xref: /openbmc/linux/mm/slab.c (revision f519f0be)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/slab.c
4  * Written by Mark Hemment, 1996/97.
5  * (markhe@nextd.demon.co.uk)
6  *
7  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8  *
9  * Major cleanup, different bufctl logic, per-cpu arrays
10  *	(c) 2000 Manfred Spraul
11  *
12  * Cleanup, make the head arrays unconditional, preparation for NUMA
13  * 	(c) 2002 Manfred Spraul
14  *
15  * An implementation of the Slab Allocator as described in outline in;
16  *	UNIX Internals: The New Frontiers by Uresh Vahalia
17  *	Pub: Prentice Hall	ISBN 0-13-101908-2
18  * or with a little more detail in;
19  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
20  *	Jeff Bonwick (Sun Microsystems).
21  *	Presented at: USENIX Summer 1994 Technical Conference
22  *
23  * The memory is organized in caches, one cache for each object type.
24  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25  * Each cache consists out of many slabs (they are small (usually one
26  * page long) and always contiguous), and each slab contains multiple
27  * initialized objects.
28  *
29  * This means, that your constructor is used only for newly allocated
30  * slabs and you must pass objects with the same initializations to
31  * kmem_cache_free.
32  *
33  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34  * normal). If you need a special memory type, then must create a new
35  * cache for that memory type.
36  *
37  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38  *   full slabs with 0 free objects
39  *   partial slabs
40  *   empty slabs with no allocated objects
41  *
42  * If partial slabs exist, then new allocations come from these slabs,
43  * otherwise from empty slabs or new slabs are allocated.
44  *
45  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47  *
48  * Each cache has a short per-cpu head array, most allocs
49  * and frees go into that array, and if that array overflows, then 1/2
50  * of the entries in the array are given back into the global cache.
51  * The head array is strictly LIFO and should improve the cache hit rates.
52  * On SMP, it additionally reduces the spinlock operations.
53  *
54  * The c_cpuarray may not be read with enabled local interrupts -
55  * it's changed with a smp_call_function().
56  *
57  * SMP synchronization:
58  *  constructors and destructors are called without any locking.
59  *  Several members in struct kmem_cache and struct slab never change, they
60  *	are accessed without any locking.
61  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
62  *  	and local interrupts are disabled so slab code is preempt-safe.
63  *  The non-constant members are protected with a per-cache irq spinlock.
64  *
65  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66  * in 2000 - many ideas in the current implementation are derived from
67  * his patch.
68  *
69  * Further notes from the original documentation:
70  *
71  * 11 April '97.  Started multi-threading - markhe
72  *	The global cache-chain is protected by the mutex 'slab_mutex'.
73  *	The sem is only needed when accessing/extending the cache-chain, which
74  *	can never happen inside an interrupt (kmem_cache_create(),
75  *	kmem_cache_shrink() and kmem_cache_reap()).
76  *
77  *	At present, each engine can be growing a cache.  This should be blocked.
78  *
79  * 15 March 2005. NUMA slab allocator.
80  *	Shai Fultheim <shai@scalex86.org>.
81  *	Shobhit Dayal <shobhit@calsoftinc.com>
82  *	Alok N Kataria <alokk@calsoftinc.com>
83  *	Christoph Lameter <christoph@lameter.com>
84  *
85  *	Modified the slab allocator to be node aware on NUMA systems.
86  *	Each node has its own list of partial, free and full slabs.
87  *	All object allocations for a node occur from node specific slab lists.
88  */
89 
90 #include	<linux/slab.h>
91 #include	<linux/mm.h>
92 #include	<linux/poison.h>
93 #include	<linux/swap.h>
94 #include	<linux/cache.h>
95 #include	<linux/interrupt.h>
96 #include	<linux/init.h>
97 #include	<linux/compiler.h>
98 #include	<linux/cpuset.h>
99 #include	<linux/proc_fs.h>
100 #include	<linux/seq_file.h>
101 #include	<linux/notifier.h>
102 #include	<linux/kallsyms.h>
103 #include	<linux/cpu.h>
104 #include	<linux/sysctl.h>
105 #include	<linux/module.h>
106 #include	<linux/rcupdate.h>
107 #include	<linux/string.h>
108 #include	<linux/uaccess.h>
109 #include	<linux/nodemask.h>
110 #include	<linux/kmemleak.h>
111 #include	<linux/mempolicy.h>
112 #include	<linux/mutex.h>
113 #include	<linux/fault-inject.h>
114 #include	<linux/rtmutex.h>
115 #include	<linux/reciprocal_div.h>
116 #include	<linux/debugobjects.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 #include	<linux/sched/task_stack.h>
120 
121 #include	<net/sock.h>
122 
123 #include	<asm/cacheflush.h>
124 #include	<asm/tlbflush.h>
125 #include	<asm/page.h>
126 
127 #include <trace/events/kmem.h>
128 
129 #include	"internal.h"
130 
131 #include	"slab.h"
132 
133 /*
134  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135  *		  0 for faster, smaller code (especially in the critical paths).
136  *
137  * STATS	- 1 to collect stats for /proc/slabinfo.
138  *		  0 for faster, smaller code (especially in the critical paths).
139  *
140  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141  */
142 
143 #ifdef CONFIG_DEBUG_SLAB
144 #define	DEBUG		1
145 #define	STATS		1
146 #define	FORCED_DEBUG	1
147 #else
148 #define	DEBUG		0
149 #define	STATS		0
150 #define	FORCED_DEBUG	0
151 #endif
152 
153 /* Shouldn't this be in a header file somewhere? */
154 #define	BYTES_PER_WORD		sizeof(void *)
155 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160 
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169 
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171 
172 /*
173  * struct array_cache
174  *
175  * Purpose:
176  * - LIFO ordering, to hand out cache-warm objects from _alloc
177  * - reduce the number of linked list operations
178  * - reduce spinlock operations
179  *
180  * The limit is stored in the per-cpu structure to reduce the data cache
181  * footprint.
182  *
183  */
184 struct array_cache {
185 	unsigned int avail;
186 	unsigned int limit;
187 	unsigned int batchcount;
188 	unsigned int touched;
189 	void *entry[];	/*
190 			 * Must have this definition in here for the proper
191 			 * alignment of array_cache. Also simplifies accessing
192 			 * the entries.
193 			 */
194 };
195 
196 struct alien_cache {
197 	spinlock_t lock;
198 	struct array_cache ac;
199 };
200 
201 /*
202  * Need this for bootstrapping a per node allocator.
203  */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define	CACHE_CACHE 0
207 #define	SIZE_NODE (MAX_NUMNODES)
208 
209 static int drain_freelist(struct kmem_cache *cache,
210 			struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 			int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216 
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 						void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 				struct kmem_cache_node *n, struct page *page,
221 				void **list);
222 static int slab_early_init = 1;
223 
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 	INIT_LIST_HEAD(&parent->slabs_full);
229 	INIT_LIST_HEAD(&parent->slabs_partial);
230 	INIT_LIST_HEAD(&parent->slabs_free);
231 	parent->total_slabs = 0;
232 	parent->free_slabs = 0;
233 	parent->shared = NULL;
234 	parent->alien = NULL;
235 	parent->colour_next = 0;
236 	spin_lock_init(&parent->list_lock);
237 	parent->free_objects = 0;
238 	parent->free_touched = 0;
239 }
240 
241 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
242 	do {								\
243 		INIT_LIST_HEAD(listp);					\
244 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
245 	} while (0)
246 
247 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
248 	do {								\
249 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
250 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
252 	} while (0)
253 
254 #define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
256 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
258 
259 #define BATCHREFILL_LIMIT	16
260 /*
261  * Optimization question: fewer reaps means less probability for unnessary
262  * cpucache drain/refill cycles.
263  *
264  * OTOH the cpuarrays can contain lots of objects,
265  * which could lock up otherwise freeable slabs.
266  */
267 #define REAPTIMEOUT_AC		(2*HZ)
268 #define REAPTIMEOUT_NODE	(4*HZ)
269 
270 #if STATS
271 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
272 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
273 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
274 #define	STATS_INC_GROWN(x)	((x)->grown++)
275 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
276 #define	STATS_SET_HIGH(x)						\
277 	do {								\
278 		if ((x)->num_active > (x)->high_mark)			\
279 			(x)->high_mark = (x)->num_active;		\
280 	} while (0)
281 #define	STATS_INC_ERR(x)	((x)->errors++)
282 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
283 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
285 #define	STATS_SET_FREEABLE(x, i)					\
286 	do {								\
287 		if ((x)->max_freeable < i)				\
288 			(x)->max_freeable = i;				\
289 	} while (0)
290 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
294 #else
295 #define	STATS_INC_ACTIVE(x)	do { } while (0)
296 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
297 #define	STATS_INC_ALLOCED(x)	do { } while (0)
298 #define	STATS_INC_GROWN(x)	do { } while (0)
299 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
300 #define	STATS_SET_HIGH(x)	do { } while (0)
301 #define	STATS_INC_ERR(x)	do { } while (0)
302 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
303 #define	STATS_INC_NODEFREES(x)	do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
305 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
307 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
308 #define STATS_INC_FREEHIT(x)	do { } while (0)
309 #define STATS_INC_FREEMISS(x)	do { } while (0)
310 #endif
311 
312 #if DEBUG
313 
314 /*
315  * memory layout of objects:
316  * 0		: objp
317  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318  * 		the end of an object is aligned with the end of the real
319  * 		allocation. Catches writes behind the end of the allocation.
320  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321  * 		redzone word.
322  * cachep->obj_offset: The real object.
323  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324  * cachep->size - 1* BYTES_PER_WORD: last caller address
325  *					[BYTES_PER_WORD long]
326  */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 	return cachep->obj_offset;
330 }
331 
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 	return (unsigned long long*) (objp + obj_offset(cachep) -
336 				      sizeof(unsigned long long));
337 }
338 
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 	if (cachep->flags & SLAB_STORE_USER)
343 		return (unsigned long long *)(objp + cachep->size -
344 					      sizeof(unsigned long long) -
345 					      REDZONE_ALIGN);
346 	return (unsigned long long *) (objp + cachep->size -
347 				       sizeof(unsigned long long));
348 }
349 
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355 
356 #else
357 
358 #define obj_offset(x)			0
359 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
362 
363 #endif
364 
365 /*
366  * Do not go above this order unless 0 objects fit into the slab or
367  * overridden on the command line.
368  */
369 #define	SLAB_MAX_ORDER_HI	1
370 #define	SLAB_MAX_ORDER_LO	0
371 static int slab_max_order = SLAB_MAX_ORDER_LO;
372 static bool slab_max_order_set __initdata;
373 
374 static inline struct kmem_cache *virt_to_cache(const void *obj)
375 {
376 	struct page *page = virt_to_head_page(obj);
377 	return page->slab_cache;
378 }
379 
380 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
381 				 unsigned int idx)
382 {
383 	return page->s_mem + cache->size * idx;
384 }
385 
386 #define BOOT_CPUCACHE_ENTRIES	1
387 /* internal cache of cache description objs */
388 static struct kmem_cache kmem_cache_boot = {
389 	.batchcount = 1,
390 	.limit = BOOT_CPUCACHE_ENTRIES,
391 	.shared = 1,
392 	.size = sizeof(struct kmem_cache),
393 	.name = "kmem_cache",
394 };
395 
396 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
397 
398 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
399 {
400 	return this_cpu_ptr(cachep->cpu_cache);
401 }
402 
403 /*
404  * Calculate the number of objects and left-over bytes for a given buffer size.
405  */
406 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
407 		slab_flags_t flags, size_t *left_over)
408 {
409 	unsigned int num;
410 	size_t slab_size = PAGE_SIZE << gfporder;
411 
412 	/*
413 	 * The slab management structure can be either off the slab or
414 	 * on it. For the latter case, the memory allocated for a
415 	 * slab is used for:
416 	 *
417 	 * - @buffer_size bytes for each object
418 	 * - One freelist_idx_t for each object
419 	 *
420 	 * We don't need to consider alignment of freelist because
421 	 * freelist will be at the end of slab page. The objects will be
422 	 * at the correct alignment.
423 	 *
424 	 * If the slab management structure is off the slab, then the
425 	 * alignment will already be calculated into the size. Because
426 	 * the slabs are all pages aligned, the objects will be at the
427 	 * correct alignment when allocated.
428 	 */
429 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
430 		num = slab_size / buffer_size;
431 		*left_over = slab_size % buffer_size;
432 	} else {
433 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
434 		*left_over = slab_size %
435 			(buffer_size + sizeof(freelist_idx_t));
436 	}
437 
438 	return num;
439 }
440 
441 #if DEBUG
442 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
443 
444 static void __slab_error(const char *function, struct kmem_cache *cachep,
445 			char *msg)
446 {
447 	pr_err("slab error in %s(): cache `%s': %s\n",
448 	       function, cachep->name, msg);
449 	dump_stack();
450 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
451 }
452 #endif
453 
454 /*
455  * By default on NUMA we use alien caches to stage the freeing of
456  * objects allocated from other nodes. This causes massive memory
457  * inefficiencies when using fake NUMA setup to split memory into a
458  * large number of small nodes, so it can be disabled on the command
459  * line
460   */
461 
462 static int use_alien_caches __read_mostly = 1;
463 static int __init noaliencache_setup(char *s)
464 {
465 	use_alien_caches = 0;
466 	return 1;
467 }
468 __setup("noaliencache", noaliencache_setup);
469 
470 static int __init slab_max_order_setup(char *str)
471 {
472 	get_option(&str, &slab_max_order);
473 	slab_max_order = slab_max_order < 0 ? 0 :
474 				min(slab_max_order, MAX_ORDER - 1);
475 	slab_max_order_set = true;
476 
477 	return 1;
478 }
479 __setup("slab_max_order=", slab_max_order_setup);
480 
481 #ifdef CONFIG_NUMA
482 /*
483  * Special reaping functions for NUMA systems called from cache_reap().
484  * These take care of doing round robin flushing of alien caches (containing
485  * objects freed on different nodes from which they were allocated) and the
486  * flushing of remote pcps by calling drain_node_pages.
487  */
488 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
489 
490 static void init_reap_node(int cpu)
491 {
492 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
493 						    node_online_map);
494 }
495 
496 static void next_reap_node(void)
497 {
498 	int node = __this_cpu_read(slab_reap_node);
499 
500 	node = next_node_in(node, node_online_map);
501 	__this_cpu_write(slab_reap_node, node);
502 }
503 
504 #else
505 #define init_reap_node(cpu) do { } while (0)
506 #define next_reap_node(void) do { } while (0)
507 #endif
508 
509 /*
510  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
511  * via the workqueue/eventd.
512  * Add the CPU number into the expiration time to minimize the possibility of
513  * the CPUs getting into lockstep and contending for the global cache chain
514  * lock.
515  */
516 static void start_cpu_timer(int cpu)
517 {
518 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
519 
520 	if (reap_work->work.func == NULL) {
521 		init_reap_node(cpu);
522 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
523 		schedule_delayed_work_on(cpu, reap_work,
524 					__round_jiffies_relative(HZ, cpu));
525 	}
526 }
527 
528 static void init_arraycache(struct array_cache *ac, int limit, int batch)
529 {
530 	if (ac) {
531 		ac->avail = 0;
532 		ac->limit = limit;
533 		ac->batchcount = batch;
534 		ac->touched = 0;
535 	}
536 }
537 
538 static struct array_cache *alloc_arraycache(int node, int entries,
539 					    int batchcount, gfp_t gfp)
540 {
541 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
542 	struct array_cache *ac = NULL;
543 
544 	ac = kmalloc_node(memsize, gfp, node);
545 	/*
546 	 * The array_cache structures contain pointers to free object.
547 	 * However, when such objects are allocated or transferred to another
548 	 * cache the pointers are not cleared and they could be counted as
549 	 * valid references during a kmemleak scan. Therefore, kmemleak must
550 	 * not scan such objects.
