1 #ifndef MM_SLAB_H 2 #define MM_SLAB_H 3 /* 4 * Internal slab definitions 5 */ 6 7 #ifdef CONFIG_SLOB 8 /* 9 * Common fields provided in kmem_cache by all slab allocators 10 * This struct is either used directly by the allocator (SLOB) 11 * or the allocator must include definitions for all fields 12 * provided in kmem_cache_common in their definition of kmem_cache. 13 * 14 * Once we can do anonymous structs (C11 standard) we could put a 15 * anonymous struct definition in these allocators so that the 16 * separate allocations in the kmem_cache structure of SLAB and 17 * SLUB is no longer needed. 18 */ 19 struct kmem_cache { 20 unsigned int object_size;/* The original size of the object */ 21 unsigned int size; /* The aligned/padded/added on size */ 22 unsigned int align; /* Alignment as calculated */ 23 unsigned long flags; /* Active flags on the slab */ 24 const char *name; /* Slab name for sysfs */ 25 int refcount; /* Use counter */ 26 void (*ctor)(void *); /* Called on object slot creation */ 27 struct list_head list; /* List of all slab caches on the system */ 28 }; 29 30 #endif /* CONFIG_SLOB */ 31 32 #ifdef CONFIG_SLAB 33 #include <linux/slab_def.h> 34 #endif 35 36 #ifdef CONFIG_SLUB 37 #include <linux/slub_def.h> 38 #endif 39 40 #include <linux/memcontrol.h> 41 42 /* 43 * State of the slab allocator. 44 * 45 * This is used to describe the states of the allocator during bootup. 46 * Allocators use this to gradually bootstrap themselves. Most allocators 47 * have the problem that the structures used for managing slab caches are 48 * allocated from slab caches themselves. 49 */ 50 enum slab_state { 51 DOWN, /* No slab functionality yet */ 52 PARTIAL, /* SLUB: kmem_cache_node available */ 53 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ 54 UP, /* Slab caches usable but not all extras yet */ 55 FULL /* Everything is working */ 56 }; 57 58 extern enum slab_state slab_state; 59 60 /* The slab cache mutex protects the management structures during changes */ 61 extern struct mutex slab_mutex; 62 63 /* The list of all slab caches on the system */ 64 extern struct list_head slab_caches; 65 66 /* The slab cache that manages slab cache information */ 67 extern struct kmem_cache *kmem_cache; 68 69 unsigned long calculate_alignment(unsigned long flags, 70 unsigned long align, unsigned long size); 71 72 #ifndef CONFIG_SLOB 73 /* Kmalloc array related functions */ 74 void create_kmalloc_caches(unsigned long); 75 76 /* Find the kmalloc slab corresponding for a certain size */ 77 struct kmem_cache *kmalloc_slab(size_t, gfp_t); 78 #endif 79 80 81 /* Functions provided by the slab allocators */ 82 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags); 83 84 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size, 85 unsigned long flags); 86 extern void create_boot_cache(struct kmem_cache *, const char *name, 87 size_t size, unsigned long flags); 88 89 int slab_unmergeable(struct kmem_cache *s); 90 struct kmem_cache *find_mergeable(size_t size, size_t align, 91 unsigned long flags, const char *name, void (*ctor)(void *)); 92 #ifndef CONFIG_SLOB 93 struct kmem_cache * 94 __kmem_cache_alias(const char *name, size_t size, size_t align, 95 unsigned long flags, void (*ctor)(void *)); 96 97 unsigned long kmem_cache_flags(unsigned long object_size, 98 unsigned long flags, const char *name, 99 void (*ctor)(void *)); 100 #else 101 static inline struct kmem_cache * 102 __kmem_cache_alias(const char *name, size_t size, size_t align, 103 unsigned long flags, void (*ctor)(void *)) 104 { return NULL; } 105 106 static inline unsigned long kmem_cache_flags(unsigned long object_size, 107 unsigned long flags, const char *name, 108 void (*ctor)(void *)) 109 { 110 return flags; 111 } 112 #endif 113 114 115 /* Legal flag mask for kmem_cache_create(), for various