xref: /openbmc/linux/mm/slab.h (revision 1b69c6d0ae90b7f1a4f61d5c8209d5cb7a55f849)
1  #ifndef MM_SLAB_H
2  #define MM_SLAB_H
3  /*
4   * Internal slab definitions
5   */
6  
7  #ifdef CONFIG_SLOB
8  /*
9   * Common fields provided in kmem_cache by all slab allocators
10   * This struct is either used directly by the allocator (SLOB)
11   * or the allocator must include definitions for all fields
12   * provided in kmem_cache_common in their definition of kmem_cache.
13   *
14   * Once we can do anonymous structs (C11 standard) we could put a
15   * anonymous struct definition in these allocators so that the
16   * separate allocations in the kmem_cache structure of SLAB and
17   * SLUB is no longer needed.
18   */
19  struct kmem_cache {
20  	unsigned int object_size;/* The original size of the object */
21  	unsigned int size;	/* The aligned/padded/added on size  */
22  	unsigned int align;	/* Alignment as calculated */
23  	unsigned long flags;	/* Active flags on the slab */
24  	const char *name;	/* Slab name for sysfs */
25  	int refcount;		/* Use counter */
26  	void (*ctor)(void *);	/* Called on object slot creation */
27  	struct list_head list;	/* List of all slab caches on the system */
28  };
29  
30  #endif /* CONFIG_SLOB */
31  
32  #ifdef CONFIG_SLAB
33  #include <linux/slab_def.h>
34  #endif
35  
36  #ifdef CONFIG_SLUB
37  #include <linux/slub_def.h>
38  #endif
39  
40  #include <linux/memcontrol.h>
41  
42  /*
43   * State of the slab allocator.
44   *
45   * This is used to describe the states of the allocator during bootup.
46   * Allocators use this to gradually bootstrap themselves. Most allocators
47   * have the problem that the structures used for managing slab caches are
48   * allocated from slab caches themselves.
49   */
50  enum slab_state {
51  	DOWN,			/* No slab functionality yet */
52  	PARTIAL,		/* SLUB: kmem_cache_node available */
53  	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
54  	UP,			/* Slab caches usable but not all extras yet */
55  	FULL			/* Everything is working */
56  };
57  
58  extern enum slab_state slab_state;
59  
60  /* The slab cache mutex protects the management structures during changes */
61  extern struct mutex slab_mutex;
62  
63  /* The list of all slab caches on the system */
64  extern struct list_head slab_caches;
65  
66  /* The slab cache that manages slab cache information */
67  extern struct kmem_cache *kmem_cache;
68  
69  unsigned long calculate_alignment(unsigned long flags,
70  		unsigned long align, unsigned long size);
71  
72  #ifndef CONFIG_SLOB
73  /* Kmalloc array related functions */
74  void setup_kmalloc_cache_index_table(void);
75  void create_kmalloc_caches(unsigned long);
76  
77  /* Find the kmalloc slab corresponding for a certain size */
78  struct kmem_cache *kmalloc_slab(size_t, gfp_t);
79  #endif
80  
81  
82  /* Functions provided by the slab allocators */
83  extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
84  
85  extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
86  			unsigned long flags);
87  extern void create_boot_cache(struct kmem_cache *, const char *name,
88  			size_t size, unsigned long flags);
89  
90  int slab_unmergeable(struct kmem_cache *s);
91  struct kmem_cache *find_mergeable(size_t size, size_t align,
92  		unsigned long flags, const char *name, void (*ctor)(void *));
93  #ifndef CONFIG_SLOB
94  struct kmem_cache *
95  __kmem_cache_alias(const char *name, size_t size, size_t align,
96  		   unsigned long flags, void (*ctor)(void *));
97  
98  unsigned long kmem_cache_flags(unsigned long object_size,
99  	unsigned long flags, const char *name,
100  	void (*ctor)(void *));
101  #else
102  static inline struct kmem_cache *
103  __kmem_cache_alias(const char *name, size_t size, size_t align,
104  		   unsigned long flags, void (*ctor)(void *))
105  { return NULL; }
106  
107  static inline unsigned long kmem_cache_flags(unsigned long object_size,
108  	unsigned long flags, const char *name,
109  	void (*ctor)(void *))
110  {
