1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef MM_SLAB_H 3 #define MM_SLAB_H 4 /* 5 * Internal slab definitions 6 */ 7 8 #ifdef CONFIG_SLOB 9 /* 10 * Common fields provided in kmem_cache by all slab allocators 11 * This struct is either used directly by the allocator (SLOB) 12 * or the allocator must include definitions for all fields 13 * provided in kmem_cache_common in their definition of kmem_cache. 14 * 15 * Once we can do anonymous structs (C11 standard) we could put a 16 * anonymous struct definition in these allocators so that the 17 * separate allocations in the kmem_cache structure of SLAB and 18 * SLUB is no longer needed. 19 */ 20 struct kmem_cache { 21 unsigned int object_size;/* The original size of the object */ 22 unsigned int size; /* The aligned/padded/added on size */ 23 unsigned int align; /* Alignment as calculated */ 24 slab_flags_t flags; /* Active flags on the slab */ 25 const char *name; /* Slab name for sysfs */ 26 int refcount; /* Use counter */ 27 void (*ctor)(void *); /* Called on object slot creation */ 28 struct list_head list; /* List of all slab caches on the system */ 29 }; 30 31 #endif /* CONFIG_SLOB */ 32 33 #ifdef CONFIG_SLAB 34 #include <linux/slab_def.h> 35 #endif 36 37 #ifdef CONFIG_SLUB 38 #include <linux/slub_def.h> 39 #endif 40 41 #include <linux/memcontrol.h> 42 #include <linux/fault-inject.h> 43 #include <linux/kasan.h> 44 #include <linux/kmemleak.h> 45 #include <linux/random.h> 46 #include <linux/sched/mm.h> 47 48 /* 49 * State of the slab allocator. 50 * 51 * This is used to describe the states of the allocator during bootup. 52 * Allocators use this to gradually bootstrap themselves. Most allocators 53 * have the problem that the structures used for managing slab caches are 54 * allocated from slab caches themselves. 55 */ 56 enum slab_state { 57 DOWN, /* No slab functionality yet */ 58 PARTIAL, /* SLUB: kmem_cache_node available */ 59 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ 60 UP, /* Slab caches usable but not all extras yet */ 61 FULL /* Everything is working */ 62 }; 63 64 extern enum slab_state slab_state; 65 66 /* The slab cache mutex protects the management structures during changes */ 67 extern struct mutex slab_mutex; 68 69 /* The list of all slab caches on the system */ 70 extern struct list_head slab_caches; 71 72 /* The slab cache that manages slab cache information */ 73 extern struct kmem_cache *kmem_cache; 74 75 /* A table of kmalloc cache names and sizes */ 76 extern const struct kmalloc_info_struct { 77 const char *name; 78 unsigned long size; 79 } kmalloc_info[]; 80 81 unsigned long calculate_alignment(slab_flags_t flags, 82 unsigned long align, unsigned long size); 83 84 #ifndef CONFIG_SLOB 85 /* Kmalloc array related functions */ 86 void setup_kmalloc_cache_index_table(void); 87 void create_kmalloc_caches(slab_flags_t); 88 89 /* Find the kmalloc slab corresponding for a certain size */ 90 struct kmem_cache *kmalloc_slab(size_t, gfp_t); 91 #endif 92 93 94 /* Functions provided by the slab allocators */ 95 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); 96 97 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size, 98 slab_flags_t flags); 99 extern void create_boot_cache(struct kmem_cache *, const char *name, 100 size_t size, slab_flags_t flags); 101 102 int slab_unmergeable(struct kmem_cache *s); 103 struct kmem_cache *find_mergeable(size_t size, size_t align, 104 slab_flags_t flags, const char *name, void (*ctor)(void *)); 105 #ifndef CONFIG_SLOB 106 struct kmem_cache * 107 __kmem_cache_alias(const char *name, size_t size, size_t align, 108 slab_flags_t flags, void (*ctor)(void *)); 109 110 slab_flags_t kmem_cache_flags(unsigned long object_size, 111 slab_flags_t flags, const char *name, 112 void (*ctor)(void *)); 113 #else 114 static inline struct kmem_cache * 115 __kmem_cache_alias(const char *name, size_t size, size_t align, 116 slab_flags_t flags, void (*ctor)(void *)) 117 { return