1 #ifndef MM_SLAB_H 2 #define MM_SLAB_H 3 /* 4 * Internal slab definitions 5 */ 6 7 #ifdef CONFIG_SLOB 8 /* 9 * Common fields provided in kmem_cache by all slab allocators 10 * This struct is either used directly by the allocator (SLOB) 11 * or the allocator must include definitions for all fields 12 * provided in kmem_cache_common in their definition of kmem_cache. 13 * 14 * Once we can do anonymous structs (C11 standard) we could put a 15 * anonymous struct definition in these allocators so that the 16 * separate allocations in the kmem_cache structure of SLAB and 17 * SLUB is no longer needed. 18 */ 19 struct kmem_cache { 20 unsigned int object_size;/* The original size of the object */ 21 unsigned int size; /* The aligned/padded/added on size */ 22 unsigned int align; /* Alignment as calculated */ 23 unsigned long flags; /* Active flags on the slab */ 24 const char *name; /* Slab name for sysfs */ 25 int refcount; /* Use counter */ 26 void (*ctor)(void *); /* Called on object slot creation */ 27 struct list_head list; /* List of all slab caches on the system */ 28 }; 29 30 #endif /* CONFIG_SLOB */ 31 32 #ifdef CONFIG_SLAB 33 #include <linux/slab_def.h> 34 #endif 35 36 #ifdef CONFIG_SLUB 37 #include <linux/slub_def.h> 38 #endif 39 40 #include <linux/memcontrol.h> 41 #include <linux/fault-inject.h> 42 #include <linux/kmemcheck.h> 43 #include <linux/kasan.h> 44 #include <linux/kmemleak.h> 45 46 /* 47 * State of the slab allocator. 48 * 49 * This is used to describe the states of the allocator during bootup. 50 * Allocators use this to gradually bootstrap themselves. Most allocators 51 * have the problem that the structures used for managing slab caches are 52 * allocated from slab caches themselves. 53 */ 54 enum slab_state { 55 DOWN, /* No slab functionality yet */ 56 PARTIAL, /* SLUB: kmem_cache_node available */ 57 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ 58 UP, /* Slab caches usable but not all extras yet */ 59 FULL /* Everything is working */ 60 }; 61 62 extern enum slab_state slab_state; 63 64 /* The slab cache mutex protects the management structures during changes */ 65 extern struct mutex slab_mutex; 66 67 /* The list of all slab caches on the system */ 68 extern struct list_head slab_caches; 69 70 /* The slab cache that manages slab cache information */ 71 extern struct kmem_cache *kmem_cache; 72 73 unsigned long calculate_alignment(unsigned long flags, 74 unsigned long align, unsigned long size); 75 76 #ifndef CONFIG_SLOB 77 /* Kmalloc array related functions */ 78 void setup_kmalloc_cache_index_table(void); 79 void create_kmalloc_caches(unsigned long); 80 81 /* Find the kmalloc slab corresponding for a certain size */ 82 struct kmem_cache *kmalloc_slab(size_t, gfp_t); 83 #endif 84 85 86 /* Functions provided by the slab allocators */ 87 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags); 88 89 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size, 90 unsigned long flags); 91 extern void create_boot_cache(struct kmem_cache *, const char *name, 92 size_t size, unsigned long flags); 93 94 int slab_unmergeable(struct kmem_cache *s); 95 struct kmem_cache *find_mergeable(size_t size, size_t align, 96 unsigned long flags, const char *name, void (*ctor)(void *)); 97 #ifndef CONFIG_SLOB 98 struct kmem_cache * 99 __kmem_cache_alias(const char *name, size_t size, size_t align, 100 unsigned long flags, void (*ctor)(void *)); 101 102 unsigned long kmem_cache_flags(unsigned long object_size, 103 unsigned long flags, const char *name, 104 void (*ctor)(void *)); 105 #else 106 static inline struct kmem_cache * 107 __kmem_cache_alias(const char *name, size_t size, size_t align, 108 unsigned long flags, void (*ctor)(void *)) 109 { return NULL; } 110 111 static inline unsigned long kmem_cache_flags(unsigned long object_size, 112 unsigned long flags, const char *name, 113 void (*ctor)(void *)) 114 { 115 return flags; 116 } 117 #endif 118 119 120 /* Legal flag mask for kmem_cache_create(), for various configurations */ 121 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \ 122 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS ) 123 124 #if defined(CONFIG_DEBUG_SLAB) 125 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 126 #elif defined(CONFIG_SLUB_DEBUG) 127 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 128 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) 129 #else 130 #define SLAB_DEBUG_FLAGS (0) 131 #endif 132 133 #if defined(CONFIG_SLAB) 134 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ 135 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ 136 SLAB_NOTRACK | SLAB_ACCOUNT) 137 #elif defined(CONFIG_SLUB) 