xref: /openbmc/linux/mm/slab.c (revision f3a8b664)
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *	(c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  * 	(c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *	UNIX Internals: The New Frontiers by Uresh Vahalia
16  *	Pub: Prentice Hall	ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *	Jeff Bonwick (Sun Microsystems).
20  *	Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *	are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *  	and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *	The global cache-chain is protected by the mutex 'slab_mutex'.
72  *	The sem is only needed when accessing/extending the cache-chain, which
73  *	can never happen inside an interrupt (kmem_cache_create(),
74  *	kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *	At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *	Shai Fultheim <shai@scalex86.org>.
80  *	Shobhit Dayal <shobhit@calsoftinc.com>
81  *	Alok N Kataria <alokk@calsoftinc.com>
82  *	Christoph Lameter <christoph@lameter.com>
83  *
84  *	Modified the slab allocator to be node aware on NUMA systems.
85  *	Each node has its own list of partial, free and full slabs.
86  *	All object allocations for a node occur from node specific slab lists.
87  */
88 
89 #include	<linux/slab.h>
90 #include	<linux/mm.h>
91 #include	<linux/poison.h>
92 #include	<linux/swap.h>
93 #include	<linux/cache.h>
94 #include	<linux/interrupt.h>
95 #include	<linux/init.h>
96 #include	<linux/compiler.h>
97 #include	<linux/cpuset.h>
98 #include	<linux/proc_fs.h>
99 #include	<linux/seq_file.h>
100 #include	<linux/notifier.h>
101 #include	<linux/kallsyms.h>
102 #include	<linux/cpu.h>
103 #include	<linux/sysctl.h>
104 #include	<linux/module.h>
105 #include	<linux/rcupdate.h>
106 #include	<linux/string.h>
107 #include	<linux/uaccess.h>
108 #include	<linux/nodemask.h>
109 #include	<linux/kmemleak.h>
110 #include	<linux/mempolicy.h>
111 #include	<linux/mutex.h>
112 #include	<linux/fault-inject.h>
113 #include	<linux/rtmutex.h>
114 #include	<linux/reciprocal_div.h>
115 #include	<linux/debugobjects.h>
116 #include	<linux/kmemcheck.h>
117 #include	<linux/memory.h>
118 #include	<linux/prefetch.h>
119 
120 #include	<net/sock.h>
121 
122 #include	<asm/cacheflush.h>
123 #include	<asm/tlbflush.h>
124 #include	<asm/page.h>
125 
126 #include <trace/events/kmem.h>
127 
128 #include	"internal.h"
129 
130 #include	"slab.h"
131 
132 /*
133  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *		  0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS	- 1 to collect stats for /proc/slabinfo.
137  *		  0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141 
142 #ifdef CONFIG_DEBUG_SLAB
143 #define	DEBUG		1
144 #define	STATS		1
145 #define	FORCED_DEBUG	1
146 #else
147 #define	DEBUG		0
148 #define	STATS		0
149 #define	FORCED_DEBUG	0
150 #endif
151 
152 /* Shouldn't this be in a header file somewhere? */
153 #define	BYTES_PER_WORD		sizeof(void *)
154 #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159 
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162 
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168 
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170 
171 /*
172  * struct array_cache
173  *
174  * Purpose:
175  * - LIFO ordering, to hand out cache-warm objects from _alloc
176  * - reduce the number of linked list operations
177  * - reduce spinlock operations
178  *
179  * The limit is stored in the per-cpu structure to reduce the data cache
180  * footprint.
181  *
182  */
183 struct array_cache {
184 	unsigned int avail;
185 	unsigned int limit;
186 	unsigned int batchcount;
187 	unsigned int touched;
188 	void *entry[];	/*
189 			 * Must have this definition in here for the proper
190 			 * alignment of array_cache. Also simplifies accessing
191 			 * the entries.
192 			 */
193 };
194 
195 struct alien_cache {
196 	spinlock_t lock;
197 	struct array_cache ac;
198 };
199 
200 /*
201  * Need this for bootstrapping a per node allocator.
202  */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define	CACHE_CACHE 0
206 #define	SIZE_NODE (MAX_NUMNODES)
207 
208 static int drain_freelist(struct kmem_cache *cache,
209 			struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 			int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215 
216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 						void **list);
218 static inline void fixup_slab_list(struct kmem_cache *cachep,
219 				struct kmem_cache_node *n, struct page *page,
220 				void **list);
221 static int slab_early_init = 1;
222 
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
224 
225 static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 {
227 	INIT_LIST_HEAD(&parent->slabs_full);
228 	INIT_LIST_HEAD(&parent->slabs_partial);
229 	INIT_LIST_HEAD(&parent->slabs_free);
230 	parent->shared = NULL;
231 	parent->alien = NULL;
232 	parent->colour_next = 0;
233 	spin_lock_init(&parent->list_lock);
234 	parent->free_objects = 0;
235 	parent->free_touched = 0;
236 	parent->num_slabs = 0;
237 }
238 
239 #define MAKE_LIST(cachep, listp, slab, nodeid)				\
240 	do {								\
241 		INIT_LIST_HEAD(listp);					\
242 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
243 	} while (0)
244 
245 #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
246 	do {								\
247 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
248 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
249 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
250 	} while (0)
251 
252 #define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
253 #define CFLGS_OFF_SLAB		(0x80000000UL)
254 #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
255 #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
256 
257 #define BATCHREFILL_LIMIT	16
258 /*
259  * Optimization question: fewer reaps means less probability for unnessary
260  * cpucache drain/refill cycles.
261  *
262  * OTOH the cpuarrays can contain lots of objects,
263  * which could lock up otherwise freeable slabs.
264  */
265 #define REAPTIMEOUT_AC		(2*HZ)
266 #define REAPTIMEOUT_NODE	(4*HZ)
267 
268 #if STATS
269 #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
270 #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
271 #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
272 #define	STATS_INC_GROWN(x)	((x)->grown++)
273 #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
274 #define	STATS_SET_HIGH(x)						\
275 	do {								\
276 		if ((x)->num_active > (x)->high_mark)			\
277 			(x)->high_mark = (x)->num_active;		\
278 	} while (0)
279 #define	STATS_INC_ERR(x)	((x)->errors++)
280 #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
281 #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
282 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
283 #define	STATS_SET_FREEABLE(x, i)					\
284 	do {								\
285 		if ((x)->max_freeable < i)				\
286 			(x)->max_freeable = i;				\
287 	} while (0)
288 #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
289 #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
290 #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
291 #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
292 #else
293 #define	STATS_INC_ACTIVE(x)	do { } while (0)
294 #define	STATS_DEC_ACTIVE(x)	do { } while (0)
295 #define	STATS_INC_ALLOCED(x)	do { } while (0)
296 #define	STATS_INC_GROWN(x)	do { } while (0)
297 #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
298 #define	STATS_SET_HIGH(x)	do { } while (0)
299 #define	STATS_INC_ERR(x)	do { } while (0)
300 #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
301 #define	STATS_INC_NODEFREES(x)	do { } while (0)
302 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
303 #define	STATS_SET_FREEABLE(x, i) do { } while (0)
304 #define STATS_INC_ALLOCHIT(x)	do { } while (0)
305 #define STATS_INC_ALLOCMISS(x)	do { } while (0)
306 #define STATS_INC_FREEHIT(x)	do { } while (0)
307 #define STATS_INC_FREEMISS(x)	do { } while (0)
308 #endif
309 
310 #if DEBUG
311 
312 /*
313  * memory layout of objects:
314  * 0		: objp
315  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
316  * 		the end of an object is aligned with the end of the real
317  * 		allocation. Catches writes behind the end of the allocation.
318  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
319  * 		redzone word.
320  * cachep->obj_offset: The real object.
321  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
322  * cachep->size - 1* BYTES_PER_WORD: last caller address
323  *					[BYTES_PER_WORD long]
324  */
325 static int obj_offset(struct kmem_cache *cachep)
326 {
327 	return cachep->obj_offset;
328 }
329 
330 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
331 {
332 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
333 	return (unsigned long long*) (objp + obj_offset(cachep) -
334 				      sizeof(unsigned long long));
335 }
336 
337 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
338 {
339 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
340 	if (cachep->flags & SLAB_STORE_USER)
341 		return (unsigned long long *)(objp + cachep->size -
342 					      sizeof(unsigned long long) -
343 					      REDZONE_ALIGN);
344 	return (unsigned long long *) (objp + cachep->size -
345 				       sizeof(unsigned long long));
346 }
347 
348 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
349 {
350 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
351 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
352 }
353 
354 #else
355 
356 #define obj_offset(x)			0
357 #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
358 #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
359 #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
360 
361 #endif
362 
363 #ifdef CONFIG_DEBUG_SLAB_LEAK
364 
365 static inline bool is_store_user_clean(struct kmem_cache *cachep)
366 {
367 	return atomic_read(&cachep->store_user_clean) == 1;
368 }
369 
370 static inline void set_store_user_clean(struct kmem_cache *cachep)
371 {
372 	atomic_set(&cachep->store_user_clean, 1);
373 }
374 
375 static inline void set_store_user_dirty(struct kmem_cache *cachep)
376 {
377 	if (is_store_user_clean(cachep))
378 		atomic_set(&cachep->store_user_clean, 0);
379 }
380 
381 #else
382 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
383 
384 #endif
385 
386 /*
387  * Do not go above this order unless 0 objects fit into the slab or
388  * overridden on the command line.
389  */
390 #define	SLAB_MAX_ORDER_HI	1
391 #define	SLAB_MAX_ORDER_LO	0
392 static int slab_max_order = SLAB_MAX_ORDER_LO;
393 static bool slab_max_order_set __initdata;
394 
395 static inline struct kmem_cache *virt_to_cache(const void *obj)
396 {
397 	struct page *page = virt_to_head_page(obj);
398 	return page->slab_cache;
399 }
400 
401 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
402 				 unsigned int idx)
403 {
404 	return page->s_mem + cache->size * idx;
405 }
406 
407 /*
408  * We want to avoid an expensive divide : (offset / cache->size)
409  *   Using the fact that size is a constant for a particular cache,
410  *   we can replace (offset / cache->size) by
411  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
412  */
413 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
414 					const struct page *page, void *obj)
415 {
416 	u32 offset = (obj - page->s_mem);
417 	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
418 }
419 
420 #define BOOT_CPUCACHE_ENTRIES	1
421 /* internal cache of cache description objs */
422 static struct kmem_cache kmem_cache_boot = {
423 	.batchcount = 1,
424 	.limit = BOOT_CPUCACHE_ENTRIES,
425 	.shared = 1,
426 	.size = sizeof(struct kmem_cache),
427 	.name = "kmem_cache",
428 };
429 
430 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
431 
432 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
433 {
434 	return this_cpu_ptr(cachep->cpu_cache);
435 }
436 
437 /*
438  * Calculate the number of objects and left-over bytes for a given buffer size.
439  */
440 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
441 		unsigned long flags, size_t *left_over)
442 {
443 	unsigned int num;
444 	size_t slab_size = PAGE_SIZE << gfporder;
445 
446 	/*
447 	 * The slab management structure can be either off the slab or
448 	 * on it. For the latter case, the memory allocated for a
449 	 * slab is used for:
450 	 *
451 	 * - @buffer_size bytes for each object
452 	 * - One freelist_idx_t for each object
453 	 *
454 	 * We don't need to consider alignment of freelist because
455 	 * freelist will be at the end of slab page. The objects will be
456 	 * at the correct alignment.
457 	 *
458 	 * If the slab management structure is off the slab, then the
459 	 * alignment will already be calculated into the size. Because
460 	 * the slabs are all pages aligned, the objects will be at the
461 	 * correct alignment when allocated.
462 	 */
463 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
464 		num = slab_size / buffer_size;
465 		*left_over = slab_size % buffer_size;
466 	} else {
467 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
468 		*left_over = slab_size %
469 			(buffer_size + sizeof(freelist_idx_t));
470 	}
471 
472 	return num;
473 }
474 
475 #if DEBUG
476 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
477 
478 static void __slab_error(const char *function, struct kmem_cache *cachep,
479 			char *msg)
480 {
481 	pr_err("slab error in %s(): cache `%s': %s\n",
482 	       function, cachep->name, msg);
483 	dump_stack();
484 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
485 }
486 #endif
487 
488 /*
489  * By default on NUMA we use alien caches to stage the freeing of
490  * objects allocated from other nodes. This causes massive memory
491  * inefficiencies when using fake NUMA setup to split memory into a
492  * large number of small nodes, so it can be disabled on the command
493  * line
494   */
495 
496 static int use_alien_caches __read_mostly = 1;
497 static int __init noaliencache_setup(char *s)
498 {
499 	use_alien_caches = 0;
500 	return 1;
501 }
502 __setup("noaliencache", noaliencache_setup);
503 
504 static int __init slab_max_order_setup(char *str)
505 {
506 	get_option(&str, &slab_max_order);
507 	slab_max_order = slab_max_order < 0 ? 0 :
508 				min(slab_max_order, MAX_ORDER - 1);
509 	slab_max_order_set = true;
510 
511 	return 1;
512 }
513 __setup("slab_max_order=", slab_max_order_setup);
514 
515 #ifdef CONFIG_NUMA
516 /*
517  * Special reaping functions for NUMA systems called from cache_reap().
518  * These take care of doing round robin flushing of alien caches (containing
519  * objects freed on different nodes from which they were allocated) and the
520  * flushing of remote pcps by calling drain_node_pages.
521  */
522 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
523 
524 static void init_reap_node(int cpu)
525 {
526 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
527 						    node_online_map);
528 }
529 
530 static void next_reap_node(void)
531 {
532 	int node = __this_cpu_read(slab_reap_node);
533 
534 	node = next_node_in(node, node_online_map);
535 	__this_cpu_write(slab_reap_node, node);
536 }
537 
538 #else
539 #define init_reap_node(cpu) do { } while (0)
540 #define next_reap_node(void) do { } while (0)
541 #endif
542 
543 /*
544  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
545  * via the workqueue/eventd.
546  * Add the CPU number into the expiration time to minimize the possibility of
547  * the CPUs getting into lockstep and contending for the global cache chain
548  * lock.
549  */
550 static void start_cpu_timer(int cpu)
551 {
552 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
553 
554 	/*
555 	 * When this gets called from do_initcalls via cpucache_init(),
556 	 * init_workqueues() has already run, so keventd will be setup
557 	 * at that time.
558 	 */
559 	if (keventd_up() && reap_work->work.func == NULL) {
560 		init_reap_node(cpu);
561 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
562 		schedule_delayed_work_on(cpu, reap_work,
563 					__round_jiffies_relative(HZ, cpu));
564 	}
565 }
566 
567 static void init_arraycache(struct array_cache *ac, int limit, int batch)
568 {
569 	/*
570 	 * The array_cache structures contain pointers to free object.
571 	 * However, when such objects are allocated or transferred to another
572 	 * cache the pointers are not cleared and they could be counted as
573 	 * valid references during a kmemleak scan. Therefore, kmemleak must
574 	 * not scan such objects.
575 	 */
576 	kmemleak_no_scan(ac);
577 	if (ac) {
578 		ac->avail = 0;
579 		ac->limit = limit;
580 		ac->batchcount = batch;
581 		ac->touched = 0;
582 	}
583 }
584 
585 static struct array_cache *alloc_arraycache(int node, int entries,
586 					    int batchcount, gfp_t gfp)
587 {
588 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
589 	struct array_cache *ac = NULL;
590 
591 	ac = kmalloc_node(memsize, gfp, node);
592 	init_arraycache(ac, entries, batchcount);
593 	return ac;
594 }
595 
596 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
597 					struct page *page, void *objp)
598 {
599 	struct kmem_cache_node *n;
600 	int page_node;
601 	LIST_HEAD(list);
602 
603 	page_node = page_to_nid(page);
604 	n = get_node(cachep, page_node);
605 
606 	spin_lock(&n->list_lock);
607 	free_block(cachep, &objp, 1, page_node, &list);
608 	spin_unlock(&n->list_lock);
609 
610 	slabs_destroy(cachep, &list);
611 }
612 
613 /*
614  * Transfer objects in one arraycache to another.
615  * Locking must be handled by the caller.
616  *
617  * Return the number of entries transferred.