551 	 */
552 	kmemleak_no_scan(ac);
553 	init_arraycache(ac, entries, batchcount);
554 	return ac;
555 }
556 
557 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
558 					struct page *page, void *objp)
559 {
560 	struct kmem_cache_node *n;
561 	int page_node;
562 	LIST_HEAD(list);
563 
564 	page_node = page_to_nid(page);
565 	n = get_node(cachep, page_node);
566 
567 	spin_lock(&n->list_lock);
568 	free_block(cachep, &objp, 1, page_node, &list);
569 	spin_unlock(&n->list_lock);
570 
571 	slabs_destroy(cachep, &list);
572 }
573 
574 /*
575  * Transfer objects in one arraycache to another.
576  * Locking must be handled by the caller.
577  *
578  * Return the number of entries transferred.
579  */
580 static int transfer_objects(struct array_cache *to,
581 		struct array_cache *from, unsigned int max)
582 {
583 	/* Figure out how many entries to transfer */
584 	int nr = min3(from->avail, max, to->limit - to->avail);
585 
586 	if (!nr)
587 		return 0;
588 
589 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
590 			sizeof(void *) *nr);
591 
592 	from->avail -= nr;
593 	to->avail += nr;
594 	return nr;
595 }
596 
597 #ifndef CONFIG_NUMA
598 
599 #define drain_alien_cache(cachep, alien) do { } while (0)
600 #define reap_alien(cachep, n) do { } while (0)
601 
602 static inline struct alien_cache **alloc_alien_cache(int node,
603 						int limit, gfp_t gfp)
604 {
605 	return NULL;
606 }
607 
608 static inline void free_alien_cache(struct alien_cache **ac_ptr)
609 {
610 }
611 
612 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
613 {
614 	return 0;
615 }
616 
617 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
618 		gfp_t flags)
619 {
620 	return NULL;
621 }
622 
623 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
624 		 gfp_t flags, int nodeid)
625 {
626 	return NULL;
627 }
628 
629 static inline gfp_t gfp_exact_node(gfp_t flags)
630 {
631 	return flags & ~__GFP_NOFAIL;
632 }
633 
634 #else	/* CONFIG_NUMA */
635 
636 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
637 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
638 
639 static struct alien_cache *__alloc_alien_cache(int node, int entries,
640 						int batch, gfp_t gfp)
641 {
642 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
643 	struct alien_cache *alc = NULL;
644 
645 	alc = kmalloc_node(memsize, gfp, node);
646 	if (alc) {
647 		kmemleak_no_scan(alc);
648 		init_arraycache(&alc->ac, entries, batch);
649 		spin_lock_init(&alc->lock);
650 	}
651 	return alc;
652 }
653 
654 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
655 {
656 	struct alien_cache **alc_ptr;
657 	int i;
658 
659 	if (limit > 1)
660 		limit = 12;
661 	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
662 	if (!alc_ptr)
663 		return NULL;
664 
665 	for_each_node(i) {
666 		if (i == node || !node_online(i))
667 			continue;
668 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
669 		if (!alc_ptr[i]) {
670 			for (i--; i >= 0; i--)
671 				kfree(alc_ptr[i]);
672 			kfree(alc_ptr);
673 			return NULL;
674 		}
675 	}
676 	return alc_ptr;
677 }
678 
679 static void free_alien_cache(struct alien_cache **alc_ptr)
680 {
681 	int i;
682 
683 	if (!alc_ptr)
684 		return;
685 	for_each_node(i)
686 	    kfree(alc_ptr[i]);
687 	kfree(alc_ptr);
688 }
689 
690 static void __drain_alien_cache(struct kmem_cache *cachep,
691 				struct array_cache *ac, int node,
692 				struct list_head *list)
693 {
694 	struct kmem_cache_node *n = get_node(cachep, node);
695 
696 	if (ac->avail) {
697 		spin_lock(&n->list_lock);
698 		/*
699 		 * Stuff objects into the remote nodes shared array first.
700 		 * That way we could avoid the overhead of putting the objects
701 		 * into the free lists and getting them back later.
702 		 */
703 		if (n->shared)
704 			transfer_objects(n->shared, ac, ac->limit);
705 
706 		free_block(cachep, ac->entry, ac->avail, node, list);
707 		ac->avail = 0;
708 		spin_unlock(&n->list_lock);
709 	}
710 }
711 
712 /*
713  * Called from cache_reap() to regularly drain alien caches round robin.
714  */
715 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
716 {
717 	int node = __this_cpu_read(slab_reap_node);
718 
719 	if (n->alien) {
720 		struct alien_cache *alc = n->alien[node];
721 		struct array_cache *ac;
722 
723 		if (alc) {
724 			ac = &alc->ac;
725 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
726 				LIST_HEAD(list);
727 
728 				__drain_alien_cache(cachep, ac, node, &list);
729 				spin_unlock_irq(&alc->lock);
730 				slabs_destroy(cachep, &list);
731 			}
732 		}
733 	}
734 }
735 
736 static void drain_alien_cache(struct kmem_cache *cachep,
737 				struct alien_cache **alien)
738 {
739 	int i = 0;
740 	struct alien_cache *alc;
741 	struct array_cache *ac;
742 	unsigned long flags;
743 
744 	for_each_online_node(i) {
745 		alc = alien[i];
746 		if (alc) {
747 			LIST_HEAD(list);
748 
749 			ac = &alc->ac;
750 			spin_lock_irqsave(&alc->lock, flags);
751 			__drain_alien_cache(cachep, ac, i, &list);
752 			spin_unlock_irqrestore(&alc->lock, flags);
753 			slabs_destroy(cachep, &list);
754 		}
755 	}
756 }
757 
758 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
759 				int node, int page_node)
760 {
761 	struct kmem_cache_node *n;
762 	struct alien_cache *alien = NULL;
763 	struct array_cache *ac;
764 	LIST_HEAD(list);
765 
766 	n = get_node(cachep, node);
767 	STATS_INC_NODEFREES(cachep);
768 	if (n->alien && n->alien[page_node]) {
769 		alien = n->alien[page_node];
770 		ac = &alien->ac;
771 		spin_lock(&alien->lock);
772 		if (unlikely(ac->avail == ac->limit)) {
773 			STATS_INC_ACOVERFLOW(cachep);
774 			__drain_alien_cache(cachep, ac, page_node, &list);
775 		}
776 		ac->entry[ac->avail++] = objp;
777 		spin_unlock(&alien->lock);
778 		slabs_destroy(cachep, &list);
779 	} else {
780 		n = get_node(cachep, page_node);
781 		spin_lock(&n->list_lock);
782 		free_block(cachep, &objp, 1, page_node, &list);
783 		spin_unlock(&n->list_lock);
784 		slabs_destroy(cachep, &list);
785 	}
786 	return 1;
787 }
788 
789 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
790 {
791 	int page_node = page_to_nid(virt_to_page(objp));
792 	int node = numa_mem_id();
793 	/*
794 	 * Make sure we are not freeing a object from another node to the array
795 	 * cache on this cpu.
796 	 */
797 	if (likely(node == page_node))
798 		return 0;
799 
800 	return __cache_free_alien(cachep, objp, node, page_node);
801 }
802 
803 /*
804  * Construct gfp mask to allocate from a specific node but do not reclaim or
805  * warn about failures.
806  */
807 static inline gfp_t gfp_exact_node(gfp_t flags)
808 {
809 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
810 }
811 #endif
812 
813 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
814 {
815 	struct kmem_cache_node *n;
816 
817 	/*
818 	 * Set up the kmem_cache_node for cpu before we can
819 	 * begin anything. Make sure some other cpu on this
820 	 * node has not already allocated this
821 	 */
822 	n = get_node(cachep, node);
823 	if (n) {
824 		spin_lock_irq(&n->list_lock);
825 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
826 				cachep->num;
827 		spin_unlock_irq(&n->list_lock);
828 
829 		return 0;
830 	}
831 
832 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
833 	if (!n)
834 		return -ENOMEM;
835 
836 	kmem_cache_node_init(n);
837 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
838 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
839 
840 	n->free_limit =
841 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
842 
843 	/*
844 	 * The kmem_cache_nodes don't come and go as CPUs
845 	 * come and go.  slab_mutex is sufficient
846 	 * protection here.
847 	 */
848 	cachep->node[node] = n;
849 
850 	return 0;
851 }
852 
853 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
854 /*
855  * Allocates and initializes node for a node on each slab cache, used for
856  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
857  * will be allocated off-node since memory is not yet online for the new node.
858  * When hotplugging memory or a cpu, existing node are not replaced if
859  * already in use.
860  *
861  * Must hold slab_mutex.
862  */
863 static int init_cache_node_node(int node)
864 {
865 	int ret;
866 	struct kmem_cache *cachep;
867 
868 	list_for_each_entry(cachep, &slab_caches, list) {
869 		ret = init_cache_node(cachep, node, GFP_KERNEL);
870 		if (ret)
871 			return ret;
872 	}
873 
874 	return 0;
875 }
876 #endif
877 
878 static int setup_kmem_cache_node(struct kmem_cache *cachep,
879 				int node, gfp_t gfp, bool force_change)
880 {
881 	int ret = -ENOMEM;
882 	struct kmem_cache_node *n;
883 	struct array_cache *old_shared = NULL;
884 	struct array_cache *new_shared = NULL;
885 	struct alien_cache **new_alien = NULL;
886 	LIST_HEAD(list);
887 
888 	if (use_alien_caches) {
889 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
890 		if (!new_alien)
891 			goto fail;
892 	}
893 
894 	if (cachep->shared) {
895 		new_shared = alloc_arraycache(node,
896 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
897 		if (!new_shared)
898 			goto fail;
899 	}
900 
901 	ret = init_cache_node(cachep, node, gfp);
902 	if (ret)
903 		goto fail;
904 
905 	n = get_node(cachep, node);
906 	spin_lock_irq(&n->list_lock);
907 	if (n->shared && force_change) {
908 		free_block(cachep, n->shared->entry,
909 				n->shared->avail, node, &list);
910 		n->shared->avail = 0;
911 	}
912 
913 	if (!n->shared || force_change) {
914 		old_shared = n->shared;
915 		n->shared = new_shared;
916 		new_shared = NULL;
917 	}
918 
919 	if (!n->alien) {
920 		n->alien = new_alien;
921 		new_alien = NULL;
922 	}
923 
924 	spin_unlock_irq(&n->list_lock);
925 	slabs_destroy(cachep, &list);
926 
927 	/*
928 	 * To protect lockless access to n->shared during irq disabled context.
929 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
930 	 * guaranteed to be valid until irq is re-enabled, because it will be
931 	 * freed after synchronize_rcu().
932 	 */
933 	if (old_shared && force_change)
934 		synchronize_rcu();
935 
936 fail:
937 	kfree(old_shared);
938 	kfree(new_shared);
939 	free_alien_cache(new_alien);
940 
941 	return ret;
942 }
943 
944 #ifdef CONFIG_SMP
945 
946 static void cpuup_canceled(long cpu)
947 {
948 	struct kmem_cache *cachep;
949 	struct kmem_cache_node *n = NULL;
950 	int node = cpu_to_mem(cpu);
951 	const struct cpumask *mask = cpumask_of_node(node);
952 
953 	list_for_each_entry(cachep, &slab_caches, list) {
954 		struct array_cache *nc;
955 		struct array_cache *shared;
956 		struct alien_cache **alien;
957 		LIST_HEAD(list);
958 
959 		n = get_node(cachep, node);
960 		if (!n)
961 			continue;
962 
963 		spin_lock_irq(&n->list_lock);
964 
965 		/* Free limit for this kmem_cache_node */
966 		n->free_limit -= cachep->batchcount;
967 
968 		/* cpu is dead; no one can alloc from it. */
969 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
970 		free_block(cachep, nc->entry, nc->avail, node, &list);
971 		nc->avail = 0;
972 
973 		if (!cpumask_empty(mask)) {
974 			spin_unlock_irq(&n->list_lock);
975 			goto free_slab;
976 		}
977 
978 		shared = n->shared;
979 		if (shared) {
980 			free_block(cachep, shared->entry,
981 				   shared->avail, node, &list);
982 			n->shared = NULL;
983 		}
984 
985 		alien = n->alien;
986 		n->alien = NULL;
987 
988 		spin_unlock_irq(&n->list_lock);
989 
990 		kfree(shared);
991 		if (alien) {
992 			drain_alien_cache(cachep, alien);
993 			free_alien_cache(alien);
994 		}
995 
996 free_slab:
997 		slabs_destroy(cachep, &list);
998 	}
999 	/*
1000 	 * In the previous loop, all the objects were freed to
1001 	 * the respective cache's slabs,  now we can go ahead and
1002 	 * shrink each nodelist to its limit.
1003 	 */
1004 	list_for_each_entry(cachep, &slab_caches, list) {
1005 		n = get_node(cachep, node);
1006 		if (!n)
1007 			continue;
1008 		drain_freelist(cachep, n, INT_MAX);
1009 	}
1010 }
1011 
1012 static int cpuup_prepare(long cpu)
1013 {
1014 	struct kmem_cache *cachep;
1015 	int node = cpu_to_mem(cpu);
1016 	int err;
1017 
1018 	/*
1019 	 * We need to do this right in the beginning since
1020 	 * alloc_arraycache's are going to use this list.
1021 	 * kmalloc_node allows us to add the slab to the right
1022 	 * kmem_cache_node and not this cpu's kmem_cache_node
1023 	 */
1024 	err = init_cache_node_node(node);
1025 	if (err < 0)
1026 		goto bad;
1027 
1028 	/*
1029 	 * Now we can go ahead with allocating the shared arrays and
1030 	 * array caches
1031 	 */
1032 	list_for_each_entry(cachep, &slab_caches, list) {
1033 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1034 		if (err)
1035 			goto bad;
1036 	}
1037 
1038 	return 0;
1039 bad:
1040 	cpuup_canceled(cpu);
1041 	return -ENOMEM;
1042 }
1043 
1044 int slab_prepare_cpu(unsigned int cpu)
1045 {
1046 	int err;
1047 
1048 	mutex_lock(&slab_mutex);
1049 	err = cpuup_prepare(cpu);
1050 	mutex_unlock(&slab_mutex);
1051 	return err;
1052 }
1053 
1054 /*
1055  * This is called for a failed online attempt and for a successful
1056  * offline.
1057  *
1058  * Even if all the cpus of a node are down, we don't free the
1059  * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1060  * a kmalloc allocation from another cpu for memory from the node of
1061  * the cpu going down.  The list3 structure is usually allocated from
1062  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1063  */
1064 int slab_dead_cpu(unsigned int cpu)
1065 {
1066 	mutex_lock(&slab_mutex);
1067 	cpuup_canceled(cpu);
1068 	mutex_unlock(&slab_mutex);
1069 	return 0;
1070 }
1071 #endif
1072 
1073 static int slab_online_cpu(unsigned int cpu)
1074 {
1075 	start_cpu_timer(cpu);
1076 	return 0;
1077 }
1078 
1079 static int slab_offline_cpu(unsigned int cpu)
1080 {
1081 	/*
1082 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1083 	 * that if cache_reap() is invoked it cannot do anything
1084 	 * expensive but will only modify reap_work and reschedule the
1085 	 * timer.
1086 	 */
1087 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1088 	/* Now the cache_reaper is guaranteed to be not running. */
1089 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1090 	return 0;
1091 }
1092 
1093 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1094 /*
1095  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1096  * Returns -EBUSY if all objects cannot be drained so that the node is not
1097  * removed.
1098  *
1099  * Must hold slab_mutex.
