1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef MM_SLAB_H 3 #define MM_SLAB_H 4 /* 5 * Internal slab definitions 6 */ 7 8 #ifdef CONFIG_SLOB 9 /* 10 * Common fields provided in kmem_cache by all slab allocators 11 * This struct is either used directly by the allocator (SLOB) 12 * or the allocator must include definitions for all fields 13 * provided in kmem_cache_common in their definition of kmem_cache. 14 * 15 * Once we can do anonymous structs (C11 standard) we could put a 16 * anonymous struct definition in these allocators so that the 17 * separate allocations in the kmem_cache structure of SLAB and 18 * SLUB is no longer needed. 19 */ 20 struct kmem_cache { 21 unsigned int object_size;/* The original size of the object */ 22 unsigned int size; /* The aligned/padded/added on size */ 23 unsigned int align; /* Alignment as calculated */ 24 slab_flags_t flags; /* Active flags on the slab */ 25 unsigned int useroffset;/* Usercopy region offset */ 26 unsigned int usersize; /* Usercopy region size */ 27 const char *name; /* Slab name for sysfs */ 28 int refcount; /* Use counter */ 29 void (*ctor)(void *); /* Called on object slot creation */ 30 struct list_head list; /* List of all slab caches on the system */ 31 }; 32 33 #endif /* CONFIG_SLOB */ 34 35 #ifdef CONFIG_SLAB 36 #include <linux/slab_def.h> 37 #endif 38 39 #ifdef CONFIG_SLUB 40 #include <linux/slub_def.h> 41 #endif 42 43 #include <linux/memcontrol.h> 44 #include <linux/fault-inject.h> 45 #include <linux/kasan.h> 46 #include <linux/kmemleak.h> 47 #include <linux/random.h> 48 #include <linux/sched/mm.h> 49 #include <linux/kmemleak.h> 50 51 /* 52 * State of the slab allocator. 53 * 54 * This is used to describe the states of the allocator during bootup. 55 * Allocators use this to gradually bootstrap themselves. Most allocators 56 * have the problem that the structures used for managing slab caches are 57 * allocated from slab caches themselves. 58 */ 59 enum slab_state { 60 DOWN, /* No slab functionality yet */ 61 PARTIAL, /* SLUB: kmem_cache_node available */ 62 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ 63 UP, /* Slab caches usable but not all extras yet */ 64 FULL /* Everything is working */ 65 }; 66 67 extern enum slab_state slab_state; 68 69 /* The slab cache mutex protects the management structures during changes */ 70 extern struct mutex slab_mutex; 71 72 /* The list of all slab caches on the system */ 73 extern struct list_head slab_caches; 74 75 /* The slab cache that manages slab cache information */ 76 extern struct kmem_cache *kmem_cache; 77 78 /* A table of kmalloc cache names and sizes */ 79 extern const struct kmalloc_info_struct { 80 const char *name[NR_KMALLOC_TYPES]; 81 unsigned int size; 82 } kmalloc_info[]; 83 84 #ifndef CONFIG_SLOB 85 /* Kmalloc array related functions */ 86 void setup_kmalloc_cache_index_table(void); 87 void create_kmalloc_caches(slab_flags_t); 88 89 /* Find the kmalloc slab corresponding for a certain size */ 90 struct kmem_cache *kmalloc_slab(size_t, gfp_t); 91 #endif 92 93 gfp_t kmalloc_fix_flags(gfp_t flags); 94 95 /* Functions provided by the slab allocators */ 96 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); 97 98 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size, 99 slab_flags_t flags, unsigned int useroffset, 100 unsigned int usersize); 101 extern void create_boot_cache(struct kmem_cache *, const char *name, 102 unsigned int size, slab_flags_t flags, 103 unsigned int useroffset, unsigned int usersize); 104 105 int slab_unmergeable(struct kmem_cache *s); 106 struct kmem_cache *find_mergeable(unsigned size, unsigned align, 107 slab_flags_t flags, const char *name, void (*ctor)(void *)); 108 #ifndef CONFIG_SLOB 109 struct kmem_cache * 110 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 111 slab_flags_t flags, void (*ctor)(void *)); 112 113 slab_flags_t kmem_cache_flags(unsigned int object_size, 114 slab_flags_t flags, const char *name, 115 void (*ctor)(void *)); 116 #else 117 static inline struct kmem_cache * 118 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 119 slab_flags_t flags, void (*ctor)(void *)) 120 { return NULL; } 121 122 static inline slab_flags_t kmem_cache_flags(unsigned int object_size, 123 slab_flags_t flags, const char *name, 124 void (*ctor)(void *)) 125 { 126 return flags; 127 } 128 #endif 129 130 131 /* Legal flag mask for kmem_cache_create(), for various configurations */ 132 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ 133 SLAB_CACHE_DMA32 | SLAB_PANIC | \ 134 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) 135 136 #if defined(CONFIG_DEBUG_SLAB) 137 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 138 #elif defined(CONFIG_SLUB_DEBUG) 139 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 140 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) 141 #else 142 #define SLAB_DEBUG_FLAGS (0) 143 #endif 144 145 #if defined(CONFIG_SLAB) 146 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ 147 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ 148 SLAB_ACCOUNT) 149 #elif defined(CONFIG_SLUB) 150 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ 151 SLAB_TEMPORARY | SLAB_ACCOUNT) 152 #else 153 #define SLAB_CACHE_FLAGS (0) 154 #endif 155 156 /* Common flags available with current configuration */ 157 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) 158 159 /* Common flags permitted for kmem_cache_create */ 160 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ 161 SLAB_RED_ZONE | \ 162 SLAB_POISON | \ 163 SLAB_STORE_USER | \ 164 SLAB_TRACE | \ 165 SLAB_CONSISTENCY_CHECKS | \ 166 SLAB_MEM_SPREAD | \ 167 SLAB_NOLEAKTRACE | \ 168 SLAB_RECLAIM_ACCOUNT | \ 169 SLAB_TEMPORARY | \ 170 SLAB_ACCOUNT) 171 172 bool __kmem_cache_empty(struct kmem_cache *); 173 int __kmem_cache_shutdown(struct kmem_cache *); 174 void __kmem_cache_release(struct kmem_cache *); 175 int __kmem_cache_shrink(struct kmem_cache *); 176 void slab_kmem_cache_release(struct kmem_cache *); 177 178 struct seq_file; 179 struct file; 180 181 struct slabinfo { 182 unsigned long active_objs; 183 unsigned long num_objs; 184 unsigned long active_slabs; 185 unsigned long num_slabs; 186 unsigned long shared_avail; 187 unsigned int limit; 188 unsigned int batchcount; 189 unsigned int shared; 190 unsigned int objects_per_slab; 191 unsigned int cache_order; 192 }; 193 194 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); 195 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); 196 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 197 size_t count, loff_t *ppos); 198 199 /* 200 * Generic implementation of bulk operations 201 * These are useful for situations in which the allocator cannot 202 * perform optimizations. In that case segments of the object listed 203 * may be allocated or freed using these operations. 204 */ 205 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 206 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 207 208 static inline int cache_vmstat_idx(struct kmem_cache *s) 209 { 210 return (s->flags & SLAB_RECLAIM_ACCOUNT) ? 