618  */
619 static int transfer_objects(struct array_cache *to,
620 		struct array_cache *from, unsigned int max)
621 {
622 	/* Figure out how many entries to transfer */
623 	int nr = min3(from->avail, max, to->limit - to->avail);
624 
625 	if (!nr)
626 		return 0;
627 
628 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
629 			sizeof(void *) *nr);
630 
631 	from->avail -= nr;
632 	to->avail += nr;
633 	return nr;
634 }
635 
636 #ifndef CONFIG_NUMA
637 
638 #define drain_alien_cache(cachep, alien) do { } while (0)
639 #define reap_alien(cachep, n) do { } while (0)
640 
641 static inline struct alien_cache **alloc_alien_cache(int node,
642 						int limit, gfp_t gfp)
643 {
644 	return NULL;
645 }
646 
647 static inline void free_alien_cache(struct alien_cache **ac_ptr)
648 {
649 }
650 
651 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
652 {
653 	return 0;
654 }
655 
656 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
657 		gfp_t flags)
658 {
659 	return NULL;
660 }
661 
662 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
663 		 gfp_t flags, int nodeid)
664 {
665 	return NULL;
666 }
667 
668 static inline gfp_t gfp_exact_node(gfp_t flags)
669 {
670 	return flags & ~__GFP_NOFAIL;
671 }
672 
673 #else	/* CONFIG_NUMA */
674 
675 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
676 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
677 
678 static struct alien_cache *__alloc_alien_cache(int node, int entries,
679 						int batch, gfp_t gfp)
680 {
681 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
682 	struct alien_cache *alc = NULL;
683 
684 	alc = kmalloc_node(memsize, gfp, node);
685 	init_arraycache(&alc->ac, entries, batch);
686 	spin_lock_init(&alc->lock);
687 	return alc;
688 }
689 
690 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
691 {
692 	struct alien_cache **alc_ptr;
693 	size_t memsize = sizeof(void *) * nr_node_ids;
694 	int i;
695 
696 	if (limit > 1)
697 		limit = 12;
698 	alc_ptr = kzalloc_node(memsize, gfp, node);
699 	if (!alc_ptr)
700 		return NULL;
701 
702 	for_each_node(i) {
703 		if (i == node || !node_online(i))
704 			continue;
705 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
706 		if (!alc_ptr[i]) {
707 			for (i--; i >= 0; i--)
708 				kfree(alc_ptr[i]);
709 			kfree(alc_ptr);
710 			return NULL;
711 		}
712 	}
713 	return alc_ptr;
714 }
715 
716 static void free_alien_cache(struct alien_cache **alc_ptr)
717 {
718 	int i;
719 
720 	if (!alc_ptr)
721 		return;
722 	for_each_node(i)
723 	    kfree(alc_ptr[i]);
724 	kfree(alc_ptr);
725 }
726 
727 static void __drain_alien_cache(struct kmem_cache *cachep,
728 				struct array_cache *ac, int node,
729 				struct list_head *list)
730 {
731 	struct kmem_cache_node *n = get_node(cachep, node);
732 
733 	if (ac->avail) {
734 		spin_lock(&n->list_lock);
735 		/*
736 		 * Stuff objects into the remote nodes shared array first.
737 		 * That way we could avoid the overhead of putting the objects
738 		 * into the free lists and getting them back later.
739 		 */
740 		if (n->shared)
741 			transfer_objects(n->shared, ac, ac->limit);
742 
743 		free_block(cachep, ac->entry, ac->avail, node, list);
744 		ac->avail = 0;
745 		spin_unlock(&n->list_lock);
746 	}
747 }
748 
749 /*
750  * Called from cache_reap() to regularly drain alien caches round robin.
751  */
752 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
753 {
754 	int node = __this_cpu_read(slab_reap_node);
755 
756 	if (n->alien) {
757 		struct alien_cache *alc = n->alien[node];
758 		struct array_cache *ac;
759 
760 		if (alc) {
761 			ac = &alc->ac;
762 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
763 				LIST_HEAD(list);
764 
765 				__drain_alien_cache(cachep, ac, node, &list);
766 				spin_unlock_irq(&alc->lock);
767 				slabs_destroy(cachep, &list);
768 			}
769 		}
770 	}
771 }
772 
773 static void drain_alien_cache(struct kmem_cache *cachep,
774 				struct alien_cache **alien)
775 {
776 	int i = 0;
777 	struct alien_cache *alc;
778 	struct array_cache *ac;
779 	unsigned long flags;
780 
781 	for_each_online_node(i) {
782 		alc = alien[i];
783 		if (alc) {
784 			LIST_HEAD(list);
785 
786 			ac = &alc->ac;
787 			spin_lock_irqsave(&alc->lock, flags);
788 			__drain_alien_cache(cachep, ac, i, &list);
789 			spin_unlock_irqrestore(&alc->lock, flags);
790 			slabs_destroy(cachep, &list);
791 		}
792 	}
793 }
794 
795 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
796 				int node, int page_node)
797 {
798 	struct kmem_cache_node *n;
799 	struct alien_cache *alien = NULL;
800 	struct array_cache *ac;
801 	LIST_HEAD(list);
802 
803 	n = get_node(cachep, node);
804 	STATS_INC_NODEFREES(cachep);
805 	if (n->alien && n->alien[page_node]) {
806 		alien = n->alien[page_node];
807 		ac = &alien->ac;
808 		spin_lock(&alien->lock);
809 		if (unlikely(ac->avail == ac->limit)) {
810 			STATS_INC_ACOVERFLOW(cachep);
811 			__drain_alien_cache(cachep, ac, page_node, &list);
812 		}
813 		ac->entry[ac->avail++] = objp;
814 		spin_unlock(&alien->lock);
815 		slabs_destroy(cachep, &list);
816 	} else {
817 		n = get_node(cachep, page_node);
818 		spin_lock(&n->list_lock);
819 		free_block(cachep, &objp, 1, page_node, &list);
820 		spin_unlock(&n->list_lock);
821 		slabs_destroy(cachep, &list);
822 	}
823 	return 1;
824 }
825 
826 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
827 {
828 	int page_node = page_to_nid(virt_to_page(objp));
829 	int node = numa_mem_id();
830 	/*
831 	 * Make sure we are not freeing a object from another node to the array
832 	 * cache on this cpu.
833 	 */
834 	if (likely(node == page_node))
835 		return 0;
836 
837 	return __cache_free_alien(cachep, objp, node, page_node);
838 }
839 
840 /*
841  * Construct gfp mask to allocate from a specific node but do not reclaim or
842  * warn about failures.
843  */
844 static inline gfp_t gfp_exact_node(gfp_t flags)
845 {
846 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
847 }
848 #endif
849 
850 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
851 {
852 	struct kmem_cache_node *n;
853 
854 	/*
855 	 * Set up the kmem_cache_node for cpu before we can
856 	 * begin anything. Make sure some other cpu on this
857 	 * node has not already allocated this
858 	 */
859 	n = get_node(cachep, node);
860 	if (n) {
861 		spin_lock_irq(&n->list_lock);
862 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
863 				cachep->num;
864 		spin_unlock_irq(&n->list_lock);
865 
866 		return 0;
867 	}
868 
869 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
870 	if (!n)
871 		return -ENOMEM;
872 
873 	kmem_cache_node_init(n);
874 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
875 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
876 
877 	n->free_limit =
878 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
879 
880 	/*
881 	 * The kmem_cache_nodes don't come and go as CPUs
882 	 * come and go.  slab_mutex is sufficient
883 	 * protection here.
884 	 */
885 	cachep->node[node] = n;
886 
887 	return 0;
888 }
889 
890 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
891 /*
892  * Allocates and initializes node for a node on each slab cache, used for
893  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
894  * will be allocated off-node since memory is not yet online for the new node.
895  * When hotplugging memory or a cpu, existing node are not replaced if
896  * already in use.
897  *
898  * Must hold slab_mutex.
899  */
900 static int init_cache_node_node(int node)
901 {
902 	int ret;
903 	struct kmem_cache *cachep;
904 
905 	list_for_each_entry(cachep, &slab_caches, list) {
906 		ret = init_cache_node(cachep, node, GFP_KERNEL);
907 		if (ret)
908 			return ret;
909 	}
910 
911 	return 0;
912 }
913 #endif
914 
915 static int setup_kmem_cache_node(struct kmem_cache *cachep,
916 				int node, gfp_t gfp, bool force_change)
917 {
918 	int ret = -ENOMEM;
919 	struct kmem_cache_node *n;
920 	struct array_cache *old_shared = NULL;
921 	struct array_cache *new_shared = NULL;
922 	struct alien_cache **new_alien = NULL;
923 	LIST_HEAD(list);
924 
925 	if (use_alien_caches) {
926 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
927 		if (!new_alien)
928 			goto fail;
929 	}
930 
931 	if (cachep->shared) {
932 		new_shared = alloc_arraycache(node,
933 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
934 		if (!new_shared)
935 			goto fail;
936 	}
937 
938 	ret = init_cache_node(cachep, node, gfp);
939 	if (ret)
940 		goto fail;
941 
942 	n = get_node(cachep, node);
943 	spin_lock_irq(&n->list_lock);
944 	if (n->shared && force_change) {
945 		free_block(cachep, n->shared->entry,
946 				n->shared->avail, node, &list);
947 		n->shared->avail = 0;
948 	}
949 
950 	if (!n->shared || force_change) {
951 		old_shared = n->shared;
952 		n->shared = new_shared;
953 		new_shared = NULL;
954 	}
955 
956 	if (!n->alien) {
957 		n->alien = new_alien;
958 		new_alien = NULL;
959 	}
960 
961 	spin_unlock_irq(&n->list_lock);
962 	slabs_destroy(cachep, &list);
963 
964 	/*
965 	 * To protect lockless access to n->shared during irq disabled context.
966 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
967 	 * guaranteed to be valid until irq is re-enabled, because it will be
968 	 * freed after synchronize_sched().
969 	 */
970 	if (old_shared && force_change)
971 		synchronize_sched();
972 
973 fail:
974 	kfree(old_shared);
975 	kfree(new_shared);
976 	free_alien_cache(new_alien);
977 
978 	return ret;
979 }
980 
981 #ifdef CONFIG_SMP
982 
983 static void cpuup_canceled(long cpu)
984 {
985 	struct kmem_cache *cachep;
986 	struct kmem_cache_node *n = NULL;
987 	int node = cpu_to_mem(cpu);
988 	const struct cpumask *mask = cpumask_of_node(node);
989 
990 	list_for_each_entry(cachep, &slab_caches, list) {
991 		struct array_cache *nc;
992 		struct array_cache *shared;
993 		struct alien_cache **alien;
994 		LIST_HEAD(list);
995 
996 		n = get_node(cachep, node);
997 		if (!n)
998 			continue;
999 
1000 		spin_lock_irq(&n->list_lock);
1001 
1002 		/* Free limit for this kmem_cache_node */
1003 		n->free_limit -= cachep->batchcount;
1004 
1005 		/* cpu is dead; no one can alloc from it. */
1006 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1007 		if (nc) {
1008 			free_block(cachep, nc->entry, nc->avail, node, &list);
1009 			nc->avail = 0;
1010 		}
1011 
1012 		if (!cpumask_empty(mask)) {
1013 			spin_unlock_irq(&n->list_lock);
1014 			goto free_slab;
1015 		}
1016 
1017 		shared = n->shared;
1018 		if (shared) {
1019 			free_block(cachep, shared->entry,
1020 				   shared->avail, node, &list);
1021 			n->shared = NULL;
1022 		}
1023 
1024 		alien = n->alien;
1025 		n->alien = NULL;
1026 
1027 		spin_unlock_irq(&n->list_lock);
1028 
1029 		kfree(shared);
1030 		if (alien) {
1031 			drain_alien_cache(cachep, alien);
1032 			free_alien_cache(alien);
1033 		}
1034 
1035 free_slab:
1036 		slabs_destroy(cachep, &list);
1037 	}
1038 	/*
1039 	 * In the previous loop, all the objects were freed to
1040 	 * the respective cache's slabs,  now we can go ahead and
1041 	 * shrink each nodelist to its limit.
1042 	 */
1043 	list_for_each_entry(cachep, &slab_caches, list) {
1044 		n = get_node(cachep, node);
1045 		if (!n)
1046 			continue;
1047 		drain_freelist(cachep, n, INT_MAX);
1048 	}
1049 }
1050 
1051 static int cpuup_prepare(long cpu)
1052 {
1053 	struct kmem_cache *cachep;
1054 	int node = cpu_to_mem(cpu);
1055 	int err;
1056 
1057 	/*
1058 	 * We need to do this right in the beginning since
1059 	 * alloc_arraycache's are going to use this list.
1060 	 * kmalloc_node allows us to add the slab to the right
1061 	 * kmem_cache_node and not this cpu's kmem_cache_node
1062 	 */
1063 	err = init_cache_node_node(node);
1064 	if (err < 0)
1065 		goto bad;
1066 
1067 	/*
1068 	 * Now we can go ahead with allocating the shared arrays and
1069 	 * array caches
1070 	 */
1071 	list_for_each_entry(cachep, &slab_caches, list) {
1072 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1073 		if (err)
1074 			goto bad;
1075 	}
1076 
1077 	return 0;
1078 bad:
1079 	cpuup_canceled(cpu);
1080 	return -ENOMEM;
1081 }
1082 
1083 int slab_prepare_cpu(unsigned int cpu)
1084 {
1085 	int err;
1086 
1087 	mutex_lock(&slab_mutex);
1088 	err = cpuup_prepare(cpu);
1089 	mutex_unlock(&slab_mutex);
1090 	return err;
1091 }
1092 
1093 /*
1094  * This is called for a failed online attempt and for a successful
1095  * offline.
1096  *
1097  * Even if all the cpus of a node are down, we don't free the
1098  * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1099  * a kmalloc allocation from another cpu for memory from the node of
1100  * the cpu going down.  The list3 structure is usually allocated from
1101  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1102  */
1103 int slab_dead_cpu(unsigned int cpu)
1104 {
1105 	mutex_lock(&slab_mutex);
1106 	cpuup_canceled(cpu);
1107 	mutex_unlock(&slab_mutex);
1108 	return 0;
1109 }
1110 #endif
1111 
1112 static int slab_online_cpu(unsigned int cpu)
1113 {
1114 	start_cpu_timer(cpu);
1115 	return 0;
1116 }
1117 
1118 static int slab_offline_cpu(unsigned int cpu)
1119 {
1120 	/*
1121 	 * Shutdown cache reaper. Note that the slab_mutex is held so
1122 	 * that if cache_reap() is invoked it cannot do anything
1123 	 * expensive but will only modify reap_work and reschedule the
1124 	 * timer.
1125 	 */
1126 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1127 	/* Now the cache_reaper is guaranteed to be not running. */
1128 	per_cpu(slab_reap_work, cpu).work.func = NULL;
1129 	return 0;
1130 }
1131 
1132 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1133 /*
1134  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1135  * Returns -EBUSY if all objects cannot be drained so that the node is not
1136  * removed.
1137  *
1138  * Must hold slab_mutex.
1139  */
1140 static int __meminit drain_cache_node_node(int node)
1141 {
1142 	struct kmem_cache *cachep;
1143 	int ret = 0;
1144 
1145 	list_for_each_entry(cachep, &slab_caches, list) {
1146 		struct kmem_cache_node *n;
1147 
1148 		n = get_node(cachep, node);
1149 		if (!n)
1150 			continue;
1151 
1152 		drain_freelist(cachep, n, INT_MAX);
1153 
1154 		if (!list_empty(&n->slabs_full) ||
1155 		    !list_empty(&n->slabs_partial)) {
1156 			ret = -EBUSY;
1157 			break;
1158 		}
1159 	}
1160 	return ret;
1161 }
1162 
1163 static int __meminit slab_memory_callback(struct notifier_block *self,
1164 					unsigned long action, void *arg)
1165 {
1166 	struct memory_notify *mnb = arg;
1167 	int ret = 0;
1168 	int nid;
1169 
1170 	nid = mnb->status_change_nid;
1171 	if (nid < 0)
1172 		goto out;
1173 
1174 	switch (action) {
1175 	case MEM_GOING_ONLINE:
1176 		mutex_lock(&slab_mutex);
1177 		ret = init_cache_node_node(nid);
1178 		mutex_unlock(&slab_mutex);
1179 		break;
1180 	case MEM_GOING_OFFLINE:
1181 		mutex_lock(&slab_mutex);
1182 		ret = drain_cache_node_node(nid);
1183 		mutex_unlock(&slab_mutex);
1184 		break;
1185 	case MEM_ONLINE:
1186 	case MEM_OFFLINE:
1187 	case MEM_CANCEL_ONLINE:
1188 	case MEM_CANCEL_OFFLINE:
1189 		break;
1190 	}
1191 out:
1192 	return notifier_from_errno(ret);
1193 }
1194 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1195 
1196 /*
1197  * swap the static kmem_cache_node with kmalloced memory
1198  */
1199 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1200 				int nodeid)
1201 {
1202 	struct kmem_cache_node *ptr;
1203 
1204 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1205 	BUG_ON(!ptr);
1206 
1207 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1208 	/*
1209 	 * Do not assume that spinlocks can be initialized via memcpy:
1210 	 */
1211 	spin_lock_init(&ptr->list_lock);
1212 
1213 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1214 	cachep->node[nodeid] = ptr;
1215 }
1216 
1217 /*
1218  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1219  * size of kmem_cache_node.
1220  */
1221 static void __init set_up_node(struct kmem_cache *cachep, int index)
1222 {
1223 	int node;
1224 
1225 	for_each_online_node(node) {
1226 		cachep->node[node] = &init_kmem_cache_node[index + node];
1227 		cachep->node[node]->next_reap = jiffies +
1228 		    REAPTIMEOUT_NODE +
1229 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1230 	}
1231 }
1232 
1233 /*
1234  * Initialisation.  Called after the page allocator have been initialised and
1235  * before smp_init().
