xref: /openbmc/linux/mm/slab.h (revision 10c1d542c7e871865bca381842fd04a92d2b95ec)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 #ifdef CONFIG_SLOB
9 /*
10  * Common fields provided in kmem_cache by all slab allocators
11  * This struct is either used directly by the allocator (SLOB)
12  * or the allocator must include definitions for all fields
13  * provided in kmem_cache_common in their definition of kmem_cache.
14  *
15  * Once we can do anonymous structs (C11 standard) we could put a
16  * anonymous struct definition in these allocators so that the
17  * separate allocations in the kmem_cache structure of SLAB and
18  * SLUB is no longer needed.
19  */
20 struct kmem_cache {
21 	unsigned int object_size;/* The original size of the object */
22 	unsigned int size;	/* The aligned/padded/added on size  */
23 	unsigned int align;	/* Alignment as calculated */
24 	slab_flags_t flags;	/* Active flags on the slab */
25 	size_t useroffset;	/* Usercopy region offset */
26 	size_t usersize;	/* Usercopy region size */
27 	const char *name;	/* Slab name for sysfs */
28 	int refcount;		/* Use counter */
29 	void (*ctor)(void *);	/* Called on object slot creation */
30 	struct list_head list;	/* List of all slab caches on the system */
31 };
32 
33 #endif /* CONFIG_SLOB */
34 
35 #ifdef CONFIG_SLAB
36 #include <linux/slab_def.h>
37 #endif
38 
39 #ifdef CONFIG_SLUB
40 #include <linux/slub_def.h>
41 #endif
42 
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
49 
50 /*
51  * State of the slab allocator.
52  *
53  * This is used to describe the states of the allocator during bootup.
54  * Allocators use this to gradually bootstrap themselves. Most allocators
55  * have the problem that the structures used for managing slab caches are
56  * allocated from slab caches themselves.
57  */
58 enum slab_state {
59 	DOWN,			/* No slab functionality yet */
60 	PARTIAL,		/* SLUB: kmem_cache_node available */
61 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
62 	UP,			/* Slab caches usable but not all extras yet */
63 	FULL			/* Everything is working */
64 };
65 
66 extern enum slab_state slab_state;
67 
68 /* The slab cache mutex protects the management structures during changes */
69 extern struct mutex slab_mutex;
70 
71 /* The list of all slab caches on the system */
72 extern struct list_head slab_caches;
73 
74 /* The slab cache that manages slab cache information */
75 extern struct kmem_cache *kmem_cache;
76 
77 /* A table of kmalloc cache names and sizes */
78 extern const struct kmalloc_info_struct {
79 	const char *name;
80 	unsigned long size;
81 } kmalloc_info[];
82 
83 #ifndef CONFIG_SLOB
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(slab_flags_t);
87 
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
90 #endif
91 
92 
93 /* Functions provided by the slab allocators */
94 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
95 
96 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
97 			slab_flags_t flags, size_t useroffset,
98 			size_t usersize);
99 extern void create_boot_cache(struct kmem_cache *, const char *name,
100 			size_t size, slab_flags_t flags, size_t useroffset,
101 			size_t usersize);
102 
103 int slab_unmergeable(struct kmem_cache *s);
104 struct kmem_cache *find_mergeable(size_t size, size_t align,
105 		slab_flags_t flags, const char *name, void (*ctor)(void *));
106 #ifndef CONFIG_SLOB
107 struct kmem_cache *
108 __kmem_cache_alias(const char *name, size_t size, size_t align,
109 		   slab_flags_t flags, void (*ctor)(void *));
110 
111 slab_flags_t kmem_cache_flags(unsigned long object_size,
112 	slab_flags_t flags, const char *name,
113 	void (*ctor)(void *));
114 #else
115 static inline struct kmem_cache *
116 __kmem_cache_alias(const char *name, size_t size, size_t align,
117 		   slab_flags_t flags, void (*ctor)(void *))
118 { return NULL; }
119 
120 static inline slab_flags_t kmem_cache_flags(unsigned long object_size,
121 	slab_flags_t flags, const char *name,
122 	void (*ctor)(void *))
123 {
124 	return flags;
125 }
126 #endif
127 
128 