1100  */
1101 static int __meminit drain_cache_node_node(int node)
1102 {
1103 	struct kmem_cache *cachep;
1104 	int ret = 0;
1105 
1106 	list_for_each_entry(cachep, &slab_caches, list) {
1107 		struct kmem_cache_node *n;
1108 
1109 		n = get_node(cachep, node);
1110 		if (!n)
1111 			continue;
1112 
1113 		drain_freelist(cachep, n, INT_MAX);
1114 
1115 		if (!list_empty(&n->slabs_full) ||
1116 		    !list_empty(&n->slabs_partial)) {
1117 			ret = -EBUSY;
1118 			break;
1119 		}
1120 	}
1121 	return ret;
1122 }
1123 
1124 static int __meminit slab_memory_callback(struct notifier_block *self,
1125 					unsigned long action, void *arg)
1126 {
1127 	struct memory_notify *mnb = arg;
1128 	int ret = 0;
1129 	int nid;
1130 
1131 	nid = mnb->status_change_nid;
1132 	if (nid < 0)
1133 		goto out;
1134 
1135 	switch (action) {
1136 	case MEM_GOING_ONLINE:
1137 		mutex_lock(&slab_mutex);
1138 		ret = init_cache_node_node(nid);
1139 		mutex_unlock(&slab_mutex);
1140 		break;
1141 	case MEM_GOING_OFFLINE:
1142 		mutex_lock(&slab_mutex);
1143 		ret = drain_cache_node_node(nid);
1144 		mutex_unlock(&slab_mutex);
1145 		break;
1146 	case MEM_ONLINE:
1147 	case MEM_OFFLINE:
1148 	case MEM_CANCEL_ONLINE:
1149 	case MEM_CANCEL_OFFLINE:
1150 		break;
1151 	}
1152 out:
1153 	return notifier_from_errno(ret);
1154 }
1155 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1156 
1157 /*
1158  * swap the static kmem_cache_node with kmalloced memory
1159  */
1160 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1161 				int nodeid)
1162 {
1163 	struct kmem_cache_node *ptr;
1164 
1165 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1166 	BUG_ON(!ptr);
1167 
1168 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1169 	/*
1170 	 * Do not assume that spinlocks can be initialized via memcpy:
1171 	 */
1172 	spin_lock_init(&ptr->list_lock);
1173 
1174 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1175 	cachep->node[nodeid] = ptr;
1176 }
1177 
1178 /*
1179  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1180  * size of kmem_cache_node.
1181  */
1182 static void __init set_up_node(struct kmem_cache *cachep, int index)
1183 {
1184 	int node;
1185 
1186 	for_each_online_node(node) {
1187 		cachep->node[node] = &init_kmem_cache_node[index + node];
1188 		cachep->node[node]->next_reap = jiffies +
1189 		    REAPTIMEOUT_NODE +
1190 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1191 	}
1192 }
1193 
1194 /*
1195  * Initialisation.  Called after the page allocator have been initialised and
1196  * before smp_init().
1197  */
1198 void __init kmem_cache_init(void)
1199 {
1200 	int i;
1201 
1202 	kmem_cache = &kmem_cache_boot;
1203 
1204 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1205 		use_alien_caches = 0;
1206 
1207 	for (i = 0; i < NUM_INIT_LISTS; i++)
1208 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1209 
1210 	/*
1211 	 * Fragmentation resistance on low memory - only use bigger
1212 	 * page orders on machines with more than 32MB of memory if
1213 	 * not overridden on the command line.
1214 	 */
1215 	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1216 		slab_max_order = SLAB_MAX_ORDER_HI;
1217 
1218 	/* Bootstrap is tricky, because several objects are allocated
1219 	 * from caches that do not exist yet:
1220 	 * 1) initialize the kmem_cache cache: it contains the struct
1221 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1222 	 *    kmem_cache is statically allocated.
1223 	 *    Initially an __init data area is used for the head array and the
1224 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1225 	 *    array at the end of the bootstrap.
1226 	 * 2) Create the first kmalloc cache.
1227 	 *    The struct kmem_cache for the new cache is allocated normally.
1228 	 *    An __init data area is used for the head array.
1229 	 * 3) Create the remaining kmalloc caches, with minimally sized
1230 	 *    head arrays.
1231 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1232 	 *    kmalloc cache with kmalloc allocated arrays.
1233 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1234 	 *    the other cache's with kmalloc allocated memory.
1235 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1236 	 */
1237 
1238 	/* 1) create the kmem_cache */
1239 
1240 	/*
1241 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1242 	 */
1243 	create_boot_cache(kmem_cache, "kmem_cache",
1244 		offsetof(struct kmem_cache, node) +
1245 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1246 				  SLAB_HWCACHE_ALIGN, 0, 0);
1247 	list_add(&kmem_cache->list, &slab_caches);
1248 	memcg_link_cache(kmem_cache);
1249 	slab_state = PARTIAL;
1250 
1251 	/*
1252 	 * Initialize the caches that provide memory for the  kmem_cache_node
1253 	 * structures first.  Without this, further allocations will bug.
1254 	 */
1255 	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1256 				kmalloc_info[INDEX_NODE].name,
1257 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1258 				0, kmalloc_size(INDEX_NODE));
1259 	slab_state = PARTIAL_NODE;
1260 	setup_kmalloc_cache_index_table();
1261 
1262 	slab_early_init = 0;
1263 
1264 	/* 5) Replace the bootstrap kmem_cache_node */
1265 	{
1266 		int nid;
1267 
1268 		for_each_online_node(nid) {
1269 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1270 
1271 			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1272 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1273 		}
1274 	}
1275 
1276 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1277 }
1278 
1279 void __init kmem_cache_init_late(void)
1280 {
1281 	struct kmem_cache *cachep;
1282 
1283 	/* 6) resize the head arrays to their final sizes */
1284 	mutex_lock(&slab_mutex);
1285 	list_for_each_entry(cachep, &slab_caches, list)
1286 		if (enable_cpucache(cachep, GFP_NOWAIT))
1287 			BUG();
1288 	mutex_unlock(&slab_mutex);
1289 
1290 	/* Done! */
1291 	slab_state = FULL;
1292 
1293 #ifdef CONFIG_NUMA
1294 	/*
1295 	 * Register a memory hotplug callback that initializes and frees
1296 	 * node.
1297 	 */
1298 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1299 #endif
1300 
1301 	/*
1302 	 * The reap timers are started later, with a module init call: That part
1303 	 * of the kernel is not yet operational.
1304 	 */
1305 }
1306 
1307 static int __init cpucache_init(void)
1308 {
1309 	int ret;
1310 
1311 	/*
1312 	 * Register the timers that return unneeded pages to the page allocator
1313 	 */
1314 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1315 				slab_online_cpu, slab_offline_cpu);
1316 	WARN_ON(ret < 0);
1317 
1318 	return 0;
1319 }
1320 __initcall(cpucache_init);
1321 
1322 static noinline void
1323 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1324 {
1325 #if DEBUG
1326 	struct kmem_cache_node *n;
1327 	unsigned long flags;
1328 	int node;
1329 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1330 				      DEFAULT_RATELIMIT_BURST);
1331 
1332 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1333 		return;
1334 
1335 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1336 		nodeid, gfpflags, &gfpflags);
1337 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1338 		cachep->name, cachep->size, cachep->gfporder);
1339 
1340 	for_each_kmem_cache_node(cachep, node, n) {
1341 		unsigned long total_slabs, free_slabs, free_objs;
1342 
1343 		spin_lock_irqsave(&n->list_lock, flags);
1344 		total_slabs = n->total_slabs;
1345 		free_slabs = n->free_slabs;
1346 		free_objs = n->free_objects;
1347 		spin_unlock_irqrestore(&n->list_lock, flags);
1348 
1349 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1350 			node, total_slabs - free_slabs, total_slabs,
1351 			(total_slabs * cachep->num) - free_objs,
1352 			total_slabs * cachep->num);
1353 	}
1354 #endif
1355 }
1356 
1357 /*
1358  * Interface to system's page allocator. No need to hold the
1359  * kmem_cache_node ->list_lock.
1360  *
1361  * If we requested dmaable memory, we will get it. Even if we
1362  * did not request dmaable memory, we might get it, but that
1363  * would be relatively rare and ignorable.
1364  */
1365 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1366 								int nodeid)
1367 {
1368 	struct page *page;
1369 	int nr_pages;
1370 
1371 	flags |= cachep->allocflags;
1372 
1373 	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1374 	if (!page) {
1375 		slab_out_of_memory(cachep, flags, nodeid);
1376 		return NULL;
1377 	}
1378 
1379 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1380 		__free_pages(page, cachep->gfporder);
1381 		return NULL;
1382 	}
1383 
1384 	nr_pages = (1 << cachep->gfporder);
1385 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1386 		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1387 	else
1388 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1389 
1390 	__SetPageSlab(page);
1391 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1392 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1393 		SetPageSlabPfmemalloc(page);
1394 
1395 	return page;
1396 }
1397 
1398 /*
1399  * Interface to system's page release.
1400  */
1401 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1402 {
1403 	int order = cachep->gfporder;
1404 	unsigned long nr_freed = (1 << order);
1405 
1406 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1407 		mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1408 	else
1409 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1410 
1411 	BUG_ON(!PageSlab(page));
1412 	__ClearPageSlabPfmemalloc(page);
1413 	__ClearPageSlab(page);
1414 	page_mapcount_reset(page);
1415 	page->mapping = NULL;
1416 
1417 	if (current->reclaim_state)
1418 		current->reclaim_state->reclaimed_slab += nr_freed;
1419 	memcg_uncharge_slab(page, order, cachep);
1420 	__free_pages(page, order);
1421 }
1422 
1423 static void kmem_rcu_free(struct rcu_head *head)
1424 {
1425 	struct kmem_cache *cachep;
1426 	struct page *page;
1427 
1428 	page = container_of(head, struct page, rcu_head);
1429 	cachep = page->slab_cache;
1430 
1431 	kmem_freepages(cachep, page);
1432 }
1433 
1434 #if DEBUG
1435 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1436 {
1437 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1438 		(cachep->size % PAGE_SIZE) == 0)
1439 		return true;
1440 
1441 	return false;
1442 }
1443 
1444 #ifdef CONFIG_DEBUG_PAGEALLOC
1445 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1446 {
1447 	if (!is_debug_pagealloc_cache(cachep))
1448 		return;
1449 
1450 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1451 }
1452 
1453 #else
1454 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1455 				int map) {}
1456 
1457 #endif
1458 
1459 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1460 {
1461 	int size = cachep->object_size;
1462 	addr = &((char *)addr)[obj_offset(cachep)];
1463 
1464 	memset(addr, val, size);
1465 	*(unsigned char *)(addr + size - 1) = POISON_END;
1466 }
1467 
1468 static void dump_line(char *data, int offset, int limit)
1469 {
1470 	int i;
1471 	unsigned char error = 0;
1472 	int bad_count = 0;
1473 
1474 	pr_err("%03x: ", offset);
1475 	for (i = 0; i < limit; i++) {
1476 		if (data[offset + i] != POISON_FREE) {
1477 			error = data[offset + i];
1478 			bad_count++;
1479 		}
1480 	}
1481 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1482 			&data[offset], limit, 1);
1483 
1484 	if (bad_count == 1) {
1485 		error ^= POISON_FREE;
1486 		if (!(error & (error - 1))) {
1487 			pr_err("Single bit error detected. Probably bad RAM.\n");
1488 #ifdef CONFIG_X86
1489 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1490 #else
1491 			pr_err("Run a memory test tool.\n");
1492 #endif
1493 		}
1494 	}
1495 }
1496 #endif
1497 
1498 #if DEBUG
1499 
1500 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1501 {
1502 	int i, size;
1503 	char *realobj;
1504 
1505 	if (cachep->flags & SLAB_RED_ZONE) {
1506 		pr_err("Redzone: 0x%llx/0x%llx\n",
1507 		       *dbg_redzone1(cachep, objp),
1508 		       *dbg_redzone2(cachep, objp));
1509 	}
1510 
1511 	if (cachep->flags & SLAB_STORE_USER)
1512 		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1513 	realobj = (char *)objp + obj_offset(cachep);
1514 	size = cachep->object_size;
1515 	for (i = 0; i < size && lines; i += 16, lines--) {
1516 		int limit;
1517 		limit = 16;
1518 		if (i + limit > size)
1519 			limit = size - i;
1520 		dump_line(realobj, i, limit);
1521 	}
1522 }
1523 
1524 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1525 {
1526 	char *realobj;
1527 	int size, i;
1528 	int lines = 0;
1529 
1530 	if (is_debug_pagealloc_cache(cachep))
1531 		return;
1532 
1533 	realobj = (char *)objp + obj_offset(cachep);
1534 	size = cachep->object_size;
1535 
1536 	for (i = 0; i < size; i++) {
1537 		char exp = POISON_FREE;
1538 		if (i == size - 1)
1539 			exp = POISON_END;
1540 		if (realobj[i] != exp) {
1541 			int limit;
1542 			/* Mismatch ! */
1543 			/* Print header */
1544 			if (lines == 0) {
1545 				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1546 				       print_tainted(), cachep->name,
1547 				       realobj, size);
1548 				print_objinfo(cachep, objp, 0);
1549 			}
1550 			/* Hexdump the affected line */
1551 			i = (i / 16) * 16;
1552 			limit = 16;
1553 			if (i + limit > size)
1554 				limit = size - i;
1555 			dump_line(realobj, i, limit);
1556 			i += 16;
1557 			lines++;
1558 			/* Limit to 5 lines */
1559 			if (lines > 5)
1560 				break;
1561 		}
1562 	}
1563 	if (lines != 0) {
1564 		/* Print some data about the neighboring objects, if they
1565 		 * exist:
1566 		 */
1567 		struct page *page = virt_to_head_page(objp);
1568 		unsigned int objnr;
1569 
1570 		objnr = obj_to_index(cachep, page, objp);
1571 		if (objnr) {
1572 			objp = index_to_obj(cachep, page, objnr - 1);
1573 			realobj = (char *)objp + obj_offset(cachep);
1574 			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1575 			print_objinfo(cachep, objp, 2);
1576 		}
1577 		if (objnr + 1 < cachep->num) {
1578 			objp = index_to_obj(cachep, page, objnr + 1);
1579 			realobj = (char *)objp + obj_offset(cachep);
1580 			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1581 			print_objinfo(cachep, objp, 2);
1582 		}
1583 	}
1584 }
1585 #endif
1586 
1587 #if DEBUG
1588 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1589 						struct page *page)
1590 {
1591 	int i;
1592 
1593 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1594 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1595 			POISON_FREE);
1596 	}
1597 
1598 	for (i = 0; i < cachep->num; i++) {
1599 		void *objp = index_to_obj(cachep, page, i);
1600 
1601 		if (cachep->flags & SLAB_POISON) {
1602 			check_poison_obj(cachep, objp);
1603 			slab_kernel_map(cachep, objp, 1);
1604 		}
1605 		if (cachep->flags & SLAB_RED_ZONE) {
1606 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1607 				slab_error(cachep, "start of a freed object was overwritten");
1608 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1609 				slab_error(cachep, "end of a freed object was overwritten");
1610 		}
1611 	}
1612 }
1613 #else
1614 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1615 						struct page *page)
1616 {
1617 }
1618 #endif
1619 
1620 /**
1621  * slab_destroy - destroy and release all objects in a slab
1622  * @cachep: cache pointer being destroyed
1623  * @page: page pointer being destroyed
1624  *
1625  * Destroy all the objs in a slab page, and release the mem back to the system.
1626  * Before calling the slab page must have been unlinked from the cache. The
1627  * kmem_cache_node ->list_lock is not held/needed.
1628  */
1629 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1630 {
1631 	void *freelist;
1632 
1633 	freelist = page->freelist;
1634 	slab_destroy_debugcheck(cachep, page);
1635 	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1636 		call_rcu(&page->rcu_head, kmem_rcu_free);
1637 	else
1638 		kmem_freepages(cachep, page);
1639 
1640 	/*
1641 	 * From now on, we don't use freelist
1642 	 * although actual page can be freed in rcu context
1643 	 */
1644 	if (OFF_SLAB(cachep))
1645 		kmem_cache_free(cachep->freelist_cache, freelist);
1646 }
1647 
1648 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1649 {
1650 	struct page *page, *n;
1651 
1652 	list_for_each_entry_safe(page, n, list, slab_list) {
1653 		list_del(&page->slab_list);
1654 		slab_destroy(cachep, page);
1655 	}
1656 }
1657 
1658 /**
1659  * calculate_slab_order - calculate size (page order) of slabs
1660  * @cachep: pointer to the cache that is being created
1661  * @size: size of objects to be created in this cache.
