfp_t gfp)
611 {
612 	return 0;
613 }
614 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
615 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
616 
617 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
618 {
619 	if (static_branch_unlikely(&init_on_alloc)) {
620 		if (c->ctor)
621 			return false;
622 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
623 			return flags & __GFP_ZERO;
624 		return true;
625 	}
626 	return flags & __GFP_ZERO;
627 }
628 
629 static inline bool slab_want_init_on_free(struct kmem_cache *c)
630 {
631 	if (static_branch_unlikely(&init_on_free))
632 		return !(c->ctor ||
633 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
634 	return false;
635 }
636 
637 #endif /* MM_SLAB_H */
638