1236  */
1237 void __init kmem_cache_init(void)
1238 {
1239 	int i;
1240 
1241 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1242 					sizeof(struct rcu_head));
1243 	kmem_cache = &kmem_cache_boot;
1244 
1245 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1246 		use_alien_caches = 0;
1247 
1248 	for (i = 0; i < NUM_INIT_LISTS; i++)
1249 		kmem_cache_node_init(&init_kmem_cache_node[i]);
1250 
1251 	/*
1252 	 * Fragmentation resistance on low memory - only use bigger
1253 	 * page orders on machines with more than 32MB of memory if
1254 	 * not overridden on the command line.
1255 	 */
1256 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1257 		slab_max_order = SLAB_MAX_ORDER_HI;
1258 
1259 	/* Bootstrap is tricky, because several objects are allocated
1260 	 * from caches that do not exist yet:
1261 	 * 1) initialize the kmem_cache cache: it contains the struct
1262 	 *    kmem_cache structures of all caches, except kmem_cache itself:
1263 	 *    kmem_cache is statically allocated.
1264 	 *    Initially an __init data area is used for the head array and the
1265 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1266 	 *    array at the end of the bootstrap.
1267 	 * 2) Create the first kmalloc cache.
1268 	 *    The struct kmem_cache for the new cache is allocated normally.
1269 	 *    An __init data area is used for the head array.
1270 	 * 3) Create the remaining kmalloc caches, with minimally sized
1271 	 *    head arrays.
1272 	 * 4) Replace the __init data head arrays for kmem_cache and the first
1273 	 *    kmalloc cache with kmalloc allocated arrays.
1274 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1275 	 *    the other cache's with kmalloc allocated memory.
1276 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1277 	 */
1278 
1279 	/* 1) create the kmem_cache */
1280 
1281 	/*
1282 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1283 	 */
1284 	create_boot_cache(kmem_cache, "kmem_cache",
1285 		offsetof(struct kmem_cache, node) +
1286 				  nr_node_ids * sizeof(struct kmem_cache_node *),
1287 				  SLAB_HWCACHE_ALIGN);
1288 	list_add(&kmem_cache->list, &slab_caches);
1289 	slab_state = PARTIAL;
1290 
1291 	/*
1292 	 * Initialize the caches that provide memory for the  kmem_cache_node
1293 	 * structures first.  Without this, further allocations will bug.
1294 	 */
1295 	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1296 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1297 	slab_state = PARTIAL_NODE;
1298 	setup_kmalloc_cache_index_table();
1299 
1300 	slab_early_init = 0;
1301 
1302 	/* 5) Replace the bootstrap kmem_cache_node */
1303 	{
1304 		int nid;
1305 
1306 		for_each_online_node(nid) {
1307 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1308 
1309 			init_list(kmalloc_caches[INDEX_NODE],
1310 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1311 		}
1312 	}
1313 
1314 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1315 }
1316 
1317 void __init kmem_cache_init_late(void)
1318 {
1319 	struct kmem_cache *cachep;
1320 
1321 	slab_state = UP;
1322 
1323 	/* 6) resize the head arrays to their final sizes */
1324 	mutex_lock(&slab_mutex);
1325 	list_for_each_entry(cachep, &slab_caches, list)
1326 		if (enable_cpucache(cachep, GFP_NOWAIT))
1327 			BUG();
1328 	mutex_unlock(&slab_mutex);
1329 
1330 	/* Done! */
1331 	slab_state = FULL;
1332 
1333 #ifdef CONFIG_NUMA
1334 	/*
1335 	 * Register a memory hotplug callback that initializes and frees
1336 	 * node.
1337 	 */
1338 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1339 #endif
1340 
1341 	/*
1342 	 * The reap timers are started later, with a module init call: That part
1343 	 * of the kernel is not yet operational.
1344 	 */
1345 }
1346 
1347 static int __init cpucache_init(void)
1348 {
1349 	int ret;
1350 
1351 	/*
1352 	 * Register the timers that return unneeded pages to the page allocator
1353 	 */
1354 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1355 				slab_online_cpu, slab_offline_cpu);
1356 	WARN_ON(ret < 0);
1357 
1358 	/* Done! */
1359 	slab_state = FULL;
1360 	return 0;
1361 }
1362 __initcall(cpucache_init);
1363 
1364 static noinline void
1365 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1366 {
1367 #if DEBUG
1368 	struct kmem_cache_node *n;
1369 	struct page *page;
1370 	unsigned long flags;
1371 	int node;
1372 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1373 				      DEFAULT_RATELIMIT_BURST);
1374 
1375 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1376 		return;
1377 
1378 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1379 		nodeid, gfpflags, &gfpflags);
1380 	pr_warn("  cache: %s, object size: %d, order: %d\n",
1381 		cachep->name, cachep->size, cachep->gfporder);
1382 
1383 	for_each_kmem_cache_node(cachep, node, n) {
1384 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1385 		unsigned long active_slabs = 0, num_slabs = 0;
1386 		unsigned long num_slabs_partial = 0, num_slabs_free = 0;
1387 		unsigned long num_slabs_full;
1388 
1389 		spin_lock_irqsave(&n->list_lock, flags);
1390 		num_slabs = n->num_slabs;
1391 		list_for_each_entry(page, &n->slabs_partial, lru) {
1392 			active_objs += page->active;
1393 			num_slabs_partial++;
1394 		}
1395 		list_for_each_entry(page, &n->slabs_free, lru)
1396 			num_slabs_free++;
1397 
1398 		free_objects += n->free_objects;
1399 		spin_unlock_irqrestore(&n->list_lock, flags);
1400 
1401 		num_objs = num_slabs * cachep->num;
1402 		active_slabs = num_slabs - num_slabs_free;
1403 		num_slabs_full = num_slabs -
1404 			(num_slabs_partial + num_slabs_free);
1405 		active_objs += (num_slabs_full * cachep->num);
1406 
1407 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1408 			node, active_slabs, num_slabs, active_objs, num_objs,
1409 			free_objects);
1410 	}
1411 #endif
1412 }
1413 
1414 /*
1415  * Interface to system's page allocator. No need to hold the
1416  * kmem_cache_node ->list_lock.
1417  *
1418  * If we requested dmaable memory, we will get it. Even if we
1419  * did not request dmaable memory, we might get it, but that
1420  * would be relatively rare and ignorable.
1421  */
1422 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1423 								int nodeid)
1424 {
1425 	struct page *page;
1426 	int nr_pages;
1427 
1428 	flags |= cachep->allocflags;
1429 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1430 		flags |= __GFP_RECLAIMABLE;
1431 
1432 	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1433 	if (!page) {
1434 		slab_out_of_memory(cachep, flags, nodeid);
1435 		return NULL;
1436 	}
1437 
1438 	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1439 		__free_pages(page, cachep->gfporder);
1440 		return NULL;
1441 	}
1442 
1443 	nr_pages = (1 << cachep->gfporder);
1444 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1445 		add_zone_page_state(page_zone(page),
1446 			NR_SLAB_RECLAIMABLE, nr_pages);
1447 	else
1448 		add_zone_page_state(page_zone(page),
1449 			NR_SLAB_UNRECLAIMABLE, nr_pages);
1450 
1451 	__SetPageSlab(page);
1452 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1453 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1454 		SetPageSlabPfmemalloc(page);
1455 
1456 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1457 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1458 
1459 		if (cachep->ctor)
1460 			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1461 		else
1462 			kmemcheck_mark_unallocated_pages(page, nr_pages);
1463 	}
1464 
1465 	return page;
1466 }
1467 
1468 /*
1469  * Interface to system's page release.
1470  */
1471 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1472 {
1473 	int order = cachep->gfporder;
1474 	unsigned long nr_freed = (1 << order);
1475 
1476 	kmemcheck_free_shadow(page, order);
1477 
1478 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1479 		sub_zone_page_state(page_zone(page),
1480 				NR_SLAB_RECLAIMABLE, nr_freed);
1481 	else
1482 		sub_zone_page_state(page_zone(page),
1483 				NR_SLAB_UNRECLAIMABLE, nr_freed);
1484 
1485 	BUG_ON(!PageSlab(page));
1486 	__ClearPageSlabPfmemalloc(page);
1487 	__ClearPageSlab(page);
1488 	page_mapcount_reset(page);
1489 	page->mapping = NULL;
1490 
1491 	if (current->reclaim_state)
1492 		current->reclaim_state->reclaimed_slab += nr_freed;
1493 	memcg_uncharge_slab(page, order, cachep);
1494 	__free_pages(page, order);
1495 }
1496 
1497 static void kmem_rcu_free(struct rcu_head *head)
1498 {
1499 	struct kmem_cache *cachep;
1500 	struct page *page;
1501 
1502 	page = container_of(head, struct page, rcu_head);
1503 	cachep = page->slab_cache;
1504 
1505 	kmem_freepages(cachep, page);
1506 }
1507 
1508 #if DEBUG
1509 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1510 {
1511 	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1512 		(cachep->size % PAGE_SIZE) == 0)
1513 		return true;
1514 
1515 	return false;
1516 }
1517 
1518 #ifdef CONFIG_DEBUG_PAGEALLOC
1519 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1520 			    unsigned long caller)
1521 {
1522 	int size = cachep->object_size;
1523 
1524 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1525 
1526 	if (size < 5 * sizeof(unsigned long))
1527 		return;
1528 
1529 	*addr++ = 0x12345678;
1530 	*addr++ = caller;
1531 	*addr++ = smp_processor_id();
1532 	size -= 3 * sizeof(unsigned long);
1533 	{
1534 		unsigned long *sptr = &caller;
1535 		unsigned long svalue;
1536 
1537 		while (!kstack_end(sptr)) {
1538 			svalue = *sptr++;
1539 			if (kernel_text_address(svalue)) {
1540 				*addr++ = svalue;
1541 				size -= sizeof(unsigned long);
1542 				if (size <= sizeof(unsigned long))
1543 					break;
1544 			}
1545 		}
1546 
1547 	}
1548 	*addr++ = 0x87654321;
1549 }
1550 
1551 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1552 				int map, unsigned long caller)
1553 {
1554 	if (!is_debug_pagealloc_cache(cachep))
1555 		return;
1556 
1557 	if (caller)
1558 		store_stackinfo(cachep, objp, caller);
1559 
1560 	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1561 }
1562 
1563 #else
1564 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1565 				int map, unsigned long caller) {}
1566 
1567 #endif
1568 
1569 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1570 {
1571 	int size = cachep->object_size;
1572 	addr = &((char *)addr)[obj_offset(cachep)];
1573 
1574 	memset(addr, val, size);
1575 	*(unsigned char *)(addr + size - 1) = POISON_END;
1576 }
1577 
1578 static void dump_line(char *data, int offset, int limit)
1579 {
1580 	int i;
1581 	unsigned char error = 0;
1582 	int bad_count = 0;
1583 
1584 	pr_err("%03x: ", offset);
1585 	for (i = 0; i < limit; i++) {
1586 		if (data[offset + i] != POISON_FREE) {
1587 			error = data[offset + i];
1588 			bad_count++;
1589 		}
1590 	}
1591 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1592 			&data[offset], limit, 1);
1593 
1594 	if (bad_count == 1) {
1595 		error ^= POISON_FREE;
1596 		if (!(error & (error - 1))) {
1597 			pr_err("Single bit error detected. Probably bad RAM.\n");
1598 #ifdef CONFIG_X86
1599 			pr_err("Run memtest86+ or a similar memory test tool.\n");
1600 #else
1601 			pr_err("Run a memory test tool.\n");
1602 #endif
1603 		}
1604 	}
1605 }
1606 #endif
1607 
1608 #if DEBUG
1609 
1610 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1611 {
1612 	int i, size;
1613 	char *realobj;
1614 
1615 	if (cachep->flags & SLAB_RED_ZONE) {
1616 		pr_err("Redzone: 0x%llx/0x%llx\n",
1617 		       *dbg_redzone1(cachep, objp),
1618 		       *dbg_redzone2(cachep, objp));
1619 	}
1620 
1621 	if (cachep->flags & SLAB_STORE_USER) {
1622 		pr_err("Last user: [<%p>](%pSR)\n",
1623 		       *dbg_userword(cachep, objp),
1624 		       *dbg_userword(cachep, objp));
1625 	}
1626 	realobj = (char *)objp + obj_offset(cachep);
1627 	size = cachep->object_size;
1628 	for (i = 0; i < size && lines; i += 16, lines--) {
1629 		int limit;
1630 		limit = 16;
1631 		if (i + limit > size)
1632 			limit = size - i;
1633 		dump_line(realobj, i, limit);
1634 	}
1635 }
1636 
1637 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1638 {
1639 	char *realobj;
1640 	int size, i;
1641 	int lines = 0;
1642 
1643 	if (is_debug_pagealloc_cache(cachep))
1644 		return;
1645 
1646 	realobj = (char *)objp + obj_offset(cachep);
1647 	size = cachep->object_size;
1648 
1649 	for (i = 0; i < size; i++) {
1650 		char exp = POISON_FREE;
1651 		if (i == size - 1)
1652 			exp = POISON_END;
1653 		if (realobj[i] != exp) {
1654 			int limit;
1655 			/* Mismatch ! */
1656 			/* Print header */
1657 			if (lines == 0) {
1658 				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1659 				       print_tainted(), cachep->name,
1660 				       realobj, size);
1661 				print_objinfo(cachep, objp, 0);
1662 			}
1663 			/* Hexdump the affected line */
1664 			i = (i / 16) * 16;
1665 			limit = 16;
1666 			if (i + limit > size)
1667 				limit = size - i;
1668 			dump_line(realobj, i, limit);
1669 			i += 16;
1670 			lines++;
1671 			/* Limit to 5 lines */
1672 			if (lines > 5)
1673 				break;
1674 		}
1675 	}
1676 	if (lines != 0) {
1677 		/* Print some data about the neighboring objects, if they
1678 		 * exist:
1679 		 */
1680 		struct page *page = virt_to_head_page(objp);
1681 		unsigned int objnr;
1682 
1683 		objnr = obj_to_index(cachep, page, objp);
1684 		if (objnr) {
1685 			objp = index_to_obj(cachep, page, objnr - 1);
1686 			realobj = (char *)objp + obj_offset(cachep);
1687 			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1688 			print_objinfo(cachep, objp, 2);
1689 		}
1690 		if (objnr + 1 < cachep->num) {
1691 			objp = index_to_obj(cachep, page, objnr + 1);
1692 			realobj = (char *)objp + obj_offset(cachep);
1693 			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1694 			print_objinfo(cachep, objp, 2);
1695 		}
1696 	}
1697 }
1698 #endif
1699 
1700 #if DEBUG
1701 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1702 						struct page *page)
1703 {
1704 	int i;
1705 
1706 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1707 		poison_obj(cachep, page->freelist - obj_offset(cachep),
1708 			POISON_FREE);
1709 	}
1710 
1711 	for (i = 0; i < cachep->num; i++) {
1712 		void *objp = index_to_obj(cachep, page, i);
1713 
1714 		if (cachep->flags & SLAB_POISON) {
1715 			check_poison_obj(cachep, objp);
1716 			slab_kernel_map(cachep, objp, 1, 0);
1717 		}
1718 		if (cachep->flags & SLAB_RED_ZONE) {
1719 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1720 				slab_error(cachep, "start of a freed object was overwritten");
1721 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1722 				slab_error(cachep, "end of a freed object was overwritten");
1723 		}
1724 	}
1725 }
1726 #else
1727 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1728 						struct page *page)
1729 {
1730 }
1731 #endif
1732 
1733 /**
1734  * slab_destroy - destroy and release all objects in a slab
1735  * @cachep: cache pointer being destroyed
1736  * @page: page pointer being destroyed
1737  *
1738  * Destroy all the objs in a slab page, and release the mem back to the system.
1739  * Before calling the slab page must have been unlinked from the cache. The
1740  * kmem_cache_node ->list_lock is not held/needed.
1741  */
1742 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1743 {
1744 	void *freelist;
1745 
1746 	freelist = page->freelist;
1747 	slab_destroy_debugcheck(cachep, page);
1748 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1749 		call_rcu(&page->rcu_head, kmem_rcu_free);
1750 	else
1751 		kmem_freepages(cachep, page);
1752 
1753 	/*
1754 	 * From now on, we don't use freelist
1755 	 * although actual page can be freed in rcu context
1756 	 */
1757 	if (OFF_SLAB(cachep))
1758 		kmem_cache_free(cachep->freelist_cache, freelist);
1759 }
1760 
1761 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1762 {
1763 	struct page *page, *n;
1764 
1765 	list_for_each_entry_safe(page, n, list, lru) {
1766 		list_del(&page->lru);
1767 		slab_destroy(cachep, page);
1768 	}
1769 }
1770 
1771 /**
1772  * calculate_slab_order - calculate size (page order) of slabs
1773  * @cachep: pointer to the cache that is being created
1774  * @size: size of objects to be created in this cache.