1662  * @flags: slab allocation flags
1663  *
1664  * Also calculates the number of objects per slab.
1665  *
1666  * This could be made much more intelligent.  For now, try to avoid using
1667  * high order pages for slabs.  When the gfp() functions are more friendly
1668  * towards high-order requests, this should be changed.
1669  *
1670  * Return: number of left-over bytes in a slab
1671  */
1672 static size_t calculate_slab_order(struct kmem_cache *cachep,
1673 				size_t size, slab_flags_t flags)
1674 {
1675 	size_t left_over = 0;
1676 	int gfporder;
1677 
1678 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1679 		unsigned int num;
1680 		size_t remainder;
1681 
1682 		num = cache_estimate(gfporder, size, flags, &remainder);
1683 		if (!num)
1684 			continue;
1685 
1686 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1687 		if (num > SLAB_OBJ_MAX_NUM)
1688 			break;
1689 
1690 		if (flags & CFLGS_OFF_SLAB) {
1691 			struct kmem_cache *freelist_cache;
1692 			size_t freelist_size;
1693 
1694 			freelist_size = num * sizeof(freelist_idx_t);
1695 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1696 			if (!freelist_cache)
1697 				continue;
1698 
1699 			/*
1700 			 * Needed to avoid possible looping condition
1701 			 * in cache_grow_begin()
1702 			 */
1703 			if (OFF_SLAB(freelist_cache))
1704 				continue;
1705 
1706 			/* check if off slab has enough benefit */
1707 			if (freelist_cache->size > cachep->size / 2)
1708 				continue;
1709 		}
1710 
1711 		/* Found something acceptable - save it away */
1712 		cachep->num = num;
1713 		cachep->gfporder = gfporder;
1714 		left_over = remainder;
1715 
1716 		/*
1717 		 * A VFS-reclaimable slab tends to have most allocations
1718 		 * as GFP_NOFS and we really don't want to have to be allocating
1719 		 * higher-order pages when we are unable to shrink dcache.
1720 		 */
1721 		if (flags & SLAB_RECLAIM_ACCOUNT)
1722 			break;
1723 
1724 		/*
1725 		 * Large number of objects is good, but very large slabs are
1726 		 * currently bad for the gfp()s.
1727 		 */
1728 		if (gfporder >= slab_max_order)
1729 			break;
1730 
1731 		/*
1732 		 * Acceptable internal fragmentation?
1733 		 */
1734 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1735 			break;
1736 	}
1737 	return left_over;
1738 }
1739 
1740 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1741 		struct kmem_cache *cachep, int entries, int batchcount)
1742 {
1743 	int cpu;
1744 	size_t size;
1745 	struct array_cache __percpu *cpu_cache;
1746 
1747 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1748 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1749 
1750 	if (!cpu_cache)
1751 		return NULL;
1752 
1753 	for_each_possible_cpu(cpu) {
1754 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1755 				entries, batchcount);
1756 	}
1757 
1758 	return cpu_cache;
1759 }
1760 
1761 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1762 {
1763 	if (slab_state >= FULL)
1764 		return enable_cpucache(cachep, gfp);
1765 
1766 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1767 	if (!cachep->cpu_cache)
1768 		return 1;
1769 
1770 	if (slab_state == DOWN) {
1771 		/* Creation of first cache (kmem_cache). */
1772 		set_up_node(kmem_cache, CACHE_CACHE);
1773 	} else if (slab_state == PARTIAL) {
1774 		/* For kmem_cache_node */
1775 		set_up_node(cachep, SIZE_NODE);
1776 	} else {
1777 		int node;
1778 
1779 		for_each_online_node(node) {
1780 			cachep->node[node] = kmalloc_node(
1781 				sizeof(struct kmem_cache_node), gfp, node);
1782 			BUG_ON(!cachep->node[node]);
1783 			kmem_cache_node_init(cachep->node[node]);
1784 		}
1785 	}
1786 
1787 	cachep->node[numa_mem_id()]->next_reap =
1788 			jiffies + REAPTIMEOUT_NODE +
1789 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1790 
1791 	cpu_cache_get(cachep)->avail = 0;
1792 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1793 	cpu_cache_get(cachep)->batchcount = 1;
1794 	cpu_cache_get(cachep)->touched = 0;
1795 	cachep->batchcount = 1;
1796 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1797 	return 0;
1798 }
1799 
1800 slab_flags_t kmem_cache_flags(unsigned int object_size,
1801 	slab_flags_t flags, const char *name,
1802 	void (*ctor)(void *))
1803 {
1804 	return flags;
1805 }
1806 
1807 struct kmem_cache *
1808 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1809 		   slab_flags_t flags, void (*ctor)(void *))
1810 {
1811 	struct kmem_cache *cachep;
1812 
1813 	cachep = find_mergeable(size, align, flags, name, ctor);
1814 	if (cachep) {
1815 		cachep->refcount++;
1816 
1817 		/*
1818 		 * Adjust the object sizes so that we clear
1819 		 * the complete object on kzalloc.
1820 		 */
1821 		cachep->object_size = max_t(int, cachep->object_size, size);
1822 	}
1823 	return cachep;
1824 }
1825 
1826 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1827 			size_t size, slab_flags_t flags)
1828 {
1829 	size_t left;
1830 
1831 	cachep->num = 0;
1832 
1833 	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1834 		return false;
1835 
1836 	left = calculate_slab_order(cachep, size,
1837 			flags | CFLGS_OBJFREELIST_SLAB);
1838 	if (!cachep->num)
1839 		return false;
1840 
1841 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842 		return false;
1843 
1844 	cachep->colour = left / cachep->colour_off;
1845 
1846 	return true;
1847 }
1848 
1849 static bool set_off_slab_cache(struct kmem_cache *cachep,
1850 			size_t size, slab_flags_t flags)
1851 {
1852 	size_t left;
1853 
1854 	cachep->num = 0;
1855 
1856 	/*
1857 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1858 	 * to avoid recursive calls into kmemleak.
1859 	 */
1860 	if (flags & SLAB_NOLEAKTRACE)
1861 		return false;
1862 
1863 	/*
1864 	 * Size is large, assume best to place the slab management obj
1865 	 * off-slab (should allow better packing of objs).
1866 	 */
1867 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868 	if (!cachep->num)
1869 		return false;
1870 
1871 	/*
1872 	 * If the slab has been placed off-slab, and we have enough space then
1873 	 * move it on-slab. This is at the expense of any extra colouring.
1874 	 */
1875 	if (left >= cachep->num * sizeof(freelist_idx_t))
1876 		return false;
1877 
1878 	cachep->colour = left / cachep->colour_off;
1879 
1880 	return true;
1881 }
1882 
1883 static bool set_on_slab_cache(struct kmem_cache *cachep,
1884 			size_t size, slab_flags_t flags)
1885 {
1886 	size_t left;
1887 
1888 	cachep->num = 0;
1889 
1890 	left = calculate_slab_order(cachep, size, flags);
1891 	if (!cachep->num)
1892 		return false;
1893 
1894 	cachep->colour = left / cachep->colour_off;
1895 
1896 	return true;
1897 }
1898 
1899 /**
1900  * __kmem_cache_create - Create a cache.
1901  * @cachep: cache management descriptor
1902  * @flags: SLAB flags
1903  *
1904  * Returns a ptr to the cache on success, NULL on failure.
1905  * Cannot be called within a int, but can be interrupted.
1906  * The @ctor is run when new pages are allocated by the cache.
1907  *
1908  * The flags are
1909  *
1910  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911  * to catch references to uninitialised memory.
1912  *
1913  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914  * for buffer overruns.
1915  *
1916  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917  * cacheline.  This can be beneficial if you're counting cycles as closely
1918  * as davem.
1919  *
1920  * Return: a pointer to the created cache or %NULL in case of error
1921  */
1922 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1923 {
1924 	size_t ralign = BYTES_PER_WORD;
1925 	gfp_t gfp;
1926 	int err;
1927 	unsigned int size = cachep->size;
1928 
1929 #if DEBUG
1930 #if FORCED_DEBUG
1931 	/*
1932 	 * Enable redzoning and last user accounting, except for caches with
1933 	 * large objects, if the increased size would increase the object size
1934 	 * above the next power of two: caches with object sizes just above a
1935 	 * power of two have a significant amount of internal fragmentation.
1936 	 */
1937 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938 						2 * sizeof(unsigned long long)))
1939 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1940 	if (!(flags & SLAB_TYPESAFE_BY_RCU))
1941 		flags |= SLAB_POISON;
1942 #endif
1943 #endif
1944 
1945 	/*
1946 	 * Check that size is in terms of words.  This is needed to avoid
1947 	 * unaligned accesses for some archs when redzoning is used, and makes
1948 	 * sure any on-slab bufctl's are also correctly aligned.
1949 	 */
1950 	size = ALIGN(size, BYTES_PER_WORD);
1951 
1952 	if (flags & SLAB_RED_ZONE) {
1953 		ralign = REDZONE_ALIGN;
1954 		/* If redzoning, ensure that the second redzone is suitably
1955 		 * aligned, by adjusting the object size accordingly. */
1956 		size = ALIGN(size, REDZONE_ALIGN);
1957 	}
1958 
1959 	/* 3) caller mandated alignment */
1960 	if (ralign < cachep->align) {
1961 		ralign = cachep->align;
1962 	}
1963 	/* disable debug if necessary */
1964 	if (ralign > __alignof__(unsigned long long))
1965 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1966 	/*
1967 	 * 4) Store it.
1968 	 */
1969 	cachep->align = ralign;
1970 	cachep->colour_off = cache_line_size();
1971 	/* Offset must be a multiple of the alignment. */
1972 	if (cachep->colour_off < cachep->align)
1973 		cachep->colour_off = cachep->align;
1974 
1975 	if (slab_is_available())
1976 		gfp = GFP_KERNEL;
1977 	else
1978 		gfp = GFP_NOWAIT;
1979 
1980 #if DEBUG
1981 
1982 	/*
1983 	 * Both debugging options require word-alignment which is calculated
1984 	 * into align above.
1985 	 */
1986 	if (flags & SLAB_RED_ZONE) {
1987 		/* add space for red zone words */
1988 		cachep->obj_offset += sizeof(unsigned long long);
1989 		size += 2 * sizeof(unsigned long long);
1990 	}
1991 	if (flags & SLAB_STORE_USER) {
1992 		/* user store requires one word storage behind the end of
1993 		 * the real object. But if the second red zone needs to be
1994 		 * aligned to 64 bits, we must allow that much space.
1995 		 */
1996 		if (flags & SLAB_RED_ZONE)
1997 			size += REDZONE_ALIGN;
1998 		else
1999 			size += BYTES_PER_WORD;
2000 	}
2001 #endif
2002 
2003 	kasan_cache_create(cachep, &size, &flags);
2004 
2005 	size = ALIGN(size, cachep->align);
2006 	/*
2007 	 * We should restrict the number of objects in a slab to implement
2008 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2009 	 */
2010 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2012 
2013 #if DEBUG
2014 	/*
2015 	 * To activate debug pagealloc, off-slab management is necessary
2016 	 * requirement. In early phase of initialization, small sized slab
2017 	 * doesn't get initialized so it would not be possible. So, we need
2018 	 * to check size >= 256. It guarantees that all necessary small
2019 	 * sized slab is initialized in current slab initialization sequence.
2020 	 */
2021 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2022 		size >= 256 && cachep->object_size > cache_line_size()) {
2023 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2025 
2026 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027 				flags |= CFLGS_OFF_SLAB;
2028 				cachep->obj_offset += tmp_size - size;
2029 				size = tmp_size;
2030 				goto done;
2031 			}
2032 		}
2033 	}
2034 #endif
2035 
2036 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037 		flags |= CFLGS_OBJFREELIST_SLAB;
2038 		goto done;
2039 	}
2040 
2041 	if (set_off_slab_cache(cachep, size, flags)) {
2042 		flags |= CFLGS_OFF_SLAB;
2043 		goto done;
2044 	}
2045 
2046 	if (set_on_slab_cache(cachep, size, flags))
2047 		goto done;
2048 
2049 	return -E2BIG;
2050 
2051 done:
2052 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2053 	cachep->flags = flags;
2054 	cachep->allocflags = __GFP_COMP;
2055 	if (flags & SLAB_CACHE_DMA)
2056 		cachep->allocflags |= GFP_DMA;
2057 	if (flags & SLAB_CACHE_DMA32)
2058 		cachep->allocflags |= GFP_DMA32;
2059 	if (flags & SLAB_RECLAIM_ACCOUNT)
2060 		cachep->allocflags |= __GFP_RECLAIMABLE;
2061 	cachep->size = size;
2062 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2063 
2064 #if DEBUG
2065 	/*
2066 	 * If we're going to use the generic kernel_map_pages()
2067 	 * poisoning, then it's going to smash the contents of
2068 	 * the redzone and userword anyhow, so switch them off.
2069 	 */
2070 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071 		(cachep->flags & SLAB_POISON) &&
2072 		is_debug_pagealloc_cache(cachep))
2073 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074 #endif
2075 
2076 	if (OFF_SLAB(cachep)) {
2077 		cachep->freelist_cache =
2078 			kmalloc_slab(cachep->freelist_size, 0u);
2079 	}
2080 
2081 	err = setup_cpu_cache(cachep, gfp);
2082 	if (err) {
2083 		__kmem_cache_release(cachep);
2084 		return err;
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 #if DEBUG
2091 static void check_irq_off(void)
2092 {
2093 	BUG_ON(!irqs_disabled());
2094 }
2095 
2096 static void check_irq_on(void)
2097 {
2098 	BUG_ON(irqs_disabled());
2099 }
2100 
2101 static void check_mutex_acquired(void)
2102 {
2103 	BUG_ON(!mutex_is_locked(&slab_mutex));
2104 }
2105 
2106 static void check_spinlock_acquired(struct kmem_cache *cachep)
2107 {
2108 #ifdef CONFIG_SMP
2109 	check_irq_off();
2110 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2111 #endif
2112 }
2113 
2114 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2115 {
2116 #ifdef CONFIG_SMP
2117 	check_irq_off();
2118 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2119 #endif
2120 }
2121 
2122 #else
2123 #define check_irq_off()	do { } while(0)
2124 #define check_irq_on()	do { } while(0)
2125 #define check_mutex_acquired()	do { } while(0)
2126 #define check_spinlock_acquired(x) do { } while(0)
2127 #define check_spinlock_acquired_node(x, y) do { } while(0)
2128 #endif
2129 
2130 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131 				int node, bool free_all, struct list_head *list)
2132 {
2133 	int tofree;
2134 
2135 	if (!ac || !ac->avail)
2136 		return;
2137 
2138 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139 	if (tofree > ac->avail)
2140 		tofree = (ac->avail + 1) / 2;
2141 
2142 	free_block(cachep, ac->entry, tofree, node, list);
2143 	ac->avail -= tofree;
2144 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2145 }
2146 
2147 static void do_drain(void *arg)
2148 {
2149 	struct kmem_cache *cachep = arg;
2150 	struct array_cache *ac;
2151 	int node = numa_mem_id();
2152 	struct kmem_cache_node *n;
2153 	LIST_HEAD(list);
2154 
2155 	check_irq_off();
2156 	ac = cpu_cache_get(cachep);
2157 	n = get_node(cachep, node);
2158 	spin_lock(&n->list_lock);
2159 	free_block(cachep, ac->entry, ac->avail, node, &list);
2160 	spin_unlock(&n->list_lock);
2161 	slabs_destroy(cachep, &list);
2162 	ac->avail = 0;
2163 }
2164 
2165 static void drain_cpu_caches(struct kmem_cache *cachep)
2166 {
2167 	struct kmem_cache_node *n;
2168 	int node;
2169 	LIST_HEAD(list);
2170 
2171 	on_each_cpu(do_drain, cachep, 1);
2172 	check_irq_on();
2173 	for_each_kmem_cache_node(cachep, node, n)
2174 		if (n->alien)
2175 			drain_alien_cache(cachep, n->alien);
2176 
2177 	for_each_kmem_cache_node(cachep, node, n) {
2178 		spin_lock_irq(&n->list_lock);
2179 		drain_array_locked(cachep, n->shared, node, true, &list);
2180 		spin_unlock_irq(&n->list_lock);
2181 
2182 		slabs_destroy(cachep, &list);
2183 	}
2184 }
2185 
2186 /*
2187  * Remove slabs from the list of free slabs.
