1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef MM_SLAB_H 3 #define MM_SLAB_H 4 /* 5 * Internal slab definitions 6 */ 7 8 #ifdef CONFIG_SLOB 9 /* 10 * Common fields provided in kmem_cache by all slab allocators 11 * This struct is either used directly by the allocator (SLOB) 12 * or the allocator must include definitions for all fields 13 * provided in kmem_cache_common in their definition of kmem_cache. 14 * 15 * Once we can do anonymous structs (C11 standard) we could put a 16 * anonymous struct definition in these allocators so that the 17 * separate allocations in the kmem_cache structure of SLAB and 18 * SLUB is no longer needed. 19 */ 20 struct kmem_cache { 21 unsigned int object_size;/* The original size of the object */ 22 unsigned int size; /* The aligned/padded/added on size */ 23 unsigned int align; /* Alignment as calculated */ 24 slab_flags_t flags; /* Active flags on the slab */ 25 unsigned int useroffset;/* Usercopy region offset */ 26 unsigned int usersize; /* Usercopy region size */ 27 const char *name; /* Slab name for sysfs */ 28 int refcount; /* Use counter */ 29 void (*ctor)(void *); /* Called on object slot creation */ 30 struct list_head list; /* List of all slab caches on the system */ 31 }; 32 33 #endif /* CONFIG_SLOB */ 34 35 #ifdef CONFIG_SLAB 36 #include <linux/slab_def.h> 37 #endif 38 39 #ifdef CONFIG_SLUB 40 #include <linux/slub_def.h> 41 #endif 42 43 #include <linux/memcontrol.h> 44 #include <linux/fault-inject.h> 45 #include <linux/kasan.h> 46 #include <linux/kmemleak.h> 47 #include <linux/random.h> 48 #include <linux/sched/mm.h> 49 50 /* 51 * State of the slab allocator. 52 * 53 * This is used to describe the states of the allocator during bootup. 54 * Allocators use this to gradually bootstrap themselves. Most allocators 55 * have the problem that the structures used for managing slab caches are 56 * allocated from slab caches themselves. 57 */ 58 enum slab_state { 59 DOWN, /* No slab functionality yet */ 60 PARTIAL, /* SLUB: kmem_cache_node available */ 61 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ 62 UP, /* Slab caches usable but not all extras yet */ 63 FULL /* Everything is working */ 64 }; 65 66 extern enum slab_state slab_state; 67 68 /* The slab cache mutex protects the management structures during changes */ 69 extern struct mutex slab_mutex; 70 71 /* The list of all slab caches on the system */ 72 extern struct list_head slab_caches; 73 74 /* The slab cache that manages slab cache information */ 75 extern struct kmem_cache *kmem_cache; 76 77 /* A table of kmalloc cache names and sizes */ 78 extern const struct kmalloc_info_struct { 79 const char *name[NR_KMALLOC_TYPES]; 80 unsigned int size; 81 } kmalloc_info[]; 82 83 #ifndef CONFIG_SLOB 84 /* Kmalloc array related functions */ 85 void setup_kmalloc_cache_index_table(void); 86 void create_kmalloc_caches(slab_flags_t); 87 88 /* Find the kmalloc slab corresponding for a certain size */ 89 struct kmem_cache *kmalloc_slab(size_t, gfp_t); 90 #endif 91 92 gfp_t kmalloc_fix_flags(gfp_t flags); 93 94 /* Functions provided by the slab allocators */ 95 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); 96 97 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size, 98 slab_flags_t flags, unsigned int useroffset, 99 unsigned int usersize); 100 extern void create_boot_cache(struct kmem_cache *, const char *name, 101 unsigned int size, slab_flags_t flags, 102 unsigned int useroffset, unsigned int usersize); 103 104 int slab_unmergeable(struct kmem_cache *s); 105 struct kmem_cache *find_mergeable(unsigned size, unsigned align, 106 slab_flags_t flags, const char *name, void (*ctor)(void *)); 107 #ifndef CONFIG_SLOB 108 struct kmem_cache * 109 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 110 slab_flags_t flags, void (*ctor)(void *)); 111 112 slab_flags_t kmem_cache_flags(unsigned int object_size, 113 slab_flags_t flags, const char *name, 114 void (*ctor)(void *)); 115 #else 116 static inline struct kmem_cache * 117 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 118 slab_flags_t flags, void (*ctor)(void *)) 119 { return NULL; } 120 121 static inline slab_flags_t kmem_cache_flags(unsigned int object_size, 122 slab_flags_t flags, const char *name, 123 void (*ctor)(void *)) 124 { 125 return flags; 126 } 127 #endif 128 129 130 /* Legal flag mask for kmem_cache_create(), for various configurations */ 131 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ 132 SLAB_CACHE_DMA32 | SLAB_PANIC | \ 133 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) 134 135 #if defined(CONFIG_DEBUG_SLAB) 136 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 137 #elif defined(CONFIG_SLUB_DEBUG) 138 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 139 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) 140 #else 141 #define SLAB_DEBUG_FLAGS (0) 142 #endif 143 144 #if defined(CONFIG_SLAB) 145 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ 146 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ 147 SLAB_ACCOUNT) 148 #elif defined(CONFIG_SLUB) 149 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ 150 SLAB_TEMPORARY | SLAB_ACCOUNT) 151 #else 152 #define SLAB_CACHE_FLAGS (0) 153 #endif 154 155 /* Common flags available with current configuration */ 156 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) 157 158 /* Common flags permitted for kmem_cache_create */ 159 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ 160 SLAB_RED_ZONE | \ 161 SLAB_POISON | \ 162 SLAB_STORE_USER | \ 163 SLAB_TRACE | \ 164 SLAB_CONSISTENCY_CHECKS | \ 165 SLAB_MEM_SPREAD | \ 166 SLAB_NOLEAKTRACE | \ 167 SLAB_RECLAIM_ACCOUNT | \ 168 SLAB_TEMPORARY | \ 169 SLAB_ACCOUNT) 170 171 bool __kmem_cache_empty(struct kmem_cache *); 172 int __kmem_cache_shutdown(struct kmem_cache *); 173 void __kmem_cache_release(struct kmem_cache *); 174 int __kmem_cache_shrink(struct kmem_cache *); 175 void slab_kmem_cache_release(struct kmem_cache *); 176 177 struct seq_file; 178 struct file; 179 180 struct slabinfo { 181 unsigned long active_objs; 182 unsigned long num_objs; 183 unsigned long active_slabs; 184 unsigned long num_slabs; 185 unsigned long shared_avail; 186 unsigned int limit; 187 unsigned int batchcount; 188 unsigned int shared; 189 unsigned int objects_per_slab; 190 unsigned int cache_order; 191 }; 192 193 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); 194 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); 195 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 196 size_t count, loff_t *ppos); 197 198 /* 199 * Generic implementation of bulk operations 200 * These are useful for situations in which the allocator cannot 201 * perform optimizations. In that case segments of the object listed 202 * may be allocated or freed using these operations. 203 */ 204 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 205 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 206 207 static inline int cache_vmstat_idx(struct kmem_cache *s) 208 { 209 return (s->flags & SLAB_RECLAIM_ACCOUNT) ? 