1775  * @flags: slab allocation flags
1776  *
1777  * Also calculates the number of objects per slab.
1778  *
1779  * This could be made much more intelligent.  For now, try to avoid using
1780  * high order pages for slabs.  When the gfp() functions are more friendly
1781  * towards high-order requests, this should be changed.
1782  */
1783 static size_t calculate_slab_order(struct kmem_cache *cachep,
1784 				size_t size, unsigned long flags)
1785 {
1786 	size_t left_over = 0;
1787 	int gfporder;
1788 
1789 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1790 		unsigned int num;
1791 		size_t remainder;
1792 
1793 		num = cache_estimate(gfporder, size, flags, &remainder);
1794 		if (!num)
1795 			continue;
1796 
1797 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1798 		if (num > SLAB_OBJ_MAX_NUM)
1799 			break;
1800 
1801 		if (flags & CFLGS_OFF_SLAB) {
1802 			struct kmem_cache *freelist_cache;
1803 			size_t freelist_size;
1804 
1805 			freelist_size = num * sizeof(freelist_idx_t);
1806 			freelist_cache = kmalloc_slab(freelist_size, 0u);
1807 			if (!freelist_cache)
1808 				continue;
1809 
1810 			/*
1811 			 * Needed to avoid possible looping condition
1812 			 * in cache_grow_begin()
1813 			 */
1814 			if (OFF_SLAB(freelist_cache))
1815 				continue;
1816 
1817 			/* check if off slab has enough benefit */
1818 			if (freelist_cache->size > cachep->size / 2)
1819 				continue;
1820 		}
1821 
1822 		/* Found something acceptable - save it away */
1823 		cachep->num = num;
1824 		cachep->gfporder = gfporder;
1825 		left_over = remainder;
1826 
1827 		/*
1828 		 * A VFS-reclaimable slab tends to have most allocations
1829 		 * as GFP_NOFS and we really don't want to have to be allocating
1830 		 * higher-order pages when we are unable to shrink dcache.
1831 		 */
1832 		if (flags & SLAB_RECLAIM_ACCOUNT)
1833 			break;
1834 
1835 		/*
1836 		 * Large number of objects is good, but very large slabs are
1837 		 * currently bad for the gfp()s.
1838 		 */
1839 		if (gfporder >= slab_max_order)
1840 			break;
1841 
1842 		/*
1843 		 * Acceptable internal fragmentation?
1844 		 */
1845 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1846 			break;
1847 	}
1848 	return left_over;
1849 }
1850 
1851 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1852 		struct kmem_cache *cachep, int entries, int batchcount)
1853 {
1854 	int cpu;
1855 	size_t size;
1856 	struct array_cache __percpu *cpu_cache;
1857 
1858 	size = sizeof(void *) * entries + sizeof(struct array_cache);
1859 	cpu_cache = __alloc_percpu(size, sizeof(void *));
1860 
1861 	if (!cpu_cache)
1862 		return NULL;
1863 
1864 	for_each_possible_cpu(cpu) {
1865 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1866 				entries, batchcount);
1867 	}
1868 
1869 	return cpu_cache;
1870 }
1871 
1872 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1873 {
1874 	if (slab_state >= FULL)
1875 		return enable_cpucache(cachep, gfp);
1876 
1877 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1878 	if (!cachep->cpu_cache)
1879 		return 1;
1880 
1881 	if (slab_state == DOWN) {
1882 		/* Creation of first cache (kmem_cache). */
1883 		set_up_node(kmem_cache, CACHE_CACHE);
1884 	} else if (slab_state == PARTIAL) {
1885 		/* For kmem_cache_node */
1886 		set_up_node(cachep, SIZE_NODE);
1887 	} else {
1888 		int node;
1889 
1890 		for_each_online_node(node) {
1891 			cachep->node[node] = kmalloc_node(
1892 				sizeof(struct kmem_cache_node), gfp, node);
1893 			BUG_ON(!cachep->node[node]);
1894 			kmem_cache_node_init(cachep->node[node]);
1895 		}
1896 	}
1897 
1898 	cachep->node[numa_mem_id()]->next_reap =
1899 			jiffies + REAPTIMEOUT_NODE +
1900 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1901 
1902 	cpu_cache_get(cachep)->avail = 0;
1903 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1904 	cpu_cache_get(cachep)->batchcount = 1;
1905 	cpu_cache_get(cachep)->touched = 0;
1906 	cachep->batchcount = 1;
1907 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1908 	return 0;
1909 }
1910 
1911 unsigned long kmem_cache_flags(unsigned long object_size,
1912 	unsigned long flags, const char *name,
1913 	void (*ctor)(void *))
1914 {
1915 	return flags;
1916 }
1917 
1918 struct kmem_cache *
1919 __kmem_cache_alias(const char *name, size_t size, size_t align,
1920 		   unsigned long flags, void (*ctor)(void *))
1921 {
1922 	struct kmem_cache *cachep;
1923 
1924 	cachep = find_mergeable(size, align, flags, name, ctor);
1925 	if (cachep) {
1926 		cachep->refcount++;
1927 
1928 		/*
1929 		 * Adjust the object sizes so that we clear
1930 		 * the complete object on kzalloc.
1931 		 */
1932 		cachep->object_size = max_t(int, cachep->object_size, size);
1933 	}
1934 	return cachep;
1935 }
1936 
1937 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1938 			size_t size, unsigned long flags)
1939 {
1940 	size_t left;
1941 
1942 	cachep->num = 0;
1943 
1944 	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1945 		return false;
1946 
1947 	left = calculate_slab_order(cachep, size,
1948 			flags | CFLGS_OBJFREELIST_SLAB);
1949 	if (!cachep->num)
1950 		return false;
1951 
1952 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1953 		return false;
1954 
1955 	cachep->colour = left / cachep->colour_off;
1956 
1957 	return true;
1958 }
1959 
1960 static bool set_off_slab_cache(struct kmem_cache *cachep,
1961 			size_t size, unsigned long flags)
1962 {
1963 	size_t left;
1964 
1965 	cachep->num = 0;
1966 
1967 	/*
1968 	 * Always use on-slab management when SLAB_NOLEAKTRACE
1969 	 * to avoid recursive calls into kmemleak.
1970 	 */
1971 	if (flags & SLAB_NOLEAKTRACE)
1972 		return false;
1973 
1974 	/*
1975 	 * Size is large, assume best to place the slab management obj
1976 	 * off-slab (should allow better packing of objs).
1977 	 */
1978 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1979 	if (!cachep->num)
1980 		return false;
1981 
1982 	/*
1983 	 * If the slab has been placed off-slab, and we have enough space then
1984 	 * move it on-slab. This is at the expense of any extra colouring.
1985 	 */
1986 	if (left >= cachep->num * sizeof(freelist_idx_t))
1987 		return false;
1988 
1989 	cachep->colour = left / cachep->colour_off;
1990 
1991 	return true;
1992 }
1993 
1994 static bool set_on_slab_cache(struct kmem_cache *cachep,
1995 			size_t size, unsigned long flags)
1996 {
1997 	size_t left;
1998 
1999 	cachep->num = 0;
2000 
2001 	left = calculate_slab_order(cachep, size, flags);
2002 	if (!cachep->num)
2003 		return false;
2004 
2005 	cachep->colour = left / cachep->colour_off;
2006 
2007 	return true;
2008 }
2009 
2010 /**
2011  * __kmem_cache_create - Create a cache.
2012  * @cachep: cache management descriptor
2013  * @flags: SLAB flags
2014  *
2015  * Returns a ptr to the cache on success, NULL on failure.
2016  * Cannot be called within a int, but can be interrupted.
2017  * The @ctor is run when new pages are allocated by the cache.
2018  *
2019  * The flags are
2020  *
2021  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2022  * to catch references to uninitialised memory.
2023  *
2024  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2025  * for buffer overruns.
2026  *
2027  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2028  * cacheline.  This can be beneficial if you're counting cycles as closely
2029  * as davem.
2030  */
2031 int
2032 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2033 {
2034 	size_t ralign = BYTES_PER_WORD;
2035 	gfp_t gfp;
2036 	int err;
2037 	size_t size = cachep->size;
2038 
2039 #if DEBUG
2040 #if FORCED_DEBUG
2041 	/*
2042 	 * Enable redzoning and last user accounting, except for caches with
2043 	 * large objects, if the increased size would increase the object size
2044 	 * above the next power of two: caches with object sizes just above a
2045 	 * power of two have a significant amount of internal fragmentation.
2046 	 */
2047 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2048 						2 * sizeof(unsigned long long)))
2049 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2050 	if (!(flags & SLAB_DESTROY_BY_RCU))
2051 		flags |= SLAB_POISON;
2052 #endif
2053 #endif
2054 
2055 	/*
2056 	 * Check that size is in terms of words.  This is needed to avoid
2057 	 * unaligned accesses for some archs when redzoning is used, and makes
2058 	 * sure any on-slab bufctl's are also correctly aligned.
2059 	 */
2060 	if (size & (BYTES_PER_WORD - 1)) {
2061 		size += (BYTES_PER_WORD - 1);
2062 		size &= ~(BYTES_PER_WORD - 1);
2063 	}
2064 
2065 	if (flags & SLAB_RED_ZONE) {
2066 		ralign = REDZONE_ALIGN;
2067 		/* If redzoning, ensure that the second redzone is suitably
2068 		 * aligned, by adjusting the object size accordingly. */
2069 		size += REDZONE_ALIGN - 1;
2070 		size &= ~(REDZONE_ALIGN - 1);
2071 	}
2072 
2073 	/* 3) caller mandated alignment */
2074 	if (ralign < cachep->align) {
2075 		ralign = cachep->align;
2076 	}
2077 	/* disable debug if necessary */
2078 	if (ralign > __alignof__(unsigned long long))
2079 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2080 	/*
2081 	 * 4) Store it.
2082 	 */
2083 	cachep->align = ralign;
2084 	cachep->colour_off = cache_line_size();
2085 	/* Offset must be a multiple of the alignment. */
2086 	if (cachep->colour_off < cachep->align)
2087 		cachep->colour_off = cachep->align;
2088 
2089 	if (slab_is_available())
2090 		gfp = GFP_KERNEL;
2091 	else
2092 		gfp = GFP_NOWAIT;
2093 
2094 #if DEBUG
2095 
2096 	/*
2097 	 * Both debugging options require word-alignment which is calculated
2098 	 * into align above.
2099 	 */
2100 	if (flags & SLAB_RED_ZONE) {
2101 		/* add space for red zone words */
2102 		cachep->obj_offset += sizeof(unsigned long long);
2103 		size += 2 * sizeof(unsigned long long);
2104 	}
2105 	if (flags & SLAB_STORE_USER) {
2106 		/* user store requires one word storage behind the end of
2107 		 * the real object. But if the second red zone needs to be
2108 		 * aligned to 64 bits, we must allow that much space.
2109 		 */
2110 		if (flags & SLAB_RED_ZONE)
2111 			size += REDZONE_ALIGN;
2112 		else
2113 			size += BYTES_PER_WORD;
2114 	}
2115 #endif
2116 
2117 	kasan_cache_create(cachep, &size, &flags);
2118 
2119 	size = ALIGN(size, cachep->align);
2120 	/*
2121 	 * We should restrict the number of objects in a slab to implement
2122 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2123 	 */
2124 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2125 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2126 
2127 #if DEBUG
2128 	/*
2129 	 * To activate debug pagealloc, off-slab management is necessary
2130 	 * requirement. In early phase of initialization, small sized slab
2131 	 * doesn't get initialized so it would not be possible. So, we need
2132 	 * to check size >= 256. It guarantees that all necessary small
2133 	 * sized slab is initialized in current slab initialization sequence.
2134 	 */
2135 	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2136 		size >= 256 && cachep->object_size > cache_line_size()) {
2137 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2138 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
2139 
2140 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
2141 				flags |= CFLGS_OFF_SLAB;
2142 				cachep->obj_offset += tmp_size - size;
2143 				size = tmp_size;
2144 				goto done;
2145 			}
2146 		}
2147 	}
2148 #endif
2149 
2150 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
2151 		flags |= CFLGS_OBJFREELIST_SLAB;
2152 		goto done;
2153 	}
2154 
2155 	if (set_off_slab_cache(cachep, size, flags)) {
2156 		flags |= CFLGS_OFF_SLAB;
2157 		goto done;
2158 	}
2159 
2160 	if (set_on_slab_cache(cachep, size, flags))
2161 		goto done;
2162 
2163 	return -E2BIG;
2164 
2165 done:
2166 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2167 	cachep->flags = flags;
2168 	cachep->allocflags = __GFP_COMP;
2169 	if (flags & SLAB_CACHE_DMA)
2170 		cachep->allocflags |= GFP_DMA;
2171 	cachep->size = size;
2172 	cachep->reciprocal_buffer_size = reciprocal_value(size);
2173 
2174 #if DEBUG
2175 	/*
2176 	 * If we're going to use the generic kernel_map_pages()
2177 	 * poisoning, then it's going to smash the contents of
2178 	 * the redzone and userword anyhow, so switch them off.
2179 	 */
2180 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2181 		(cachep->flags & SLAB_POISON) &&
2182 		is_debug_pagealloc_cache(cachep))
2183 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2184 #endif
2185 
2186 	if (OFF_SLAB(cachep)) {
2187 		cachep->freelist_cache =
2188 			kmalloc_slab(cachep->freelist_size, 0u);
2189 	}
2190 
2191 	err = setup_cpu_cache(cachep, gfp);
2192 	if (err) {
2193 		__kmem_cache_release(cachep);
2194 		return err;
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 #if DEBUG
2201 static void check_irq_off(void)
2202 {
2203 	BUG_ON(!irqs_disabled());
2204 }
2205 
2206 static void check_irq_on(void)
2207 {
2208 	BUG_ON(irqs_disabled());
2209 }
2210 
2211 static void check_mutex_acquired(void)
2212 {
2213 	BUG_ON(!mutex_is_locked(&slab_mutex));
2214 }
2215 
2216 static void check_spinlock_acquired(struct kmem_cache *cachep)
2217 {
2218 #ifdef CONFIG_SMP
2219 	check_irq_off();
2220 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2221 #endif
2222 }
2223 
2224 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2225 {
2226 #ifdef CONFIG_SMP
2227 	check_irq_off();
2228 	assert_spin_locked(&get_node(cachep, node)->list_lock);
2229 #endif
2230 }
2231 
2232 #else
2233 #define check_irq_off()	do { } while(0)
2234 #define check_irq_on()	do { } while(0)
2235 #define check_mutex_acquired()	do { } while(0)
2236 #define check_spinlock_acquired(x) do { } while(0)
2237 #define check_spinlock_acquired_node(x, y) do { } while(0)
2238 #endif
2239 
2240 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2241 				int node, bool free_all, struct list_head *list)
2242 {
2243 	int tofree;
2244 
2245 	if (!ac || !ac->avail)
2246 		return;
2247 
2248 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2249 	if (tofree > ac->avail)
2250 		tofree = (ac->avail + 1) / 2;
2251 
2252 	free_block(cachep, ac->entry, tofree, node, list);
2253 	ac->avail -= tofree;
2254 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2255 }
2256 
2257 static void do_drain(void *arg)
2258 {
2259 	struct kmem_cache *cachep = arg;
2260 	struct array_cache *ac;
2261 	int node = numa_mem_id();
2262 	struct kmem_cache_node *n;
2263 	LIST_HEAD(list);
2264 
2265 	check_irq_off();
2266 	ac = cpu_cache_get(cachep);
2267 	n = get_node(cachep, node);
2268 	spin_lock(&n->list_lock);
2269 	free_block(cachep, ac->entry, ac->avail, node, &list);
2270 	spin_unlock(&n->list_lock);
2271 	slabs_destroy(cachep, &list);
2272 	ac->avail = 0;
2273 }
2274 
2275 static void drain_cpu_caches(struct kmem_cache *cachep)
2276 {
2277 	struct kmem_cache_node *n;
2278 	int node;
2279 	LIST_HEAD(list);
2280 
2281 	on_each_cpu(do_drain, cachep, 1);
2282 	check_irq_on();
2283 	for_each_kmem_cache_node(cachep, node, n)
2284 		if (n->alien)
2285 			drain_alien_cache(cachep, n->alien);
2286 
2287 	for_each_kmem_cache_node(cachep, node, n) {
2288 		spin_lock_irq(&n->list_lock);
2289 		drain_array_locked(cachep, n->shared, node, true, &list);
2290 		spin_unlock_irq(&n->list_lock);
2291 
2292 		slabs_destroy(cachep, &list);
2293 	}
2294 }
2295 
2296 /*
2297  * Remove slabs from the list of free slabs.
2298  * Specify the number of slabs to drain in tofree.
2299  *
2300  * Returns the actual number of slabs released.