2188  * Specify the number of slabs to drain in tofree.
2189  *
2190  * Returns the actual number of slabs released.
2191  */
2192 static int drain_freelist(struct kmem_cache *cache,
2193 			struct kmem_cache_node *n, int tofree)
2194 {
2195 	struct list_head *p;
2196 	int nr_freed;
2197 	struct page *page;
2198 
2199 	nr_freed = 0;
2200 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2201 
2202 		spin_lock_irq(&n->list_lock);
2203 		p = n->slabs_free.prev;
2204 		if (p == &n->slabs_free) {
2205 			spin_unlock_irq(&n->list_lock);
2206 			goto out;
2207 		}
2208 
2209 		page = list_entry(p, struct page, slab_list);
2210 		list_del(&page->slab_list);
2211 		n->free_slabs--;
2212 		n->total_slabs--;
2213 		/*
2214 		 * Safe to drop the lock. The slab is no longer linked
2215 		 * to the cache.
2216 		 */
2217 		n->free_objects -= cache->num;
2218 		spin_unlock_irq(&n->list_lock);
2219 		slab_destroy(cache, page);
2220 		nr_freed++;
2221 	}
2222 out:
2223 	return nr_freed;
2224 }
2225 
2226 bool __kmem_cache_empty(struct kmem_cache *s)
2227 {
2228 	int node;
2229 	struct kmem_cache_node *n;
2230 
2231 	for_each_kmem_cache_node(s, node, n)
2232 		if (!list_empty(&n->slabs_full) ||
2233 		    !list_empty(&n->slabs_partial))
2234 			return false;
2235 	return true;
2236 }
2237 
2238 int __kmem_cache_shrink(struct kmem_cache *cachep)
2239 {
2240 	int ret = 0;
2241 	int node;
2242 	struct kmem_cache_node *n;
2243 
2244 	drain_cpu_caches(cachep);
2245 
2246 	check_irq_on();
2247 	for_each_kmem_cache_node(cachep, node, n) {
2248 		drain_freelist(cachep, n, INT_MAX);
2249 
2250 		ret += !list_empty(&n->slabs_full) ||
2251 			!list_empty(&n->slabs_partial);
2252 	}
2253 	return (ret ? 1 : 0);
2254 }
2255 
2256 #ifdef CONFIG_MEMCG
2257 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2258 {
2259 	__kmem_cache_shrink(cachep);
2260 }
2261 #endif
2262 
2263 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2264 {
2265 	return __kmem_cache_shrink(cachep);
2266 }
2267 
2268 void __kmem_cache_release(struct kmem_cache *cachep)
2269 {
2270 	int i;
2271 	struct kmem_cache_node *n;
2272 
2273 	cache_random_seq_destroy(cachep);
2274 
2275 	free_percpu(cachep->cpu_cache);
2276 
2277 	/* NUMA: free the node structures */
2278 	for_each_kmem_cache_node(cachep, i, n) {
2279 		kfree(n->shared);
2280 		free_alien_cache(n->alien);
2281 		kfree(n);
2282 		cachep->node[i] = NULL;
2283 	}
2284 }
2285 
2286 /*
2287  * Get the memory for a slab management obj.
2288  *
2289  * For a slab cache when the slab descriptor is off-slab, the
2290  * slab descriptor can't come from the same cache which is being created,
2291  * Because if it is the case, that means we defer the creation of
2292  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2293  * And we eventually call down to __kmem_cache_create(), which
2294  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2295  * This is a "chicken-and-egg" problem.
2296  *
2297  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2298  * which are all initialized during kmem_cache_init().
2299  */
2300 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2301 				   struct page *page, int colour_off,
2302 				   gfp_t local_flags, int nodeid)
2303 {
2304 	void *freelist;
2305 	void *addr = page_address(page);
2306 
2307 	page->s_mem = addr + colour_off;
2308 	page->active = 0;
2309 
2310 	if (OBJFREELIST_SLAB(cachep))
2311 		freelist = NULL;
2312 	else if (OFF_SLAB(cachep)) {
2313 		/* Slab management obj is off-slab. */
2314 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2315 					      local_flags, nodeid);
2316 		if (!freelist)
2317 			return NULL;
2318 	} else {
2319 		/* We will use last bytes at the slab for freelist */
2320 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2321 				cachep->freelist_size;
2322 	}
2323 
2324 	return freelist;
2325 }
2326 
2327 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2328 {
2329 	return ((freelist_idx_t *)page->freelist)[idx];
2330 }
2331 
2332 static inline void set_free_obj(struct page *page,
2333 					unsigned int idx, freelist_idx_t val)
2334 {
2335 	((freelist_idx_t *)(page->freelist))[idx] = val;
2336 }
2337 
2338 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2339 {
2340 #if DEBUG
2341 	int i;
2342 
2343 	for (i = 0; i < cachep->num; i++) {
2344 		void *objp = index_to_obj(cachep, page, i);
2345 
2346 		if (cachep->flags & SLAB_STORE_USER)
2347 			*dbg_userword(cachep, objp) = NULL;
2348 
2349 		if (cachep->flags & SLAB_RED_ZONE) {
2350 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2351 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2352 		}
2353 		/*
2354 		 * Constructors are not allowed to allocate memory from the same
2355 		 * cache which they are a constructor for.  Otherwise, deadlock.
2356 		 * They must also be threaded.
2357 		 */
2358 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2359 			kasan_unpoison_object_data(cachep,
2360 						   objp + obj_offset(cachep));
2361 			cachep->ctor(objp + obj_offset(cachep));
2362 			kasan_poison_object_data(
2363 				cachep, objp + obj_offset(cachep));
2364 		}
2365 
2366 		if (cachep->flags & SLAB_RED_ZONE) {
2367 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2368 				slab_error(cachep, "constructor overwrote the end of an object");
2369 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2370 				slab_error(cachep, "constructor overwrote the start of an object");
2371 		}
2372 		/* need to poison the objs? */
2373 		if (cachep->flags & SLAB_POISON) {
2374 			poison_obj(cachep, objp, POISON_FREE);
2375 			slab_kernel_map(cachep, objp, 0);
2376 		}
2377 	}
2378 #endif
2379 }
2380 
2381 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2382 /* Hold information during a freelist initialization */
2383 union freelist_init_state {
2384 	struct {
2385 		unsigned int pos;
2386 		unsigned int *list;
2387 		unsigned int count;
2388 	};
2389 	struct rnd_state rnd_state;
2390 };
2391 
2392 /*
2393  * Initialize the state based on the randomization methode available.
2394  * return true if the pre-computed list is available, false otherwize.
2395  */
2396 static bool freelist_state_initialize(union freelist_init_state *state,
2397 				struct kmem_cache *cachep,
2398 				unsigned int count)
2399 {
2400 	bool ret;
2401 	unsigned int rand;
2402 
2403 	/* Use best entropy available to define a random shift */
2404 	rand = get_random_int();
2405 
2406 	/* Use a random state if the pre-computed list is not available */
2407 	if (!cachep->random_seq) {
2408 		prandom_seed_state(&state->rnd_state, rand);
2409 		ret = false;
2410 	} else {
2411 		state->list = cachep->random_seq;
2412 		state->count = count;
2413 		state->pos = rand % count;
2414 		ret = true;
2415 	}
2416 	return ret;
2417 }
2418 
2419 /* Get the next entry on the list and randomize it using a random shift */
2420 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2421 {
2422 	if (state->pos >= state->count)
2423 		state->pos = 0;
2424 	return state->list[state->pos++];
2425 }
2426 
2427 /* Swap two freelist entries */
2428 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2429 {
2430 	swap(((freelist_idx_t *)page->freelist)[a],
2431 		((freelist_idx_t *)page->freelist)[b]);
2432 }
2433 
2434 /*
2435  * Shuffle the freelist initialization state based on pre-computed lists.
2436  * return true if the list was successfully shuffled, false otherwise.
2437  */
2438 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2439 {
2440 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2441 	union freelist_init_state state;
2442 	bool precomputed;
2443 
2444 	if (count < 2)
2445 		return false;
2446 
2447 	precomputed = freelist_state_initialize(&state, cachep, count);
2448 
2449 	/* Take a random entry as the objfreelist */
2450 	if (OBJFREELIST_SLAB(cachep)) {
2451 		if (!precomputed)
2452 			objfreelist = count - 1;
2453 		else
2454 			objfreelist = next_random_slot(&state);
2455 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2456 						obj_offset(cachep);
2457 		count--;
2458 	}
2459 
2460 	/*
2461 	 * On early boot, generate the list dynamically.
2462 	 * Later use a pre-computed list for speed.
2463 	 */
2464 	if (!precomputed) {
2465 		for (i = 0; i < count; i++)
2466 			set_free_obj(page, i, i);
2467 
2468 		/* Fisher-Yates shuffle */
2469 		for (i = count - 1; i > 0; i--) {
2470 			rand = prandom_u32_state(&state.rnd_state);
2471 			rand %= (i + 1);
2472 			swap_free_obj(page, i, rand);
2473 		}
2474 	} else {
2475 		for (i = 0; i < count; i++)
2476 			set_free_obj(page, i, next_random_slot(&state));
2477 	}
2478 
2479 	if (OBJFREELIST_SLAB(cachep))
2480 		set_free_obj(page, cachep->num - 1, objfreelist);
2481 
2482 	return true;
2483 }
2484 #else
2485 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2486 				struct page *page)
2487 {
2488 	return false;
2489 }
2490 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2491 
2492 static void cache_init_objs(struct kmem_cache *cachep,
2493 			    struct page *page)
2494 {
2495 	int i;
2496 	void *objp;
2497 	bool shuffled;
2498 
2499 	cache_init_objs_debug(cachep, page);
2500 
2501 	/* Try to randomize the freelist if enabled */
2502 	shuffled = shuffle_freelist(cachep, page);
2503 
2504 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2505 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2506 						obj_offset(cachep);
2507 	}
2508 
2509 	for (i = 0; i < cachep->num; i++) {
2510 		objp = index_to_obj(cachep, page, i);
2511 		objp = kasan_init_slab_obj(cachep, objp);
2512 
2513 		/* constructor could break poison info */
2514 		if (DEBUG == 0 && cachep->ctor) {
2515 			kasan_unpoison_object_data(cachep, objp);
2516 			cachep->ctor(objp);
2517 			kasan_poison_object_data(cachep, objp);
2518 		}
2519 
2520 		if (!shuffled)
2521 			set_free_obj(page, i, i);
2522 	}
2523 }
2524 
2525 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2526 {
2527 	void *objp;
2528 
2529 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2530 	page->active++;
2531 
2532 	return objp;
2533 }
2534 
2535 static void slab_put_obj(struct kmem_cache *cachep,
2536 			struct page *page, void *objp)
2537 {
2538 	unsigned int objnr = obj_to_index(cachep, page, objp);
2539 #if DEBUG
2540 	unsigned int i;
2541 
2542 	/* Verify double free bug */
2543 	for (i = page->active; i < cachep->num; i++) {
2544 		if (get_free_obj(page, i) == objnr) {
2545 			pr_err("slab: double free detected in cache '%s', objp %px\n",
2546 			       cachep->name, objp);
2547 			BUG();
2548 		}
2549 	}
2550 #endif
2551 	page->active--;
2552 	if (!page->freelist)
2553 		page->freelist = objp + obj_offset(cachep);
2554 
2555 	set_free_obj(page, page->active, objnr);
2556 }
2557 
2558 /*
2559  * Map pages beginning at addr to the given cache and slab. This is required
2560  * for the slab allocator to be able to lookup the cache and slab of a
2561  * virtual address for kfree, ksize, and slab debugging.
2562  */
2563 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2564 			   void *freelist)
2565 {
2566 	page->slab_cache = cache;
2567 	page->freelist = freelist;
2568 }
2569 
2570 /*
2571  * Grow (by 1) the number of slabs within a cache.  This is called by
2572  * kmem_cache_alloc() when there are no active objs left in a cache.
2573  */
2574 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2575 				gfp_t flags, int nodeid)
2576 {
2577 	void *freelist;
2578 	size_t offset;
2579 	gfp_t local_flags;
2580 	int page_node;
2581 	struct kmem_cache_node *n;
2582 	struct page *page;
2583 
2584 	/*
2585 	 * Be lazy and only check for valid flags here,  keeping it out of the
2586 	 * critical path in kmem_cache_alloc().
2587 	 */
2588 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2589 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2590 		flags &= ~GFP_SLAB_BUG_MASK;
2591 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2592 				invalid_mask, &invalid_mask, flags, &flags);
2593 		dump_stack();
2594 	}
2595 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2596 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2597 
2598 	check_irq_off();
2599 	if (gfpflags_allow_blocking(local_flags))
2600 		local_irq_enable();
2601 
2602 	/*
2603 	 * Get mem for the objs.  Attempt to allocate a physical page from
2604 	 * 'nodeid'.
2605 	 */
2606 	page = kmem_getpages(cachep, local_flags, nodeid);
2607 	if (!page)
2608 		goto failed;
2609 
2610 	page_node = page_to_nid(page);
2611 	n = get_node(cachep, page_node);
2612 
2613 	/* Get colour for the slab, and cal the next value. */
2614 	n->colour_next++;
2615 	if (n->colour_next >= cachep->colour)
2616 		n->colour_next = 0;
2617 
2618 	offset = n->colour_next;
2619 	if (offset >= cachep->colour)
2620 		offset = 0;
2621 
2622 	offset *= cachep->colour_off;
2623 
2624 	/*
2625 	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2626 	 * page_address() in the latter returns a non-tagged pointer,
2627 	 * as it should be for slab pages.
2628 	 */
2629 	kasan_poison_slab(page);
2630 
2631 	/* Get slab management. */
2632 	freelist = alloc_slabmgmt(cachep, page, offset,
2633 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2634 	if (OFF_SLAB(cachep) && !freelist)
2635 		goto opps1;
2636 
2637 	slab_map_pages(cachep, page, freelist);
2638 
2639 	cache_init_objs(cachep, page);
2640 
2641 	if (gfpflags_allow_blocking(local_flags))
2642 		local_irq_disable();
2643 
2644 	return page;
2645 
2646 opps1:
2647 	kmem_freepages(cachep, page);
2648 failed:
2649 	if (gfpflags_allow_blocking(local_flags))
2650 		local_irq_disable();
2651 	return NULL;
2652 }
2653 
2654 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2655 {
2656 	struct kmem_cache_node *n;
2657 	void *list = NULL;
2658 
2659 	check_irq_off();
2660 
2661 	if (!page)
2662 		return;
2663 
2664 	INIT_LIST_HEAD(&page->slab_list);
2665 	n = get_node(cachep, page_to_nid(page));
2666 
2667 	spin_lock(&n->list_lock);
2668 	n->total_slabs++;
2669 	if (!page->active) {
2670 		list_add_tail(&page->slab_list, &n->slabs_free);
2671 		n->free_slabs++;
2672 	} else
2673 		fixup_slab_list(cachep, n, page, &list);
2674 
2675 	STATS_INC_GROWN(cachep);
2676 	n->free_objects += cachep->num - page->active;
2677 	spin_unlock(&n->list_lock);
2678 
2679 	fixup_objfreelist_debug(cachep, &list);
2680 }
2681 
2682 #if DEBUG
2683 
2684 /*
2685  * Perform extra freeing checks:
2686  * - detect bad pointers.
2687  * - POISON/RED_ZONE checking
2688  */
2689 static void kfree_debugcheck(const void *objp)
2690 {
2691 	if (!virt_addr_valid(objp)) {
2692 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2693 		       (unsigned long)objp);
2694 		BUG();
2695 	}
2696 }
2697 
2698 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2699 {
2700 	unsigned long long redzone1, redzone2;
2701 
2702 	redzone1 = *dbg_redzone1(cache, obj);
2703 	redzone2 = *dbg_redzone2(cache, obj);
2704 
2705 	/*
2706 	 * Redzone is ok.
