xref: /openbmc/linux/mm/slab.h (revision 56bbd862)
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4  * Internal slab definitions
5  */
6 
7 #ifdef CONFIG_SLOB
8 /*
9  * Common fields provided in kmem_cache by all slab allocators
10  * This struct is either used directly by the allocator (SLOB)
11  * or the allocator must include definitions for all fields
12  * provided in kmem_cache_common in their definition of kmem_cache.
13  *
14  * Once we can do anonymous structs (C11 standard) we could put a
15  * anonymous struct definition in these allocators so that the
16  * separate allocations in the kmem_cache structure of SLAB and
17  * SLUB is no longer needed.
18  */
19 struct kmem_cache {
20 	unsigned int object_size;/* The original size of the object */
21 	unsigned int size;	/* The aligned/padded/added on size  */
22 	unsigned int align;	/* Alignment as calculated */
23 	unsigned long flags;	/* Active flags on the slab */
24 	const char *name;	/* Slab name for sysfs */
25 	int refcount;		/* Use counter */
26 	void (*ctor)(void *);	/* Called on object slot creation */
27 	struct list_head list;	/* List of all slab caches on the system */
28 };
29 
30 #endif /* CONFIG_SLOB */
31 
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
35 
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
39 
40 #include <linux/memcontrol.h>
41 #include <linux/fault-inject.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/kasan.h>
44 #include <linux/kmemleak.h>
45 #include <linux/random.h>
46 
47 /*
48  * State of the slab allocator.
49  *
50  * This is used to describe the states of the allocator during bootup.
51  * Allocators use this to gradually bootstrap themselves. Most allocators
52  * have the problem that the structures used for managing slab caches are
53  * allocated from slab caches themselves.
54  */
55 enum slab_state {
56 	DOWN,			/* No slab functionality yet */
57 	PARTIAL,		/* SLUB: kmem_cache_node available */
58 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
59 	UP,			/* Slab caches usable but not all extras yet */
60 	FULL			/* Everything is working */
61 };
62 
63 extern enum slab_state slab_state;
64 
65 /* The slab cache mutex protects the management structures during changes */
66 extern struct mutex slab_mutex;
67 
68 /* The list of all slab caches on the system */
69 extern struct list_head slab_caches;
70 
71 /* The slab cache that manages slab cache information */
72 extern struct kmem_cache *kmem_cache;
73 
74 unsigned long calculate_alignment(unsigned long flags,
75 		unsigned long align, unsigned long size);
76 
77 #ifndef CONFIG_SLOB
78 /* Kmalloc array related functions */
79 void setup_kmalloc_cache_index_table(void);
80 void create_kmalloc_caches(unsigned long);
81 
82 /* Find the kmalloc slab corresponding for a certain size */
83 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
84 #endif
85 
86 
87 /* Functions provided by the slab allocators */
88 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
89 
90 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
91 			unsigned long flags);
92 extern void create_boot_cache(struct kmem_cache *, const char *name,
93 			size_t size, unsigned long flags);
94 
95 int slab_unmergeable(struct kmem_cache *s);
96 struct kmem_cache *find_mergeable(size_t size, size_t align,
97 		unsigned long flags, const char *name, void (*ctor)(void *));
98 #ifndef CONFIG_SLOB
99 struct kmem_cache *
100 __kmem_cache_alias(const char *name, size_t size, size_t align,
101 		   unsigned long flags, void (*ctor)(void *));
102 
103 unsigned long kmem_cache_flags(unsigned long object_size,
104 	unsigned long flags, const char *name,
105 	void (*ctor)(void *));
106 #else
107 static inline struct kmem_cache *
108 __kmem_cache_alias(const char *name, size_t size, size_t align,
109 		   unsigned long flags, void (*ctor)(void *))
110 { return NULL; }
111 
112 static inline unsigned long kmem_cache_flags(unsigned long object_size,
113 	unsigned long flags, const char *name,
