xref: /openbmc/linux/mm/slab.h (revision 0d456bad)
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4  * Internal slab definitions
5  */
6 
7 /*
8  * State of the slab allocator.
9  *
10  * This is used to describe the states of the allocator during bootup.
11  * Allocators use this to gradually bootstrap themselves. Most allocators
12  * have the problem that the structures used for managing slab caches are
13  * allocated from slab caches themselves.
14  */
15 enum slab_state {
16 	DOWN,			/* No slab functionality yet */
17 	PARTIAL,		/* SLUB: kmem_cache_node available */
18 	PARTIAL_ARRAYCACHE,	/* SLAB: kmalloc size for arraycache available */
19 	PARTIAL_L3,		/* SLAB: kmalloc size for l3 struct available */
20 	UP,			/* Slab caches usable but not all extras yet */
21 	FULL			/* Everything is working */
22 };
23 
24 extern enum slab_state slab_state;
25 
26 /* The slab cache mutex protects the management structures during changes */
27 extern struct mutex slab_mutex;
28 
29 /* The list of all slab caches on the system */
30 extern struct list_head slab_caches;
31 
32 /* The slab cache that manages slab cache information */
33 extern struct kmem_cache *kmem_cache;
34 
35 unsigned long calculate_alignment(unsigned long flags,
36 		unsigned long align, unsigned long size);
37 
38 /* Functions provided by the slab allocators */
39 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
40 
41 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
42 			unsigned long flags);
43 extern void create_boot_cache(struct kmem_cache *, const char *name,
44 			size_t size, unsigned long flags);
45 
46 struct mem_cgroup;
47 #ifdef CONFIG_SLUB
48 struct kmem_cache *
49 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
50 		   size_t align, unsigned long flags, void (*ctor)(void *));
51 #else
52 static inline struct kmem_cache *
53 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
54 		   size_t align, unsigned long flags, void (*ctor)(void *))
55 { return NULL; }
56 #endif
57 
58 
59 /* Legal flag mask for kmem_cache_create(), for various configurations */
60 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
61 			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
62 
63 #if defined(CONFIG_DEBUG_SLAB)
64 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
65 #elif defined(CONFIG_SLUB_DEBUG)
66 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
67 			  SLAB_TRACE | SLAB_DEBUG_FREE)
68 #else
69 #define SLAB_DEBUG_FLAGS (0)
70 #endif
71 
72 #if defined(CONFIG_SLAB)
73 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
74 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
75 #elif defined(CONFIG_SLUB)
76 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
77 			  SLAB_TEMPORARY | SLAB_NOTRACK)
78 #else
79 #define SLAB_CACHE_FLAGS (0)
80 #endif
81 
82 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
83 
84 int __kmem_cache_shutdown(struct kmem_cache *);
85 
86 struct seq_file;
87 struct file;
88 
89 struct slabinfo {
90 	unsigned long active_objs;
91 	unsigned long num_objs;
92 	unsigned long active_slabs;
93 	unsigned long num_slabs;
94 	unsigned long shared_avail;
95 	unsigned int limit;
96 	unsigned int batchcount;
97 	unsigned int shared;
98 	unsigned int objects_per_slab;
99 	unsigned int cache_order;
100 };
101 
102 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
103 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
104 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
105 		       size_t count, loff_t *ppos);
106 
107 #ifdef CONFIG_MEMCG_KMEM
108 static inline bool is_root_cache(struct kmem_cache *s)
109 {
110 	return !s->memcg_params || s->memcg_params->is_root_cache;
111 }
112 
113 static inline bool cache_match_memcg(struct kmem_cache *cachep,
114 				     struct mem_cgroup *memcg)
115 {
116 	return (is_root_cache(cachep) && !memcg) ||
117 				(cachep->memcg_params->memcg == memcg);
118 }
119 
120 static inline void memcg_bind_pages(struct kmem_cache *s, int order)
121 {
122 	if (!is_root_cache(s))
123 		atomic_add(1 << order, &s->memcg_params->nr_pages);
124 }
125 
126 static inline void memcg_release_pages(struct kmem_cache *s, int order)
127 {
128 	if (is_root_cache(s))
129 		return;
130 
131 	if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
132 		mem_cgroup_destroy_cache(s);
133 }
134 
135 static inline bool slab_equal_or_root(struct kmem_cache *s,
136 					struct kmem_cache *p)
137 {
138 	return (p == s) ||
139 		(s->memcg_params && (p == s->memcg_params->root_cache));
140 }
141 
142 /*
143  * We use suffixes to the name in memcg because we can't have caches
144  * created in the system with the same name. But when we print them
145  * locally, better refer to them with the base name
146  */
147 static inline const char *cache_name(struct kmem_cache *s)
148 {
149 	if (!is_root_cache(s))
150 		return s->memcg_params->root_cache->name;
151 	return s->name;
152 }
153 
154 static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
155 {
156 	return s->memcg_params->memcg_caches[idx];
157 }
158 
159 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
160 {
161 	if (is_root_cache(s))
162 		return s;
163 	return s->memcg_params->root_cache;
164 }
165 #else
166 static inline bool is_root_cache(struct kmem_cache *s)
167 {
168 	return true;
169 }
170 
171 static inline bool cache_match_memcg(struct kmem_cache *cachep,
172 				     struct mem_cgroup *memcg)
173 {
174 	return true;
175 }
176 
177 static inline void memcg_bind_pages(struct kmem_cache *s, int order)
178 {
179 }
180 
181 static inline void memcg_release_pages(struct kmem_cache *s, int order)
182 {
183 }
184 
185 static inline bool slab_equal_or_root(struct kmem_cache *s,
186 				      struct kmem_cache *p)
187 {
188 	return true;
189 }
190 
191 static inline const char *cache_name(struct kmem_cache *s)
192 {
193 	return s->name;
194 }
195 
196 static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
197 {
198 	return NULL;
199 }
200 
201 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
202 {
203 	return s;
204 }
205 #endif
206 
207 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
208 {
209 	struct kmem_cache *cachep;
210 	struct page *page;
211 
212 	/*
213 	 * When kmemcg is not being used, both assignments should return the
214 	 * same value. but we don't want to pay the assignment price in that
215 	 * case. If it is not compiled in, the compiler should be smart enough
216 	 * to not do even the assignment. In that case, slab_equal_or_root
217 	 * will also be a constant.
218 	 */
219 	if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
220 		return s;
221 
222 	page = virt_to_head_page(x);
223 	cachep = page->slab_cache;
224 	if (slab_equal_or_root(cachep, s))
225 		return cachep;
226 
227 	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
228 		__FUNCTION__, cachep->name, s->name);
229 	WARN_ON_ONCE(1);
230 	return s;
231 }
232 #endif
233