configurations */ 116 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \ 117 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS ) 118 119 #if defined(CONFIG_DEBUG_SLAB) 120 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 121 #elif defined(CONFIG_SLUB_DEBUG) 122 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 123 SLAB_TRACE | SLAB_DEBUG_FREE) 124 #else 125 #define SLAB_DEBUG_FLAGS (0) 126 #endif 127 128 #if defined(CONFIG_SLAB) 129 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ 130 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK) 131 #elif defined(CONFIG_SLUB) 132 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ 133 SLAB_TEMPORARY | SLAB_NOTRACK) 134 #else 135 #define SLAB_CACHE_FLAGS (0) 136 #endif 137 138 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) 139 140 int __kmem_cache_shutdown(struct kmem_cache *); 141 int __kmem_cache_shrink(struct kmem_cache *, bool); 142 void slab_kmem_cache_release(struct kmem_cache *); 143 144 struct seq_file; 145 struct file; 146 147 struct slabinfo { 148 unsigned long active_objs; 149 unsigned long num_objs; 150 unsigned long active_slabs; 151 unsigned long num_slabs; 152 unsigned long shared_avail; 153 unsigned int limit; 154 unsigned int batchcount; 155 unsigned int shared; 156 unsigned int objects_per_slab; 157 unsigned int cache_order; 158 }; 159 160 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); 161 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); 162 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 163 size_t count, loff_t *ppos); 164 165 #ifdef CONFIG_MEMCG_KMEM 166 /* 167 * Iterate over all memcg caches of the given root cache. The caller must hold 168 * slab_mutex. 169 */ 170 #define for_each_memcg_cache(iter, root) \ 171 list_for_each_entry(iter, &(root)->memcg_params.list, \ 172 memcg_params.list) 173 174 #define for_each_memcg_cache_safe(iter, tmp, root) \ 175 list_for_each_entry_safe(iter, tmp, &(root)->memcg_params.list, \ 176 memcg_params.list) 177 178 static inline bool is_root_cache(struct kmem_cache *s) 179 { 180 return s->memcg_params.is_root_cache; 181 } 182 183 static inline bool slab_equal_or_root(struct kmem_cache *s, 184 struct kmem_cache *p) 185 { 186 return p == s || p == s->memcg_params.root_cache; 187 } 188 189 /* 190 * We use suffixes to the name in memcg because we can't have caches 191 * created in the system with the same name. But when we print them 192 * locally, better refer to them with the base name 193 */ 194 static inline const char *cache_name(struct kmem_cache *s) 195 { 196 if (!is_root_cache(s)) 197 s = s->memcg_params.root_cache; 198 return s->name; 199 } 200 201 /* 202 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches. 203 * That said the caller must assure the memcg's cache won't go away by either 204 * taking a css reference to the owner cgroup, or holding the slab_mutex. 205 */ 206 static inline struct kmem_cache * 207 cache_from_memcg_idx(struct kmem_cache *s, int idx) 208 { 209 struct kmem_cache *cachep; 210 struct memcg_cache_array *arr; 211 212 rcu_read_lock(); 213 arr = rcu_dereference(s->memcg_params.memcg_caches); 214 215 /* 216 * Make sure we will access the up-to-date value. The code updating 217 * memcg_caches issues a write barrier to match this (see 218 * memcg_create_kmem_cache()). 