129 /* Legal flag mask for kmem_cache_create(), for various configurations */
130 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
131 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
132 
133 #if defined(CONFIG_DEBUG_SLAB)
134 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
135 #elif defined(CONFIG_SLUB_DEBUG)
136 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
137 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
138 #else
139 #define SLAB_DEBUG_FLAGS (0)
140 #endif
141 
142 #if defined(CONFIG_SLAB)
143 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
144 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
145 			  SLAB_ACCOUNT)
146 #elif defined(CONFIG_SLUB)
147 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
148 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
149 #else
150 #define SLAB_CACHE_FLAGS (0)
151 #endif
152 
153 /* Common flags available with current configuration */
154 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
155 
156 /* Common flags permitted for kmem_cache_create */
157 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
158 			      SLAB_RED_ZONE | \
159 			      SLAB_POISON | \
160 			      SLAB_STORE_USER | \
161 			      SLAB_TRACE | \
162 			      SLAB_CONSISTENCY_CHECKS | \
163 			      SLAB_MEM_SPREAD | \
164 			      SLAB_NOLEAKTRACE | \
165 			      SLAB_RECLAIM_ACCOUNT | \
166 			      SLAB_TEMPORARY | \
167 			      SLAB_ACCOUNT)
168 
169 int __kmem_cache_shutdown(struct kmem_cache *);
170 void __kmem_cache_release(struct kmem_cache *);
171 int __kmem_cache_shrink(struct kmem_cache *);
172 void __kmemcg_cache_deactivate(struct kmem_cache *s);
173 void slab_kmem_cache_release(struct kmem_cache *);
174 
175 struct seq_file;
176 struct file;
177 
178 struct slabinfo {
179 	unsigned long active_objs;
180 	unsigned long num_objs;
181 	unsigned long active_slabs;
182 	unsigned long num_slabs;
183 	unsigned long shared_avail;
184 	unsigned int limit;
185 	unsigned int batchcount;
186 	unsigned int shared;
187 	unsigned int objects_per_slab;
188 	unsigned int cache_order;
189 };
190 
191 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
192 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
193 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
194 		       size_t count, loff_t *ppos);
195 
196 /*
197  * Generic implementation of bulk operations
198  * These are useful for situations in which the allocator cannot
199  * perform optimizations. In that case segments of the object listed
200  * may be allocated or freed using these operations.
201  */
202 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
203 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
204 
205 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
206 
207 /* List of all root caches. */
208 extern struct list_head		slab_root_caches;
209 #define root_caches_node	memcg_params.__root_caches_node
210 
211 /*
212  * Iterate over all memcg caches of the given root cache. The caller must hold
213  * slab_mutex.
214  */
215 #define for_each_memcg_cache(iter, root) \
216 	list_for_each_entry(iter, &(root)->memcg_params.children, \
217 			    memcg_params.children_node)
218 
219 static inline bool is_root_cache(struct kmem_cache *s)
220 {
221 	return !s->memcg_params.root_cache;
222 }
223 
224 static inline bool slab_equal_or_root(struct kmem_cache *s,
225 				      struct kmem_cache *p)
226 {
227 	return p == s || p == s->memcg_params.root_cache;
228 }
229 
230 /*
231  * We use suffixes to the name in memcg because we can't have caches
232  * created in the system with the same name. But when we print them
233  * locally, better refer to them with the base name
234  */
235 static inline const char *cache_name(struct kmem_cache *s)
236 {
237 	if (!is_root_cache(s))
238 		s = s->memcg_params.root_cache;
239 	return s->name;
240 }
241 
242 /*
243  * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
244  * That said the caller must assure the memcg's cache won't go away by either
245  * taking a css reference to the owner cgroup, or holding the slab_mutex.