2301  */
2302 static int drain_freelist(struct kmem_cache *cache,
2303 			struct kmem_cache_node *n, int tofree)
2304 {
2305 	struct list_head *p;
2306 	int nr_freed;
2307 	struct page *page;
2308 
2309 	nr_freed = 0;
2310 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2311 
2312 		spin_lock_irq(&n->list_lock);
2313 		p = n->slabs_free.prev;
2314 		if (p == &n->slabs_free) {
2315 			spin_unlock_irq(&n->list_lock);
2316 			goto out;
2317 		}
2318 
2319 		page = list_entry(p, struct page, lru);
2320 		list_del(&page->lru);
2321 		n->num_slabs--;
2322 		/*
2323 		 * Safe to drop the lock. The slab is no longer linked
2324 		 * to the cache.
2325 		 */
2326 		n->free_objects -= cache->num;
2327 		spin_unlock_irq(&n->list_lock);
2328 		slab_destroy(cache, page);
2329 		nr_freed++;
2330 	}
2331 out:
2332 	return nr_freed;
2333 }
2334 
2335 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2336 {
2337 	int ret = 0;
2338 	int node;
2339 	struct kmem_cache_node *n;
2340 
2341 	drain_cpu_caches(cachep);
2342 
2343 	check_irq_on();
2344 	for_each_kmem_cache_node(cachep, node, n) {
2345 		drain_freelist(cachep, n, INT_MAX);
2346 
2347 		ret += !list_empty(&n->slabs_full) ||
2348 			!list_empty(&n->slabs_partial);
2349 	}
2350 	return (ret ? 1 : 0);
2351 }
2352 
2353 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2354 {
2355 	return __kmem_cache_shrink(cachep, false);
2356 }
2357 
2358 void __kmem_cache_release(struct kmem_cache *cachep)
2359 {
2360 	int i;
2361 	struct kmem_cache_node *n;
2362 
2363 	cache_random_seq_destroy(cachep);
2364 
2365 	free_percpu(cachep->cpu_cache);
2366 
2367 	/* NUMA: free the node structures */
2368 	for_each_kmem_cache_node(cachep, i, n) {
2369 		kfree(n->shared);
2370 		free_alien_cache(n->alien);
2371 		kfree(n);
2372 		cachep->node[i] = NULL;
2373 	}
2374 }
2375 
2376 /*
2377  * Get the memory for a slab management obj.
2378  *
2379  * For a slab cache when the slab descriptor is off-slab, the
2380  * slab descriptor can't come from the same cache which is being created,
2381  * Because if it is the case, that means we defer the creation of
2382  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2383  * And we eventually call down to __kmem_cache_create(), which
2384  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2385  * This is a "chicken-and-egg" problem.
2386  *
2387  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2388  * which are all initialized during kmem_cache_init().
2389  */
2390 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2391 				   struct page *page, int colour_off,
2392 				   gfp_t local_flags, int nodeid)
2393 {
2394 	void *freelist;
2395 	void *addr = page_address(page);
2396 
2397 	page->s_mem = addr + colour_off;
2398 	page->active = 0;
2399 
2400 	if (OBJFREELIST_SLAB(cachep))
2401 		freelist = NULL;
2402 	else if (OFF_SLAB(cachep)) {
2403 		/* Slab management obj is off-slab. */
2404 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2405 					      local_flags, nodeid);
2406 		if (!freelist)
2407 			return NULL;
2408 	} else {
2409 		/* We will use last bytes at the slab for freelist */
2410 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2411 				cachep->freelist_size;
2412 	}
2413 
2414 	return freelist;
2415 }
2416 
2417 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2418 {
2419 	return ((freelist_idx_t *)page->freelist)[idx];
2420 }
2421 
2422 static inline void set_free_obj(struct page *page,
2423 					unsigned int idx, freelist_idx_t val)
2424 {
2425 	((freelist_idx_t *)(page->freelist))[idx] = val;
2426 }
2427 
2428 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2429 {
2430 #if DEBUG
2431 	int i;
2432 
2433 	for (i = 0; i < cachep->num; i++) {
2434 		void *objp = index_to_obj(cachep, page, i);
2435 
2436 		if (cachep->flags & SLAB_STORE_USER)
2437 			*dbg_userword(cachep, objp) = NULL;
2438 
2439 		if (cachep->flags & SLAB_RED_ZONE) {
2440 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2441 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2442 		}
2443 		/*
2444 		 * Constructors are not allowed to allocate memory from the same
2445 		 * cache which they are a constructor for.  Otherwise, deadlock.
2446 		 * They must also be threaded.
2447 		 */
2448 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2449 			kasan_unpoison_object_data(cachep,
2450 						   objp + obj_offset(cachep));
2451 			cachep->ctor(objp + obj_offset(cachep));
2452 			kasan_poison_object_data(
2453 				cachep, objp + obj_offset(cachep));
2454 		}
2455 
2456 		if (cachep->flags & SLAB_RED_ZONE) {
2457 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2458 				slab_error(cachep, "constructor overwrote the end of an object");
2459 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2460 				slab_error(cachep, "constructor overwrote the start of an object");
2461 		}
2462 		/* need to poison the objs? */
2463 		if (cachep->flags & SLAB_POISON) {
2464 			poison_obj(cachep, objp, POISON_FREE);
2465 			slab_kernel_map(cachep, objp, 0, 0);
2466 		}
2467 	}
2468 #endif
2469 }
2470 
2471 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2472 /* Hold information during a freelist initialization */
2473 union freelist_init_state {
2474 	struct {
2475 		unsigned int pos;
2476 		unsigned int *list;
2477 		unsigned int count;
2478 		unsigned int rand;
2479 	};
2480 	struct rnd_state rnd_state;
2481 };
2482 
2483 /*
2484  * Initialize the state based on the randomization methode available.
2485  * return true if the pre-computed list is available, false otherwize.
2486  */
2487 static bool freelist_state_initialize(union freelist_init_state *state,
2488 				struct kmem_cache *cachep,
2489 				unsigned int count)
2490 {
2491 	bool ret;
2492 	unsigned int rand;
2493 
2494 	/* Use best entropy available to define a random shift */
2495 	rand = get_random_int();
2496 
2497 	/* Use a random state if the pre-computed list is not available */
2498 	if (!cachep->random_seq) {
2499 		prandom_seed_state(&state->rnd_state, rand);
2500 		ret = false;
2501 	} else {
2502 		state->list = cachep->random_seq;
2503 		state->count = count;
2504 		state->pos = 0;
2505 		state->rand = rand;
2506 		ret = true;
2507 	}
2508 	return ret;
2509 }
2510 
2511 /* Get the next entry on the list and randomize it using a random shift */
2512 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2513 {
2514 	return (state->list[state->pos++] + state->rand) % state->count;
2515 }
2516 
2517 /* Swap two freelist entries */
2518 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2519 {
2520 	swap(((freelist_idx_t *)page->freelist)[a],
2521 		((freelist_idx_t *)page->freelist)[b]);
2522 }
2523 
2524 /*
2525  * Shuffle the freelist initialization state based on pre-computed lists.
2526  * return true if the list was successfully shuffled, false otherwise.
2527  */
2528 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2529 {
2530 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2531 	union freelist_init_state state;
2532 	bool precomputed;
2533 
2534 	if (count < 2)
2535 		return false;
2536 
2537 	precomputed = freelist_state_initialize(&state, cachep, count);
2538 
2539 	/* Take a random entry as the objfreelist */
2540 	if (OBJFREELIST_SLAB(cachep)) {
2541 		if (!precomputed)
2542 			objfreelist = count - 1;
2543 		else
2544 			objfreelist = next_random_slot(&state);
2545 		page->freelist = index_to_obj(cachep, page, objfreelist) +
2546 						obj_offset(cachep);
2547 		count--;
2548 	}
2549 
2550 	/*
2551 	 * On early boot, generate the list dynamically.
2552 	 * Later use a pre-computed list for speed.
2553 	 */
2554 	if (!precomputed) {
2555 		for (i = 0; i < count; i++)
2556 			set_free_obj(page, i, i);
2557 
2558 		/* Fisher-Yates shuffle */
2559 		for (i = count - 1; i > 0; i--) {
2560 			rand = prandom_u32_state(&state.rnd_state);
2561 			rand %= (i + 1);
2562 			swap_free_obj(page, i, rand);
2563 		}
2564 	} else {
2565 		for (i = 0; i < count; i++)
2566 			set_free_obj(page, i, next_random_slot(&state));
2567 	}
2568 
2569 	if (OBJFREELIST_SLAB(cachep))
2570 		set_free_obj(page, cachep->num - 1, objfreelist);
2571 
2572 	return true;
2573 }
2574 #else
2575 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2576 				struct page *page)
2577 {
2578 	return false;
2579 }
2580 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2581 
2582 static void cache_init_objs(struct kmem_cache *cachep,
2583 			    struct page *page)
2584 {
2585 	int i;
2586 	void *objp;
2587 	bool shuffled;
2588 
2589 	cache_init_objs_debug(cachep, page);
2590 
2591 	/* Try to randomize the freelist if enabled */
2592 	shuffled = shuffle_freelist(cachep, page);
2593 
2594 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2595 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2596 						obj_offset(cachep);
2597 	}
2598 
2599 	for (i = 0; i < cachep->num; i++) {
2600 		objp = index_to_obj(cachep, page, i);
2601 		kasan_init_slab_obj(cachep, objp);
2602 
2603 		/* constructor could break poison info */
2604 		if (DEBUG == 0 && cachep->ctor) {
2605 			kasan_unpoison_object_data(cachep, objp);
2606 			cachep->ctor(objp);
2607 			kasan_poison_object_data(cachep, objp);
2608 		}
2609 
2610 		if (!shuffled)
2611 			set_free_obj(page, i, i);
2612 	}
2613 }
2614 
2615 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2616 {
2617 	void *objp;
2618 
2619 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2620 	page->active++;
2621 
2622 #if DEBUG
2623 	if (cachep->flags & SLAB_STORE_USER)
2624 		set_store_user_dirty(cachep);
2625 #endif
2626 
2627 	return objp;
2628 }
2629 
2630 static void slab_put_obj(struct kmem_cache *cachep,
2631 			struct page *page, void *objp)
2632 {
2633 	unsigned int objnr = obj_to_index(cachep, page, objp);
2634 #if DEBUG
2635 	unsigned int i;
2636 
2637 	/* Verify double free bug */
2638 	for (i = page->active; i < cachep->num; i++) {
2639 		if (get_free_obj(page, i) == objnr) {
2640 			pr_err("slab: double free detected in cache '%s', objp %p\n",
2641 			       cachep->name, objp);
2642 			BUG();
2643 		}
2644 	}
2645 #endif
2646 	page->active--;
2647 	if (!page->freelist)
2648 		page->freelist = objp + obj_offset(cachep);
2649 
2650 	set_free_obj(page, page->active, objnr);
2651 }
2652 
2653 /*
2654  * Map pages beginning at addr to the given cache and slab. This is required
2655  * for the slab allocator to be able to lookup the cache and slab of a
2656  * virtual address for kfree, ksize, and slab debugging.
2657  */
2658 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2659 			   void *freelist)
2660 {
2661 	page->slab_cache = cache;
2662 	page->freelist = freelist;
2663 }
2664 
2665 /*
2666  * Grow (by 1) the number of slabs within a cache.  This is called by
2667  * kmem_cache_alloc() when there are no active objs left in a cache.
2668  */
2669 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2670 				gfp_t flags, int nodeid)
2671 {
2672 	void *freelist;
2673 	size_t offset;
2674 	gfp_t local_flags;
2675 	int page_node;
2676 	struct kmem_cache_node *n;
2677 	struct page *page;
2678 
2679 	/*
2680 	 * Be lazy and only check for valid flags here,  keeping it out of the
2681 	 * critical path in kmem_cache_alloc().
2682 	 */
2683 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2684 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2685 		flags &= ~GFP_SLAB_BUG_MASK;
2686 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2687 				invalid_mask, &invalid_mask, flags, &flags);
2688 		dump_stack();
2689 	}
2690 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2691 
2692 	check_irq_off();
2693 	if (gfpflags_allow_blocking(local_flags))
2694 		local_irq_enable();
2695 
2696 	/*
2697 	 * Get mem for the objs.  Attempt to allocate a physical page from
2698 	 * 'nodeid'.
2699 	 */
2700 	page = kmem_getpages(cachep, local_flags, nodeid);
2701 	if (!page)
2702 		goto failed;
2703 
2704 	page_node = page_to_nid(page);
2705 	n = get_node(cachep, page_node);
2706 
2707 	/* Get colour for the slab, and cal the next value. */
2708 	n->colour_next++;
2709 	if (n->colour_next >= cachep->colour)
2710 		n->colour_next = 0;
2711 
2712 	offset = n->colour_next;
2713 	if (offset >= cachep->colour)
2714 		offset = 0;
2715 
2716 	offset *= cachep->colour_off;
2717 
2718 	/* Get slab management. */
2719 	freelist = alloc_slabmgmt(cachep, page, offset,
2720 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2721 	if (OFF_SLAB(cachep) && !freelist)
2722 		goto opps1;
2723 
2724 	slab_map_pages(cachep, page, freelist);
2725 
2726 	kasan_poison_slab(page);
2727 	cache_init_objs(cachep, page);
2728 
2729 	if (gfpflags_allow_blocking(local_flags))
2730 		local_irq_disable();
2731 
2732 	return page;
2733 
2734 opps1:
2735 	kmem_freepages(cachep, page);
2736 failed:
2737 	if (gfpflags_allow_blocking(local_flags))
2738 		local_irq_disable();
2739 	return NULL;
2740 }
2741 
2742 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2743 {
2744 	struct kmem_cache_node *n;
2745 	void *list = NULL;
2746 
2747 	check_irq_off();
2748 
2749 	if (!page)
2750 		return;
2751 
2752 	INIT_LIST_HEAD(&page->lru);
2753 	n = get_node(cachep, page_to_nid(page));
2754 
2755 	spin_lock(&n->list_lock);
2756 	if (!page->active)
2757 		list_add_tail(&page->lru, &(n->slabs_free));
2758 	else
2759 		fixup_slab_list(cachep, n, page, &list);
2760 
2761 	n->num_slabs++;
2762 	STATS_INC_GROWN(cachep);
2763 	n->free_objects += cachep->num - page->active;
2764 	spin_unlock(&n->list_lock);
2765 
2766 	fixup_objfreelist_debug(cachep, &list);
2767 }
2768 
2769 #if DEBUG
2770 
2771 /*
2772  * Perform extra freeing checks:
2773  * - detect bad pointers.
2774  * - POISON/RED_ZONE checking
2775  */
2776 static void kfree_debugcheck(const void *objp)
2777 {
2778 	if (!virt_addr_valid(objp)) {
2779 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2780 		       (unsigned long)objp);
2781 		BUG();
2782 	}
2783 }
2784 
2785 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2786 {
2787 	unsigned long long redzone1, redzone2;
2788 
2789 	redzone1 = *dbg_redzone1(cache, obj);
2790 	redzone2 = *dbg_redzone2(cache, obj);
2791 
2792 	/*
2793 	 * Redzone is ok.