114 	void (*ctor)(void *))
115 {
116 	return flags;
117 }
118 #endif
119 
120 
121 /* Legal flag mask for kmem_cache_create(), for various configurations */
122 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
123 			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
124 
125 #if defined(CONFIG_DEBUG_SLAB)
126 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
127 #elif defined(CONFIG_SLUB_DEBUG)
128 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
129 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
130 #else
131 #define SLAB_DEBUG_FLAGS (0)
132 #endif
133 
134 #if defined(CONFIG_SLAB)
135 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
136 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
137 			  SLAB_NOTRACK | SLAB_ACCOUNT)
138 #elif defined(CONFIG_SLUB)
139 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
140 			  SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
141 #else
142 #define SLAB_CACHE_FLAGS (0)
143 #endif
144 
145 /* Common flags available with current configuration */
146 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
147 
148 /* Common flags permitted for kmem_cache_create */
149 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
150 			      SLAB_RED_ZONE | \
151 			      SLAB_POISON | \
152 			      SLAB_STORE_USER | \
153 			      SLAB_TRACE | \
154 			      SLAB_CONSISTENCY_CHECKS | \
155 			      SLAB_MEM_SPREAD | \
156 			      SLAB_NOLEAKTRACE | \
157 			      SLAB_RECLAIM_ACCOUNT | \
158 			      SLAB_TEMPORARY | \
159 			      SLAB_NOTRACK | \
160 			      SLAB_ACCOUNT)
161 
162 int __kmem_cache_shutdown(struct kmem_cache *);
163 void __kmem_cache_release(struct kmem_cache *);
164 int __kmem_cache_shrink(struct kmem_cache *);
165 void slab_kmem_cache_release(struct kmem_cache *);
166 
167 struct seq_file;
168 struct file;
169 
170 struct slabinfo {
171 	unsigned long active_objs;
172 	unsigned long num_objs;
173 	unsigned long active_slabs;
174 	unsigned long num_slabs;
175 	unsigned long shared_avail;
176 	unsigned int limit;
177 	unsigned int batchcount;
178 	unsigned int shared;
179 	unsigned int objects_per_slab;
180 	unsigned int cache_order;
181 };
182 
183 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
184 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
185 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
186 		       size_t count, loff_t *ppos);
187 
188 /*
189  * Generic implementation of bulk operations
190  * These are useful for situations in which the allocator cannot
191  * perform optimizations. In that case segments of the object listed
192  * may be allocated or freed using these operations.
193  */
194 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
195 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
196 
197 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
198 /*
199  * Iterate over all memcg caches of the given root cache. The caller must hold
200  * slab_mutex.
201  */
202 #define for_each_memcg_cache(iter, root) \
203 	list_for_each_entry(iter, &(root)->memcg_params.list, \
204 			    memcg_params.list)
205 
206 static inline bool is_root_cache(struct kmem_cache *s)
207 {
208 	return s->memcg_params.is_root_cache;
209 }
210 
211 static inline bool slab_equal_or_root(struct kmem_cache *s,
212 				      struct kmem_cache *p)
213 {
214 	return p == s || p == s->memcg_params.root_cache;
215 }
216 
217 /*
218  * We use suffixes to the name in memcg because we can't have caches
219  * created in the system with the same name. But when we print them
220  * locally, better refer to them with the base name
221  */
222 static inline const char *cache_name(struct kmem_cache *s)
223 {
224 	if (!is_root_cache(s))
225 		s = s->memcg_params.root_cache;
226 	return s->name;
227 }
228 
229 /*
230  * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
231  * That said the caller must assure the memcg's cache won't go away by either
232  * taking a css reference to the owner cgroup, or holding the slab_mutex.