211 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; 212 } 213 214 #ifdef CONFIG_SLUB_DEBUG 215 #ifdef CONFIG_SLUB_DEBUG_ON 216 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled); 217 #else 218 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled); 219 #endif 220 extern void print_tracking(struct kmem_cache *s, void *object); 221 #else 222 static inline void print_tracking(struct kmem_cache *s, void *object) 223 { 224 } 225 #endif 226 227 /* 228 * Returns true if any of the specified slub_debug flags is enabled for the 229 * cache. Use only for flags parsed by setup_slub_debug() as it also enables 230 * the static key. 231 */ 232 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags) 233 { 234 #ifdef CONFIG_SLUB_DEBUG 235 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS)); 236 if (static_branch_unlikely(&slub_debug_enabled)) 237 return s->flags & flags; 238 #endif 239 return false; 240 } 241 242 #ifdef CONFIG_MEMCG_KMEM 243 static inline struct obj_cgroup **page_obj_cgroups(struct page *page) 244 { 245 /* 246 * page->mem_cgroup and page->obj_cgroups are sharing the same 247 * space. To distinguish between them in case we don't know for sure 248 * that the page is a slab page (e.g. page_cgroup_ino()), let's 249 * always set the lowest bit of obj_cgroups. 250 */ 251 return (struct obj_cgroup **) 252 ((unsigned long)page->obj_cgroups & ~0x1UL); 253 } 254 255 static inline bool page_has_obj_cgroups(struct page *page) 256 { 257 return ((unsigned long)page->obj_cgroups & 0x1UL); 258 } 259 260 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, 261 gfp_t gfp); 262 263 static inline void memcg_free_page_obj_cgroups(struct page *page) 264 { 265 kfree(page_obj_cgroups(page)); 266 page->obj_cgroups = NULL; 267 } 268 269 static inline size_t obj_full_size(struct kmem_cache *s) 270 { 271 /* 272 * For each accounted object there is an extra space which is used 273 * to store obj_cgroup membership. Charge it too. 274 */ 275 return s->size + sizeof(struct obj_cgroup *); 276 } 277 278 static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s, 279 size_t objects, 280 gfp_t flags) 281 { 282 struct obj_cgroup *objcg; 283 284 if (memcg_kmem_bypass()) 285 return NULL; 286 287 objcg = get_obj_cgroup_from_current(); 288 if (!objcg) 289 return NULL; 290 291 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) { 292 obj_cgroup_put(objcg); 293 return NULL; 294 } 295 296 return objcg; 297 } 298 299 static inline void mod_objcg_state(struct obj_cgroup *objcg, 300 struct pglist_data *pgdat, 301 int idx, int nr) 302 { 303 struct mem_cgroup *memcg; 304 struct lruvec *lruvec; 305 306 rcu_read_lock(); 307 memcg = obj_cgroup_memcg(objcg); 308 lruvec = mem_cgroup_lruvec(memcg, pgdat); 309 mod_memcg_lruvec_state(lruvec, idx, nr); 310 rcu_read_unlock(); 311 } 312 313 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, 314 struct obj_cgroup *objcg, 315 gfp_t flags, size_t size, 316 void **p) 317 { 318 struct page *page; 319 unsigned long off; 320 size_t i; 321 322 if (!objcg) 323 return; 324 325 flags &= ~__GFP_ACCOUNT; 326 for (i = 0; i < size; i++) { 327 if (likely(p[i])) { 328 page = virt_to_head_page(p[i]); 329 330 if (!page_has_obj_cgroups(page) && 331 memcg_alloc_page_obj_cgroups(page, s, flags)) { 332 obj_cgroup_uncharge(objcg, obj_full_size(s)); 333 continue; 334 } 335 336 off = obj_to_index(s, page, p[i]); 337 obj_cgroup_get(objcg); 338 page_obj_cgroups(page)[off] = objcg; 339 mod_objcg_state(objcg, page_pgdat(page), 340 cache_vmstat_idx(s), obj_full_size(s)); 341 } else { 342 obj_cgroup_uncharge(objcg, obj_full_size(s)); 343 } 344 } 345 obj_cgroup_put(objcg); 346 } 347 348 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig, 349 void **p, int objects) 350 { 351 struct kmem_cache *s; 352 struct obj_cgroup *objcg; 353 struct page *page; 354 unsigned int off; 355 int i; 356 357 if (!memcg_kmem_enabled()) 358 return; 359 360 for (i = 0; i < objects; i++) { 361 if (unlikely(!p[i])) 362 continue; 363 364 page = virt_to_head_page(p[i]); 