111  	return flags;
112  }
113  #endif
114  
115  
116  /* Legal flag mask for kmem_cache_create(), for various configurations */
117  #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
118  			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
119  
120  #if defined(CONFIG_DEBUG_SLAB)
121  #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
122  #elif defined(CONFIG_SLUB_DEBUG)
123  #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
124  			  SLAB_TRACE | SLAB_DEBUG_FREE)
125  #else
126  #define SLAB_DEBUG_FLAGS (0)
127  #endif
128  
129  #if defined(CONFIG_SLAB)
130  #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
131  			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
132  #elif defined(CONFIG_SLUB)
133  #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
134  			  SLAB_TEMPORARY | SLAB_NOTRACK)
135  #else
136  #define SLAB_CACHE_FLAGS (0)
137  #endif
138  
139  #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
140  
141  int __kmem_cache_shutdown(struct kmem_cache *);
142  int __kmem_cache_shrink(struct kmem_cache *, bool);
143  void slab_kmem_cache_release(struct kmem_cache *);
144  
145  struct seq_file;
146  struct file;
147  
148  struct slabinfo {
149  	unsigned long active_objs;
150  	unsigned long num_objs;
151  	unsigned long active_slabs;
152  	unsigned long num_slabs;
153  	unsigned long shared_avail;
154  	unsigned int limit;
155  	unsigned int batchcount;
156  	unsigned int shared;
157  	unsigned int objects_per_slab;
158  	unsigned int cache_order;
159  };
160  
161  void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
162  void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
163  ssize_t slabinfo_write(struct file *file, const char __user *buffer,
164  		       size_t count, loff_t *ppos);
165  
166  /*
167   * Generic implementation of bulk operations
168   * These are useful for situations in which the allocator cannot
169   * perform optimizations. In that case segments of the objecct listed
170   * may be allocated or freed using these operations.
171   */
172  void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
173  bool __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
174  
175  #ifdef CONFIG_MEMCG_KMEM
176  /*
177   * Iterate over all memcg caches of the given root cache. The caller must hold
178   * slab_mutex.
179   */
180  #define for_each_memcg_cache(iter, root) \
181  	list_for_each_entry(iter, &(root)->memcg_params.list, \
182  			    memcg_params.list)
183  
184  #define for_each_memcg_cache_safe(iter, tmp, root) \
185  	list_for_each_entry_safe(iter, tmp, &(root)->memcg_params.list, \
186  				 memcg_params.list)
187  
188  static inline bool is_root_cache(struct kmem_cache *s)
189  {
190  	return s->memcg_params.is_root_cache;
191  }
192  
193  static inline bool slab_equal_or_root(struct kmem_cache *s,
194  				      struct kmem_cache *p)
195  {
196  	return p == s || p == s->memcg_params.root_cache;
197  }
198  
199  /*
200   * We use suffixes to the name in memcg because we can't have caches
201   * created in the system with the same name. But when we print them
202   * locally, better refer to them with the base name
203   */
204  static inline const char *cache_name(struct kmem_cache *s)
205  {
206  	if (!is_root_cache(s))
207  		s = s->memcg_params.root_cache;
208  	return s->name;
209  }
210  
211  /*
212   * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
213   * That said the caller must assure the memcg's cache won't go away by either
214   * taking a css reference to the owner cgroup, or holding the slab_mutex.
215   */
216  static inline struct kmem_cache *
217  cache_from_memcg_idx(struct kmem_cache *s, int idx)
218  {
219  	struct kmem_cache *cachep;
220  	struct memcg_cache_array *arr;
221  
222  	rcu_read_lock();
223  	arr = rcu_dereference(s->memcg_params.memcg_caches);
224  
225  	/*
226  	 * Make sure we will access the up-to-date value. The code updating
227  	 * memcg_caches issues a write barrier to match this (see
228  	 * memcg_create_kmem_cache()).