233  */
234 static inline struct kmem_cache *
235 cache_from_memcg_idx(struct kmem_cache *s, int idx)
236 {
237 	struct kmem_cache *cachep;
238 	struct memcg_cache_array *arr;
239 
240 	rcu_read_lock();
241 	arr = rcu_dereference(s->memcg_params.memcg_caches);
242 
243 	/*
244 	 * Make sure we will access the up-to-date value. The code updating
245 	 * memcg_caches issues a write barrier to match this (see
246 	 * memcg_create_kmem_cache()).
247 	 */
248 	cachep = lockless_dereference(arr->entries[idx]);
249 	rcu_read_unlock();
250 
251 	return cachep;
252 }
253 
254 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
255 {
256 	if (is_root_cache(s))
257 		return s;
258 	return s->memcg_params.root_cache;
259 }
260 
261 static __always_inline int memcg_charge_slab(struct page *page,
262 					     gfp_t gfp, int order,
263 					     struct kmem_cache *s)
264 {
265 	int ret;
266 
267 	if (!memcg_kmem_enabled())
268 		return 0;
269 	if (is_root_cache(s))
270 		return 0;
271 
272 	ret = memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
273 	if (ret)
274 		return ret;
275 
276 	memcg_kmem_update_page_stat(page,
277 			(s->flags & SLAB_RECLAIM_ACCOUNT) ?
278 			MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
279 			1 << order);
280 	return 0;
281 }
282 
283 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
284 						struct kmem_cache *s)
285 {
286 	if (!memcg_kmem_enabled())
287 		return;
288 
289 	memcg_kmem_update_page_stat(page,
290 			(s->flags & SLAB_RECLAIM_ACCOUNT) ?
291 			MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
292 			-(1 << order));
293 	memcg_kmem_uncharge(page, order);
294 }
295 
296 extern void slab_init_memcg_params(struct kmem_cache *);
297 
298 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
299 
300 #define for_each_memcg_cache(iter, root) \
301 	for ((void)(iter), (void)(root); 0; )
302 
303 static inline bool is_root_cache(struct kmem_cache *s)
304 {
305 	return true;
306 }
307 
308 static inline bool slab_equal_or_root(struct kmem_cache *s,
309 				      struct kmem_cache *p)
310 {
311 	return true;
312 }
313 
314 static inline const char *cache_name(struct kmem_cache *s)
315 {
316 	return s->name;
317 }
318 
319 static inline struct kmem_cache *
320 cache_from_memcg_idx(struct kmem_cache *s, int idx)
321 {
322 	return NULL;
323 }
324 
325 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
326 {
327 	return s;
328 }
329 
330 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
331 				    struct kmem_cache *s)
332 {
333 	return 0;
334 }
335 
336 static inline void memcg_uncharge_slab(struct page *page, int order,
337 				       struct kmem_cache *s)
338 {
339 }
340 
341 static inline void slab_init_memcg_params(struct kmem_cache *s)
342 {
343 }
344 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
345 
346 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
347 {
348 	struct kmem_cache *cachep;
349 	struct page *page;
350 
351 	/*
352 	 * When kmemcg is not being used, both assignments should return the
353 	 * same value. but we don't want to pay the assignment price in that
354 	 * case. If it is not compiled in, the compiler should be smart enough
355 	 * to not do even the assignment. In that case, slab_equal_or_root
356 	 * will also be a constant.
357 	 */
358 	if (!memcg_kmem_enabled() &&
359 	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
360 		return s;
361 
362 	page = virt_to_head_page(x);
363 	cachep = page->slab_cache;
364 	if (slab_equal_or_root(cachep, s))
365 		return cachep;
366 
367 	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
368 	       __func__, s->name, cachep->name);
369 	WARN_ON_ONCE(1);
370 	return s;
371 }
372 
373 static inline size_t slab_ksize(const struct kmem_cache *s)
374 {
375 #ifndef CONFIG_SLUB
376 	return s->object_size;
377 
378 #else /* CONFIG_SLUB */
379 # ifdef CONFIG_SLUB_DEBUG
380 	/*
381 	 * Debugging requires use of the padding between object
382 	 * and whatever may come after it.