2707 	 */
2708 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2709 		return;
2710 
2711 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2712 		slab_error(cache, "double free detected");
2713 	else
2714 		slab_error(cache, "memory outside object was overwritten");
2715 
2716 	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2717 	       obj, redzone1, redzone2);
2718 }
2719 
2720 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2721 				   unsigned long caller)
2722 {
2723 	unsigned int objnr;
2724 	struct page *page;
2725 
2726 	BUG_ON(virt_to_cache(objp) != cachep);
2727 
2728 	objp -= obj_offset(cachep);
2729 	kfree_debugcheck(objp);
2730 	page = virt_to_head_page(objp);
2731 
2732 	if (cachep->flags & SLAB_RED_ZONE) {
2733 		verify_redzone_free(cachep, objp);
2734 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2735 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2736 	}
2737 	if (cachep->flags & SLAB_STORE_USER)
2738 		*dbg_userword(cachep, objp) = (void *)caller;
2739 
2740 	objnr = obj_to_index(cachep, page, objp);
2741 
2742 	BUG_ON(objnr >= cachep->num);
2743 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2744 
2745 	if (cachep->flags & SLAB_POISON) {
2746 		poison_obj(cachep, objp, POISON_FREE);
2747 		slab_kernel_map(cachep, objp, 0);
2748 	}
2749 	return objp;
2750 }
2751 
2752 #else
2753 #define kfree_debugcheck(x) do { } while(0)
2754 #define cache_free_debugcheck(x,objp,z) (objp)
2755 #endif
2756 
2757 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2758 						void **list)
2759 {
2760 #if DEBUG
2761 	void *next = *list;
2762 	void *objp;
2763 
2764 	while (next) {
2765 		objp = next - obj_offset(cachep);
2766 		next = *(void **)next;
2767 		poison_obj(cachep, objp, POISON_FREE);
2768 	}
2769 #endif
2770 }
2771 
2772 static inline void fixup_slab_list(struct kmem_cache *cachep,
2773 				struct kmem_cache_node *n, struct page *page,
2774 				void **list)
2775 {
2776 	/* move slabp to correct slabp list: */
2777 	list_del(&page->slab_list);
2778 	if (page->active == cachep->num) {
2779 		list_add(&page->slab_list, &n->slabs_full);
2780 		if (OBJFREELIST_SLAB(cachep)) {
2781 #if DEBUG
2782 			/* Poisoning will be done without holding the lock */
2783 			if (cachep->flags & SLAB_POISON) {
2784 				void **objp = page->freelist;
2785 
2786 				*objp = *list;
2787 				*list = objp;
2788 			}
2789 #endif
2790 			page->freelist = NULL;
2791 		}
2792 	} else
2793 		list_add(&page->slab_list, &n->slabs_partial);
2794 }
2795 
2796 /* Try to find non-pfmemalloc slab if needed */
2797 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2798 					struct page *page, bool pfmemalloc)
2799 {
2800 	if (!page)
2801 		return NULL;
2802 
2803 	if (pfmemalloc)
2804 		return page;
2805 
2806 	if (!PageSlabPfmemalloc(page))
2807 		return page;
2808 
2809 	/* No need to keep pfmemalloc slab if we have enough free objects */
2810 	if (n->free_objects > n->free_limit) {
2811 		ClearPageSlabPfmemalloc(page);
2812 		return page;
2813 	}
2814 
2815 	/* Move pfmemalloc slab to the end of list to speed up next search */
2816 	list_del(&page->slab_list);
2817 	if (!page->active) {
2818 		list_add_tail(&page->slab_list, &n->slabs_free);
2819 		n->free_slabs++;
2820 	} else
2821 		list_add_tail(&page->slab_list, &n->slabs_partial);
2822 
2823 	list_for_each_entry(page, &n->slabs_partial, slab_list) {
2824 		if (!PageSlabPfmemalloc(page))
2825 			return page;
2826 	}
2827 
2828 	n->free_touched = 1;
2829 	list_for_each_entry(page, &n->slabs_free, slab_list) {
2830 		if (!PageSlabPfmemalloc(page)) {
2831 			n->free_slabs--;
2832 			return page;
2833 		}
2834 	}
2835 
2836 	return NULL;
2837 }
2838 
2839 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2840 {
2841 	struct page *page;
2842 
2843 	assert_spin_locked(&n->list_lock);
2844 	page = list_first_entry_or_null(&n->slabs_partial, struct page,
2845 					slab_list);
2846 	if (!page) {
2847 		n->free_touched = 1;
2848 		page = list_first_entry_or_null(&n->slabs_free, struct page,
2849 						slab_list);
2850 		if (page)
2851 			n->free_slabs--;
2852 	}
2853 
2854 	if (sk_memalloc_socks())
2855 		page = get_valid_first_slab(n, page, pfmemalloc);
2856 
2857 	return page;
2858 }
2859 
2860 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2861 				struct kmem_cache_node *n, gfp_t flags)
2862 {
2863 	struct page *page;
2864 	void *obj;
2865 	void *list = NULL;
2866 
2867 	if (!gfp_pfmemalloc_allowed(flags))
2868 		return NULL;
2869 
2870 	spin_lock(&n->list_lock);
2871 	page = get_first_slab(n, true);
2872 	if (!page) {
2873 		spin_unlock(&n->list_lock);
2874 		return NULL;
2875 	}
2876 
2877 	obj = slab_get_obj(cachep, page);
2878 	n->free_objects--;
2879 
2880 	fixup_slab_list(cachep, n, page, &list);
2881 
2882 	spin_unlock(&n->list_lock);
2883 	fixup_objfreelist_debug(cachep, &list);
2884 
2885 	return obj;
2886 }
2887 
2888 /*
2889  * Slab list should be fixed up by fixup_slab_list() for existing slab
2890  * or cache_grow_end() for new slab
2891  */
2892 static __always_inline int alloc_block(struct kmem_cache *cachep,
2893 		struct array_cache *ac, struct page *page, int batchcount)
2894 {
2895 	/*
2896 	 * There must be at least one object available for
2897 	 * allocation.
2898 	 */
2899 	BUG_ON(page->active >= cachep->num);
2900 
2901 	while (page->active < cachep->num && batchcount--) {
2902 		STATS_INC_ALLOCED(cachep);
2903 		STATS_INC_ACTIVE(cachep);
2904 		STATS_SET_HIGH(cachep);
2905 
2906 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2907 	}
2908 
2909 	return batchcount;
2910 }
2911 
2912 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2913 {
2914 	int batchcount;
2915 	struct kmem_cache_node *n;
2916 	struct array_cache *ac, *shared;
2917 	int node;
2918 	void *list = NULL;
2919 	struct page *page;
2920 
2921 	check_irq_off();
2922 	node = numa_mem_id();
2923 
2924 	ac = cpu_cache_get(cachep);
2925 	batchcount = ac->batchcount;
2926 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2927 		/*
2928 		 * If there was little recent activity on this cache, then
2929 		 * perform only a partial refill.  Otherwise we could generate
2930 		 * refill bouncing.
2931 		 */
2932 		batchcount = BATCHREFILL_LIMIT;
2933 	}
2934 	n = get_node(cachep, node);
2935 
2936 	BUG_ON(ac->avail > 0 || !n);
2937 	shared = READ_ONCE(n->shared);
2938 	if (!n->free_objects && (!shared || !shared->avail))
2939 		goto direct_grow;
2940 
2941 	spin_lock(&n->list_lock);
2942 	shared = READ_ONCE(n->shared);
2943 
2944 	/* See if we can refill from the shared array */
2945 	if (shared && transfer_objects(ac, shared, batchcount)) {
2946 		shared->touched = 1;
2947 		goto alloc_done;
2948 	}
2949 
2950 	while (batchcount > 0) {
2951 		/* Get slab alloc is to come from. */
2952 		page = get_first_slab(n, false);
2953 		if (!page)
2954 			goto must_grow;
2955 
2956 		check_spinlock_acquired(cachep);
2957 
2958 		batchcount = alloc_block(cachep, ac, page, batchcount);
2959 		fixup_slab_list(cachep, n, page, &list);
2960 	}
2961 
2962 must_grow:
2963 	n->free_objects -= ac->avail;
2964 alloc_done:
2965 	spin_unlock(&n->list_lock);
2966 	fixup_objfreelist_debug(cachep, &list);
2967 
2968 direct_grow:
2969 	if (unlikely(!ac->avail)) {
2970 		/* Check if we can use obj in pfmemalloc slab */
2971 		if (sk_memalloc_socks()) {
2972 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2973 
2974 			if (obj)
2975 				return obj;
2976 		}
2977 
2978 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2979 
2980 		/*
2981 		 * cache_grow_begin() can reenable interrupts,
2982 		 * then ac could change.
2983 		 */
2984 		ac = cpu_cache_get(cachep);
2985 		if (!ac->avail && page)
2986 			alloc_block(cachep, ac, page, batchcount);
2987 		cache_grow_end(cachep, page);
2988 
2989 		if (!ac->avail)
2990 			return NULL;
2991 	}
2992 	ac->touched = 1;
2993 
2994 	return ac->entry[--ac->avail];
2995 }
2996 
2997 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2998 						gfp_t flags)
2999 {
3000 	might_sleep_if(gfpflags_allow_blocking(flags));
3001 }
3002 
3003 #if DEBUG
3004 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3005 				gfp_t flags, void *objp, unsigned long caller)
3006 {
3007 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3008 	if (!objp)
3009 		return objp;
3010 	if (cachep->flags & SLAB_POISON) {
3011 		check_poison_obj(cachep, objp);
3012 		slab_kernel_map(cachep, objp, 1);
3013 		poison_obj(cachep, objp, POISON_INUSE);
3014 	}
3015 	if (cachep->flags & SLAB_STORE_USER)
3016 		*dbg_userword(cachep, objp) = (void *)caller;
3017 
3018 	if (cachep->flags & SLAB_RED_ZONE) {
3019 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3020 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3021 			slab_error(cachep, "double free, or memory outside object was overwritten");
3022 			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3023 			       objp, *dbg_redzone1(cachep, objp),
3024 			       *dbg_redzone2(cachep, objp));
3025 		}
3026 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3027 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3028 	}
3029 
3030 	objp += obj_offset(cachep);
3031 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3032 		cachep->ctor(objp);
3033 	if (ARCH_SLAB_MINALIGN &&
3034 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3035 		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3036 		       objp, (int)ARCH_SLAB_MINALIGN);
3037 	}
3038 	return objp;
3039 }
3040 #else
3041 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3042 #endif
3043 
3044 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3045 {
3046 	void *objp;
3047 	struct array_cache *ac;
3048 
3049 	check_irq_off();
3050 
3051 	ac = cpu_cache_get(cachep);
3052 	if (likely(ac->avail)) {
3053 		ac->touched = 1;
3054 		objp = ac->entry[--ac->avail];
3055 
3056 		STATS_INC_ALLOCHIT(cachep);
3057 		goto out;
3058 	}
3059 
3060 	STATS_INC_ALLOCMISS(cachep);
3061 	objp = cache_alloc_refill(cachep, flags);
3062 	/*
3063 	 * the 'ac' may be updated by cache_alloc_refill(),
3064 	 * and kmemleak_erase() requires its correct value.
3065 	 */
3066 	ac = cpu_cache_get(cachep);
3067 
3068 out:
3069 	/*
3070 	 * To avoid a false negative, if an object that is in one of the
3071 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3072 	 * treat the array pointers as a reference to the object.
3073 	 */
3074 	if (objp)
3075 		kmemleak_erase(&ac->entry[ac->avail]);
3076 	return objp;
3077 }
3078 
3079 #ifdef CONFIG_NUMA
3080 /*
3081  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3082  *
3083  * If we are in_interrupt, then process context, including cpusets and
3084  * mempolicy, may not apply and should not be used for allocation policy.
3085  */
3086 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3087 {
3088 	int nid_alloc, nid_here;
3089 
3090 	if (in_interrupt() || (flags & __GFP_THISNODE))
3091 		return NULL;
3092 	nid_alloc = nid_here = numa_mem_id();
3093 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3094 		nid_alloc = cpuset_slab_spread_node();
3095 	else if (current->mempolicy)
3096 		nid_alloc = mempolicy_slab_node();
3097 	if (nid_alloc != nid_here)
3098 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3099 	return NULL;
3100 }
3101 
3102 /*
3103  * Fallback function if there was no memory available and no objects on a
3104  * certain node and fall back is permitted. First we scan all the
3105  * available node for available objects. If that fails then we
3106  * perform an allocation without specifying a node. This allows the page
3107  * allocator to do its reclaim / fallback magic. We then insert the
3108  * slab into the proper nodelist and then allocate from it.
3109  */
3110 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3111 {
3112 	struct zonelist *zonelist;
3113 	struct zoneref *z;
3114 	struct zone *zone;
3115 	enum zone_type high_zoneidx = gfp_zone(flags);
3116 	void *obj = NULL;
3117 	struct page *page;
3118 	int nid;
3119 	unsigned int cpuset_mems_cookie;
3120 
3121 	if (flags & __GFP_THISNODE)
3122 		return NULL;
3123 
3124 retry_cpuset:
3125 	cpuset_mems_cookie = read_mems_allowed_begin();
3126 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3127 
3128 retry:
3129 	/*
3130 	 * Look through allowed nodes for objects available
3131 	 * from existing per node queues.
3132 	 */
3133 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3134 		nid = zone_to_nid(zone);
3135 
3136 		if (cpuset_zone_allowed(zone, flags) &&
3137 			get_node(cache, nid) &&
3138 			get_node(cache, nid)->free_objects) {
3139 				obj = ____cache_alloc_node(cache,
3140 					gfp_exact_node(flags), nid);
3141 				if (obj)
3142 					break;
3143 		}
3144 	}
3145 
3146 	if (!obj) {
3147 		/*
3148 		 * This allocation will be performed within the constraints
3149 		 * of the current cpuset / memory policy requirements.
3150 		 * We may trigger various forms of reclaim on the allowed
3151 		 * set and go into memory reserves if necessary.
3152 		 */
3153 		page = cache_grow_begin(cache, flags, numa_mem_id());
3154 		cache_grow_end(cache, page);
3155 		if (page) {
3156 			nid = page_to_nid(page);
3157 			obj = ____cache_alloc_node(cache,
3158 				gfp_exact_node(flags), nid);
3159 
3160 			/*
3161 			 * Another processor may allocate the objects in
3162 			 * the slab since we are not holding any locks.
3163 			 */
3164 			if (!obj)
3165 				goto retry;
3166 		}
3167 	}
3168 
3169 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3170 		goto retry_cpuset;
3171 	return obj;
3172 }
3173 
3174 /*
3175  * A interface to enable slab creation on nodeid
3176  */
3177 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3178 				int nodeid)
3179 {
3180 	struct page *page;
3181 	struct kmem_cache_node *n;
3182 	void *obj = NULL;
3183 	void *list = NULL;
3184 
3185 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3186 	n = get_node(cachep, nodeid);
3187 	BUG_ON(!n);
3188 
3189 	check_irq_off();
3190 	spin_lock(&n->list_lock);
3191 	page = get_first_slab(n, false);
3192 	if (!page)
3193 		goto must_grow;
3194 
3195 	check_spinlock_acquired_node(cachep, nodeid);
3196 
3197 	STATS_INC_NODEALLOCS(cachep);
3198 	STATS_INC_ACTIVE(cachep);
3199 	STATS_SET_HIGH(cachep);
3200 
3201 	BUG_ON(page->active == cachep->num);
3202 
3203 	obj = slab_get_obj(cachep, page);
3204 	n->free_objects--;
3205 
3206 	fixup_slab_list(cachep, n, page, &list);
3207 
3208 	spin_unlock(&n->list_lock);
3209 	fixup_objfreelist_debug(cachep, &list);
3210 	return obj;
3211 
3212 must_grow:
3213 	spin_unlock(&n->list_lock);
3214 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3215 	if (page) {
3216 		/* This slab isn't counted yet so don't update free_objects */
3217 		obj = slab_get_obj(cachep, page);
3218 	}
3219 	cache_grow_end(cachep, page);
3220 
3221 	return obj ? obj : fallback_alloc(cachep, flags);
3222 }
3223 
3224 static __always_inline void *
3225 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3226 		   unsigned long caller)
3227 {
3228 	unsigned long save_flags;
3229 	void *ptr;
3230 	int slab_node = numa_mem_id();
3231 
3232 	flags &= gfp_allowed_mask;
3233 	cachep = slab_pre_alloc_hook(cachep, flags);
3234 	if (unlikely(!cachep))
3235 		return NULL;
3236 
3237 	cache_alloc_debugcheck_before(cachep, flags);
3238 	local_irq_save(save_flags);
3239 
3240 	if (nodeid == NUMA_NO_NODE)
3241 		nodeid = slab_node;
3242 
3243 	if (unlikely(!get_node(cachep, nodeid))) {
3244 		/* Node not bootstrapped yet */
3245 		ptr = fallback_alloc(cachep, flags);
3246 		goto out;
3247 	}
3248 
3249 	if (nodeid == slab_node) {
3250 		/*
3251 		 * Use the locally cached objects if possible.