2794 	 */
2795 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2796 		return;
2797 
2798 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2799 		slab_error(cache, "double free detected");
2800 	else
2801 		slab_error(cache, "memory outside object was overwritten");
2802 
2803 	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2804 	       obj, redzone1, redzone2);
2805 }
2806 
2807 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2808 				   unsigned long caller)
2809 {
2810 	unsigned int objnr;
2811 	struct page *page;
2812 
2813 	BUG_ON(virt_to_cache(objp) != cachep);
2814 
2815 	objp -= obj_offset(cachep);
2816 	kfree_debugcheck(objp);
2817 	page = virt_to_head_page(objp);
2818 
2819 	if (cachep->flags & SLAB_RED_ZONE) {
2820 		verify_redzone_free(cachep, objp);
2821 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2822 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2823 	}
2824 	if (cachep->flags & SLAB_STORE_USER) {
2825 		set_store_user_dirty(cachep);
2826 		*dbg_userword(cachep, objp) = (void *)caller;
2827 	}
2828 
2829 	objnr = obj_to_index(cachep, page, objp);
2830 
2831 	BUG_ON(objnr >= cachep->num);
2832 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2833 
2834 	if (cachep->flags & SLAB_POISON) {
2835 		poison_obj(cachep, objp, POISON_FREE);
2836 		slab_kernel_map(cachep, objp, 0, caller);
2837 	}
2838 	return objp;
2839 }
2840 
2841 #else
2842 #define kfree_debugcheck(x) do { } while(0)
2843 #define cache_free_debugcheck(x,objp,z) (objp)
2844 #endif
2845 
2846 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2847 						void **list)
2848 {
2849 #if DEBUG
2850 	void *next = *list;
2851 	void *objp;
2852 
2853 	while (next) {
2854 		objp = next - obj_offset(cachep);
2855 		next = *(void **)next;
2856 		poison_obj(cachep, objp, POISON_FREE);
2857 	}
2858 #endif
2859 }
2860 
2861 static inline void fixup_slab_list(struct kmem_cache *cachep,
2862 				struct kmem_cache_node *n, struct page *page,
2863 				void **list)
2864 {
2865 	/* move slabp to correct slabp list: */
2866 	list_del(&page->lru);
2867 	if (page->active == cachep->num) {
2868 		list_add(&page->lru, &n->slabs_full);
2869 		if (OBJFREELIST_SLAB(cachep)) {
2870 #if DEBUG
2871 			/* Poisoning will be done without holding the lock */
2872 			if (cachep->flags & SLAB_POISON) {
2873 				void **objp = page->freelist;
2874 
2875 				*objp = *list;
2876 				*list = objp;
2877 			}
2878 #endif
2879 			page->freelist = NULL;
2880 		}
2881 	} else
2882 		list_add(&page->lru, &n->slabs_partial);
2883 }
2884 
2885 /* Try to find non-pfmemalloc slab if needed */
2886 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2887 					struct page *page, bool pfmemalloc)
2888 {
2889 	if (!page)
2890 		return NULL;
2891 
2892 	if (pfmemalloc)
2893 		return page;
2894 
2895 	if (!PageSlabPfmemalloc(page))
2896 		return page;
2897 
2898 	/* No need to keep pfmemalloc slab if we have enough free objects */
2899 	if (n->free_objects > n->free_limit) {
2900 		ClearPageSlabPfmemalloc(page);
2901 		return page;
2902 	}
2903 
2904 	/* Move pfmemalloc slab to the end of list to speed up next search */
2905 	list_del(&page->lru);
2906 	if (!page->active)
2907 		list_add_tail(&page->lru, &n->slabs_free);
2908 	else
2909 		list_add_tail(&page->lru, &n->slabs_partial);
2910 
2911 	list_for_each_entry(page, &n->slabs_partial, lru) {
2912 		if (!PageSlabPfmemalloc(page))
2913 			return page;
2914 	}
2915 
2916 	list_for_each_entry(page, &n->slabs_free, lru) {
2917 		if (!PageSlabPfmemalloc(page))
2918 			return page;
2919 	}
2920 
2921 	return NULL;
2922 }
2923 
2924 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2925 {
2926 	struct page *page;
2927 
2928 	page = list_first_entry_or_null(&n->slabs_partial,
2929 			struct page, lru);
2930 	if (!page) {
2931 		n->free_touched = 1;
2932 		page = list_first_entry_or_null(&n->slabs_free,
2933 				struct page, lru);
2934 	}
2935 
2936 	if (sk_memalloc_socks())
2937 		return get_valid_first_slab(n, page, pfmemalloc);
2938 
2939 	return page;
2940 }
2941 
2942 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2943 				struct kmem_cache_node *n, gfp_t flags)
2944 {
2945 	struct page *page;
2946 	void *obj;
2947 	void *list = NULL;
2948 
2949 	if (!gfp_pfmemalloc_allowed(flags))
2950 		return NULL;
2951 
2952 	spin_lock(&n->list_lock);
2953 	page = get_first_slab(n, true);
2954 	if (!page) {
2955 		spin_unlock(&n->list_lock);
2956 		return NULL;
2957 	}
2958 
2959 	obj = slab_get_obj(cachep, page);
2960 	n->free_objects--;
2961 
2962 	fixup_slab_list(cachep, n, page, &list);
2963 
2964 	spin_unlock(&n->list_lock);
2965 	fixup_objfreelist_debug(cachep, &list);
2966 
2967 	return obj;
2968 }
2969 
2970 /*
2971  * Slab list should be fixed up by fixup_slab_list() for existing slab
2972  * or cache_grow_end() for new slab
2973  */
2974 static __always_inline int alloc_block(struct kmem_cache *cachep,
2975 		struct array_cache *ac, struct page *page, int batchcount)
2976 {
2977 	/*
2978 	 * There must be at least one object available for
2979 	 * allocation.
2980 	 */
2981 	BUG_ON(page->active >= cachep->num);
2982 
2983 	while (page->active < cachep->num && batchcount--) {
2984 		STATS_INC_ALLOCED(cachep);
2985 		STATS_INC_ACTIVE(cachep);
2986 		STATS_SET_HIGH(cachep);
2987 
2988 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2989 	}
2990 
2991 	return batchcount;
2992 }
2993 
2994 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2995 {
2996 	int batchcount;
2997 	struct kmem_cache_node *n;
2998 	struct array_cache *ac, *shared;
2999 	int node;
3000 	void *list = NULL;
3001 	struct page *page;
3002 
3003 	check_irq_off();
3004 	node = numa_mem_id();
3005 
3006 	ac = cpu_cache_get(cachep);
3007 	batchcount = ac->batchcount;
3008 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3009 		/*
3010 		 * If there was little recent activity on this cache, then
3011 		 * perform only a partial refill.  Otherwise we could generate
3012 		 * refill bouncing.
3013 		 */
3014 		batchcount = BATCHREFILL_LIMIT;
3015 	}
3016 	n = get_node(cachep, node);
3017 
3018 	BUG_ON(ac->avail > 0 || !n);
3019 	shared = READ_ONCE(n->shared);
3020 	if (!n->free_objects && (!shared || !shared->avail))
3021 		goto direct_grow;
3022 
3023 	spin_lock(&n->list_lock);
3024 	shared = READ_ONCE(n->shared);
3025 
3026 	/* See if we can refill from the shared array */
3027 	if (shared && transfer_objects(ac, shared, batchcount)) {
3028 		shared->touched = 1;
3029 		goto alloc_done;
3030 	}
3031 
3032 	while (batchcount > 0) {
3033 		/* Get slab alloc is to come from. */
3034 		page = get_first_slab(n, false);
3035 		if (!page)
3036 			goto must_grow;
3037 
3038 		check_spinlock_acquired(cachep);
3039 
3040 		batchcount = alloc_block(cachep, ac, page, batchcount);
3041 		fixup_slab_list(cachep, n, page, &list);
3042 	}
3043 
3044 must_grow:
3045 	n->free_objects -= ac->avail;
3046 alloc_done:
3047 	spin_unlock(&n->list_lock);
3048 	fixup_objfreelist_debug(cachep, &list);
3049 
3050 direct_grow:
3051 	if (unlikely(!ac->avail)) {
3052 		/* Check if we can use obj in pfmemalloc slab */
3053 		if (sk_memalloc_socks()) {
3054 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3055 
3056 			if (obj)
3057 				return obj;
3058 		}
3059 
3060 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3061 
3062 		/*
3063 		 * cache_grow_begin() can reenable interrupts,
3064 		 * then ac could change.
3065 		 */
3066 		ac = cpu_cache_get(cachep);
3067 		if (!ac->avail && page)
3068 			alloc_block(cachep, ac, page, batchcount);
3069 		cache_grow_end(cachep, page);
3070 
3071 		if (!ac->avail)
3072 			return NULL;
3073 	}
3074 	ac->touched = 1;
3075 
3076 	return ac->entry[--ac->avail];
3077 }
3078 
3079 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3080 						gfp_t flags)
3081 {
3082 	might_sleep_if(gfpflags_allow_blocking(flags));
3083 }
3084 
3085 #if DEBUG
3086 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3087 				gfp_t flags, void *objp, unsigned long caller)
3088 {
3089 	if (!objp)
3090 		return objp;
3091 	if (cachep->flags & SLAB_POISON) {
3092 		check_poison_obj(cachep, objp);
3093 		slab_kernel_map(cachep, objp, 1, 0);
3094 		poison_obj(cachep, objp, POISON_INUSE);
3095 	}
3096 	if (cachep->flags & SLAB_STORE_USER)
3097 		*dbg_userword(cachep, objp) = (void *)caller;
3098 
3099 	if (cachep->flags & SLAB_RED_ZONE) {
3100 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3101 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3102 			slab_error(cachep, "double free, or memory outside object was overwritten");
3103 			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3104 			       objp, *dbg_redzone1(cachep, objp),
3105 			       *dbg_redzone2(cachep, objp));
3106 		}
3107 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3108 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3109 	}
3110 
3111 	objp += obj_offset(cachep);
3112 	if (cachep->ctor && cachep->flags & SLAB_POISON)
3113 		cachep->ctor(objp);
3114 	if (ARCH_SLAB_MINALIGN &&
3115 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3116 		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3117 		       objp, (int)ARCH_SLAB_MINALIGN);
3118 	}
3119 	return objp;
3120 }
3121 #else
3122 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3123 #endif
3124 
3125 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3126 {
3127 	void *objp;
3128 	struct array_cache *ac;
3129 
3130 	check_irq_off();
3131 
3132 	ac = cpu_cache_get(cachep);
3133 	if (likely(ac->avail)) {
3134 		ac->touched = 1;
3135 		objp = ac->entry[--ac->avail];
3136 
3137 		STATS_INC_ALLOCHIT(cachep);
3138 		goto out;
3139 	}
3140 
3141 	STATS_INC_ALLOCMISS(cachep);
3142 	objp = cache_alloc_refill(cachep, flags);
3143 	/*
3144 	 * the 'ac' may be updated by cache_alloc_refill(),
3145 	 * and kmemleak_erase() requires its correct value.
3146 	 */
3147 	ac = cpu_cache_get(cachep);
3148 
3149 out:
3150 	/*
3151 	 * To avoid a false negative, if an object that is in one of the
3152 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3153 	 * treat the array pointers as a reference to the object.
3154 	 */
3155 	if (objp)
3156 		kmemleak_erase(&ac->entry[ac->avail]);
3157 	return objp;
3158 }
3159 
3160 #ifdef CONFIG_NUMA
3161 /*
3162  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3163  *
3164  * If we are in_interrupt, then process context, including cpusets and
3165  * mempolicy, may not apply and should not be used for allocation policy.
3166  */
3167 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3168 {
3169 	int nid_alloc, nid_here;
3170 
3171 	if (in_interrupt() || (flags & __GFP_THISNODE))
3172 		return NULL;
3173 	nid_alloc = nid_here = numa_mem_id();
3174 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3175 		nid_alloc = cpuset_slab_spread_node();
3176 	else if (current->mempolicy)
3177 		nid_alloc = mempolicy_slab_node();
3178 	if (nid_alloc != nid_here)
3179 		return ____cache_alloc_node(cachep, flags, nid_alloc);
3180 	return NULL;
3181 }
3182 
3183 /*
3184  * Fallback function if there was no memory available and no objects on a
3185  * certain node and fall back is permitted. First we scan all the
3186  * available node for available objects. If that fails then we
3187  * perform an allocation without specifying a node. This allows the page
3188  * allocator to do its reclaim / fallback magic. We then insert the
3189  * slab into the proper nodelist and then allocate from it.
3190  */
3191 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3192 {
3193 	struct zonelist *zonelist;
3194 	struct zoneref *z;
3195 	struct zone *zone;
3196 	enum zone_type high_zoneidx = gfp_zone(flags);
3197 	void *obj = NULL;
3198 	struct page *page;
3199 	int nid;
3200 	unsigned int cpuset_mems_cookie;
3201 
3202 	if (flags & __GFP_THISNODE)
3203 		return NULL;
3204 
3205 retry_cpuset:
3206 	cpuset_mems_cookie = read_mems_allowed_begin();
3207 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3208 
3209 retry:
3210 	/*
3211 	 * Look through allowed nodes for objects available
3212 	 * from existing per node queues.
3213 	 */
3214 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3215 		nid = zone_to_nid(zone);
3216 
3217 		if (cpuset_zone_allowed(zone, flags) &&
3218 			get_node(cache, nid) &&
3219 			get_node(cache, nid)->free_objects) {
3220 				obj = ____cache_alloc_node(cache,
3221 					gfp_exact_node(flags), nid);
3222 				if (obj)
3223 					break;
3224 		}
3225 	}
3226 
3227 	if (!obj) {
3228 		/*
3229 		 * This allocation will be performed within the constraints
3230 		 * of the current cpuset / memory policy requirements.
3231 		 * We may trigger various forms of reclaim on the allowed
3232 		 * set and go into memory reserves if necessary.
3233 		 */
3234 		page = cache_grow_begin(cache, flags, numa_mem_id());
3235 		cache_grow_end(cache, page);
3236 		if (page) {
3237 			nid = page_to_nid(page);
3238 			obj = ____cache_alloc_node(cache,
3239 				gfp_exact_node(flags), nid);
3240 
3241 			/*
3242 			 * Another processor may allocate the objects in
3243 			 * the slab since we are not holding any locks.
3244 			 */
3245 			if (!obj)
3246 				goto retry;
3247 		}
3248 	}
3249 
3250 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3251 		goto retry_cpuset;
3252 	return obj;
3253 }
3254 
3255 /*
3256  * A interface to enable slab creation on nodeid
3257  */
3258 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3259 				int nodeid)
3260 {
3261 	struct page *page;
3262 	struct kmem_cache_node *n;
3263 	void *obj = NULL;
3264 	void *list = NULL;
3265 
3266 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3267 	n = get_node(cachep, nodeid);
3268 	BUG_ON(!n);
3269 
3270 	check_irq_off();
3271 	spin_lock(&n->list_lock);
3272 	page = get_first_slab(n, false);
3273 	if (!page)
3274 		goto must_grow;
3275 
3276 	check_spinlock_acquired_node(cachep, nodeid);
3277 
3278 	STATS_INC_NODEALLOCS(cachep);
3279 	STATS_INC_ACTIVE(cachep);
3280 	STATS_SET_HIGH(cachep);
3281 
3282 	BUG_ON(page->active == cachep->num);
3283 
3284 	obj = slab_get_obj(cachep, page);
3285 	n->free_objects--;
3286 
3287 	fixup_slab_list(cachep, n, page, &list);
3288 
3289 	spin_unlock(&n->list_lock);
3290 	fixup_objfreelist_debug(cachep, &list);
3291 	return obj;
3292 
3293 must_grow:
3294 	spin_unlock(&n->list_lock);
3295 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3296 	if (page) {
3297 		/* This slab isn't counted yet so don't update free_objects */
3298 		obj = slab_get_obj(cachep, page);
3299 	}
3300 	cache_grow_end(cachep, page);
3301 
3302 	return obj ? obj : fallback_alloc(cachep, flags);
3303 }
3304 
3305 static __always_inline void *
3306 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3307 		   unsigned long caller)
3308 {
3309 	unsigned long save_flags;
3310 	void *ptr;
3311 	int slab_node = numa_mem_id();
3312 
3313 	flags &= gfp_allowed_mask;
3314 	cachep = slab_pre_alloc_hook(cachep, flags);
3315 	if (unlikely(!cachep))
3316 		return NULL;
3317 
3318 	cache_alloc_debugcheck_before(cachep, flags);
3319 	local_irq_save(save_flags);
3320 
3321 	if (nodeid == NUMA_NO_NODE)
3322 		nodeid = slab_node;
3323 
3324 	if (unlikely(!get_node(cachep, nodeid))) {
3325 		/* Node not bootstrapped yet */
3326 		ptr = fallback_alloc(cachep, flags);
3327 		goto out;
3328 	}
3329 
3330 	if (nodeid == slab_node) {
3331 		/*
3332 		 * Use the locally cached objects if possible.
3333 		 * However ____cache_alloc does not allow fallback
3334 		 * to other nodes. It may fail while we still have
3335 		 * objects on other nodes available.
3336 		 */
3337 		ptr = ____cache_alloc(cachep, flags);
3338 		if (ptr)
3339 			goto out;
3340 	}
3341 	/* ___cache_alloc_node can fall back to other nodes */
3342 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3343   out:
3344 	local_irq_restore(save_flags);
3345 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3346 
3347 	if (unlikely(flags & __GFP_ZERO) && ptr)
3348 		memset(ptr, 0, cachep->object_size);
3349 
3350 	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3351 	return ptr;
3352 }
3353 
3354 static __always_inline void *
3355 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3356 {
3357 	void *objp;
3358 
3359 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3360 		objp = alternate_node_alloc(cache, flags);
3361 		if (objp)
3362 			goto out;
3363 	}
3364 	objp = ____cache_alloc(cache, flags);
3365 
3366 	/*
3367 	 * We may just have run out of memory on the local node.
3368 	 * ____cache_alloc_node() knows how to locate memory on other nodes
3369 	 */
3370 	if (!objp)
3371 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3372 
3373   out:
3374 	return objp;
3375 }
3376 #else
3377 
3378 static __always_inline void *
3379 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3380 {
3381 	return ____cache_alloc(cachep, flags);
3382 }
3383 
3384 #endif /* CONFIG_NUMA */
3385 
3386 static __always_inline void *
3387 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3388 {
3389 	unsigned long save_flags;
3390 	void *objp;
3391 
3392 	flags &= gfp_allowed_mask;
3393 	cachep = slab_pre_alloc_hook(cachep, flags);
3394 	if (unlikely(!cachep))
3395 		return NULL;
3396 
3397 	cache_alloc_debugcheck_before(cachep, flags);
3398 	local_irq_save(save_flags);
3399 	objp = __do_cache_alloc(cachep, flags);
3400 	local_irq_restore(save_flags);
3401 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3402 	prefetchw(objp);
3403 
3404 	if (unlikely(flags & __GFP_ZERO) && objp)
3405 		memset(objp, 0, cachep->object_size);
3406 
3407 	slab_post_alloc_hook(cachep, flags, 1, &objp);
3408 	return objp;
3409 }
3410 
3411 /*
3412  * Caller needs to acquire correct kmem_cache_node's list_lock
3413  * @list: List of detached free slabs should be freed by caller
3414  */
3415 static void free_block(struct kmem_cache *cachep, void **objpp,
3416 			int nr_objects, int node, struct list_head *list)
3417 {
3418 	int i;
3419 	struct kmem_cache_node *n = get_node(cachep, node);
3420 	struct page *page;
3421 
3422 	n->free_objects += nr_objects;
3423 
3424 	for (i = 0; i < nr_objects; i++) {
3425 		void *objp;
3426 		struct page *page;
3427 
3428 		objp = objpp[i];
3429 
3430 		page = virt_to_head_page(objp);
3431 		list_del(&page->lru);
3432 		check_spinlock_acquired_node(cachep, node);
3433 		slab_put_obj(cachep, page, objp);
3434 		STATS_DEC_ACTIVE(cachep);
3435 
3436 		/* fixup slab chains */
3437 		if (page->active == 0)
3438 			list_add(&page->lru, &n->slabs_free);
3439 		else {
3440 			/* Unconditionally move a slab to the end of the
3441 			 * partial list on free - maximum time for the
3442 			 * other objects to be freed, too.