219 */ 220 cachep = lockless_dereference(arr->entries[idx]); 221 rcu_read_unlock(); 222 223 return cachep; 224 } 225 226 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 227 { 228 if (is_root_cache(s)) 229 return s; 230 return s->memcg_params.root_cache; 231 } 232 233 static __always_inline int memcg_charge_slab(struct kmem_cache *s, 234 gfp_t gfp, int order) 235 { 236 if (!memcg_kmem_enabled()) 237 return 0; 238 if (is_root_cache(s)) 239 return 0; 240 return memcg_charge_kmem(s->memcg_params.memcg, gfp, 1 << order); 241 } 242 243 static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order) 244 { 245 if (!memcg_kmem_enabled()) 246 return; 247 if (is_root_cache(s)) 248 return; 249 memcg_uncharge_kmem(s->memcg_params.memcg, 1 << order); 250 } 251 252 extern void slab_init_memcg_params(struct kmem_cache *); 253 254 #else /* !CONFIG_MEMCG_KMEM */ 255 256 #define for_each_memcg_cache(iter, root) \ 257 for ((void)(iter), (void)(root); 0; ) 258 #define for_each_memcg_cache_safe(iter, tmp, root) \ 259 for ((void)(iter), (void)(tmp), (void)(root); 0; ) 260 261 static inline bool is_root_cache(struct kmem_cache *s) 262 { 263 return true; 264 } 265 266 static inline bool slab_equal_or_root(struct kmem_cache *s, 267 struct kmem_cache *p) 268 { 269 return true; 270 } 271 272 static inline const char *cache_name(struct kmem_cache *s) 273 { 274 return s->name; 275 } 276 277 static inline struct kmem_cache * 278 cache_from_memcg_idx(struct kmem_cache *s, int idx) 279 { 280 return NULL; 281 } 282 283 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 284 { 285 return s; 286 } 287 288 static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order) 289 { 290 return 0; 291 } 292 293 static inline void memcg_uncharge_slab(struct kmem_cache *s, int order) 294 { 295 } 296 297 static inline void slab_init_memcg_params(struct kmem_cache *s) 298 { 299 } 300 #endif /* CONFIG_MEMCG_KMEM */ 301 302 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 303 { 304 struct kmem_cache *cachep; 305 struct page *page; 306 307 /* 308 * When kmemcg is not being used, both assignments should return the 309 * same value. but we don't want to pay the assignment price in that 310 * case. If it is not compiled in, the compiler should be smart enough 311 * to not do even the assignment. In that case, slab_equal_or_root 312 * will also be a constant. 313 */ 314 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE)) 315 return s; 316 317 page = virt_to_head_page(x); 318 cachep = page->slab_cache; 319 if (slab_equal_or_root(cachep, s)) 320 return cachep; 321 322 pr_err("%s: Wrong slab cache. %s but object is from %s\n", 323 __func__, cachep->name, s->name); 324 WARN_ON_ONCE(1); 325 return s; 326 } 327 328 #ifndef CONFIG_SLOB 329 /* 330 * The slab lists for all objects. 331 */ 332 struct kmem_cache_node { 333 spinlock_t list_lock; 334 335 #ifdef CONFIG_SLAB 336 struct list_head slabs_partial; /* partial list first, better asm code */ 337 struct list_head slabs_full; 338 struct list_head slabs_free; 339 unsigned long free_objects; 340 unsigned int free_limit; 341 unsigned int colour_next; /* Per-node cache coloring */ 342 struct array_cache *shared; /* shared per node */ 343 struct alien_cache **alien; /* on other nodes */ 344 unsigned long next_reap; /* updated without locking */ 345 int free_touched; /* updated without locking */ 346 #endif 347 348 #ifdef CONFIG_SLUB 349 unsigned long nr_partial; 350 struct list_head partial; 351 #ifdef CONFIG_SLUB_DEBUG 352 atomic_long_t nr_slabs; 353 atomic_long_t total_objects; 354 struct list_head full; 355 #endif 356 #endif 357 358 }; 359 360 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 361 { 362 return s->node[node]; 363 } 364 365 /* 366 * Iterator over all nodes. The body will be executed for each node that has 367 * a kmem_cache_node structure allocated (which is true for all online nodes) 368 */ 369 #define for_each_kmem_cache_node(__s, __node, __n) \ 370 for (__node = 0; __node < nr_node_ids; __node++) \ 371 if ((__n = get_node(__s, __node))) 372 373 #endif 374 375 void *slab_start(struct seq_file *m, loff_t *pos); 376 void *slab_next(struct seq_file *m, void *p, loff_t *pos); 377 void slab_stop(struct seq_file *m, void *p); 378 int memcg_slab_show(struct seq_file *m, void *p); 379 380 #endif /* MM_SLAB_H */ 381