3252 		 * However ____cache_alloc does not allow fallback
3253 		 * to other nodes. It may fail while we still have
3254 		 * objects on other nodes available.
3255 		 */
3256 		ptr = ____cache_alloc(cachep, flags);
3257 		if (ptr)
3258 			goto out;
3259 	}
3260 	/* ___cache_alloc_node can fall back to other nodes */
3261 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3262   out:
3263 	local_irq_restore(save_flags);
3264 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3265 
3266 	if (unlikely(flags & __GFP_ZERO) && ptr)
3267 		memset(ptr, 0, cachep->object_size);
3268 
3269 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3270 	return ptr;
3271 }
3272 
3273 static __always_inline void *
3274 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3275 {
3276 	void *objp;
3277 
3278 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3279 		objp = alternate_node_alloc(cache, flags);
3280 		if (objp)
3281 			goto out;
3282 	}
3283 	objp = ____cache_alloc(cache, flags);
3284 
3285 	/*
3286 	 * We may just have run out of memory on the local node.
3287 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3288 	 */
3289 	if (!objp)
3290 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3291 
3292   out:
3293 	return objp;
3294 }
3295 #else
3296 
3297 static __always_inline void *
3298 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3299 {
3300 	return ____cache_alloc(cachep, flags);
3301 }
3302 
3303 #endif /* CONFIG_NUMA */
3304 
3305 static __always_inline void *
3306 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3307 {
3308 	unsigned long save_flags;
3309 	void *objp;
3310 
3311 	flags &= gfp_allowed_mask;
3312 	cachep = slab_pre_alloc_hook(cachep, flags);
3313 	if (unlikely(!cachep))
3314 		return NULL;
3315 
3316 	cache_alloc_debugcheck_before(cachep, flags);
3317 	local_irq_save(save_flags);
3318 	objp = __do_cache_alloc(cachep, flags);
3319 	local_irq_restore(save_flags);
3320 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3321 	prefetchw(objp);
3322 
3323 	if (unlikely(flags & __GFP_ZERO) && objp)
3324 		memset(objp, 0, cachep->object_size);
3325 
3326 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3327 	return objp;
3328 }
3329 
3330 /*
3331  * Caller needs to acquire correct kmem_cache_node's list_lock
3332  * @list: List of detached free slabs should be freed by caller
3333  */
3334 static void free_block(struct kmem_cache *cachep, void **objpp,
3335 			int nr_objects, int node, struct list_head *list)
3336 {
3337 	int i;
3338 	struct kmem_cache_node *n = get_node(cachep, node);
3339 	struct page *page;
3340 
3341 	n->free_objects += nr_objects;
3342 
3343 	for (i = 0; i < nr_objects; i++) {
3344 		void *objp;
3345 		struct page *page;
3346 
3347 		objp = objpp[i];
3348 
3349 		page = virt_to_head_page(objp);
3350 		list_del(&page->slab_list);
3351 		check_spinlock_acquired_node(cachep, node);
3352 		slab_put_obj(cachep, page, objp);
3353 		STATS_DEC_ACTIVE(cachep);
3354 
3355 		/* fixup slab chains */
3356 		if (page->active == 0) {
3357 			list_add(&page->slab_list, &n->slabs_free);
3358 			n->free_slabs++;
3359 		} else {
3360 			/* Unconditionally move a slab to the end of the
3361 			 * partial list on free - maximum time for the
3362 			 * other objects to be freed, too.
3363 			 */
3364 			list_add_tail(&page->slab_list, &n->slabs_partial);
3365 		}
3366 	}
3367 
3368 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3369 		n->free_objects -= cachep->num;
3370 
3371 		page = list_last_entry(&n->slabs_free, struct page, slab_list);
3372 		list_move(&page->slab_list, list);
3373 		n->free_slabs--;
3374 		n->total_slabs--;
3375 	}
3376 }
3377 
3378 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3379 {
3380 	int batchcount;
3381 	struct kmem_cache_node *n;
3382 	int node = numa_mem_id();
3383 	LIST_HEAD(list);
3384 
3385 	batchcount = ac->batchcount;
3386 
3387 	check_irq_off();
3388 	n = get_node(cachep, node);
3389 	spin_lock(&n->list_lock);
3390 	if (n->shared) {
3391 		struct array_cache *shared_array = n->shared;
3392 		int max = shared_array->limit - shared_array->avail;
3393 		if (max) {
3394 			if (batchcount > max)
3395 				batchcount = max;
3396 			memcpy(&(shared_array->entry[shared_array->avail]),
3397 			       ac->entry, sizeof(void *) * batchcount);
3398 			shared_array->avail += batchcount;
3399 			goto free_done;
3400 		}
3401 	}
3402 
3403 	free_block(cachep, ac->entry, batchcount, node, &list);
3404 free_done:
3405 #if STATS
3406 	{
3407 		int i = 0;
3408 		struct page *page;
3409 
3410 		list_for_each_entry(page, &n->slabs_free, slab_list) {
3411 			BUG_ON(page->active);
3412 
3413 			i++;
3414 		}
3415 		STATS_SET_FREEABLE(cachep, i);
3416 	}
3417 #endif
3418 	spin_unlock(&n->list_lock);
3419 	slabs_destroy(cachep, &list);
3420 	ac->avail -= batchcount;
3421 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3422 }
3423 
3424 /*
3425  * Release an obj back to its cache. If the obj has a constructed state, it must
3426  * be in this state _before_ it is released.  Called with disabled ints.
3427  */
3428 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3429 					 unsigned long caller)
3430 {
3431 	/* Put the object into the quarantine, don't touch it for now. */
3432 	if (kasan_slab_free(cachep, objp, _RET_IP_))
3433 		return;
3434 
3435 	___cache_free(cachep, objp, caller);
3436 }
3437 
3438 void ___cache_free(struct kmem_cache *cachep, void *objp,
3439 		unsigned long caller)
3440 {
3441 	struct array_cache *ac = cpu_cache_get(cachep);
3442 
3443 	check_irq_off();
3444 	kmemleak_free_recursive(objp, cachep->flags);
3445 	objp = cache_free_debugcheck(cachep, objp, caller);
3446 
3447 	/*
3448 	 * Skip calling cache_free_alien() when the platform is not numa.
3449 	 * This will avoid cache misses that happen while accessing slabp (which
3450 	 * is per page memory  reference) to get nodeid. Instead use a global
3451 	 * variable to skip the call, which is mostly likely to be present in
3452 	 * the cache.
3453 	 */
3454 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3455 		return;
3456 
3457 	if (ac->avail < ac->limit) {
3458 		STATS_INC_FREEHIT(cachep);
3459 	} else {
3460 		STATS_INC_FREEMISS(cachep);
3461 		cache_flusharray(cachep, ac);
3462 	}
3463 
3464 	if (sk_memalloc_socks()) {
3465 		struct page *page = virt_to_head_page(objp);
3466 
3467 		if (unlikely(PageSlabPfmemalloc(page))) {
3468 			cache_free_pfmemalloc(cachep, page, objp);
3469 			return;
3470 		}
3471 	}
3472 
3473 	ac->entry[ac->avail++] = objp;
3474 }
3475 
3476 /**
3477  * kmem_cache_alloc - Allocate an object
3478  * @cachep: The cache to allocate from.
3479  * @flags: See kmalloc().
3480  *
3481  * Allocate an object from this cache.  The flags are only relevant
3482  * if the cache has no available objects.
3483  *
3484  * Return: pointer to the new object or %NULL in case of error
3485  */
3486 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3487 {
3488 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3489 
3490 	trace_kmem_cache_alloc(_RET_IP_, ret,
3491 			       cachep->object_size, cachep->size, flags);
3492 
3493 	return ret;
3494 }
3495 EXPORT_SYMBOL(kmem_cache_alloc);
3496 
3497 static __always_inline void
3498 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3499 				  size_t size, void **p, unsigned long caller)
3500 {
3501 	size_t i;
3502 
3503 	for (i = 0; i < size; i++)
3504 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3505 }
3506 
3507 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3508 			  void **p)
3509 {
3510 	size_t i;
3511 
3512 	s = slab_pre_alloc_hook(s, flags);
3513 	if (!s)
3514 		return 0;
3515 
3516 	cache_alloc_debugcheck_before(s, flags);
3517 
3518 	local_irq_disable();
3519 	for (i = 0; i < size; i++) {
3520 		void *objp = __do_cache_alloc(s, flags);
3521 
3522 		if (unlikely(!objp))
3523 			goto error;
3524 		p[i] = objp;
3525 	}
3526 	local_irq_enable();
3527 
3528 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3529 
3530 	/* Clear memory outside IRQ disabled section */
3531 	if (unlikely(flags & __GFP_ZERO))
3532 		for (i = 0; i < size; i++)
3533 			memset(p[i], 0, s->object_size);
3534 
3535 	slab_post_alloc_hook(s, flags, size, p);
3536 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3537 	return size;
3538 error:
3539 	local_irq_enable();
3540 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3541 	slab_post_alloc_hook(s, flags, i, p);
3542 	__kmem_cache_free_bulk(s, i, p);
3543 	return 0;
3544 }
3545 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3546 
3547 #ifdef CONFIG_TRACING
3548 void *
3549 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3550 {
3551 	void *ret;
3552 
3553 	ret = slab_alloc(cachep, flags, _RET_IP_);
3554 
3555 	ret = kasan_kmalloc(cachep, ret, size, flags);
3556 	trace_kmalloc(_RET_IP_, ret,
3557 		      size, cachep->size, flags);
3558 	return ret;
3559 }
3560 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3561 #endif
3562 
3563 #ifdef CONFIG_NUMA
3564 /**
3565  * kmem_cache_alloc_node - Allocate an object on the specified node
3566  * @cachep: The cache to allocate from.
3567  * @flags: See kmalloc().
3568  * @nodeid: node number of the target node.
3569  *
3570  * Identical to kmem_cache_alloc but it will allocate memory on the given
3571  * node, which can improve the performance for cpu bound structures.
3572  *
3573  * Fallback to other node is possible if __GFP_THISNODE is not set.
3574  *
3575  * Return: pointer to the new object or %NULL in case of error
3576  */
3577 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3578 {
3579 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3580 
3581 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3582 				    cachep->object_size, cachep->size,
3583 				    flags, nodeid);
3584 
3585 	return ret;
3586 }
3587 EXPORT_SYMBOL(kmem_cache_alloc_node);
3588 
3589 #ifdef CONFIG_TRACING
3590 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3591 				  gfp_t flags,
3592 				  int nodeid,
3593 				  size_t size)
3594 {
3595 	void *ret;
3596 
3597 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3598 
3599 	ret = kasan_kmalloc(cachep, ret, size, flags);
3600 	trace_kmalloc_node(_RET_IP_, ret,
3601 			   size, cachep->size,
3602 			   flags, nodeid);
3603 	return ret;
3604 }
3605 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3606 #endif
3607 
3608 static __always_inline void *
3609 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3610 {
3611 	struct kmem_cache *cachep;
3612 	void *ret;
3613 
3614 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3615 		return NULL;
3616 	cachep = kmalloc_slab(size, flags);
3617 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3618 		return cachep;
3619 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3620 	ret = kasan_kmalloc(cachep, ret, size, flags);
3621 
3622 	return ret;
3623 }
3624 
3625 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3626 {
3627 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3628 }
3629 EXPORT_SYMBOL(__kmalloc_node);
3630 
3631 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3632 		int node, unsigned long caller)
3633 {
3634 	return __do_kmalloc_node(size, flags, node, caller);
3635 }
3636 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3637 #endif /* CONFIG_NUMA */
3638 
3639 /**
3640  * __do_kmalloc - allocate memory
3641  * @size: how many bytes of memory are required.
3642  * @flags: the type of memory to allocate (see kmalloc).
3643  * @caller: function caller for debug tracking of the caller
3644  *
3645  * Return: pointer to the allocated memory or %NULL in case of error
3646  */
3647 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3648 					  unsigned long caller)
3649 {
3650 	struct kmem_cache *cachep;
3651 	void *ret;
3652 
3653 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3654 		return NULL;
3655 	cachep = kmalloc_slab(size, flags);
3656 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3657 		return cachep;
3658 	ret = slab_alloc(cachep, flags, caller);
3659 
3660 	ret = kasan_kmalloc(cachep, ret, size, flags);
3661 	trace_kmalloc(caller, ret,
3662 		      size, cachep->size, flags);
3663 
3664 	return ret;
3665 }
3666 
3667 void *__kmalloc(size_t size, gfp_t flags)
3668 {
3669 	return __do_kmalloc(size, flags, _RET_IP_);
3670 }
3671 EXPORT_SYMBOL(__kmalloc);
3672 
3673 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3674 {
3675 	return __do_kmalloc(size, flags, caller);
3676 }
3677 EXPORT_SYMBOL(__kmalloc_track_caller);
3678 
3679 /**
3680  * kmem_cache_free - Deallocate an object
3681  * @cachep: The cache the allocation was from.
3682  * @objp: The previously allocated object.
3683  *
3684  * Free an object which was previously allocated from this
3685  * cache.
3686  */
3687 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3688 {
3689 	unsigned long flags;
3690 	cachep = cache_from_obj(cachep, objp);
3691 	if (!cachep)
3692 		return;
3693 
3694 	local_irq_save(flags);
3695 	debug_check_no_locks_freed(objp, cachep->object_size);
3696 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3697 		debug_check_no_obj_freed(objp, cachep->object_size);
3698 	__cache_free(cachep, objp, _RET_IP_);
3699 	local_irq_restore(flags);
3700 
3701 	trace_kmem_cache_free(_RET_IP_, objp);
3702 }
3703 EXPORT_SYMBOL(kmem_cache_free);
3704 
3705 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3706 {
3707 	struct kmem_cache *s;
3708 	size_t i;
3709 
3710 	local_irq_disable();
3711 	for (i = 0; i < size; i++) {
3712 		void *objp = p[i];
3713 
3714 		if (!orig_s) /* called via kfree_bulk */
3715 			s = virt_to_cache(objp);
3716 		else
3717 			s = cache_from_obj(orig_s, objp);
3718 
3719 		debug_check_no_locks_freed(objp, s->object_size);
3720 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3721 			debug_check_no_obj_freed(objp, s->object_size);
3722 
3723 		__cache_free(s, objp, _RET_IP_);
3724 	}
3725 	local_irq_enable();
3726 
3727 	/* FIXME: add tracing */
3728 }
3729 EXPORT_SYMBOL(kmem_cache_free_bulk);
3730 
3731 /**
3732  * kfree - free previously allocated memory
3733  * @objp: pointer returned by kmalloc.
3734  *
3735  * If @objp is NULL, no operation is performed.
3736  *
3737  * Don't free memory not originally allocated by kmalloc()
3738  * or you will run into trouble.