NULL; } 118 119 static inline slab_flags_t kmem_cache_flags(unsigned long object_size, 120 slab_flags_t flags, const char *name, 121 void (*ctor)(void *)) 122 { 123 return flags; 124 } 125 #endif 126 127 128 /* Legal flag mask for kmem_cache_create(), for various configurations */ 129 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \ 130 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) 131 132 #if defined(CONFIG_DEBUG_SLAB) 133 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 134 #elif defined(CONFIG_SLUB_DEBUG) 135 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 136 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) 137 #else 138 #define SLAB_DEBUG_FLAGS (0) 139 #endif 140 141 #if defined(CONFIG_SLAB) 142 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ 143 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ 144 SLAB_ACCOUNT) 145 #elif defined(CONFIG_SLUB) 146 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ 147 SLAB_TEMPORARY | SLAB_ACCOUNT) 148 #else 149 #define SLAB_CACHE_FLAGS (0) 150 #endif 151 152 /* Common flags available with current configuration */ 153 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) 154 155 /* Common flags permitted for kmem_cache_create */ 156 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ 157 SLAB_RED_ZONE | \ 158 SLAB_POISON | \ 159 SLAB_STORE_USER | \ 160 SLAB_TRACE | \ 161 SLAB_CONSISTENCY_CHECKS | \ 162 SLAB_MEM_SPREAD | \ 163 SLAB_NOLEAKTRACE | \ 164 SLAB_RECLAIM_ACCOUNT | \ 165 SLAB_TEMPORARY | \ 166 SLAB_ACCOUNT) 167 168 int __kmem_cache_shutdown(struct kmem_cache *); 169 void __kmem_cache_release(struct kmem_cache *); 170 int __kmem_cache_shrink(struct kmem_cache *); 171 void __kmemcg_cache_deactivate(struct kmem_cache *s); 172 void slab_kmem_cache_release(struct kmem_cache *); 173 174 struct seq_file; 175 struct file; 176 177 struct slabinfo { 178 unsigned long active_objs; 179 unsigned long num_objs; 180 unsigned long active_slabs; 181 unsigned long num_slabs; 182 unsigned long shared_avail; 183 unsigned int limit; 184 unsigned int batchcount; 185 unsigned int shared; 186 unsigned int objects_per_slab; 187 unsigned int cache_order; 188 }; 189 190 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); 191 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); 192 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 193 size_t count, loff_t *ppos); 194 195 /* 196 * Generic implementation of bulk operations 197 * These are useful for situations in which the allocator cannot 198 * perform optimizations. In that case segments of the object listed 199 * may be allocated or freed using these operations. 200 */ 201 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 202 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 203 204 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 205 206 /* List of all root caches. */ 207 extern struct list_head slab_root_caches; 208 #define root_caches_node memcg_params.__root_caches_node 209 210 /* 211 * Iterate over all memcg caches of the given root cache. The caller must hold 212 * slab_mutex. 213 */ 214 #define for_each_memcg_cache(iter, root) \ 215 list_for_each_entry(iter, &(root)->memcg_params.children, \ 216 memcg_params.children_node) 217 218 static inline bool is_root_cache(struct kmem_cache *s) 219 { 220 return !s->memcg_params.root_cache; 221 } 222 223 static inline bool slab_equal_or_root(struct kmem_cache *s, 224 struct kmem_cache *p) 225 { 226 return p == s || p == s->memcg_params.root_cache; 227 } 228 229 /* 230 * We use suffixes to the name in memcg because we can't have caches 231 * created in the system with the same name. But when we print them 232 * locally, better refer to them with the base name 233 */ 234 static inline const char *cache_name(struct kmem_cache *s) 235 { 236 if (!is_root_cache(s)) 237 s = s->memcg_params.root_cache; 238 return s->name; 239 } 240 241 /* 242 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches. 243 * That said the caller must assure the memcg's cache won't go away by either 244 * taking a css reference to the owner cgroup, or holding the slab_mutex. 