138 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ 139 SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT) 140 #else 141 #define SLAB_CACHE_FLAGS (0) 142 #endif 143 144 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) 145 146 int __kmem_cache_shutdown(struct kmem_cache *); 147 void __kmem_cache_release(struct kmem_cache *); 148 int __kmem_cache_shrink(struct kmem_cache *, bool); 149 void slab_kmem_cache_release(struct kmem_cache *); 150 151 struct seq_file; 152 struct file; 153 154 struct slabinfo { 155 unsigned long active_objs; 156 unsigned long num_objs; 157 unsigned long active_slabs; 158 unsigned long num_slabs; 159 unsigned long shared_avail; 160 unsigned int limit; 161 unsigned int batchcount; 162 unsigned int shared; 163 unsigned int objects_per_slab; 164 unsigned int cache_order; 165 }; 166 167 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); 168 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); 169 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 170 size_t count, loff_t *ppos); 171 172 /* 173 * Generic implementation of bulk operations 174 * These are useful for situations in which the allocator cannot 175 * perform optimizations. In that case segments of the object listed 176 * may be allocated or freed using these operations. 177 */ 178 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 179 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 180 181 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 182 /* 183 * Iterate over all memcg caches of the given root cache. The caller must hold 184 * slab_mutex. 185 */ 186 #define for_each_memcg_cache(iter, root) \ 187 list_for_each_entry(iter, &(root)->memcg_params.list, \ 188 memcg_params.list) 189 190 static inline bool is_root_cache(struct kmem_cache *s) 191 { 192 return s->memcg_params.is_root_cache; 193 } 194 195 static inline bool slab_equal_or_root(struct kmem_cache *s, 196 struct kmem_cache *p) 197 { 198 return p == s || p == s->memcg_params.root_cache; 199 } 200 201 /* 202 * We use suffixes to the name in memcg because we can't have caches 203 * created in the system with the same name. But when we print them 204 * locally, better refer to them with the base name 205 */ 206 static inline const char *cache_name(struct kmem_cache *s) 207 { 208 if (!is_root_cache(s)) 209 s = s->memcg_params.root_cache; 210 return s->name; 211 } 212 213 /* 214 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches. 215 * That said the caller must assure the memcg's cache won't go away by either 216 * taking a css reference to the owner cgroup, or holding the slab_mutex. 217 */ 218 static inline struct kmem_cache * 219 cache_from_memcg_idx(struct kmem_cache *s, int idx) 220 { 221 struct kmem_cache *cachep; 222 struct memcg_cache_array *arr; 223 224 rcu_read_lock(); 225 arr = rcu_dereference(s->memcg_params.memcg_caches); 226 227 /* 228 * Make sure we will access the up-to-date value. The code updating 229 * memcg_caches issues a write barrier to match this (see 230 * memcg_create_kmem_cache()). 231 */ 232 cachep = lockless_dereference(arr->entries[idx]); 233 rcu_read_unlock(); 234 235 return cachep; 236 } 237 238 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 239 { 240 if (is_root_cache(s)) 241 return s; 242 return s->memcg_params.root_cache; 243 } 244 245 static __always_inline int memcg_charge_slab(struct page *page, 246 gfp_t gfp, int order, 247 struct kmem_cache *s) 248 { 249 int ret; 250 251 if (!memcg_kmem_enabled()) 252 return 0; 253 if (is_root_cache(s)) 254 return 0; 255 256 ret = __memcg_kmem_charge_memcg(page, gfp, order, 257 s->memcg_params.memcg); 258 if (ret) 259 return ret; 260 261 memcg_kmem_update_page_stat(page, 262 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 263 MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE, 264 1 << order); 265 return 0; 266 } 267 268 static __always_inline void memcg_uncharge_slab(struct page *page, int order, 269 struct kmem_cache *s) 270 { 271 memcg_kmem_update_page_stat(page, 272 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 273 MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE, 274 -(1 << order)); 275 memcg_kmem_uncharge(page, order); 276 } 277 278 extern void slab_init_memcg_params(struct kmem_cache *); 279 280 #else /* CONFIG_MEMCG && !CONFIG_SLOB */ 281 282 #define for_each_memcg_cache(iter, root) \ 283 for ((void)(iter), (void)(root); 0; ) 284 285 static inline bool is_root_cache(struct kmem_cache *s) 286 { 287 return true; 288 } 289 290 static inline bool slab_equal_or_root(struct kmem_cache *s, 291 struct kmem_cache *p) 292 { 293 return true; 294 } 295 296 static inline const char *cache_name(struct kmem_cache *s) 297 { 298 return s->name; 299 } 300 301 static inline struct kmem_cache * 302 cache_from_memcg_idx(struct kmem_cache *s, int idx) 303 { 304 return NULL; 305 } 306 307 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 308 { 309 return s; 310 } 311 312 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order, 313 struct kmem_cache *s) 314 { 315 return 0; 316 } 317 318 static inline void memcg_uncharge_slab(struct page *page, int order, 319 struct kmem_cache *s) 320 { 321 } 322 323 static inline void slab_init_memcg_params(struct kmem_cache *s) 324 { 325 } 326 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 327 328 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 329 { 330 struct kmem_cache *cachep; 331 struct page *page; 332 333 /* 334 * When kmemcg is not being used, both assignments should return the 335 * same value. but we don't want to pay the assignment price in that 336 * case. If it is not compiled in, the compiler should be smart enough 337 * to not do even the assignment. In that case, slab_equal_or_root 338 * will also be a constant. 339 */ 340 if (!memcg_kmem_enabled() && 341 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS)) 342 return s; 343 344 page = virt_to_head_page(x); 345 cachep = page->slab_cache; 346 if (slab_equal_or_root(cachep, s)) 347 return cachep; 348 349 pr_err("%s: Wrong slab cache. %s but object is from %s\n", 350 __func__, s->name, cachep->name); 351 WARN_ON_ONCE(1); 352 return s; 353 } 354 355 static inline size_t slab_ksize(const struct kmem_cache *s) 356 { 357 #ifndef CONFIG_SLUB 358 return s->object_size; 359 360 #else /* CONFIG_SLUB */ 361 # ifdef CONFIG_SLUB_DEBUG 362 /* 363 * Debugging requires use of the padding between object 364 * and whatever may come after it. 365 */ 366 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 367 return s->object_size; 368 # endif 369 /* 370 * If we have the need to store the freelist pointer 371 * back there or track user information then we can 372 * only use the space before that information. 373 */ 374 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 375 return s->inuse; 376 /* 377 * Else we can use all the padding etc for the allocation 378 */ 379 return s->size; 380 #endif 381 } 382 383 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 384 gfp_t flags) 385 { 386 flags &= gfp_allowed_mask; 387 lockdep_trace_alloc(flags); 388 might_sleep_if(gfpflags_allow_blocking(flags)); 389 390 if (should_failslab(s, flags)) 391 return NULL; 392 393 return memcg_kmem_get_cache(s, flags); 394 } 395 396 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 397 size_t size, void **p) 398 { 399 size_t i; 400 401 flags &= gfp_allowed_mask; 402 for (i = 0; i < size; i++) { 403 void *object = p[i]; 404 405 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 406 kmemleak_alloc_recursive(object, s->object_size, 1, 407 s->flags, flags); 408 kasan_slab_alloc(s, object, flags); 409 } 410 memcg_kmem_put_cache(s); 411 } 412 413 #ifndef CONFIG_SLOB 414 /* 415 * The slab lists for all objects. 416 */ 417 struct kmem_cache_node { 418 spinlock_t list_lock; 419 420 #ifdef CONFIG_SLAB 421 struct list_head slabs_partial; /* partial list first, better asm code */ 422 struct list_head slabs_full; 423 struct list_head slabs_free; 424 unsigned long free_objects; 425 unsigned int free_limit; 426 unsigned int colour_next; /* Per-node cache coloring */ 427 struct array_cache *shared; /* shared per node */ 428 struct alien_cache **alien; /* on other nodes */ 429 unsigned long next_reap; /* updated without locking */ 430 int free_touched; /* updated without locking */ 431 #endif 432 433 #ifdef CONFIG_SLUB 434 unsigned long nr_partial; 435 struct list_head partial; 436 #ifdef CONFIG_SLUB_DEBUG 437 atomic_long_t nr_slabs; 438 atomic_long_t total_objects; 439 struct list_head full; 440 #endif 441 #endif 442 443 }; 444 445 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 446 { 447 return s->node[node]; 448 } 449 450 /* 451 * Iterator over all nodes. The body will be executed for each node that has 452 * a kmem_cache_node structure allocated (which is true for all online nodes) 453 */ 454 #define for_each_kmem_cache_node(__s, __node, __n) \ 455 for (__node = 0; __node < nr_node_ids; __node++) \ 456 if ((__n = get_node(__s, __node))) 457 458 #endif 459 460 void *slab_start(struct seq_file *m, loff_t *pos); 461 void *slab_next(struct seq_file *m, void *p, loff_t *pos); 462 void slab_stop(struct seq_file *m, void *p); 463 int memcg_slab_show(struct seq_file *m, void *p); 464 465 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); 466 467 #endif /* MM_SLAB_H */ 468