3739  */
3740 void kfree(const void *objp)
3741 {
3742 	struct kmem_cache *c;
3743 	unsigned long flags;
3744 
3745 	trace_kfree(_RET_IP_, objp);
3746 
3747 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3748 		return;
3749 	local_irq_save(flags);
3750 	kfree_debugcheck(objp);
3751 	c = virt_to_cache(objp);
3752 	debug_check_no_locks_freed(objp, c->object_size);
3753 
3754 	debug_check_no_obj_freed(objp, c->object_size);
3755 	__cache_free(c, (void *)objp, _RET_IP_);
3756 	local_irq_restore(flags);
3757 }
3758 EXPORT_SYMBOL(kfree);
3759 
3760 /*
3761  * This initializes kmem_cache_node or resizes various caches for all nodes.
3762  */
3763 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3764 {
3765 	int ret;
3766 	int node;
3767 	struct kmem_cache_node *n;
3768 
3769 	for_each_online_node(node) {
3770 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3771 		if (ret)
3772 			goto fail;
3773 
3774 	}
3775 
3776 	return 0;
3777 
3778 fail:
3779 	if (!cachep->list.next) {
3780 		/* Cache is not active yet. Roll back what we did */
3781 		node--;
3782 		while (node >= 0) {
3783 			n = get_node(cachep, node);
3784 			if (n) {
3785 				kfree(n->shared);
3786 				free_alien_cache(n->alien);
3787 				kfree(n);
3788 				cachep->node[node] = NULL;
3789 			}
3790 			node--;
3791 		}
3792 	}
3793 	return -ENOMEM;
3794 }
3795 
3796 /* Always called with the slab_mutex held */
3797 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3798 				int batchcount, int shared, gfp_t gfp)
3799 {
3800 	struct array_cache __percpu *cpu_cache, *prev;
3801 	int cpu;
3802 
3803 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3804 	if (!cpu_cache)
3805 		return -ENOMEM;
3806 
3807 	prev = cachep->cpu_cache;
3808 	cachep->cpu_cache = cpu_cache;
3809 	/*
3810 	 * Without a previous cpu_cache there's no need to synchronize remote
3811 	 * cpus, so skip the IPIs.
3812 	 */
3813 	if (prev)
3814 		kick_all_cpus_sync();
3815 
3816 	check_irq_on();
3817 	cachep->batchcount = batchcount;
3818 	cachep->limit = limit;
3819 	cachep->shared = shared;
3820 
3821 	if (!prev)
3822 		goto setup_node;
3823 
3824 	for_each_online_cpu(cpu) {
3825 		LIST_HEAD(list);
3826 		int node;
3827 		struct kmem_cache_node *n;
3828 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3829 
3830 		node = cpu_to_mem(cpu);
3831 		n = get_node(cachep, node);
3832 		spin_lock_irq(&n->list_lock);
3833 		free_block(cachep, ac->entry, ac->avail, node, &list);
3834 		spin_unlock_irq(&n->list_lock);
3835 		slabs_destroy(cachep, &list);
3836 	}
3837 	free_percpu(prev);
3838 
3839 setup_node:
3840 	return setup_kmem_cache_nodes(cachep, gfp);
3841 }
3842 
3843 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3844 				int batchcount, int shared, gfp_t gfp)
3845 {
3846 	int ret;
3847 	struct kmem_cache *c;
3848 
3849 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3850 
3851 	if (slab_state < FULL)
3852 		return ret;
3853 
3854 	if ((ret < 0) || !is_root_cache(cachep))
3855 		return ret;
3856 
3857 	lockdep_assert_held(&slab_mutex);
3858 	for_each_memcg_cache(c, cachep) {
3859 		/* return value determined by the root cache only */
3860 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3861 	}
3862 
3863 	return ret;
3864 }
3865 
3866 /* Called with slab_mutex held always */
3867 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3868 {
3869 	int err;
3870 	int limit = 0;
3871 	int shared = 0;
3872 	int batchcount = 0;
3873 
3874 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3875 	if (err)
3876 		goto end;
3877 
3878 	if (!is_root_cache(cachep)) {
3879 		struct kmem_cache *root = memcg_root_cache(cachep);
3880 		limit = root->limit;
3881 		shared = root->shared;
3882 		batchcount = root->batchcount;
3883 	}
3884 
3885 	if (limit && shared && batchcount)
3886 		goto skip_setup;
3887 	/*
3888 	 * The head array serves three purposes:
3889 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3890 	 * - reduce the number of spinlock operations.
3891 	 * - reduce the number of linked list operations on the slab and
3892 	 *   bufctl chains: array operations are cheaper.
3893 	 * The numbers are guessed, we should auto-tune as described by
3894 	 * Bonwick.
3895 	 */
3896 	if (cachep->size > 131072)
3897 		limit = 1;
3898 	else if (cachep->size > PAGE_SIZE)
3899 		limit = 8;
3900 	else if (cachep->size > 1024)
3901 		limit = 24;
3902 	else if (cachep->size > 256)
3903 		limit = 54;
3904 	else
3905 		limit = 120;
3906 
3907 	/*
3908 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3909 	 * allocation behaviour: Most allocs on one cpu, most free operations
3910 	 * on another cpu. For these cases, an efficient object passing between
3911 	 * cpus is necessary. This is provided by a shared array. The array
3912 	 * replaces Bonwick's magazine layer.
3913 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3914 	 * to a larger limit. Thus disabled by default.
3915 	 */
3916 	shared = 0;
3917 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3918 		shared = 8;
3919 
3920 #if DEBUG
3921 	/*
3922 	 * With debugging enabled, large batchcount lead to excessively long
3923 	 * periods with disabled local interrupts. Limit the batchcount
3924 	 */
3925 	if (limit > 32)
3926 		limit = 32;
3927 #endif
3928 	batchcount = (limit + 1) / 2;
3929 skip_setup:
3930 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3931 end:
3932 	if (err)
3933 		pr_err("enable_cpucache failed for %s, error %d\n",
3934 		       cachep->name, -err);
3935 	return err;
3936 }
3937 
3938 /*
3939  * Drain an array if it contains any elements taking the node lock only if
3940  * necessary. Note that the node listlock also protects the array_cache
3941  * if drain_array() is used on the shared array.
3942  */
3943 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3944 			 struct array_cache *ac, int node)
3945 {
3946 	LIST_HEAD(list);
3947 
3948 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
3949 	check_mutex_acquired();
3950 
3951 	if (!ac || !ac->avail)
3952 		return;
3953 
3954 	if (ac->touched) {
3955 		ac->touched = 0;
3956 		return;
3957 	}
3958 
3959 	spin_lock_irq(&n->list_lock);
3960 	drain_array_locked(cachep, ac, node, false, &list);
3961 	spin_unlock_irq(&n->list_lock);
3962 
3963 	slabs_destroy(cachep, &list);
3964 }
3965 
3966 /**
3967  * cache_reap - Reclaim memory from caches.
3968  * @w: work descriptor
3969  *
3970  * Called from workqueue/eventd every few seconds.
3971  * Purpose:
3972  * - clear the per-cpu caches for this CPU.
3973  * - return freeable pages to the main free memory pool.
3974  *
3975  * If we cannot acquire the cache chain mutex then just give up - we'll try
3976  * again on the next iteration.
3977  */
3978 static void cache_reap(struct work_struct *w)
3979 {
3980 	struct kmem_cache *searchp;
3981 	struct kmem_cache_node *n;
3982 	int node = numa_mem_id();
3983 	struct delayed_work *work = to_delayed_work(w);
3984 
3985 	if (!mutex_trylock(&slab_mutex))
3986 		/* Give up. Setup the next iteration. */
3987 		goto out;
3988 
3989 	list_for_each_entry(searchp, &slab_caches, list) {
3990 		check_irq_on();
3991 
3992 		/*
3993 		 * We only take the node lock if absolutely necessary and we
3994 		 * have established with reasonable certainty that
3995 		 * we can do some work if the lock was obtained.
3996 		 */
3997 		n = get_node(searchp, node);
3998 
3999 		reap_alien(searchp, n);
4000 
4001 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4002 
4003 		/*
4004 		 * These are racy checks but it does not matter
4005 		 * if we skip one check or scan twice.
4006 		 */
4007 		if (time_after(n->next_reap, jiffies))
4008 			goto next;
4009 
4010 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4011 
4012 		drain_array(searchp, n, n->shared, node);
4013 
4014 		if (n->free_touched)
4015 			n->free_touched = 0;
4016 		else {
4017 			int freed;
4018 
4019 			freed = drain_freelist(searchp, n, (n->free_limit +
4020 				5 * searchp->num - 1) / (5 * searchp->num));
4021 			STATS_ADD_REAPED(searchp, freed);
4022 		}
4023 next:
4024 		cond_resched();
4025 	}
4026 	check_irq_on();
4027 	mutex_unlock(&slab_mutex);
4028 	next_reap_node();
4029 out:
4030 	/* Set up the next iteration */
4031 	schedule_delayed_work_on(smp_processor_id(), work,
4032 				round_jiffies_relative(REAPTIMEOUT_AC));
4033 }
4034 
4035 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4036 {
4037 	unsigned long active_objs, num_objs, active_slabs;
4038 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4039 	unsigned long free_slabs = 0;
4040 	int node;
4041 	struct kmem_cache_node *n;
4042 
4043 	for_each_kmem_cache_node(cachep, node, n) {
4044 		check_irq_on();
4045 		spin_lock_irq(&n->list_lock);
4046 
4047 		total_slabs += n->total_slabs;
4048 		free_slabs += n->free_slabs;
4049 		free_objs += n->free_objects;
4050 
4051 		if (n->shared)
4052 			shared_avail += n->shared->avail;
4053 
4054 		spin_unlock_irq(&n->list_lock);
4055 	}
4056 	num_objs = total_slabs * cachep->num;
4057 	active_slabs = total_slabs - free_slabs;
4058 	active_objs = num_objs - free_objs;
4059 
4060 	sinfo->active_objs = active_objs;
4061 	sinfo->num_objs = num_objs;
4062 	sinfo->active_slabs = active_slabs;
4063 	sinfo->num_slabs = total_slabs;
4064 	sinfo->shared_avail = shared_avail;
4065 	sinfo->limit = cachep->limit;
4066 	sinfo->batchcount = cachep->batchcount;
4067 	sinfo->shared = cachep->shared;
4068 	sinfo->objects_per_slab = cachep->num;
4069 	sinfo->cache_order = cachep->gfporder;
4070 }
4071 
4072 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4073 {
4074 #if STATS
4075 	{			/* node stats */
4076 		unsigned long high = cachep->high_mark;
4077 		unsigned long allocs = cachep->num_allocations;
4078 		unsigned long grown = cachep->grown;
4079 		unsigned long reaped = cachep->reaped;
4080 		unsigned long errors = cachep->errors;
4081 		unsigned long max_freeable = cachep->max_freeable;
4082 		unsigned long node_allocs = cachep->node_allocs;
4083 		unsigned long node_frees = cachep->node_frees;
4084 		unsigned long overflows = cachep->node_overflow;
4085 
4086 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4087 			   allocs, high, grown,
4088 			   reaped, errors, max_freeable, node_allocs,
4089 			   node_frees, overflows);
4090 	}
4091 	/* cpu stats */
4092 	{
4093 		unsigned long allochit = atomic_read(&cachep->allochit);
4094 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4095 		unsigned long freehit = atomic_read(&cachep->freehit);
4096 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4097 
4098 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4099 			   allochit, allocmiss, freehit, freemiss);
4100 	}
4101 #endif
4102 }
4103 
4104 #define MAX_SLABINFO_WRITE 128
4105 /**
4106  * slabinfo_write - Tuning for the slab allocator
4107  * @file: unused
4108  * @buffer: user buffer
4109  * @count: data length
4110  * @ppos: unused
4111  *
4112  * Return: %0 on success, negative error code otherwise.
4113  */
4114 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4115 		       size_t count, loff_t *ppos)
4116 {
4117 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4118 	int limit, batchcount, shared, res;
4119 	struct kmem_cache *cachep;
4120 
4121 	if (count > MAX_SLABINFO_WRITE)
4122 		return -EINVAL;
4123 	if (copy_from_user(&kbuf, buffer, count))
4124 		return -EFAULT;
4125 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4126 
4127 	tmp = strchr(kbuf, ' ');
4128 	if (!tmp)
4129 		return -EINVAL;
4130 	*tmp = '\0';
4131 	tmp++;
4132 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4133 		return -EINVAL;
4134 
4135 	/* Find the cache in the chain of caches. */
4136 	mutex_lock(&slab_mutex);
4137 	res = -EINVAL;
4138 	list_for_each_entry(cachep, &slab_caches, list) {
4139 		if (!strcmp(cachep->name, kbuf)) {
4140 			if (limit < 1 || batchcount < 1 ||
4141 					batchcount > limit || shared < 0) {
4142 				res = 0;
4143 			} else {
4144 				res = do_tune_cpucache(cachep, limit,
4145 						       batchcount, shared,
4146 						       GFP_KERNEL);
4147 			}
4148 			break;
4149 		}
4150 	}
4151 	mutex_unlock(&slab_mutex);
4152 	if (res >= 0)
4153 		res = count;
4154 	return res;
4155 }
4156 
4157 #ifdef CONFIG_HARDENED_USERCOPY
4158 /*
4159  * Rejects incorrectly sized objects and objects that are to be copied
4160  * to/from userspace but do not fall entirely within the containing slab
4161  * cache's usercopy region.
4162  *
4163  * Returns NULL if check passes, otherwise const char * to name of cache
4164  * to indicate an error.
4165  */
4166 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4167 			 bool to_user)
4168 {
4169 	struct kmem_cache *cachep;
4170 	unsigned int objnr;
4171 	unsigned long offset;
4172 
4173 	ptr = kasan_reset_tag(ptr);
4174 
4175 	/* Find and validate object. */
4176 	cachep = page->slab_cache;
4177 	objnr = obj_to_index(cachep, page, (void *)ptr);
4178 	BUG_ON(objnr >= cachep->num);
4179 
4180 	/* Find offset within object. */
4181 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4182 
4183 	/* Allow address range falling entirely within usercopy region. */
4184 	if (offset >= cachep->useroffset &&
4185 	    offset - cachep->useroffset <= cachep->usersize &&
4186 	    n <= cachep->useroffset - offset + cachep->usersize)
4187 		return;
4188 
4189 	/*
4190 	 * If the copy is still within the allocated object, produce
4191 	 * a warning instead of rejecting the copy. This is intended
4192 	 * to be a temporary method to find any missing usercopy
4193 	 * whitelists.
4194 	 */
4195 	if (usercopy_fallback &&
4196 	    offset <= cachep->object_size &&
4197 	    n <= cachep->object_size - offset) {
4198 		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4199 		return;
4200 	}
4201 
4202 	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4203 }
4204 #endif /* CONFIG_HARDENED_USERCOPY */
4205 
4206 /**
4207  * ksize - get the actual amount of memory allocated for a given object
4208  * @objp: Pointer to the object
4209  *
4210  * kmalloc may internally round up allocations and return more memory
4211  * than requested. ksize() can be used to determine the actual amount of
4212  * memory allocated. The caller may use this additional memory, even though
4213  * a smaller amount of memory was initially specified with the kmalloc call.
4214  * The caller must guarantee that objp points to a valid object previously
4215  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4216  * must not be freed during the duration of the call.
4217  *
4218  * Return: size of the actual memory used by @objp in bytes
4219  */
4220 size_t ksize(const void *objp)
4221 {
4222 	size_t size;
4223 
4224 	BUG_ON(!objp);
4225 	if (unlikely(objp == ZERO_SIZE_PTR))
4226 		return 0;
4227 
4228 	size = virt_to_cache(objp)->object_size;
4229 	/* We assume that ksize callers could use the whole allocated area,
4230 	 * so we need to unpoison this area.
4231 	 */
4232 	kasan_unpoison_shadow(objp, size);
4233 
4234 	return size;
4235 }
4236 EXPORT_SYMBOL(ksize);
4237