383 	 */
384 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
385 		return s->object_size;
386 # endif
387 	if (s->flags & SLAB_KASAN)
388 		return s->object_size;
389 	/*
390 	 * If we have the need to store the freelist pointer
391 	 * back there or track user information then we can
392 	 * only use the space before that information.
393 	 */
394 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
395 		return s->inuse;
396 	/*
397 	 * Else we can use all the padding etc for the allocation
398 	 */
399 	return s->size;
400 #endif
401 }
402 
403 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
404 						     gfp_t flags)
405 {
406 	flags &= gfp_allowed_mask;
407 	lockdep_trace_alloc(flags);
408 	might_sleep_if(gfpflags_allow_blocking(flags));
409 
410 	if (should_failslab(s, flags))
411 		return NULL;
412 
413 	if (memcg_kmem_enabled() &&
414 	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
415 		return memcg_kmem_get_cache(s);
416 
417 	return s;
418 }
419 
420 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
421 					size_t size, void **p)
422 {
423 	size_t i;
424 
425 	flags &= gfp_allowed_mask;
426 	for (i = 0; i < size; i++) {
427 		void *object = p[i];
428 
429 		kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
430 		kmemleak_alloc_recursive(object, s->object_size, 1,
431 					 s->flags, flags);
432 		kasan_slab_alloc(s, object, flags);
433 	}
434 
435 	if (memcg_kmem_enabled())
436 		memcg_kmem_put_cache(s);
437 }
438 
439 #ifndef CONFIG_SLOB
440 /*
441  * The slab lists for all objects.
442  */
443 struct kmem_cache_node {
444 	spinlock_t list_lock;
445 
446 #ifdef CONFIG_SLAB
447 	struct list_head slabs_partial;	/* partial list first, better asm code */
448 	struct list_head slabs_full;
449 	struct list_head slabs_free;
450 	unsigned long total_slabs;	/* length of all slab lists */
451 	unsigned long free_slabs;	/* length of free slab list only */
452 	unsigned long free_objects;
453 	unsigned int free_limit;
454 	unsigned int colour_next;	/* Per-node cache coloring */
455 	struct array_cache *shared;	/* shared per node */
456 	struct alien_cache **alien;	/* on other nodes */
457 	unsigned long next_reap;	/* updated without locking */
458 	int free_touched;		/* updated without locking */
459 #endif
460 
461 #ifdef CONFIG_SLUB
462 	unsigned long nr_partial;
463 	struct list_head partial;
464 #ifdef CONFIG_SLUB_DEBUG
465 	atomic_long_t nr_slabs;
466 	atomic_long_t total_objects;
467 	struct list_head full;
468 #endif
469 #endif
470 
471 };
472 
473 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
474 {
475 	return s->node[node];
476 }
477 
478 /*
479  * Iterator over all nodes. The body will be executed for each node that has
480  * a kmem_cache_node structure allocated (which is true for all online nodes)
481  */
482 #define for_each_kmem_cache_node(__s, __node, __n) \
483 	for (__node = 0; __node < nr_node_ids; __node++) \
484 		 if ((__n = get_node(__s, __node)))
485 
486 #endif
487 
488 void *slab_start(struct seq_file *m, loff_t *pos);
489 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
490 void slab_stop(struct seq_file *m, void *p);
491 int memcg_slab_show(struct seq_file *m, void *p);
492 
493 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
494 
495 #ifdef CONFIG_SLAB_FREELIST_RANDOM
496 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
497 			gfp_t gfp);
498 void cache_random_seq_destroy(struct kmem_cache *cachep);
499 #else
500 static inline int cache_random_seq_create(struct kmem_cache *cachep,
501 					unsigned int count, gfp_t gfp)
502 {
503 	return 0;
504 }
505 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
506 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
507 
508 #endif /* MM_SLAB_H */
509