210 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; 211 } 212 213 #ifdef CONFIG_SLUB_DEBUG 214 #ifdef CONFIG_SLUB_DEBUG_ON 215 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled); 216 #else 217 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled); 218 #endif 219 extern void print_tracking(struct kmem_cache *s, void *object); 220 #else 221 static inline void print_tracking(struct kmem_cache *s, void *object) 222 { 223 } 224 #endif 225 226 /* 227 * Returns true if any of the specified slub_debug flags is enabled for the 228 * cache. Use only for flags parsed by setup_slub_debug() as it also enables 229 * the static key. 230 */ 231 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags) 232 { 233 #ifdef CONFIG_SLUB_DEBUG 234 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS)); 235 if (static_branch_unlikely(&slub_debug_enabled)) 236 return s->flags & flags; 237 #endif 238 return false; 239 } 240 241 #ifdef CONFIG_MEMCG_KMEM 242 static inline struct obj_cgroup **page_obj_cgroups(struct page *page) 243 { 244 /* 245 * page->mem_cgroup and page->obj_cgroups are sharing the same 246 * space. To distinguish between them in case we don't know for sure 247 * that the page is a slab page (e.g. page_cgroup_ino()), let's 248 * always set the lowest bit of obj_cgroups. 249 */ 250 return (struct obj_cgroup **) 251 ((unsigned long)page->obj_cgroups & ~0x1UL); 252 } 253 254 static inline bool page_has_obj_cgroups(struct page *page) 255 { 256 return ((unsigned long)page->obj_cgroups & 0x1UL); 257 } 258 259 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, 260 gfp_t gfp); 261 262 static inline void memcg_free_page_obj_cgroups(struct page *page) 263 { 264 kfree(page_obj_cgroups(page)); 265 page->obj_cgroups = NULL; 266 } 267 268 static inline size_t obj_full_size(struct kmem_cache *s) 269 { 270 /* 271 * For each accounted object there is an extra space which is used 272 * to store obj_cgroup membership. Charge it too. 273 */ 274 return s->size + sizeof(struct obj_cgroup *); 275 } 276 277 static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s, 278 size_t objects, 279 gfp_t flags) 280 { 281 struct obj_cgroup *objcg; 282 283 objcg = get_obj_cgroup_from_current(); 284 if (!objcg) 285 return NULL; 286 287 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) { 288 obj_cgroup_put(objcg); 289 return NULL; 290 } 291 292 return objcg; 293 } 294 295 static inline void mod_objcg_state(struct obj_cgroup *objcg, 296 struct pglist_data *pgdat, 297 int idx, int nr) 298 { 299 struct mem_cgroup *memcg; 300 struct lruvec *lruvec; 301 302 rcu_read_lock(); 303 memcg = obj_cgroup_memcg(objcg); 304 lruvec = mem_cgroup_lruvec(memcg, pgdat); 305 mod_memcg_lruvec_state(lruvec, idx, nr); 306 rcu_read_unlock(); 307 } 308 309 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, 310 struct obj_cgroup *objcg, 311 gfp_t flags, size_t size, 312 void **p) 313 { 314 struct page *page; 315 unsigned long off; 316 size_t i; 317 318 if (!objcg) 319 return; 320 321 flags &= ~__GFP_ACCOUNT; 322 for (i = 0; i < size; i++) { 323 if (likely(p[i])) { 324 page = virt_to_head_page(p[i]); 325 326 if (!page_has_obj_cgroups(page) && 327 memcg_alloc_page_obj_cgroups(page, s, flags)) { 328 obj_cgroup_uncharge(objcg, obj_full_size(s)); 329 continue; 330 } 331 332 off = obj_to_index(s, page, p[i]); 333 obj_cgroup_get(objcg); 334 page_obj_cgroups(page)[off] = objcg; 335 mod_objcg_state(objcg, page_pgdat(page), 336 cache_vmstat_idx(s), obj_full_size(s)); 337 } else { 338 obj_cgroup_uncharge(objcg, obj_full_size(s)); 339 } 340 } 341 obj_cgroup_put(objcg); 342 } 343 344 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig, 345 void **p, int objects) 346 { 347 struct kmem_cache *s; 348 struct obj_cgroup *objcg; 349 struct page *page; 350 unsigned int off; 351 int i; 352 353 if (!memcg_kmem_enabled()) 354 return; 355 356 for (i = 0; i < objects; i++) { 357 if (unlikely(!p[i])) 358 continue; 359 360 page = virt_to_head_page(p[i]); 361 if (!page_has_obj_cgroups(page)) 362 continue; 363 364 if (!s_orig) 365 s = page->slab_cache; 366 else 367 s = s_orig; 368 369 off = obj_to_index(s, page, p[i]); 370 objcg = page_obj_cgroups(page)[off]; 371 if (!objcg) 372 continue; 373 374 page_obj_cgroups(page)[off] = NULL; 375 obj_cgroup_uncharge(objcg, obj_full_size(s)); 376 mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s), 377 -obj_full_size(s)); 378 obj_cgroup_put(objcg); 379 } 380 } 381 382 #else /* CONFIG_MEMCG_KMEM */ 383 static inline bool page_has_obj_cgroups(struct page *page) 384 { 385 return false; 386 } 387 388 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr) 389 { 390 return NULL; 391 } 392 393 static inline int memcg_alloc_page_obj_cgroups(struct page *page, 394 struct kmem_cache *s, gfp_t gfp) 395 { 396 return 0; 397 } 398 399 static inline void memcg_free_page_obj_cgroups(struct page *page) 400 { 401 } 402 403 static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s, 404 size_t objects, 405 gfp_t flags) 406 { 407 return NULL; 408 } 409 410 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, 411 struct obj_cgroup *objcg, 412 gfp_t flags, size_t size, 413 void **p) 414 { 415 } 416 417 static inline void memcg_slab_free_hook(struct kmem_cache *s, 418 void **p, int objects) 419 { 420 } 421 #endif /* CONFIG_MEMCG_KMEM */ 422 423 static inline struct kmem_cache *virt_to_cache(const void *obj) 424 { 425 struct page *page; 426 427 page = virt_to_head_page(obj); 428 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n", 429 __func__)) 430 return NULL; 431 return page->slab_cache; 432 } 433 434 static __always_inline void account_slab_page(struct page *page, int order, 435 struct kmem_cache *s) 436 { 437 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), 438 PAGE_SIZE << order); 439 } 440 441 static __always_inline void unaccount_slab_page(struct page *page, int order, 442 struct kmem_cache *s) 443 { 444 if (memcg_kmem_enabled()) 445 memcg_free_page_obj_cgroups(page); 446 447 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), 448 -(PAGE_SIZE << order)); 449 } 450 451 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 452 { 453 struct kmem_cache *cachep; 454 455 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 456 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 457 return s; 458 459 cachep = virt_to_cache(x); 460 if (WARN(cachep && cachep != s, 461 "%s: Wrong slab cache. %s but object is from %s\n", 462 __func__, s->name, cachep->name)) 463 print_tracking(cachep, x); 464 return cachep; 465 } 466 467 static inline size_t slab_ksize(const struct kmem_cache *s) 468 { 469 #ifndef CONFIG_SLUB 470 return s->object_size; 471 472 #else /* CONFIG_SLUB */ 473 # ifdef CONFIG_SLUB_DEBUG 474 /* 475 * Debugging requires use of the padding between object 476 * and whatever may come after it. 477 */ 478 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 479 return s->object_size; 480 # endif 481 if (s->flags & SLAB_KASAN) 482 return s->object_size; 483 /* 484 * If we have the need to store the freelist pointer 485 * back there or track user information then we can 486 * only use the space before that information. 