229  	 */
230  	cachep = lockless_dereference(arr->entries[idx]);
231  	rcu_read_unlock();
232  
233  	return cachep;
234  }
235  
236  static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
237  {
238  	if (is_root_cache(s))
239  		return s;
240  	return s->memcg_params.root_cache;
241  }
242  
243  static __always_inline int memcg_charge_slab(struct kmem_cache *s,
244  					     gfp_t gfp, int order)
245  {
246  	if (!memcg_kmem_enabled())
247  		return 0;
248  	if (is_root_cache(s))
249  		return 0;
250  	return memcg_charge_kmem(s->memcg_params.memcg, gfp, 1 << order);
251  }
252  
253  static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
254  {
255  	if (!memcg_kmem_enabled())
256  		return;
257  	if (is_root_cache(s))
258  		return;
259  	memcg_uncharge_kmem(s->memcg_params.memcg, 1 << order);
260  }
261  
262  extern void slab_init_memcg_params(struct kmem_cache *);
263  
264  #else /* !CONFIG_MEMCG_KMEM */
265  
266  #define for_each_memcg_cache(iter, root) \
267  	for ((void)(iter), (void)(root); 0; )
268  #define for_each_memcg_cache_safe(iter, tmp, root) \
269  	for ((void)(iter), (void)(tmp), (void)(root); 0; )
270  
271  static inline bool is_root_cache(struct kmem_cache *s)
272  {
273  	return true;
274  }
275  
276  static inline bool slab_equal_or_root(struct kmem_cache *s,
277  				      struct kmem_cache *p)
278  {
279  	return true;
280  }
281  
282  static inline const char *cache_name(struct kmem_cache *s)
283  {
284  	return s->name;
285  }
286  
287  static inline struct kmem_cache *
288  cache_from_memcg_idx(struct kmem_cache *s, int idx)
289  {
290  	return NULL;
291  }
292  
293  static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
294  {
295  	return s;
296  }
297  
298  static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
299  {
300  	return 0;
301  }
302  
303  static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
304  {
305  }
306  
307  static inline void slab_init_memcg_params(struct kmem_cache *s)
308  {
309  }
310  #endif /* CONFIG_MEMCG_KMEM */
311  
312  static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
313  {
314  	struct kmem_cache *cachep;
315  	struct page *page;
316  
317  	/*
318  	 * When kmemcg is not being used, both assignments should return the
319  	 * same value. but we don't want to pay the assignment price in that
320  	 * case. If it is not compiled in, the compiler should be smart enough
321  	 * to not do even the assignment. In that case, slab_equal_or_root
322  	 * will also be a constant.
323  	 */
324  	if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
325  		return s;
326  
327  	page = virt_to_head_page(x);
328  	cachep = page->slab_cache;
329  	if (slab_equal_or_root(cachep, s))
330  		return cachep;
331  
332  	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
333  	       __func__, s->name, cachep->name);
334  	WARN_ON_ONCE(1);
335  	return s;
336  }
337  
338  #ifndef CONFIG_SLOB
339  /*
340   * The slab lists for all objects.
341   */
342  struct kmem_cache_node {
343  	spinlock_t list_lock;
344  
345  #ifdef CONFIG_SLAB
346  	struct list_head slabs_partial;	/* partial list first, better asm code */
347  	struct list_head slabs_full;
348  	struct list_head slabs_free;
349  	unsigned long free_objects;
350  	unsigned int free_limit;
351  	unsigned int colour_next;	/* Per-node cache coloring */
352  	struct array_cache *shared;	/* shared per node */
353  	struct alien_cache **alien;	/* on other nodes */
354  	unsigned long next_reap;	/* updated without locking */
355  	int free_touched;		/* updated without locking */
356  #endif
357  
358  #ifdef CONFIG_SLUB
359  	unsigned long nr_partial;
360  	struct list_head partial;
361  #ifdef CONFIG_SLUB_DEBUG
362  	atomic_long_t nr_slabs;
363  	atomic_long_t total_objects;
364  	struct list_head full;
365  #endif
366  #endif
367  
368  };
369  
370  static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
371  {
372  	return s->node[node];
373  }
374  
375  /*
376   * Iterator over all nodes. The body will be executed for each node that has
377   * a kmem_cache_node structure allocated (which is true for all online nodes)
378   */
379  #define for_each_kmem_cache_node(__s, __node, __n) \
380  	for (__node = 0; __node < nr_node_ids; __node++) \
381  		 if ((__n = get_node(__s, __node)))
382  
383  #endif
384  
385  void *slab_start(struct seq_file *m, loff_t *pos);
386  void *slab_next(struct seq_file *m, void *p, loff_t *pos);
387  void slab_stop(struct seq_file *m, void *p);
388  int memcg_slab_show(struct seq_file *m, void *p);
389  
390  #endif /* MM_SLAB_H */
391