365 if (!page_has_obj_cgroups(page)) 366 continue; 367 368 if (!s_orig) 369 s = page->slab_cache; 370 else 371 s = s_orig; 372 373 off = obj_to_index(s, page, p[i]); 374 objcg = page_obj_cgroups(page)[off]; 375 if (!objcg) 376 continue; 377 378 page_obj_cgroups(page)[off] = NULL; 379 obj_cgroup_uncharge(objcg, obj_full_size(s)); 380 mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s), 381 -obj_full_size(s)); 382 obj_cgroup_put(objcg); 383 } 384 } 385 386 #else /* CONFIG_MEMCG_KMEM */ 387 static inline bool page_has_obj_cgroups(struct page *page) 388 { 389 return false; 390 } 391 392 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr) 393 { 394 return NULL; 395 } 396 397 static inline int memcg_alloc_page_obj_cgroups(struct page *page, 398 struct kmem_cache *s, gfp_t gfp) 399 { 400 return 0; 401 } 402 403 static inline void memcg_free_page_obj_cgroups(struct page *page) 404 { 405 } 406 407 static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s, 408 size_t objects, 409 gfp_t flags) 410 { 411 return NULL; 412 } 413 414 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, 415 struct obj_cgroup *objcg, 416 gfp_t flags, size_t size, 417 void **p) 418 { 419 } 420 421 static inline void memcg_slab_free_hook(struct kmem_cache *s, 422 void **p, int objects) 423 { 424 } 425 #endif /* CONFIG_MEMCG_KMEM */ 426 427 static inline struct kmem_cache *virt_to_cache(const void *obj) 428 { 429 struct page *page; 430 431 page = virt_to_head_page(obj); 432 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n", 433 __func__)) 434 return NULL; 435 return page->slab_cache; 436 } 437 438 static __always_inline void account_slab_page(struct page *page, int order, 439 struct kmem_cache *s) 440 { 441 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), 442 PAGE_SIZE << order); 443 } 444 445 static __always_inline void unaccount_slab_page(struct page *page, int order, 446 struct kmem_cache *s) 447 { 448 if (memcg_kmem_enabled()) 449 memcg_free_page_obj_cgroups(page); 450 451 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), 452 -(PAGE_SIZE << order)); 453 } 454 455 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 456 { 457 struct kmem_cache *cachep; 458 459 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 460 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 461 return s; 462 463 cachep = virt_to_cache(x); 464 if (WARN(cachep && cachep != s, 465 "%s: Wrong slab cache. %s but object is from %s\n", 466 __func__, s->name, cachep->name)) 467 print_tracking(cachep, x); 468 return cachep; 469 } 470 471 static inline size_t slab_ksize(const struct kmem_cache *s) 472 { 473 #ifndef CONFIG_SLUB 474 return s->object_size; 475 476 #else /* CONFIG_SLUB */ 477 # ifdef CONFIG_SLUB_DEBUG 478 /* 479 * Debugging requires use of the padding between object 480 * and whatever may come after it. 481 */ 482 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 483 return s->object_size; 484 # endif 485 if (s->flags & SLAB_KASAN) 486 return s->object_size; 487 /* 488 * If we have the need to store the freelist pointer 489 * back there or track user information then we can 490 * only use the space before that information. 