246  */
247 static inline struct kmem_cache *
248 cache_from_memcg_idx(struct kmem_cache *s, int idx)
249 {
250 	struct kmem_cache *cachep;
251 	struct memcg_cache_array *arr;
252 
253 	rcu_read_lock();
254 	arr = rcu_dereference(s->memcg_params.memcg_caches);
255 
256 	/*
257 	 * Make sure we will access the up-to-date value. The code updating
258 	 * memcg_caches issues a write barrier to match this (see
259 	 * memcg_create_kmem_cache()).
260 	 */
261 	cachep = READ_ONCE(arr->entries[idx]);
262 	rcu_read_unlock();
263 
264 	return cachep;
265 }
266 
267 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
268 {
269 	if (is_root_cache(s))
270 		return s;
271 	return s->memcg_params.root_cache;
272 }
273 
274 static __always_inline int memcg_charge_slab(struct page *page,
275 					     gfp_t gfp, int order,
276 					     struct kmem_cache *s)
277 {
278 	if (!memcg_kmem_enabled())
279 		return 0;
280 	if (is_root_cache(s))
281 		return 0;
282 	return memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
283 }
284 
285 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
286 						struct kmem_cache *s)
287 {
288 	if (!memcg_kmem_enabled())
289 		return;
290 	memcg_kmem_uncharge(page, order);
291 }
292 
293 extern void slab_init_memcg_params(struct kmem_cache *);
294 extern void memcg_link_cache(struct kmem_cache *s);
295 extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
296 				void (*deact_fn)(struct kmem_cache *));
297 
298 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
299 
300 /* If !memcg, all caches are root. */
301 #define slab_root_caches	slab_caches
302 #define root_caches_node	list
303 
304 #define for_each_memcg_cache(iter, root) \
305 	for ((void)(iter), (void)(root); 0; )
306 
307 static inline bool is_root_cache(struct kmem_cache *s)
308 {
309 	return true;
310 }
311 
312 static inline bool slab_equal_or_root(struct kmem_cache *s,
313 				      struct kmem_cache *p)
314 {
315 	return true;
316 }
317 
318 static inline const char *cache_name(struct kmem_cache *s)
319 {
320 	return s->name;
321 }
322 
323 static inline struct kmem_cache *
324 cache_from_memcg_idx(struct kmem_cache *s, int idx)
325 {
326 	return NULL;
327 }
328 
329 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
330 {
331 	return s;
332 }
333 
334 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
335 				    struct kmem_cache *s)
336 {
337 	return 0;
338 }
339 
340 static inline void memcg_uncharge_slab(struct page *page, int order,
341 				       struct kmem_cache *s)
342 {
343 }
344 
345 static inline void slab_init_memcg_params(struct kmem_cache *s)
346 {
347 }
348 
349 static inline void memcg_link_cache(struct kmem_cache *s)
350 {
351 }
352 
353 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
354 
355 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
356 {
357 	struct kmem_cache *cachep;
358 	struct page *page;
359 
360 	/*
361 	 * When kmemcg is not being used, both assignments should return the
362 	 * same value. but we don't want to pay the assignment price in that
363 	 * case. If it is not compiled in, the compiler should be smart enough
364 	 * to not do even the assignment. In that case, slab_equal_or_root
365 	 * will also be a constant.
366 	 */
367 	if (!memcg_kmem_enabled() &&
368 	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
369 		return s;
370 
371 	page = virt_to_head_page(x);
372 	cachep = page->slab_cache;
373 	if (slab_equal_or_root(cachep, s))
374 		return cachep;
375 
376 	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
377 	       __func__, s->name, cachep->name);
378 	WARN_ON_ONCE(1);
379 	return s;
380 }
381 
382 static inline size_t slab_ksize(const struct kmem_cache *s)
383 {
384 #ifndef CONFIG_SLUB
385 	return s->object_size;
386 
387 #else /* CONFIG_SLUB */
388 # ifdef CONFIG_SLUB_DEBUG
389 	/*
390 	 * Debugging requires use of the padding between object
391 	 * and whatever may come after it.