245 */ 246 static inline struct kmem_cache * 247 cache_from_memcg_idx(struct kmem_cache *s, int idx) 248 { 249 struct kmem_cache *cachep; 250 struct memcg_cache_array *arr; 251 252 rcu_read_lock(); 253 arr = rcu_dereference(s->memcg_params.memcg_caches); 254 255 /* 256 * Make sure we will access the up-to-date value. The code updating 257 * memcg_caches issues a write barrier to match this (see 258 * memcg_create_kmem_cache()). 259 */ 260 cachep = READ_ONCE(arr->entries[idx]); 261 rcu_read_unlock(); 262 263 return cachep; 264 } 265 266 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 267 { 268 if (is_root_cache(s)) 269 return s; 270 return s->memcg_params.root_cache; 271 } 272 273 static __always_inline int memcg_charge_slab(struct page *page, 274 gfp_t gfp, int order, 275 struct kmem_cache *s) 276 { 277 if (!memcg_kmem_enabled()) 278 return 0; 279 if (is_root_cache(s)) 280 return 0; 281 return memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg); 282 } 283 284 static __always_inline void memcg_uncharge_slab(struct page *page, int order, 285 struct kmem_cache *s) 286 { 287 if (!memcg_kmem_enabled()) 288 return; 289 memcg_kmem_uncharge(page, order); 290 } 291 292 extern void slab_init_memcg_params(struct kmem_cache *); 293 extern void memcg_link_cache(struct kmem_cache *s); 294 extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s, 295 void (*deact_fn)(struct kmem_cache *)); 296 297 #else /* CONFIG_MEMCG && !CONFIG_SLOB */ 298 299 /* If !memcg, all caches are root. */ 300 #define slab_root_caches slab_caches 301 #define root_caches_node list 302 303 #define for_each_memcg_cache(iter, root) \ 304 for ((void)(iter), (void)(root); 0; ) 305 306 static inline bool is_root_cache(struct kmem_cache *s) 307 { 308 return true; 309 } 310 311 static inline bool slab_equal_or_root(struct kmem_cache *s, 312 struct kmem_cache *p) 313 { 314 return true; 315 } 316 317 static inline const char *cache_name(struct kmem_cache *s) 318 { 319 return s->name; 320 } 321 322 static inline struct kmem_cache * 323 cache_from_memcg_idx(struct kmem_cache *s, int idx) 324 { 325 return NULL; 326 } 327 328 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 329 { 330 return s; 331 } 332 333 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order, 334 struct kmem_cache *s) 335 { 336 return 0; 337 } 338 339 static inline void memcg_uncharge_slab(struct page *page, int order, 340 struct kmem_cache *s) 341 { 342 } 343 344 static inline void slab_init_memcg_params(struct kmem_cache *s) 345 { 346 } 347 348 static inline void memcg_link_cache(struct kmem_cache *s) 349 { 350 } 351 352 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 353 354 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 355 { 356 struct kmem_cache *cachep; 357 struct page *page; 358 359 /* 360 * When kmemcg is not being used, both assignments should return the 361 * same value. but we don't want to pay the assignment price in that 362 * case. If it is not compiled in, the compiler should be smart enough 363 * to not do even the assignment. In that case, slab_equal_or_root 364 * will also be a constant. 365 */ 366 if (!memcg_kmem_enabled() && 367 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS)) 368 return s; 369 370 page = virt_to_head_page(x); 371 cachep = page->slab_cache; 372 if (slab_equal_or_root(cachep, s)) 373 return cachep; 374 375 pr_err("%s: Wrong slab cache. %s but object is from %s\n", 376 __func__, s->name, cachep->name); 377 WARN_ON_ONCE(1); 378 return s; 379 } 380 381 static inline size_t slab_ksize(const struct kmem_cache *s) 382 { 383 #ifndef CONFIG_SLUB 384 return s->object_size; 385 386 #else /* CONFIG_SLUB */ 387 # ifdef CONFIG_SLUB_DEBUG 388 /* 389 * Debugging requires use of the padding between object 390 * and whatever may come after it. 391 */ 392 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 393 return s->object_size; 394 # endif 395 if (s->flags & SLAB_KASAN) 396 return s->object_size; 397 /* 398 * If we have the need to store the freelist pointer 399 * back there or track user information then we can 400 * only use the space before that information. 