487 */ 488 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) 489 return s->inuse; 490 /* 491 * Else we can use all the padding etc for the allocation 492 */ 493 return s->size; 494 #endif 495 } 496 497 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 498 struct obj_cgroup **objcgp, 499 size_t size, gfp_t flags) 500 { 501 flags &= gfp_allowed_mask; 502 503 fs_reclaim_acquire(flags); 504 fs_reclaim_release(flags); 505 506 might_sleep_if(gfpflags_allow_blocking(flags)); 507 508 if (should_failslab(s, flags)) 509 return NULL; 510 511 if (memcg_kmem_enabled() && 512 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT))) 513 *objcgp = memcg_slab_pre_alloc_hook(s, size, flags); 514 515 return s; 516 } 517 518 static inline void slab_post_alloc_hook(struct kmem_cache *s, 519 struct obj_cgroup *objcg, 520 gfp_t flags, size_t size, void **p) 521 { 522 size_t i; 523 524 flags &= gfp_allowed_mask; 525 for (i = 0; i < size; i++) { 526 p[i] = kasan_slab_alloc(s, p[i], flags); 527 /* As p[i] might get tagged, call kmemleak hook after KASAN. */ 528 kmemleak_alloc_recursive(p[i], s->object_size, 1, 529 s->flags, flags); 530 } 531 532 if (memcg_kmem_enabled()) 533 memcg_slab_post_alloc_hook(s, objcg, flags, size, p); 534 } 535 536 #ifndef CONFIG_SLOB 537 /* 538 * The slab lists for all objects. 539 */ 540 struct kmem_cache_node { 541 spinlock_t list_lock; 542 543 #ifdef CONFIG_SLAB 544 struct list_head slabs_partial; /* partial list first, better asm code */ 545 struct list_head slabs_full; 546 struct list_head slabs_free; 547 unsigned long total_slabs; /* length of all slab lists */ 548 unsigned long free_slabs; /* length of free slab list only */ 549 unsigned long free_objects; 550 unsigned int free_limit; 551 unsigned int colour_next; /* Per-node cache coloring */ 552 struct array_cache *shared; /* shared per node */ 553 struct alien_cache **alien; /* on other nodes */ 554 unsigned long next_reap; /* updated without locking */ 555 int free_touched; /* updated without locking */ 556 #endif 557 558 #ifdef CONFIG_SLUB 559 unsigned long nr_partial; 560 struct list_head partial; 561 #ifdef CONFIG_SLUB_DEBUG 562 atomic_long_t nr_slabs; 563 atomic_long_t total_objects; 564 struct list_head full; 565 #endif 566 #endif 567 568 }; 569 570 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 571 { 572 return s->node[node]; 573 } 574 575 /* 576 * Iterator over all nodes. The body will be executed for each node that has 577 * a kmem_cache_node structure allocated (which is true for all online nodes) 578 */ 579 #define for_each_kmem_cache_node(__s, __node, __n) \ 580 for (__node = 0; __node < nr_node_ids; __node++) \ 581 if ((__n = get_node(__s, __node))) 582 583 #endif 584 585 void *slab_start(struct seq_file *m, loff_t *pos); 586 void *slab_next(struct seq_file *m, void *p, loff_t *pos); 587 void slab_stop(struct seq_file *m, void *p); 588 int memcg_slab_show(struct seq_file *m, void *p); 589 590 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 591 void dump_unreclaimable_slab(void); 592 #else 593 static inline void dump_unreclaimable_slab(void) 594 { 595 } 596 #endif 597 598 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); 599 600 #ifdef CONFIG_SLAB_FREELIST_RANDOM 601 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 602 gfp_t gfp); 603 void cache_random_seq_destroy(struct kmem_cache *cachep); 604 #else 605 static inline int cache_random_seq_create(struct kmem_cache *cachep, 606 unsigned int count, gfp_t gfp) 607 { 608 return 0; 609 } 610 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } 611 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 612 613 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) 614 { 615 if (static_branch_unlikely(&init_on_alloc)) { 616 if (c->ctor) 617 return false; 618 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) 619 return flags & __GFP_ZERO; 620 return true; 621 } 622 return flags & __GFP_ZERO; 623 } 624 625 static inline bool slab_want_init_on_free(struct kmem_cache *c) 626 { 627 if (static_branch_unlikely(&init_on_free)) 628 return !(c->ctor || 629 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); 630 return false; 631 } 632 633 #endif /* MM_SLAB_H */ 634