392 	 */
393 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
394 		return s->object_size;
395 # endif
396 	if (s->flags & SLAB_KASAN)
397 		return s->object_size;
398 	/*
399 	 * If we have the need to store the freelist pointer
400 	 * back there or track user information then we can
401 	 * only use the space before that information.
402 	 */
403 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
404 		return s->inuse;
405 	/*
406 	 * Else we can use all the padding etc for the allocation
407 	 */
408 	return s->size;
409 #endif
410 }
411 
412 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
413 						     gfp_t flags)
414 {
415 	flags &= gfp_allowed_mask;
416 
417 	fs_reclaim_acquire(flags);
418 	fs_reclaim_release(flags);
419 
420 	might_sleep_if(gfpflags_allow_blocking(flags));
421 
422 	if (should_failslab(s, flags))
423 		return NULL;
424 
425 	if (memcg_kmem_enabled() &&
426 	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
427 		return memcg_kmem_get_cache(s);
428 
429 	return s;
430 }
431 
432 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
433 					size_t size, void **p)
434 {
435 	size_t i;
436 
437 	flags &= gfp_allowed_mask;
438 	for (i = 0; i < size; i++) {
439 		void *object = p[i];
440 
441 		kmemleak_alloc_recursive(object, s->object_size, 1,
442 					 s->flags, flags);
443 		kasan_slab_alloc(s, object, flags);
444 	}
445 
446 	if (memcg_kmem_enabled())
447 		memcg_kmem_put_cache(s);
448 }
449 
450 #ifndef CONFIG_SLOB
451 /*
452  * The slab lists for all objects.
453  */
454 struct kmem_cache_node {
455 	spinlock_t list_lock;
456 
457 #ifdef CONFIG_SLAB
458 	struct list_head slabs_partial;	/* partial list first, better asm code */
459 	struct list_head slabs_full;
460 	struct list_head slabs_free;
461 	unsigned long total_slabs;	/* length of all slab lists */
462 	unsigned long free_slabs;	/* length of free slab list only */
463 	unsigned long free_objects;
464 	unsigned int free_limit;
465 	unsigned int colour_next;	/* Per-node cache coloring */
466 	struct array_cache *shared;	/* shared per node */
467 	struct alien_cache **alien;	/* on other nodes */
468 	unsigned long next_reap;	/* updated without locking */
469 	int free_touched;		/* updated without locking */
470 #endif
471 
472 #ifdef CONFIG_SLUB
473 	unsigned long nr_partial;
474 	struct list_head partial;
475 #ifdef CONFIG_SLUB_DEBUG
476 	atomic_long_t nr_slabs;
477 	atomic_long_t total_objects;
478 	struct list_head full;
479 #endif
480 #endif
481 
482 };
483 
484 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
485 {
486 	return s->node[node];
487 }
488 
489 /*
490  * Iterator over all nodes. The body will be executed for each node that has
491  * a kmem_cache_node structure allocated (which is true for all online nodes)
492  */
493 #define for_each_kmem_cache_node(__s, __node, __n) \
494 	for (__node = 0; __node < nr_node_ids; __node++) \
495 		 if ((__n = get_node(__s, __node)))
496 
497 #endif
498 
499 void *slab_start(struct seq_file *m, loff_t *pos);
500 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
501 void slab_stop(struct seq_file *m, void *p);
502 void *memcg_slab_start(struct seq_file *m, loff_t *pos);
503 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
504 void memcg_slab_stop(struct seq_file *m, void *p);
505 int memcg_slab_show(struct seq_file *m, void *p);
506 
507 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
508 void dump_unreclaimable_slab(void);
509 #else
510 static inline void dump_unreclaimable_slab(void)
511 {
512 }
513 #endif
514 
515 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
516 
517 #ifdef CONFIG_SLAB_FREELIST_RANDOM
518 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
519 			gfp_t gfp);
520 void cache_random_seq_destroy(struct kmem_cache *cachep);
521 #else
522 static inline int cache_random_seq_create(struct kmem_cache *cachep,
523 					unsigned int count, gfp_t gfp)
524 {
525 	return 0;
526 }
527 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
528 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
529 
530 #endif /* MM_SLAB_H */
531