401 */ 402 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) 403 return s->inuse; 404 /* 405 * Else we can use all the padding etc for the allocation 406 */ 407 return s->size; 408 #endif 409 } 410 411 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 412 gfp_t flags) 413 { 414 flags &= gfp_allowed_mask; 415 416 fs_reclaim_acquire(flags); 417 fs_reclaim_release(flags); 418 419 might_sleep_if(gfpflags_allow_blocking(flags)); 420 421 if (should_failslab(s, flags)) 422 return NULL; 423 424 if (memcg_kmem_enabled() && 425 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT))) 426 return memcg_kmem_get_cache(s); 427 428 return s; 429 } 430 431 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 432 size_t size, void **p) 433 { 434 size_t i; 435 436 flags &= gfp_allowed_mask; 437 for (i = 0; i < size; i++) { 438 void *object = p[i]; 439 440 kmemleak_alloc_recursive(object, s->object_size, 1, 441 s->flags, flags); 442 kasan_slab_alloc(s, object, flags); 443 } 444 445 if (memcg_kmem_enabled()) 446 memcg_kmem_put_cache(s); 447 } 448 449 #ifndef CONFIG_SLOB 450 /* 451 * The slab lists for all objects. 452 */ 453 struct kmem_cache_node { 454 spinlock_t list_lock; 455 456 #ifdef CONFIG_SLAB 457 struct list_head slabs_partial; /* partial list first, better asm code */ 458 struct list_head slabs_full; 459 struct list_head slabs_free; 460 unsigned long total_slabs; /* length of all slab lists */ 461 unsigned long free_slabs; /* length of free slab list only */ 462 unsigned long free_objects; 463 unsigned int free_limit; 464 unsigned int colour_next; /* Per-node cache coloring */ 465 struct array_cache *shared; /* shared per node */ 466 struct alien_cache **alien; /* on other nodes */ 467 unsigned long next_reap; /* updated without locking */ 468 int free_touched; /* updated without locking */ 469 #endif 470 471 #ifdef CONFIG_SLUB 472 unsigned long nr_partial; 473 struct list_head partial; 474 #ifdef CONFIG_SLUB_DEBUG 475 atomic_long_t nr_slabs; 476 atomic_long_t total_objects; 477 struct list_head full; 478 #endif 479 #endif 480 481 }; 482 483 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 484 { 485 return s->node[node]; 486 } 487 488 /* 489 * Iterator over all nodes. The body will be executed for each node that has 490 * a kmem_cache_node structure allocated (which is true for all online nodes) 491 */ 492 #define for_each_kmem_cache_node(__s, __node, __n) \ 493 for (__node = 0; __node < nr_node_ids; __node++) \ 494 if ((__n = get_node(__s, __node))) 495 496 #endif 497 498 void *slab_start(struct seq_file *m, loff_t *pos); 499 void *slab_next(struct seq_file *m, void *p, loff_t *pos); 500 void slab_stop(struct seq_file *m, void *p); 501 void *memcg_slab_start(struct seq_file *m, loff_t *pos); 502 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos); 503 void memcg_slab_stop(struct seq_file *m, void *p); 504 int memcg_slab_show(struct seq_file *m, void *p); 505 506 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 507 void dump_unreclaimable_slab(void); 508 #else 509 static inline void dump_unreclaimable_slab(void) 510 { 511 } 512 #endif 513 514 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); 515 516 #ifdef CONFIG_SLAB_FREELIST_RANDOM 517 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 518 gfp_t gfp); 519 void cache_random_seq_destroy(struct kmem_cache *cachep); 520 #else 521 static inline int cache_random_seq_create(struct kmem_cache *cachep, 522 unsigned int count, gfp_t gfp) 523 { 524 return 0; 525 } 526 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } 527 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 528 529 #endif /* MM_SLAB_H */ 530