3443 			 */
3444 			list_add_tail(&page->lru, &n->slabs_partial);
3445 		}
3446 	}
3447 
3448 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3449 		n->free_objects -= cachep->num;
3450 
3451 		page = list_last_entry(&n->slabs_free, struct page, lru);
3452 		list_move(&page->lru, list);
3453 		n->num_slabs--;
3454 	}
3455 }
3456 
3457 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3458 {
3459 	int batchcount;
3460 	struct kmem_cache_node *n;
3461 	int node = numa_mem_id();
3462 	LIST_HEAD(list);
3463 
3464 	batchcount = ac->batchcount;
3465 
3466 	check_irq_off();
3467 	n = get_node(cachep, node);
3468 	spin_lock(&n->list_lock);
3469 	if (n->shared) {
3470 		struct array_cache *shared_array = n->shared;
3471 		int max = shared_array->limit - shared_array->avail;
3472 		if (max) {
3473 			if (batchcount > max)
3474 				batchcount = max;
3475 			memcpy(&(shared_array->entry[shared_array->avail]),
3476 			       ac->entry, sizeof(void *) * batchcount);
3477 			shared_array->avail += batchcount;
3478 			goto free_done;
3479 		}
3480 	}
3481 
3482 	free_block(cachep, ac->entry, batchcount, node, &list);
3483 free_done:
3484 #if STATS
3485 	{
3486 		int i = 0;
3487 		struct page *page;
3488 
3489 		list_for_each_entry(page, &n->slabs_free, lru) {
3490 			BUG_ON(page->active);
3491 
3492 			i++;
3493 		}
3494 		STATS_SET_FREEABLE(cachep, i);
3495 	}
3496 #endif
3497 	spin_unlock(&n->list_lock);
3498 	slabs_destroy(cachep, &list);
3499 	ac->avail -= batchcount;
3500 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3501 }
3502 
3503 /*
3504  * Release an obj back to its cache. If the obj has a constructed state, it must
3505  * be in this state _before_ it is released.  Called with disabled ints.
3506  */
3507 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3508 				unsigned long caller)
3509 {
3510 	/* Put the object into the quarantine, don't touch it for now. */
3511 	if (kasan_slab_free(cachep, objp))
3512 		return;
3513 
3514 	___cache_free(cachep, objp, caller);
3515 }
3516 
3517 void ___cache_free(struct kmem_cache *cachep, void *objp,
3518 		unsigned long caller)
3519 {
3520 	struct array_cache *ac = cpu_cache_get(cachep);
3521 
3522 	check_irq_off();
3523 	kmemleak_free_recursive(objp, cachep->flags);
3524 	objp = cache_free_debugcheck(cachep, objp, caller);
3525 
3526 	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3527 
3528 	/*
3529 	 * Skip calling cache_free_alien() when the platform is not numa.
3530 	 * This will avoid cache misses that happen while accessing slabp (which
3531 	 * is per page memory  reference) to get nodeid. Instead use a global
3532 	 * variable to skip the call, which is mostly likely to be present in
3533 	 * the cache.
3534 	 */
3535 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3536 		return;
3537 
3538 	if (ac->avail < ac->limit) {
3539 		STATS_INC_FREEHIT(cachep);
3540 	} else {
3541 		STATS_INC_FREEMISS(cachep);
3542 		cache_flusharray(cachep, ac);
3543 	}
3544 
3545 	if (sk_memalloc_socks()) {
3546 		struct page *page = virt_to_head_page(objp);
3547 
3548 		if (unlikely(PageSlabPfmemalloc(page))) {
3549 			cache_free_pfmemalloc(cachep, page, objp);
3550 			return;
3551 		}
3552 	}
3553 
3554 	ac->entry[ac->avail++] = objp;
3555 }
3556 
3557 /**
3558  * kmem_cache_alloc - Allocate an object
3559  * @cachep: The cache to allocate from.
3560  * @flags: See kmalloc().
3561  *
3562  * Allocate an object from this cache.  The flags are only relevant
3563  * if the cache has no available objects.
3564  */
3565 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3566 {
3567 	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3568 
3569 	kasan_slab_alloc(cachep, ret, flags);
3570 	trace_kmem_cache_alloc(_RET_IP_, ret,
3571 			       cachep->object_size, cachep->size, flags);
3572 
3573 	return ret;
3574 }
3575 EXPORT_SYMBOL(kmem_cache_alloc);
3576 
3577 static __always_inline void
3578 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3579 				  size_t size, void **p, unsigned long caller)
3580 {
3581 	size_t i;
3582 
3583 	for (i = 0; i < size; i++)
3584 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3585 }
3586 
3587 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3588 			  void **p)
3589 {
3590 	size_t i;
3591 
3592 	s = slab_pre_alloc_hook(s, flags);
3593 	if (!s)
3594 		return 0;
3595 
3596 	cache_alloc_debugcheck_before(s, flags);
3597 
3598 	local_irq_disable();
3599 	for (i = 0; i < size; i++) {
3600 		void *objp = __do_cache_alloc(s, flags);
3601 
3602 		if (unlikely(!objp))
3603 			goto error;
3604 		p[i] = objp;
3605 	}
3606 	local_irq_enable();
3607 
3608 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3609 
3610 	/* Clear memory outside IRQ disabled section */
3611 	if (unlikely(flags & __GFP_ZERO))
3612 		for (i = 0; i < size; i++)
3613 			memset(p[i], 0, s->object_size);
3614 
3615 	slab_post_alloc_hook(s, flags, size, p);
3616 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
3617 	return size;
3618 error:
3619 	local_irq_enable();
3620 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3621 	slab_post_alloc_hook(s, flags, i, p);
3622 	__kmem_cache_free_bulk(s, i, p);
3623 	return 0;
3624 }
3625 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3626 
3627 #ifdef CONFIG_TRACING
3628 void *
3629 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3630 {
3631 	void *ret;
3632 
3633 	ret = slab_alloc(cachep, flags, _RET_IP_);
3634 
3635 	kasan_kmalloc(cachep, ret, size, flags);
3636 	trace_kmalloc(_RET_IP_, ret,
3637 		      size, cachep->size, flags);
3638 	return ret;
3639 }
3640 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3641 #endif
3642 
3643 #ifdef CONFIG_NUMA
3644 /**
3645  * kmem_cache_alloc_node - Allocate an object on the specified node
3646  * @cachep: The cache to allocate from.
3647  * @flags: See kmalloc().
3648  * @nodeid: node number of the target node.
3649  *
3650  * Identical to kmem_cache_alloc but it will allocate memory on the given
3651  * node, which can improve the performance for cpu bound structures.
3652  *
3653  * Fallback to other node is possible if __GFP_THISNODE is not set.
3654  */
3655 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3656 {
3657 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3658 
3659 	kasan_slab_alloc(cachep, ret, flags);
3660 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3661 				    cachep->object_size, cachep->size,
3662 				    flags, nodeid);
3663 
3664 	return ret;
3665 }
3666 EXPORT_SYMBOL(kmem_cache_alloc_node);
3667 
3668 #ifdef CONFIG_TRACING
3669 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3670 				  gfp_t flags,
3671 				  int nodeid,
3672 				  size_t size)
3673 {
3674 	void *ret;
3675 
3676 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3677 
3678 	kasan_kmalloc(cachep, ret, size, flags);
3679 	trace_kmalloc_node(_RET_IP_, ret,
3680 			   size, cachep->size,
3681 			   flags, nodeid);
3682 	return ret;
3683 }
3684 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3685 #endif
3686 
3687 static __always_inline void *
3688 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3689 {
3690 	struct kmem_cache *cachep;
3691 	void *ret;
3692 
3693 	cachep = kmalloc_slab(size, flags);
3694 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3695 		return cachep;
3696 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3697 	kasan_kmalloc(cachep, ret, size, flags);
3698 
3699 	return ret;
3700 }
3701 
3702 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3703 {
3704 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3705 }
3706 EXPORT_SYMBOL(__kmalloc_node);
3707 
3708 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3709 		int node, unsigned long caller)
3710 {
3711 	return __do_kmalloc_node(size, flags, node, caller);
3712 }
3713 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3714 #endif /* CONFIG_NUMA */
3715 
3716 /**
3717  * __do_kmalloc - allocate memory
3718  * @size: how many bytes of memory are required.
3719  * @flags: the type of memory to allocate (see kmalloc).
3720  * @caller: function caller for debug tracking of the caller
3721  */
3722 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3723 					  unsigned long caller)
3724 {
3725 	struct kmem_cache *cachep;
3726 	void *ret;
3727 
3728 	cachep = kmalloc_slab(size, flags);
3729 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3730 		return cachep;
3731 	ret = slab_alloc(cachep, flags, caller);
3732 
3733 	kasan_kmalloc(cachep, ret, size, flags);
3734 	trace_kmalloc(caller, ret,
3735 		      size, cachep->size, flags);
3736 
3737 	return ret;
3738 }
3739 
3740 void *__kmalloc(size_t size, gfp_t flags)
3741 {
3742 	return __do_kmalloc(size, flags, _RET_IP_);
3743 }
3744 EXPORT_SYMBOL(__kmalloc);
3745 
3746 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3747 {
3748 	return __do_kmalloc(size, flags, caller);
3749 }
3750 EXPORT_SYMBOL(__kmalloc_track_caller);
3751 
3752 /**
3753  * kmem_cache_free - Deallocate an object
3754  * @cachep: The cache the allocation was from.
3755  * @objp: The previously allocated object.
3756  *
3757  * Free an object which was previously allocated from this
3758  * cache.
3759  */
3760 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3761 {
3762 	unsigned long flags;
3763 	cachep = cache_from_obj(cachep, objp);
3764 	if (!cachep)
3765 		return;
3766 
3767 	local_irq_save(flags);
3768 	debug_check_no_locks_freed(objp, cachep->object_size);
3769 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3770 		debug_check_no_obj_freed(objp, cachep->object_size);
3771 	__cache_free(cachep, objp, _RET_IP_);
3772 	local_irq_restore(flags);
3773 
3774 	trace_kmem_cache_free(_RET_IP_, objp);
3775 }
3776 EXPORT_SYMBOL(kmem_cache_free);
3777 
3778 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3779 {
3780 	struct kmem_cache *s;
3781 	size_t i;
3782 
3783 	local_irq_disable();
3784 	for (i = 0; i < size; i++) {
3785 		void *objp = p[i];
3786 
3787 		if (!orig_s) /* called via kfree_bulk */
3788 			s = virt_to_cache(objp);
3789 		else
3790 			s = cache_from_obj(orig_s, objp);
3791 
3792 		debug_check_no_locks_freed(objp, s->object_size);
3793 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
3794 			debug_check_no_obj_freed(objp, s->object_size);
3795 
3796 		__cache_free(s, objp, _RET_IP_);
3797 	}
3798 	local_irq_enable();
3799 
3800 	/* FIXME: add tracing */
3801 }
3802 EXPORT_SYMBOL(kmem_cache_free_bulk);
3803 
3804 /**
3805  * kfree - free previously allocated memory
3806  * @objp: pointer returned by kmalloc.
3807  *
3808  * If @objp is NULL, no operation is performed.
3809  *
3810  * Don't free memory not originally allocated by kmalloc()
3811  * or you will run into trouble.
3812  */
3813 void kfree(const void *objp)
3814 {
3815 	struct kmem_cache *c;
3816 	unsigned long flags;
3817 
3818 	trace_kfree(_RET_IP_, objp);
3819 
3820 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3821 		return;
3822 	local_irq_save(flags);
3823 	kfree_debugcheck(objp);
3824 	c = virt_to_cache(objp);
3825 	debug_check_no_locks_freed(objp, c->object_size);
3826 
3827 	debug_check_no_obj_freed(objp, c->object_size);
3828 	__cache_free(c, (void *)objp, _RET_IP_);
3829 	local_irq_restore(flags);
3830 }
3831 EXPORT_SYMBOL(kfree);
3832 
3833 /*
3834  * This initializes kmem_cache_node or resizes various caches for all nodes.
3835  */
3836 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3837 {
3838 	int ret;
3839 	int node;
3840 	struct kmem_cache_node *n;
3841 
3842 	for_each_online_node(node) {
3843 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
3844 		if (ret)
3845 			goto fail;
3846 
3847 	}
3848 
3849 	return 0;
3850 
3851 fail:
3852 	if (!cachep->list.next) {
3853 		/* Cache is not active yet. Roll back what we did */
3854 		node--;
3855 		while (node >= 0) {
3856 			n = get_node(cachep, node);
3857 			if (n) {
3858 				kfree(n->shared);
3859 				free_alien_cache(n->alien);
3860 				kfree(n);
3861 				cachep->node[node] = NULL;
3862 			}
3863 			node--;
3864 		}
3865 	}
3866 	return -ENOMEM;
3867 }
3868 
3869 /* Always called with the slab_mutex held */
3870 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3871 				int batchcount, int shared, gfp_t gfp)
3872 {
3873 	struct array_cache __percpu *cpu_cache, *prev;
3874 	int cpu;
3875 
3876 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3877 	if (!cpu_cache)
3878 		return -ENOMEM;
3879 
3880 	prev = cachep->cpu_cache;
3881 	cachep->cpu_cache = cpu_cache;
3882 	kick_all_cpus_sync();
3883 
3884 	check_irq_on();
3885 	cachep->batchcount = batchcount;
3886 	cachep->limit = limit;
3887 	cachep->shared = shared;
3888 
3889 	if (!prev)
3890 		goto setup_node;
3891 
3892 	for_each_online_cpu(cpu) {
3893 		LIST_HEAD(list);
3894 		int node;
3895 		struct kmem_cache_node *n;
3896 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3897 
3898 		node = cpu_to_mem(cpu);
3899 		n = get_node(cachep, node);
3900 		spin_lock_irq(&n->list_lock);
3901 		free_block(cachep, ac->entry, ac->avail, node, &list);
3902 		spin_unlock_irq(&n->list_lock);
3903 		slabs_destroy(cachep, &list);
3904 	}
3905 	free_percpu(prev);
3906 
3907 setup_node:
3908 	return setup_kmem_cache_nodes(cachep, gfp);
3909 }
3910 
3911 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3912 				int batchcount, int shared, gfp_t gfp)
3913 {
3914 	int ret;
3915 	struct kmem_cache *c;
3916 
3917 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3918 
3919 	if (slab_state < FULL)
3920 		return ret;
3921 
3922 	if ((ret < 0) || !is_root_cache(cachep))
3923 		return ret;
3924 
3925 	lockdep_assert_held(&slab_mutex);
3926 	for_each_memcg_cache(c, cachep) {
3927 		/* return value determined by the root cache only */
3928 		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3929 	}
3930 
3931 	return ret;
3932 }
3933 
3934 /* Called with slab_mutex held always */
3935 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3936 {
3937 	int err;
3938 	int limit = 0;
3939 	int shared = 0;
3940 	int batchcount = 0;
3941 
3942 	err = cache_random_seq_create(cachep, cachep->num, gfp);
3943 	if (err)
3944 		goto end;
3945 
3946 	if (!is_root_cache(cachep)) {
3947 		struct kmem_cache *root = memcg_root_cache(cachep);
3948 		limit = root->limit;
3949 		shared = root->shared;
3950 		batchcount = root->batchcount;
3951 	}
3952 
3953 	if (limit && shared && batchcount)
3954 		goto skip_setup;
3955 	/*
3956 	 * The head array serves three purposes:
3957 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3958 	 * - reduce the number of spinlock operations.
3959 	 * - reduce the number of linked list operations on the slab and
3960 	 *   bufctl chains: array operations are cheaper.
3961 	 * The numbers are guessed, we should auto-tune as described by
3962 	 * Bonwick.