491 */ 492 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) 493 return s->inuse; 494 /* 495 * Else we can use all the padding etc for the allocation 496 */ 497 return s->size; 498 #endif 499 } 500 501 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 502 struct obj_cgroup **objcgp, 503 size_t size, gfp_t flags) 504 { 505 flags &= gfp_allowed_mask; 506 507 fs_reclaim_acquire(flags); 508 fs_reclaim_release(flags); 509 510 might_sleep_if(gfpflags_allow_blocking(flags)); 511 512 if (should_failslab(s, flags)) 513 return NULL; 514 515 if (memcg_kmem_enabled() && 516 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT))) 517 *objcgp = memcg_slab_pre_alloc_hook(s, size, flags); 518 519 return s; 520 } 521 522 static inline void slab_post_alloc_hook(struct kmem_cache *s, 523 struct obj_cgroup *objcg, 524 gfp_t flags, size_t size, void **p) 525 { 526 size_t i; 527 528 flags &= gfp_allowed_mask; 529 for (i = 0; i < size; i++) { 530 p[i] = kasan_slab_alloc(s, p[i], flags); 531 /* As p[i] might get tagged, call kmemleak hook after KASAN. */ 532 kmemleak_alloc_recursive(p[i], s->object_size, 1, 533 s->flags, flags); 534 } 535 536 if (memcg_kmem_enabled()) 537 memcg_slab_post_alloc_hook(s, objcg, flags, size, p); 538 } 539 540 #ifndef CONFIG_SLOB 541 /* 542 * The slab lists for all objects. 543 */ 544 struct kmem_cache_node { 545 spinlock_t list_lock; 546 547 #ifdef CONFIG_SLAB 548 struct list_head slabs_partial; /* partial list first, better asm code */ 549 struct list_head slabs_full; 550 struct list_head slabs_free; 551 unsigned long total_slabs; /* length of all slab lists */ 552 unsigned long free_slabs; /* length of free slab list only */ 553 unsigned long free_objects; 554 unsigned int free_limit; 555 unsigned int colour_next; /* Per-node cache coloring */ 556 struct array_cache *shared; /* shared per node */ 557 struct alien_cache **alien; /* on other nodes */ 558 unsigned long next_reap; /* updated without locking */ 559 int free_touched; /* updated without locking */ 560 #endif 561 562 #ifdef CONFIG_SLUB 563 unsigned long nr_partial; 564 struct list_head partial; 565 #ifdef CONFIG_SLUB_DEBUG 566 atomic_long_t nr_slabs; 567 atomic_long_t total_objects; 568 struct list_head full; 569 #endif 570 #endif 571 572 }; 573 574 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 575 { 576 return s->node[node]; 577 } 578 579 /* 580 * Iterator over all nodes. The body will be executed for each node that has 581 * a kmem_cache_node structure allocated (which is true for all online nodes) 582 */ 583 #define for_each_kmem_cache_node(__s, __node, __n) \ 584 for (__node = 0; __node < nr_node_ids; __node++) \ 585 if ((__n = get_node(__s, __node))) 586 587 #endif 588 589 void *slab_start(struct seq_file *m, loff_t *pos); 590 void *slab_next(struct seq_file *m, void *p, loff_t *pos); 591 void slab_stop(struct seq_file *m, void *p); 592 int memcg_slab_show(struct seq_file *m, void *p); 593 594 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 595 void dump_unreclaimable_slab(void); 596 #else 597 static inline void dump_unreclaimable_slab(void) 598 { 599 } 600 #endif 601 602 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); 603 604 #ifdef CONFIG_SLAB_FREELIST_RANDOM 605 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 606 gfp_t gfp); 607 void cache_random_seq_destroy(struct kmem_cache *cachep); 608 #else 609 static inline int cache_random_seq_create(struct kmem_cache *cachep, 610 unsigned int count, gfp_t gfp) 611 { 612 return 0; 613 } 614 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } 615 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 616 617 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) 618 { 619 if (static_branch_unlikely(&init_on_alloc)) { 620 if (c->ctor) 621 return false; 622 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) 623 return flags & __GFP_ZERO; 624 return true; 625 } 626 return flags & __GFP_ZERO; 627 } 628 629 static inline bool slab_want_init_on_free(struct kmem_cache *c) 630 { 631 if (static_branch_unlikely(&init_on_free)) 632 return !(c->ctor || 633 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); 634 return false; 635 } 636 637 #endif /* MM_SLAB_H */ 638