3963 	 */
3964 	if (cachep->size > 131072)
3965 		limit = 1;
3966 	else if (cachep->size > PAGE_SIZE)
3967 		limit = 8;
3968 	else if (cachep->size > 1024)
3969 		limit = 24;
3970 	else if (cachep->size > 256)
3971 		limit = 54;
3972 	else
3973 		limit = 120;
3974 
3975 	/*
3976 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3977 	 * allocation behaviour: Most allocs on one cpu, most free operations
3978 	 * on another cpu. For these cases, an efficient object passing between
3979 	 * cpus is necessary. This is provided by a shared array. The array
3980 	 * replaces Bonwick's magazine layer.
3981 	 * On uniprocessor, it's functionally equivalent (but less efficient)
3982 	 * to a larger limit. Thus disabled by default.
3983 	 */
3984 	shared = 0;
3985 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3986 		shared = 8;
3987 
3988 #if DEBUG
3989 	/*
3990 	 * With debugging enabled, large batchcount lead to excessively long
3991 	 * periods with disabled local interrupts. Limit the batchcount
3992 	 */
3993 	if (limit > 32)
3994 		limit = 32;
3995 #endif
3996 	batchcount = (limit + 1) / 2;
3997 skip_setup:
3998 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3999 end:
4000 	if (err)
4001 		pr_err("enable_cpucache failed for %s, error %d\n",
4002 		       cachep->name, -err);
4003 	return err;
4004 }
4005 
4006 /*
4007  * Drain an array if it contains any elements taking the node lock only if
4008  * necessary. Note that the node listlock also protects the array_cache
4009  * if drain_array() is used on the shared array.
4010  */
4011 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4012 			 struct array_cache *ac, int node)
4013 {
4014 	LIST_HEAD(list);
4015 
4016 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
4017 	check_mutex_acquired();
4018 
4019 	if (!ac || !ac->avail)
4020 		return;
4021 
4022 	if (ac->touched) {
4023 		ac->touched = 0;
4024 		return;
4025 	}
4026 
4027 	spin_lock_irq(&n->list_lock);
4028 	drain_array_locked(cachep, ac, node, false, &list);
4029 	spin_unlock_irq(&n->list_lock);
4030 
4031 	slabs_destroy(cachep, &list);
4032 }
4033 
4034 /**
4035  * cache_reap - Reclaim memory from caches.
4036  * @w: work descriptor
4037  *
4038  * Called from workqueue/eventd every few seconds.
4039  * Purpose:
4040  * - clear the per-cpu caches for this CPU.
4041  * - return freeable pages to the main free memory pool.
4042  *
4043  * If we cannot acquire the cache chain mutex then just give up - we'll try
4044  * again on the next iteration.
4045  */
4046 static void cache_reap(struct work_struct *w)
4047 {
4048 	struct kmem_cache *searchp;
4049 	struct kmem_cache_node *n;
4050 	int node = numa_mem_id();
4051 	struct delayed_work *work = to_delayed_work(w);
4052 
4053 	if (!mutex_trylock(&slab_mutex))
4054 		/* Give up. Setup the next iteration. */
4055 		goto out;
4056 
4057 	list_for_each_entry(searchp, &slab_caches, list) {
4058 		check_irq_on();
4059 
4060 		/*
4061 		 * We only take the node lock if absolutely necessary and we
4062 		 * have established with reasonable certainty that
4063 		 * we can do some work if the lock was obtained.
4064 		 */
4065 		n = get_node(searchp, node);
4066 
4067 		reap_alien(searchp, n);
4068 
4069 		drain_array(searchp, n, cpu_cache_get(searchp), node);
4070 
4071 		/*
4072 		 * These are racy checks but it does not matter
4073 		 * if we skip one check or scan twice.
4074 		 */
4075 		if (time_after(n->next_reap, jiffies))
4076 			goto next;
4077 
4078 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
4079 
4080 		drain_array(searchp, n, n->shared, node);
4081 
4082 		if (n->free_touched)
4083 			n->free_touched = 0;
4084 		else {
4085 			int freed;
4086 
4087 			freed = drain_freelist(searchp, n, (n->free_limit +
4088 				5 * searchp->num - 1) / (5 * searchp->num));
4089 			STATS_ADD_REAPED(searchp, freed);
4090 		}
4091 next:
4092 		cond_resched();
4093 	}
4094 	check_irq_on();
4095 	mutex_unlock(&slab_mutex);
4096 	next_reap_node();
4097 out:
4098 	/* Set up the next iteration */
4099 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4100 }
4101 
4102 #ifdef CONFIG_SLABINFO
4103 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4104 {
4105 	struct page *page;
4106 	unsigned long active_objs;
4107 	unsigned long num_objs;
4108 	unsigned long active_slabs = 0;
4109 	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4110 	unsigned long num_slabs_partial = 0, num_slabs_free = 0;
4111 	unsigned long num_slabs_full = 0;
4112 	const char *name;
4113 	char *error = NULL;
4114 	int node;
4115 	struct kmem_cache_node *n;
4116 
4117 	active_objs = 0;
4118 	num_slabs = 0;
4119 	for_each_kmem_cache_node(cachep, node, n) {
4120 
4121 		check_irq_on();
4122 		spin_lock_irq(&n->list_lock);
4123 
4124 		num_slabs += n->num_slabs;
4125 
4126 		list_for_each_entry(page, &n->slabs_partial, lru) {
4127 			if (page->active == cachep->num && !error)
4128 				error = "slabs_partial accounting error";
4129 			if (!page->active && !error)
4130 				error = "slabs_partial accounting error";
4131 			active_objs += page->active;
4132 			num_slabs_partial++;
4133 		}
4134 
4135 		list_for_each_entry(page, &n->slabs_free, lru) {
4136 			if (page->active && !error)
4137 				error = "slabs_free accounting error";
4138 			num_slabs_free++;
4139 		}
4140 
4141 		free_objects += n->free_objects;
4142 		if (n->shared)
4143 			shared_avail += n->shared->avail;
4144 
4145 		spin_unlock_irq(&n->list_lock);
4146 	}
4147 	num_objs = num_slabs * cachep->num;
4148 	active_slabs = num_slabs - num_slabs_free;
4149 	num_slabs_full = num_slabs - (num_slabs_partial + num_slabs_free);
4150 	active_objs += (num_slabs_full * cachep->num);
4151 
4152 	if (num_objs - active_objs != free_objects && !error)
4153 		error = "free_objects accounting error";
4154 
4155 	name = cachep->name;
4156 	if (error)
4157 		pr_err("slab: cache %s error: %s\n", name, error);
4158 
4159 	sinfo->active_objs = active_objs;
4160 	sinfo->num_objs = num_objs;
4161 	sinfo->active_slabs = active_slabs;
4162 	sinfo->num_slabs = num_slabs;
4163 	sinfo->shared_avail = shared_avail;
4164 	sinfo->limit = cachep->limit;
4165 	sinfo->batchcount = cachep->batchcount;
4166 	sinfo->shared = cachep->shared;
4167 	sinfo->objects_per_slab = cachep->num;
4168 	sinfo->cache_order = cachep->gfporder;
4169 }
4170 
4171 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4172 {
4173 #if STATS
4174 	{			/* node stats */
4175 		unsigned long high = cachep->high_mark;
4176 		unsigned long allocs = cachep->num_allocations;
4177 		unsigned long grown = cachep->grown;
4178 		unsigned long reaped = cachep->reaped;
4179 		unsigned long errors = cachep->errors;
4180 		unsigned long max_freeable = cachep->max_freeable;
4181 		unsigned long node_allocs = cachep->node_allocs;
4182 		unsigned long node_frees = cachep->node_frees;
4183 		unsigned long overflows = cachep->node_overflow;
4184 
4185 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4186 			   allocs, high, grown,
4187 			   reaped, errors, max_freeable, node_allocs,
4188 			   node_frees, overflows);
4189 	}
4190 	/* cpu stats */
4191 	{
4192 		unsigned long allochit = atomic_read(&cachep->allochit);
4193 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4194 		unsigned long freehit = atomic_read(&cachep->freehit);
4195 		unsigned long freemiss = atomic_read(&cachep->freemiss);
4196 
4197 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4198 			   allochit, allocmiss, freehit, freemiss);
4199 	}
4200 #endif
4201 }
4202 
4203 #define MAX_SLABINFO_WRITE 128
4204 /**
4205  * slabinfo_write - Tuning for the slab allocator
4206  * @file: unused
4207  * @buffer: user buffer
4208  * @count: data length
4209  * @ppos: unused
4210  */
4211 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4212 		       size_t count, loff_t *ppos)
4213 {
4214 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4215 	int limit, batchcount, shared, res;
4216 	struct kmem_cache *cachep;
4217 
4218 	if (count > MAX_SLABINFO_WRITE)
4219 		return -EINVAL;
4220 	if (copy_from_user(&kbuf, buffer, count))
4221 		return -EFAULT;
4222 	kbuf[MAX_SLABINFO_WRITE] = '\0';
4223 
4224 	tmp = strchr(kbuf, ' ');
4225 	if (!tmp)
4226 		return -EINVAL;
4227 	*tmp = '\0';
4228 	tmp++;
4229 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4230 		return -EINVAL;
4231 
4232 	/* Find the cache in the chain of caches. */
4233 	mutex_lock(&slab_mutex);
4234 	res = -EINVAL;
4235 	list_for_each_entry(cachep, &slab_caches, list) {
4236 		if (!strcmp(cachep->name, kbuf)) {
4237 			if (limit < 1 || batchcount < 1 ||
4238 					batchcount > limit || shared < 0) {
4239 				res = 0;
4240 			} else {
4241 				res = do_tune_cpucache(cachep, limit,
4242 						       batchcount, shared,
4243 						       GFP_KERNEL);
4244 			}
4245 			break;
4246 		}
4247 	}
4248 	mutex_unlock(&slab_mutex);
4249 	if (res >= 0)
4250 		res = count;
4251 	return res;
4252 }
4253 
4254 #ifdef CONFIG_DEBUG_SLAB_LEAK
4255 
4256 static inline int add_caller(unsigned long *n, unsigned long v)
4257 {
4258 	unsigned long *p;
4259 	int l;
4260 	if (!v)
4261 		return 1;
4262 	l = n[1];
4263 	p = n + 2;
4264 	while (l) {
4265 		int i = l/2;
4266 		unsigned long *q = p + 2 * i;
4267 		if (*q == v) {
4268 			q[1]++;
4269 			return 1;
4270 		}
4271 		if (*q > v) {
4272 			l = i;
4273 		} else {
4274 			p = q + 2;
4275 			l -= i + 1;
4276 		}
4277 	}
4278 	if (++n[1] == n[0])
4279 		return 0;
4280 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4281 	p[0] = v;
4282 	p[1] = 1;
4283 	return 1;
4284 }
4285 
4286 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4287 						struct page *page)
4288 {
4289 	void *p;
4290 	int i, j;
4291 	unsigned long v;
4292 
4293 	if (n[0] == n[1])
4294 		return;
4295 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4296 		bool active = true;
4297 
4298 		for (j = page->active; j < c->num; j++) {
4299 			if (get_free_obj(page, j) == i) {
4300 				active = false;
4301 				break;
4302 			}
4303 		}
4304 
4305 		if (!active)
4306 			continue;
4307 
4308 		/*
4309 		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4310 		 * mapping is established when actual object allocation and
4311 		 * we could mistakenly access the unmapped object in the cpu
4312 		 * cache.
4313 		 */
4314 		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4315 			continue;
4316 
4317 		if (!add_caller(n, v))
4318 			return;
4319 	}
4320 }
4321 
4322 static void show_symbol(struct seq_file *m, unsigned long address)
4323 {
4324 #ifdef CONFIG_KALLSYMS
4325 	unsigned long offset, size;
4326 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4327 
4328 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4329 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4330 		if (modname[0])
4331 			seq_printf(m, " [%s]", modname);
4332 		return;
4333 	}
4334 #endif
4335 	seq_printf(m, "%p", (void *)address);
4336 }
4337 
4338 static int leaks_show(struct seq_file *m, void *p)
4339 {
4340 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4341 	struct page *page;
4342 	struct kmem_cache_node *n;
4343 	const char *name;
4344 	unsigned long *x = m->private;
4345 	int node;
4346 	int i;
4347 
4348 	if (!(cachep->flags & SLAB_STORE_USER))
4349 		return 0;
4350 	if (!(cachep->flags & SLAB_RED_ZONE))
4351 		return 0;
4352 
4353 	/*
4354 	 * Set store_user_clean and start to grab stored user information
4355 	 * for all objects on this cache. If some alloc/free requests comes
4356 	 * during the processing, information would be wrong so restart
4357 	 * whole processing.
4358 	 */
4359 	do {
4360 		set_store_user_clean(cachep);
4361 		drain_cpu_caches(cachep);
4362 
4363 		x[1] = 0;
4364 
4365 		for_each_kmem_cache_node(cachep, node, n) {
4366 
4367 			check_irq_on();
4368 			spin_lock_irq(&n->list_lock);
4369 
4370 			list_for_each_entry(page, &n->slabs_full, lru)
4371 				handle_slab(x, cachep, page);
4372 			list_for_each_entry(page, &n->slabs_partial, lru)
4373 				handle_slab(x, cachep, page);
4374 			spin_unlock_irq(&n->list_lock);
4375 		}
4376 	} while (!is_store_user_clean(cachep));
4377 
4378 	name = cachep->name;
4379 	if (x[0] == x[1]) {
4380 		/* Increase the buffer size */
4381 		mutex_unlock(&slab_mutex);
4382 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4383 		if (!m->private) {
4384 			/* Too bad, we are really out */
4385 			m->private = x;
4386 			mutex_lock(&slab_mutex);
4387 			return -ENOMEM;
4388 		}
4389 		*(unsigned long *)m->private = x[0] * 2;
4390 		kfree(x);
4391 		mutex_lock(&slab_mutex);
4392 		/* Now make sure this entry will be retried */
4393 		m->count = m->size;
4394 		return 0;
4395 	}
4396 	for (i = 0; i < x[1]; i++) {
4397 		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4398 		show_symbol(m, x[2*i+2]);
4399 		seq_putc(m, '\n');
4400 	}
4401 
4402 	return 0;
4403 }
4404 
4405 static const struct seq_operations slabstats_op = {
4406 	.start = slab_start,
4407 	.next = slab_next,
4408 	.stop = slab_stop,
4409 	.show = leaks_show,
4410 };
4411 
4412 static int slabstats_open(struct inode *inode, struct file *file)
4413 {
4414 	unsigned long *n;
4415 
4416 	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4417 	if (!n)
4418 		return -ENOMEM;
4419 
4420 	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4421 
4422 	return 0;
4423 }
4424 
4425 static const struct file_operations proc_slabstats_operations = {
4426 	.open		= slabstats_open,
4427 	.read		= seq_read,
4428 	.llseek		= seq_lseek,
4429 	.release	= seq_release_private,
4430 };
4431 #endif
4432 
4433 static int __init slab_proc_init(void)
4434 {
4435 #ifdef CONFIG_DEBUG_SLAB_LEAK
4436 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4437 #endif
4438 	return 0;
4439 }
4440 module_init(slab_proc_init);
4441 #endif
4442 
4443 #ifdef CONFIG_HARDENED_USERCOPY
4444 /*
4445  * Rejects objects that are incorrectly sized.
4446  *
4447  * Returns NULL if check passes, otherwise const char * to name of cache
4448  * to indicate an error.
4449  */
4450 const char *__check_heap_object(const void *ptr, unsigned long n,
4451 				struct page *page)
4452 {
4453 	struct kmem_cache *cachep;
4454 	unsigned int objnr;
4455 	unsigned long offset;
4456 
4457 	/* Find and validate object. */
4458 	cachep = page->slab_cache;
4459 	objnr = obj_to_index(cachep, page, (void *)ptr);
4460 	BUG_ON(objnr >= cachep->num);
4461 
4462 	/* Find offset within object. */
4463 	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4464 
4465 	/* Allow address range falling entirely within object size. */
4466 	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4467 		return NULL;
4468 
4469 	return cachep->name;
4470 }
4471 #endif /* CONFIG_HARDENED_USERCOPY */
4472 
4473 /**
4474  * ksize - get the actual amount of memory allocated for a given object
4475  * @objp: Pointer to the object
4476  *
4477  * kmalloc may internally round up allocations and return more memory
4478  * than requested. ksize() can be used to determine the actual amount of
4479  * memory allocated. The caller may use this additional memory, even though
4480  * a smaller amount of memory was initially specified with the kmalloc call.
4481  * The caller must guarantee that objp points to a valid object previously
4482  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4483  * must not be freed during the duration of the call.
4484  */
4485 size_t ksize(const void *objp)
4486 {
4487 	size_t size;
4488 
4489 	BUG_ON(!objp);
4490 	if (unlikely(objp == ZERO_SIZE_PTR))
4491 		return 0;
4492 
4493 	size = virt_to_cache(objp)->object_size;
4494 	/* We assume that ksize callers could use the whole allocated area,
4495 	 * so we need to unpoison this area.
4496 	 */
4497 	kasan_unpoison_shadow(objp, size);
4498 
4499 	return size;
4500 }
4501 EXPORT_SYMBOL(ksize);
4502